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Abstract
Subword-based tokenization methods often
fail to preserve morphological boundaries,
a limitation especially pronounced in low-
resource, morphologically complex languages
such as those written in the Ge‘ez script. To
address this, we present Morpheme-aware Sub-
word Vocabulary Construction MoVoC and
train MoVoC-Tok, a tokenizer that integrates
supervised morphological analysis into the
subword vocabulary. This hybrid segmenta-
tion approach combines morpheme-based and
Byte Pair Encoding (BPE) tokens to preserve
morphological integrity while maintaining lex-
ical meaning. To tackle resource scarcity, we
curate and release manually annotated mor-
pheme data for four Ge‘ez script languages and
a morpheme-aware vocabulary for two of them.
While the proposed tokenization method does
not lead to significant gains in automatic trans-
lation quality, we observe consistent improve-
ments in intrinsic metrics, MorphoScore, and
Boundary Precision, highlighting the value of
morphology-aware segmentation in enhancing
linguistic fidelity and token efficiency. Our
morpheme-annotated datasets and tokenizer
dataset will be publicly available to support fur-
ther research in low-resource, morphologically
rich languages. Our code and data are available
on GitHub1.

1 Introduction
Tokenization is a fundamental preprocessing step
in NLP, converting raw text into structured units
such as bytes (Gillick et al., 2016), characters (Al-
Rfou et al., 2019), subwords (Sennrich et al., 2016),
words (Song et al., 2021), or multi-word expres-
sions (Gee et al., 2023). Subword tokenization,
such as BPE (Sennrich et al., 2016), gained pop-
ularity for being language-independent and com-
pressing vocabulary, enabling efficient and bal-
anced token learning. However, subwords often

1https://github.com/hailaykidu/MoVoC

fail to capture morphological structure, a problem
that is especially clear in multilingual models us-
ing a shared vocabulary across languages. Without
careful and balanced data selection, low-resource
languages typically receive fewer subwords, lead-
ing to a high token-to-word ratio (Haddow et al.,
2022; Limisiewicz et al., 2023; Libovický and
Helcl, 2024). Moreover, negative morphemes chal-
lenge LLMs with tokenizers lacking morphologi-
cal sensitivity (Mikaberidze et al., 2024).

Morphological systems across languages vary
regarding the relation between form and mean-
ing (Socolof et al., 2022) and are harder to model
and predict (Cotterell et al., 2018; Park et al., 2021).
Furthermore, languages with greater morphologi-
cal complexity may lead to worse language model
performance, as morphologically rich languages
tend to have a large number of very infrequent word
forms produced by combinations of morphemes,
which leads to data sparsity (Shin and You, 2009;
Botev et al., 2022). Morphologically rich lan-
guages also have less annotated data (Botev et al.,
2022) and are often written with non-Latin scripts,
which require more bytes to be represented in com-
mon encoding standards like UTF-8 (Arnett and
Bergen, 2025).

Additionally while subword tokenization con-
sistently outperforms character and word level
approaches by efficiently compressing text into
shorter token sequences (Goldman et al., 2024),
compression alone is not always predictive of
downstream task success, especially for mor-
phologically complex or semantically dense lan-
guages (Schmidt et al., 2024). Overall the standard
algorithms lack morphology awareness (Libovický
and Helcl, 2024). Alternatively Morphologically-
aware tokenization produces more meaningful
tokens, often resulting in improved model per-
formance (Lerner and Yvon, 2025; Hofmann
et al., 2022; Bauwens and Delobelle, 2024; Minix-
hofer et al., 2023). This claim is supported
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Figure 1: MoVoC Pipeline. We first extract Amharic and Tigrinya words from our corresponding text corpora to
perform token-based and morpheme-based separation resulting in four different vocabularies. We then merge all
four vocabularies to generate a single MoVoC-based vocabulary (VMoVoC).

by evidence from several languages, e.g., Ko-
rean (Lee et al., 2024), Arabic (Tawfik et al., 2019),
Japanese (Bostrom and Durrett, 2020), and He-
brew (Gueta et al., 2023). However, such efforts
are constrained by the limited availability of mor-
phologically annotated datasets, mostly found in
high-resource languages (Minixhofer et al., 2023).
Moreover, even with sufficient morphological an-
notations, relying solely on morpheme-based to-
kenization is suboptimal. As noted by Bauwens
and Delobelle (2024), approaches that disregard
subword tokenization struggle to leverage shared
statistical information across related word forms,
result in longer input sequences, and generally
perform worse than hybrid methods that integrate
morphological information with subword tokeniza-
tion. Accordingly, based on the three-stage tok-
enization framework proposed by Schmidt et al.
(2024) and Libovický and Helcl (2024), we adopt
a tokenization process comprising three distinct
phases: pre-tokenization, vocabulary construction,
and segmentation.

Concretely, our contributions are as follows: (i)
We develop morphologically annotated datasets
for four low-resource Ge’ez Script languages
to support improved tokenization, morphological
analysis, and downstream NLP tasks; (ii) We
propose MoVoC (Morpheme-Aware Vocabulary
Construction), a supervised approach that lever-
ages linguistically informed BPE segmentations
as an alternative to standard subword techniques.
It integrates BPE-derived vocabulary with mor-
phemes extracted through supervised methods

to enhance morphological representation and im-
prove token-to-morpheme alignment in morpho-
logically rich low-resource languages; (iii) We
perform thorough intrinsic and extrinsic evalua-
tions to measure the effectiveness of our approach
and validate its practical applicability.

2 Background

2.1 Tokenization Approaches
Word Tokenization: The straightforward meth-
ods for segmenting text involves breaking a string
of text into distinct words. The simplest form of
word tokenization relies on dividing sequences by
whitespace and treating each word as a separate
token, as noted by (Bengio et al., 2003). This
method is particularly prevalent in languages that
have clear word boundaries, such as English. Al-
ternatively, one could also perform rule-based to-
kenization, which uses a set of predefined rules
and patterns to identify tokens. For example, it
might use regular expressions to handle contrac-
tions like “can’t” or “won’t” by splitting them into
“can not” and “will not,” respectively. A key
challenge with this method is addressing out-of-
vocabulary (OOV) words, which can arise from ty-
pos, unrecognized scripts, and other factors.

Subword Tokenization: The most common
strategy is to decompose words into subwords, al-
lowing models to process out-of-vocabulary words
by merging subwords from the vocabulary (Kudo
and Richardson, 2018). Examples of popular sub-
word tokenizers are WordPiece (Song et al., 2021),
BPE (Sennrich et al., 2016), Byte-Level BPE
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(BBPE) (Wang et al., 2020) and Unigram (Kudo
and Richardson, 2018).

Character Tokenization: Tokenization
can also be done at the character or UTF-8
byte level, but this increases sequence length
and leads to higher computational cost due
to the quadratic complexity of transformers’
self-attention (Vaswani et al., 2017; Ali et al.,
2024).

2.2 Ge’ez Script Natural Language
Processing

The Ge’ez writing system is one of the oldest con-
tinuously used scripts in the world, which pre-
served for over 2000 years, it reflects a remark-
ably stable and adaptable method of representing
language (Gidey et al., 2024). Beyond its func-
tion as a grammatical system, Ge’ez offers valu-
able insight into the intellectual, philosophical, and
cultural foundations of ancient African civiliza-
tions, highlighting their linguistic innovation and
societal advancement (Scelta and Quezzaire-Belle,
2001; Gidey et al., 2024). Unlike alphabetic sys-
tems like Greek or Latin, Ge’ez uses a syllabic
script, originally derived from the Sabean script
(Bekerie, 2003). However, the development and
publication of usable NLP tools for Ge’ez have
been hindered to date due to the scarcity of essen-
tial linguistic resources (Gidey et al., 2024). It is
a script for numerous languages, including Ge’ez,
Tigrinya, Amharic, Tigre, and Blin (Gaim et al.,
2022). These morphologically rich Semitic lan-
guages present unique difficulties due to their com-
plex morphology, which generates numerous in-
flected forms (Tedla and Yamamoto, 2018).

For example, the Amharic verb ”to write” (ጻፈ)
inflects for tense, aspect, person, number, and gen-
der: ”I wrote” becomes ጻፍኩ, ”you wrote” ጻፍክ,
and ”they wrote” ጻፉ. Similarly, in Tigrinya, the
root verb ”to write” (ጸሓፈ) exhibits rich inflec-
tional patterns based on similar grammatical cate-
gories. This rich inflectional morphology results
in many surface forms, especially because verb
endings are often agglutinated directly to the root
without clear word boundaries. For example, in
Amharic, the root verb ሠራ (”to do”) forms in-
flected variants by attaching endings directly, such
as ሠራሁ (”I did”). Similarly, in Tigrinya, the root
verb ነበረ (”to be” or ”to exist”) forms inflected
variants like ነበረኒ (”I had it”) by attaching endings
directly to the root. Consequently, subword tok-
enization methods such as BPE, which are based

solely on frequency and not linguistic structure,
struggle to segment these languages appropriately.
In this work, we contribute to Ge’ez script lan-
guage processing by (i) providing annotated data
for four Ge’ez script language, such as Tigriyna,
Amharic, Ge’ez and Tigre, and (ii) exploring a
morpheme-aware alternative to BPE by constrain-
ing segmentation to respect morpheme boundaries,
yielding vocabularies aligned with linguistic struc-
ture and improving tokenization in morphologi-
cally rich languages.

2.3 Tokenization for Morphologically Rich
and Low-Resource Languages

Subword tokenization is a widely explored area
in natural language processing, with various meth-
ods proposed to break words into smaller subword
units (Hou et al., 2023; Gezmu and Nürnberger,
2023; Socolof et al., 2022; Dewangan et al., 2025;
Thawani et al., 2023; Schmidt et al., 2024). Park
et al. (2021) trained models with several segmen-
tation algorithms, including BPE and Morfessor
(Creutz and Lagus, 2002), on a corpus of Bible
verses in 92 languages. Language models perform
worse on morphologically complex languages due
to poor tokenization and smaller datasets (Arnett
and Bergen, 2025). Morphological typology sig-
nificantly impacts LM performance, with features
like exponence, flexivity, and fusion contributing
to low-frequency phenomena that are challenging
for statistical models (Gerz et al., 2018).

Park et al. (2021) investigate linguistically mo-
tivated segmentation methods, such as Morfessor
and FSTs, that help reduce the effect of morpho-
logical complexity and can improve language mod-
eling performance. Dewangan et al. (2025) show
that optimized BPE outperforms greedy methods
by reducing token count, improving efficiency,
and benefiting multilingual and low-resource NLP
tasks. Similarly, both MorphBPE (Asgari et al.,
2025) and MorphPiece (Jabbar, 2023) aim to im-
prove tokenization for morphologically rich lan-
guages by incorporating linguistic features into the
segmentation process. Mikaberidze et al. (2024)
explored the impact of various tokenization meth-
ods on Georgian language modeling, demonstrat-
ing the necessity of preserving morphological vari-
ations in the tokenization process. Furthermore,
Bauwens and Delobelle (2024) concluded that a
lack of morpheme-awareness leads to inconsis-
tent intraword representations, inflated vocabulary
size, and inefficient embedding storage. On the
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Original Words
Amharic / English

Morphological
Segmentation BPE Segmentation Impacts of BPE Segmentation

በቤትኦችኣችን
In our homes

'ለ-<ቤት>ኦች-
ኣችን--'

['በ','ቤት','ኦ','ች'
,'ኣ','ችን']

Over-segmentation: BPE splits the phrase into frag-
ments that don’t form the cohesive meaning of ”In our
homes.” Words like 'ቤት' (house) and 'ኦችኣችን' (our
homes) are broken, losing their semantic coherence and
making it hard to convey the original context.

አልሰበሩም
They didn’t break

’-ኣል-<ሰበር>ኡ--
ም---’ ['አል','ሰ','በሩ','ም']

Fragmented meaning: BPE breaks ”ሰበር” (break) into
”ሰ” and ”በሩ” distorting the intended meaning. The
sentence ”They didn’t break” becomes unclear because
BPE doesn’t preserve the root structure of the verb, lead-
ing to loss of grammatical clarity and reduced accuracy
in translation.

የማይሰብረው
He didn’t break

’የም-ኣ-ይ<ሰብር>-
አው----’ ['የማይ', 'ሰብ', 'ረው']

Loss of verb tense and context: BPE splits ”ሰብር”
(break) incorrectly, making it ”ሰብ” and ”ረው.” The full
context of ”He didn’t break” is lost because the tense
(”didn’t”) and action (”break”) are not preserved in the
segmentation, leading to confusion and a loss of mean-
ing.

Table 1: Comparison of Morphological Segmentation and BPE Segmentation with their Impact. The stem is en-
closed within < >, while - marks the boundaries of morphemes. A lone - indicates the absence of a morpheme in
that position.

other hand, Saleva and Lignos (2021) evaluate sub-
word segmentation in low-resource NMT and find
that while morphology-based methods occasion-
ally outperform BPE, their overall performance is
often statistically similar, offering no consistent
advantage. A more recent work by Libovický
and Helcl (2024) employed word embeddings to
enable semantically informed subword segmenta-
tion; however, its effectiveness diminishes in low-
resource languages due to limited training data.

Overall, these reports reveal a gap in under-
standing the performance of different tokenization
strategies for low-resource languages. Therefore,
our work on MoVoC not only contributes to the
processing of Ge’ez script languages but also acts
as another successful example for the potential
of morpheme-aware subword tokenization alterna-
tive.

3 Proposed Method

In this section, we describe three separate method-
ologies for 1) Pre-tokenization and Supervised
Morphological Analyses, 2) Vocabulary Construc-
tion (MoVoC), and 3) Morpheme-aware Subword
Segmentation (MoVoC-Tok).

3.1 Pre-tokenization and Supervised
Morphological Analyses

Pre-tokenization is a preparatory step before tok-
enization, segmenting raw text into manageable

units. Unlike high-resource languages like En-
glish, Ge’ez-script languages lack robust NLP
tools, making basic preprocessing tasks such as
stopword removal, punctuation normalization, and
special character filtering challenging. To address
this gap, we develop a pre-tokenization pipeline
based on customized regular expressions tailored
to the orthographic and morphological character-
istics of Ge’ez-script languages. The pipeline be-
gins with corpus cleaning to eliminate noise and in-
consistencies, followed by supervised morphologi-
cal analysis for accurate morpheme extraction. For
Amharic and Tigrinya, we leverage HornMorpho2,
a rule-based morphological analyzer. While Horn-
Morpho performs reliably on Amharic, its Tigrinya
outputs often require manual post-editing due to
limited coverage. For languages without existing
analyzers, Ge’ez and Tigre, we manually construct
and annotate morphemes under linguistic super-
vision. This morpheme-level annotation is criti-
cal for high-quality segmentation, particularly in
morphologically rich constructions. As shown in
Tab. 1, naïve application of Byte Pair Encoding
(BPE) frequently results in over-segmentation or
incorrect splits that obscure grammatical and se-
mantic content. For instance, the Amharic word
አልሰበሩም (”They didn’t break”) is fragmented by
BPE intoአል, ሰ, በሩ, andም, breaking the verb stem
ሰበር and distorting meaning በሩ alone is a valid

2https://github.com/hltdi/HornMorpho
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word meaning ”gate.” These failures are attributed
to BPE’s unsupervised, morphology-agnostic na-
ture, which ignores linguistic boundaries and often
produces incoherent subword units. Such misalign-
ments are especially detrimental for low-resource,
morphologically complex languages where train-
ing data is scarce. To mitigate this, we intro-
duce a supervised morphological segmentation ap-
proach integrated into a linguistically informed pre-
tokenization stage. This ensures morphemes are
extracted and preserved before applying subword
algorithms like MoVoC in Algorithm 1, aligning
tokenization with true morphological structures
and enhancing both semantic coherence and down-
stream NLP utility.

The annotated morphemes serve as a gold-
standard test set for evaluating token-to-morpheme
boundary alignment and also intended to support
future research as a publicly available benchmark
for morphological segmentation evaluation.

3.2 Vocabulary Construction (MoVoC)
Existing subword tokenization methods primarily
rely on statistical analysis of occurrence frequen-
cies without explicitly considering morphemes
(Truong et al., 2024). The most popular method,
Byte-Pair Encoding (BPE) (Sennrich et al., 2016),
greedily merges the most frequent token pairs
to form subword units. Similarly, the Unigram
Language Model, as implemented in Sentence-
Piece (Kudo and Richardson, 2018), selects high-
probability segmentations using a probabilistic un-
igram model. However, these methods often suffer
from limited morphological generalization, which
can negatively impact interpretability, composi-
tionality, and cross-lingual transfer especially in
morphologically rich languages.

In this work, we target Ge‘ez script languages,
which are characterized by fusional morphology
and a scarcity of linguistically motivated tools and
morphologically annotated data.

As highlighted in the pre-tokenization analysis
(see Sec. 3.1), we employ a supervised morpholog-
ical analysis. Based on the annotated morphemes,
we design a hybrid vocabulary construction strat-
egy as we described see Algorithm 1 (see Tab. 5 for
the resulting vocabulary size). Our algorithm allo-
cates a predefined portion of the total vocabulary
to morpheme units and the rest to BPE tokens, bal-
ancing linguistic structure and statistical efficiency.
This integration of morpheme-aware subwords and
BPE-based tokens ensures better vocabulary con-

trol, reduces the incidence of rare tokens, and pre-
serves semantic granularity in subword representa-
tions.

Methodology: Let Pam represent the Amharic
monolingual corpus, and Pti represent the Tigrinya
monolingual corpus. The goal of the MoVoC
method is to create a final vocabulary VMoVoC
that combines subword tokenization from the BPE
model and morpheme-based tokenization, with an
emphasis on incorporating a higher proportion of
morpheme-based tokens in the vocabulary rather
than employing the BPE model derived from the
two corpora. The vocabulary VMoVoC is formu-
lated by merging the vocabularies obtained from
the BPE model and the morpheme token set. When
the target vocabulary size for BPEMoVoC is s, we
train BPEsmall with a vocabulary size of s(1 − r)
where r is a hyperparameter set between 0 and 1 to
denote the proportion of added morpheme tokens
in VMoVoC.

In our implementation, extract_morphemes(P,
s_morpheme) refers to a procedure that performs
frequency-based morpheme extraction from a cor-
pus that has already been segmented using a rule-
based morphological analyzer, HornMorpho in our
case. First, the raw corpus P is segmented into
morphemes using HornMorpho (Step 1). This
gives us a sequence of morphemes per token. All
resulting morphemes across the corpus are col-
lected, and their frequencies are computed. The
morphemes are sorted by descending frequency,
and the top smorpheme morphemes are selected to
form the morpheme-aware vocabulary, i.e.,

Vmorpheme = Topk(freq_morphemes)

where k = smorpheme.
MoVoC Hyperparameter Setting: Hyperpa-

rameter tuning plays a crucial role in vocabu-
lary construction using BPE and other subword
tokenization techniques, especially in morpheme-
aware settings. In morphologically rich fusional
languages, words often consist of multiple mor-
pheme roots, prefixes, and suffixes. Without care-
ful tuning, BPE may (i) overfit to whole words,
missing productive morphemes (e.g., ኦች, -ኣችን),
or (ii) ignore language-specific morphological
structures, as seen in verb forms like እሄዳለሁ and
ትሄዳለህ, where affixes encode subject agreement.
Proper tuning ensures subword units align with
meaningful morphemes, improving linguistic rep-
resentation and downstream model performance.
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Algorithm 1 MoVoC Pseudocode
Require:

Pam (Amharic corpus),
Pti (Tigrinya corpus),
s (Total vocabulary size),
r (Proportion of morpheme-aware tokens, 0 ≤ r ≤ 1)

Ensure: VMoVoC (Final MoVoC vocabulary)
Step 1: Perform Morpheme Segmentation using Horn-
Morpho
Mam ← HornMorpho_segment(Pam)
Mti ← HornMorpho_segment(Pti)
Step 2: Define Vocabulary Sizes
slang ← s/2

sBPE ← slang × (1− r)

smorpheme ← slang × r

Step 3: Train BPE Models
VBPE,am ← Train_BPE(Pam, sBPE)
VBPE,ti ← Train_BPE(Pti, sBPE)
Step 4: Extract Morphemes
Vmorpheme,am ← extract_morphemes(Pam, smorpheme)
Vmorpheme,ti ← extract_morphemes(Pti, smorpheme)
Step 5: Merge All Vocabularies
VMoVoC ← VBPE,am ∪ VBPE,ti ∪ Vmorpheme,am ∪ Vmorpheme,ti

Step 6: Train Final MoVoC Model
Train_MoVoC_Model(VMoVoC)
Step 7: Return Final Vocabulary
return VMoVoC

3.3 MoVoC-Tok (Morpheme-aware Subword
Segmentation)

We train the BPE tokenizer using the mixed vo-
cabulary obtained from MoVoC by initializing the
BPE tokenizer with a manually constructed vo-
cabulary that integrates both frequent morphemes
and frequent subwords. However, despite employ-
ing a MoVoC-derived vocabulary, a conventional
BPE tokenizer may still produce morpheme bound-
ary violations, as its merge operations are data-
driven and can combine subwords that cross mor-
pheme boundaries if not explicitly restricted. To
address this, we incorporate morphological con-
straints directly into the BPE training process by
limiting merge candidates to those that do not span
morpheme boundaries defined by MoVoC. This
integration of morphological information ensures
that the resulting tokenization (MoVoC-Tok) ad-
heres to true morphological segmentation, thereby
preventing invalid merges.

Let W = {w1, w2, . . . , wn} be the vocab-
ulary of words obtained from MoVoC where
each word wi is a sequence of characters wi =
(c1, c2, . . . , cm). Let Mi = {b1, b2, . . . , bk} be
the morpheme boundaries in wi, as provided by

MoVoC in Sec. 3.2. Then, Morpheme-Aware BPE
Segmentation can be formally defined as follows:

max
V

∑

wi∈W
logP (BPE(wi;V,Mi)),

where the following constraint holds:

BPE(wi;V,Mi) = (s1, s2, . . . , st)

such that

∀sj , sj ⊆ wi and sj does not cross Mi.

Here, V denotes the learned subword vocabulary
and sj represents BPE merge units that are con-
strained by the morpheme boundaries Mi. The
merge operations are further restricted such that

(a, b) ∈ MergeCandidates ⇒ a ∪ b /∈ M∁
i .

In other words, merges are permitted only if they
do not cross morpheme boundaries as defined by
MoVoC in Sec. 3.2.

4 Experimental Setup
4.1 Target Languages
We focus on four languages that use the Geez script:
Amharic, Tigrinya, Ge‘ez, and Tigre. These
languages exhibit rich and complex morpholog-
ical structures, posing significant challenges for
conventional subword segmentation methods like
BPE.

Amharic and Tigrinya: We perform mor-
pheme segmentation using the HornMorpho ana-
lyzer, which decomposes words into stems and af-
fixes. These segmented units are used both for vo-
cabulary construction. While we also trained and
tested Morfessor (Grönroos et al., 2014) on our
dataset, as an unsupervised statistical model, it in-
fers morpheme boundaries from surface patterns
rather than linguistic rules, resulting in poor per-
formance.

Ge‘ez and Tigre: Due to the absence of analyz-
ers and corpora, we perform manual morpheme an-
notation using expert linguistic guidelines. These
annotations are applied for testing purposes only
and are not part of the vocabulary since we did not
get data for BPE training.

4.2 Dataset Details
Training Data: We have trained BPE to create the
subword vocabularies in addition to Morphemes,
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and we finetuned Machine Translation as a down-
stream task. For these, we use the HornMT3 cor-
pus as the primary source for annotating the mor-
pheme and the NLLB project (Costa-Jussà et al.,
2022) for training BPE to construct the vocabu-
laries in Tigrinya and Amharic. For the finetun-
ing model we use parallel corpora mined and re-
leased by Meta AI as part of the No Language Left
Behind (NLLB) project (Costa-Jussà et al., 2022).
Specifically, we employ the English–Tigrinya and
English–Amharic and vise versa parallel corpora
to assess machine translation performance. These
datasets were created using the stopes mining li-
brary and LASER3 encoders (Costa-Jussà et al.,
2022), providing high-quality mined bitext for 148
English-centric and 1465 non-English-centric lan-
guage pairs. Due to the noisy nature of the mining
process, we utilize this data solely for model train-
ing.

Evaluation Data: Amharic and Tigrinya: Both
languages are directly supported by Flores-200
(Goyal et al., 2022). We use the correspond-
ing development and test sets for automatic eval-
uation using BLEU (Papineni et al., 2002) and
chrF++ (Popović, 2017). But since Ge‘ez and Ti-
gre were not included in the FLORES-200 (Goyal
et al., 2022) benchmark and were not part of the
finetuning data (Costa-Jussà et al., 2022), we fi-
nally consider 100 sentence pairs from the OPUS
parallel corpus (Tiedemann, 2012) as a final evalu-
ation for all languages.

Test Data: Extrinsic evaluation was performed
on an unseen subset of the first 100 sentence pairs
from the OPUS parallel corpus (Tiedemann, 2012)
for each target language: Amharic, Tigrinya, and
Tigre. To balance the data, we limited each lan-
guage pair to 100 sentence pairs: Amharic (100 of
213 available), Tigrinya (74 from OPUS plus 26
human-validated), Tigre (45 from OPUS plus 55
human-validated), and Ge’ez (100 newly created
and validated). Due to the absence of parallel data,
Ge’ez was evaluated only intrinsically. For all lan-
guages, intrinsic evaluation relied on our annotated
morpheme test set, specifically designed to assess
segmentation quality.

4.3 Training Setup and Configuration
We trained our tokenizer using the Hugging Face
tokenizers library (Wolf et al., 2020) and ana-
lyze BPE, WordPiece, as baseline subword tok-

3https://github.com/asmelashteka/HornMT

Language (ISO 639-3) No. Items MorphScore ↑
Amharic (amh) 80k 0.71
Tigrinya (tir) 80k 0.731
Ge’ez (gez) 20k 0.67
Tigre (tig) 32k 0.654

Table 2: Languages for which we created morpholog-
ical datasets with the corresponding MoVoC-Tok tok-
enizer’s MorphScore (which we want to maximize, in-
dicated by ↑). All four languages are Afro-Asiatic and
Semitic, written in Ge’ez script, and utilize fusional
morphemes.

enizers, using the mplementations from Hugging-
Face4. And we fine-tuned the MarianMT (Junczys-
Dowmunt et al., 2018) transformer model on a sin-
gle NVIDIA GPU using a Slurm-managed HPC
cluster. The job requested 1 GPU, 6 CPU cores,
32 GB of RAM, and a maximum runtime of 24
hours. The training environment was managed via
Conda for reproducibility. Training was performed
for 3 epochs with a batch size of 8 and a maxi-
mum sequence length of 128 tokens and transform-
ers version: ”4.51.3”. The learning rate started
at 1.44 × 10−7 and decayed throughout training.
Gradient norms decreased from 1.14 to 1.06, and
the training loss ranged from 0.443 to 0.438 across
epochs.Training time was approximately 12 hours,
with an average speed of 96.7 samples per second.

5 Evaluation Framework

We incorporate both intrinsic and extrinsic evalua-
tions to assess our approach. Intrinsic evaluation
focuses on morpheme boundary precision and vo-
cabulary consistency (e.g., Rényi entropy), while
extrinsic evaluation measures downstream perfor-
mance in machine translation using metrics like
BLEU and chrF++.

5.1 Extrinsic Evaluation
Translation quality is assessed using BLEU and
chrF++, which measure n-gram and character-level
overlap. However, as these metrics may over-
look morphological improvements, we comple-
ment them with intrinsic evaluations for a more
complete analysis.

Machine Translation As part of the down-
stream evaluation of our framework, we present a
fine-tuned MarianMT (Multilingual Transformer)
model for machine translation between English

4https://github.com/huggingface/tokenizers
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and two low-resource Ge’ez script languages:
Amharic and Tigrinya. The model was trained
on parallel corpora consisting of English-Amharic
and English-Tigrinya sentence pairs. Although Ti-
gre was not included during training, it was in-
corporated in the evaluation phase to assess the
model’s zero-shot translation capabilities. The
model architecture consists of 6 encoder and 6
decoder layers, each with 8 attention heads and
a hidden size of 512. It employs a feedfor-
ward dimension of 2048, Swish activation, shared
encoder-decoder embeddings, and static positional
encodings. The vocabulary size is 63,050 tokens.
All training and evaluation were conducted using
the Hugging Face Transformers library (version
4.51.3). This work serves as a benchmark for fu-
ture research in low-resource neural machine trans-
lation involving Ge’ez script languages.

Although metrics like COMET (Rei et al., 2020)
are widely used in MT evaluation, they depend on
pretrained models and reference corpora available
only for high-resource languages. For instance, for
Tigrinya, Tigre, and Ge’ez, no reliable COMET-
compatible models exist, making its use inappro-
priate or misleading.

5.2 Intrinsic Evaluation
To get a better understanding of how well differ-
ent tokenization strategies preserve morphemes,
we measure the alignment between BPE tokens
and gold-standard morphemes using Morpheme
boundary precision (Nouri and Yangarber, 2016)
and MorphScore (Arnett and Bergen, 2025).

Morpheme boundary precision: This form of
precision is a traditional metric from morphologi-
cal segmentation, where all predicted boundaries
(across all words) are compared to gold-standard
boundaries.

MorphScore: Following the definition
from (Arnett and Bergen, 2025), we compute
MorphScore by assigning 1 if a token boundary
aligns with the gold morpheme boundary, and 0
otherwise. Unsegmented words (i.e., full matches
in the vocabulary) are excluded. As you can see in
Tab. 2, the final MorphScore is the mean of these
values across our morpheme test set. This makes
it a recall-oriented metric that does not penalize
false positives and excludes unsegmented words.

Rényi entropy: The Rényi entropy (Rényi,
1961) over token distributions quantifies subword
diversity and balance, where lower values indicate
sharper and more consistent segmentation, reflect-

Strategy BLEU ↑ chrF++ ↑
English→ Amharic

BPE 0.2150 ± 0.0120 16.2000 ± 1.05
WordPiece 0.2340 ± 0.0155 16.5000 ± 1.00
MoVoC-Tok 0.2455 ± 0.0108 17.8500 ± 0.95

English→ Tigrinya
BPE 0.1720 ± 0.0095 7.2000 ± 0.85
WordPiece 0.1880 ± 0.0088 7.5000 ± 0.80
MoVoC-Tok 0.2050 ± 0.0080 8.1000 ± 0.75

English→ Tigre
BPE 0.0950 ± 0.0080 4.0000 ± 0.70
WordPiece 0.1025 ± 0.0075 4.3000 ± 0.65
MoVoC-Tok 0.1175 ± 0.0068 5.1500 ± 0.60

English→ Ge’ez
BPE 0.0480 ± 0.0070 3.0500 ± 0.55
WordPiece 0.0550 ± 0.0065 3.2500 ± 0.60
MoVoC-Tok 0.0660 ± 0.0060 3.9500 ± 0.50

Table 3: Translation performance of BPE, WordPiece,
and MoVoC-Tok for English to Amharic, Tigrinya, Ti-
gre, and Ge’ez. Metrics are reported as mean ± standard
deviation over multiple runs. Best scores per language
are bolded.

ing clearer morpheme boundaries, while higher
values suggest ambiguity or uncertainty in token
boundary placement.

6 Result

Tokenization Quality. MoVoC-Tok achieves
MorphScores for all four languages (see Tab. 2)
that are substantially higher than the mean
MorphScore reported for fusional languages in the
original paper of Arnett and Bergen (2025) (0.533).
While MoVoC-Tok does not score higher than all
SentencePiece tokenizer variants, this indicates
that our hybrid approach instills at least partial
morpheme awareness into the tokenization process.
Our intrinsic evaluation results (see Tab. 4) further
underscore this general result: generating tokens
via MoVoC-Tok yields both better Rényi Entropy
and Morpheme Boundary precision scores across
all four languages. While the effect for Amharic
and Tigrinya text is less pronounced, we can ob-
serve a clear performance boost when processing
the less-represented low-resource languages, Tigre
and Ge’ez.

Downstream Task Performance. To evalu-
ate the utility of our morpheme-aware tokenizer,
we investigated the machine translation (MT) per-
formance from English to our target languages,
Amharic, Tigrinya, Tigre, and Ge’ez. Table 3
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presents the results for the first 100 sentences
of the OPUS test set using the tokenizers BPE,
WordPiece, and MoVoC-Tok. Overall, we can ob-
serve that MoVoC-Tok consistently outperforms
the other tokenizers across all three translation
tasks.

Language Tokenization Precision ↑ Rényi ↓
Entropy

Amharic MoVoC-Tok 85.5 0.40
BPE 85.3 0.41

Tigrinya MoVoC-Tok 88.3 0.39
BPE 83.9 0.40

Tigre MoVoC-Tok 83.9 0.44
BPE 74.6 0.49

Ge‘ez MoVoC-Tok 85.6 0.40
BPE 73.9 0.44

Table 4: Morpheme Boundary Precision and Rényi En-
tropy (α = 2) for 32k Vocabularies across tokenization
strategies. MoVoC-Tok shows improved precision and
reduced entropy, indicating more accurate and consis-
tent subword segmentation. ↑ / ↓ indicates that the met-
ric should be maximized/minimized.

7 Qualitative Analysis

While quantitative evaluation (e.g., BLEU, ChrF)
shows only modest gains from MoVoC compared
to standard BPE, these metrics alone do not fully
capture the benefits of morphology-aware subword
construction. To better demonstrate the practical
impact of MoVoC, we present a qualitative analy-
sis focusing on representative examples from tok-
enization and machine translation outputs.

Preservation of Morphological Integrity:
Standard BPE often fragments morphologically
rich words into arbitrary subword units, leading
to a loss of meaningful morphemes. For instance,
the Tigrinya word ኣይትከውንን (”do not do it”)
is split by BPE into ኣይ-ት-ከ-ውን-ን, obscuring
its internal structure. MoVoC instead produces
ኣይ-ትከውን-ን , preserving the negation prefix

(ኣይ-), verb root (ትከውን), and suffix (-ን). This
linguistically aligned segmentation provides the
model with units that carry functional meaning.

Improved Alignment in Translation: In
machine translation, MoVoC’s morpheme-aware
units yield better alignments between source and
target languages. For example, in Amharic → En-
glish translation, the sentence ቤቱን አላየሁም was
segmented more coherently by MoVoC, enabling
the correct rendering as “I did not see the house”.

Standard BPE produced fragmented tokens that re-
sulted in the mistranslation “I did not look house”,
omitting the definiteness marker.

Enhanced Handling of Rare and Derived
Forms: Many low-frequency inflected or derived
forms in Ge’ez script languages are problematic for
standard BPE. MoVoC, by respecting morpheme
boundaries, allows the model to generalize across
related word forms. For example, መምህርነት
(“teaching/profession of teaching”) is decomposed
into መምህር-ነት, allowing the system to leverage
knowledge of መምህር (“teacher”) and -ነት (nomi-
nalizer). In contrast, BPE produces arbitrary frag-
ments (መ-ምህ-ርነት), weakening transfer across re-
lated contexts.

Through these examples, we highlight that
MoVoC not only improves tokenization quality but
also contributes to more faithful translations. The
qualitative analysis reveals clear linguistic advan-
tages, even when aggregate metrics show modest
gains. This underscores the importance of com-
bining automatic evaluation with human-centric,
example-driven analysis when working on mor-
phologically rich, low-resource languages. The
sources of difficulty in processing the Geez lan-
guage in general are discussed in the appendix.

8 Conclusion and Future Work
In this work, we extend the processing of Ge’ez
script languages by (i) releasing morphologically
annotated datasets for four languages, Tigrinya,
Amharic, Ge’ez, and Tigre, and (ii) proposing a
morpheme-aware tokenization approach as an al-
ternative to conventional BPE. Our method con-
strains subword segmentation to align with mor-
pheme boundaries, resulting in vocabularies that
better reflect the underlying linguistic structure and
improve tokenization quality for morphologically
rich languages. The annotated data will further
serve for research and evolution in low-resource
language processing, supporting improved linguis-
tic analysis and more effective natural language
models.

9 Limitations and Ethical Considerations
9.1 Limitations
The proposed morphology-aware tokenization ap-
proach, while improving intrinsic metrics such
as MorphoScore and Boundary Precision, does
not yield significant gains in automatic transla-
tion quality. The curated morpheme-annotated
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datasets and vocabulary are limited to a small set
of Ge‘ez script languages, which may affect the
generalizability of the method. Furthermore, the
increased complexity of the hybrid tokenization
approach may not translate to proportional perfor-
mance improvements in downstream NLP tasks.

9.2 Ethical Considerations and Use of
Resources

In this study, we utilized publicly available datasets
such as NLLB, OPUS, and HornMT for training
and evaluation purposes. For morphological seg-
mentation and analysis, we employed the Horn-
Morpho tool, a rule-based morphological analyzer
designed for Horn of Africa languages. All exter-
nal resources were used in alignment with their re-
spective licenses and intended research use.

Additionally, we created and will release manu-
ally morpheme-annotated datasets and morpheme-
aware vocabularies for four Ge’ez script languages:
Amharic, Tigrinya, Tigre, and Ge’ez. These arti-
facts are intended solely for research purposes and
will be made publicly available under open data
licenses to support further work on low-resource,
morphologically rich languages. We ensure that
our use and release of all resources comply with
ethical standards and usage constraints associated
with their original access conditions. To enhance
the readability of the manuscript, we used Chat-
GPT for paraphrasing and language editing.
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A Additional Details

Language Segmentation Method Size
Amharic Morpheme 80k
Amharic BPE 32k
Tigrinya Morpheme 80k
Tigrinya BPE 32k

Bilingual MoVoC 152k

Table 5: Vocabulary Sizes of BPE and Morpheme-
based Vocabularies for Tigrinya and Amharic. The size
of the bilingual vocabulary is the sum of all other vo-
cabularies.

A.1 Source of Difficulty for Processing Ge’ez
Languages

The main difficulty in processing languages writ-
ten in the Ge’ez script stems less from the script
itself and more from the grammatical and morpho-
logical complexity of the languages. While the
script presents some technical challenges, such as
character encoding and syllabic structure, the com-
plexity lies in the irregular grammar, particularly
in verb chaining structures. These inconsistencies
increase the number of rules needed for accurate
modeling (Gidey et al., 2024). Overall, it is the
morphosyntactic richness and variability, not the
writing system, that pose the greater challenge for
computational processing.

This morphological complexity, for example, is
evident when a word consists of multiple mor-
phemes, that is, more than one meaningful unit.
One morpheme, the stem, is the part that conveys
the basic meaning (the lexical meaning) of the
word. The other morphemes, those that appear be-
fore the stem (as prefixes), after the stem (as suf-
fixes), or within the stem (as infixes), modify the
lexical meaning in various ways.

Amharic and Tigrinya exhibit complex morpho-
logical structures, where a single word can encode
multiple layers of grammatical information such
as tense, aspect, mood, person, number, gender,
and voice through the use of affixes. These lan-
guages are fusional, meaning that individual mor-
phemes often carry more than one grammatical
meaning simultaneously. As a result, tokenization
becomes particularly challenging, since morpho-
logical boundaries are not always clear-cut or one-
to-one.
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Language Prefix Root Suffix Infix Clitic
Tigrinya: ምሕዳራት

ም- ሓደረ -ት
– –

Amharic: መምህርነት
መ- ምህር -ነት

– –

Ge'ez: እምነት
እ- አመነ -ት

– –

Tigre: ኣብይና
ኣ- ብይ

– –
-ና

Table 6: Examples for Morphological Annotations of Ge’ez Script Languages

For example, in Amharic, the root verb ”መጻፍ”
(meṣṣaf, ”to write”) changes form based on tense
and agreement features. The simple verb form ”he
wrote” becomes ”ጻፈ” (ṣāfe), while ”she wrote” be-
comes ”ጻፈች” (ṣāfeč), and ”they wrote” becomes
”ጻፉ” (ṣāfu). Similarly, in the present tense, ”he is
writing” becomes ”ይጻፋል” (yiṣṣafāl), while ”they
are writing” becomes ”ይጻፋሉ” (yiṣṣafālu). Each
variation involves a complex combination of pre-
fixes, suffixes, and internal stem modifications that
reflect multiple grammatical categories.

Such morphological richness poses significant
challenges for standard subword tokenization ap-
proaches like Byte Pair Encoding (BPE). BPE, be-
ing purely frequency-based and agnostic to lin-
guistic structure, often fails to preserve morpheme
boundaries. It may split inflected or derived words
in ways that distort or obscure their grammatical
and semantic components. This results in over-
segmentation or incorrect segmentation that com-
promises morphological integrity. Consequently,
the effectiveness of downstream NLP tasks such as
machine translation is often reduced when working
with these languages. Addressing these issues re-
quires tokenization strategies that are sensitive to
the morphological structure.

B Annotation Guidelines
The purpose is to annotate words at the morpheme
level consistently for natural language processing
(NLP) and linguistic research. The Languages
Covered are: Amharic, Tigrinya, Ge’ez, Tigre.

Instruction:
Split each word into morphemes. Label the cat-
egory of each morpheme using one of the PRE-
FIX, ROOT, SUFFIX, INFIX, and CLITIC as
you see from the example Table 6. Ensure consis-
tency across examples and languages. If a category
does not apply, leave it blank.
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