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Abstract
Document alignment is necessary for the
hierarchical mining (Bañón et al., 2020;
Morishita et al., 2022), which aligns doc-
uments across source and target languages
within the same web domain. Several high-
precision sentence embedding-based meth-
ods have been developed, such as TK-PERT
(Thompson and Koehn, 2020) and Optimal
Transport (OT) (Clark et al., 2019; El-Kishky
and Guzmán, 2020). However, given the mas-
sive scale of web mining data, both accuracy
and speed must be considered. In this paper, we
propose a cross-lingual Bidirectional Maxsim
score (BiMax) for computing doc-to-doc simi-
larity, to improve efficiency compared to the OT
method. Consequently, on the WMT16 bilin-
gual document alignment task, BiMax attains
accuracy comparable to OT with an approxi-
mate 100-fold speed increase. Meanwhile, we
also conduct a comprehensive analysis to inves-
tigate the performance of current state-of-the-
art multilingual sentence embedding models.
All the alignment methods in this paper are
publicly available as a tool called EmbDA1.

1 Introduction

Document alignment is the task of finding parallel
document pairs, which are identified as translations
of each other, within a collection of documents. It
is mainly employed as a preparatory stage within
hierarchical mining for parallel sentence pair cu-
ration (Bañón et al., 2020; Morishita et al., 2022;
Nagata et al., 2024), seeking to enhance pair qual-
ity (Sloto et al., 2023; Steingrimsson, 2023) by
restricting sentence alignment in high-precision
aligned document pairs. With recent advances
in document-level machine translation (Sun et al.,
2022; Wang et al., 2023, 2024b; Pal et al., 2024),
document alignment has also become a viable strat-
egy for developing high-quality parallel document
pairs (Suryanarayanan et al., 2024).

1https://github.com/EternalEdenn/EmbDA

There are four mainstream approaches: URL
matching (Germann, 2016; Papavassiliou et al.,
2016), bilingual lexicon (Azpeitia and Etchegoy-
hen, 2016; Medved’ et al., 2016), machine transla-
tion (Dara and Lin, 2016; Buck and Koehn, 2016b),
sentence embedding (Clark et al., 2019; Thompson
and Koehn, 2020; El-Kishky and Guzmán, 2020).

Wang et al. (2024c) proposed the Overlapping
Fixed-Length Segmentation (OFLS) as an alter-
native to Sentence-based Segmentation (SBS) for
generating embeddings. When applied to Mean-
Pool, TK-PERT (Thompson and Koehn, 2020), and
OT (Clark et al., 2019; El-Kishky and Guzmán,
2020), this strategy led to both speed and accu-
racy improvements. Among these methods, OT
achieves the highest recall in the WMT16 bilingual
document alignment shared task (Buck and Koehn,
2016a) based on LaBSE (Feng et al., 2022). How-
ever, the computation of OT inherently involves an
optimization process, necessitating multiple itera-
tive operations. This results in high computational
complexity, limiting its performance in speed.

Thus, we propose the Bidirectional MaxSim
score (BiMax), which matches the maximum sim-
ilarity between a given segment and the opposed
segment collection and then sums and averages the
similarity scores. The implementation is computa-
tionally efficient, requiring only a single similarity
matrix computation followed by two max-pooling
operations. This idea is inspired by the MaxSim
Score in ColBERT (Khattab and Zaharia, 2020;
Santhanam et al., 2022), which uses a late interac-
tion mechanism to reduce the query-passage com-
putational cost by calculating only the maximum
similarity for each query token relative to the to-
kens in the passage. We extend this score to the
sentence level and make it bidirectional.

Additionally, we evaluate combinations of state-
of-the-art embedding models (i.e., models that per-
form well in tasks such as bitext mining and STS)
with various segmentation strategies and document
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alignment methods on the small-scale Ja-En MnRN
dataset (Wang et al., 2024c), aiming to find suitable
models and methods for different scenarios. Mean-
while, we make a modest attempt to examine the
performance of different methods on low-resource
languages. Finally, we build a downstream MT
benchmark2 to assess the impact of document align-
ment based on the WMT23 Parallel Data Curation
task, and the construction process is comprehen-
sively and transparently recorded in Appendix G.

2 Related Work

Currently, there are four mainstream approaches to
document alignment. The first involves simply cal-
culating similarity based on the URLs of the docu-
ments (Germann, 2016; Papavassiliou et al., 2016).
The second uses a bag-of-words or bag-of-ngrams
representation of the document contents, leverag-
ing a bilingual lexicon for computation (Azpeitia
and Etchegoyhen, 2016; Medved’ et al., 2016). The
third entails translating documents into the same
language, followed by similarity calculations us-
ing ngram-based metrics (e.g., BLEU) (Dara and
Lin, 2016; Buck and Koehn, 2016b). The fourth
utilizes multilingual pre-trained embedding mod-
els to map documents into a shared vector space,
where similarity is determined by the distances be-
tween vectors (Clark et al., 2019; Thompson and
Koehn, 2020; El-Kishky and Guzmán, 2020). In
the WMT16 bilingual document alignment shared
task (Buck and Koehn, 2016a), numerous tech-
niques and systems were proposed. However, due
to the limitations of technology at the time, all ef-
forts focused on the first three approaches, with no
exploration of embedding-based methods.

With the development of pre-trained multilingual
sentence embedding models (Artetxe and Schwenk,
2019; Feng et al., 2022), which map sentences from
different languages into a shared multilingual vec-
tor space, cross-lingual bitext mining has become
feasible. This progress also facilitates representing
documents using segment embeddings and comput-
ing doc-pair similarities via vector-based methods.

Thompson and Koehn (2020) introduced TK-
PERT, a method that assigns weights to sentences
using regionally emphasized windows derived from
a modified PERT distribution (Vose, 2000) to
form document feature vectors. Optimal Trans-
port (OT) was also applied in cross-lingual doc-
ument alignment, evolving from the word level

2This benchmark is offered solely as a reference rather than
a definitive proposal, thus we include it only in Appendix G.

with Word Movers’ Distance (WMD) (Kusner
et al., 2015) to the sentence level with Sentence
Movers’ Distance SMD) and Greedy Movers’ Dis-
tance (GMD) (Clark et al., 2019; El-Kishky and
Guzmán, 2020). Building on GMD, Fernando et al.
(2023) et al. employed a new weighting strategy
using bilingual lexicons, further enhancing align-
ment accuracy in low-resource languages. Wang
et al. (2024c) proposed OFLS instead of SBS for
the embedding step. However, their work is lim-
ited to using only the LaBSE model and does not
explore new document alignment methods.

3 Method

Unlike MaxSim utilized in ColBERT (Khattab and
Zaharia, 2020; Santhanam et al., 2022), which uses
the query’s hidden word embeddings to search for
the most similar token in the passage undirection-
ally, we apply it to sentence-level as the Bidirec-
tional MaxSim Score (BiMax), introducing the fol-
lowing key modifications: (1) transforming from
monolingual to cross-lingual, (2) shifting from
word-level embeddings to sentence-level embed-
dings, and (3) moving from one-sided maximum
similarity matching to a bidirectional approach.

3.1 Bidirectional MaxSim Score
We define the source / target document set as DS

and DT , and adopt a 2-stage approach to consider
the DS ×DT possible document pairs:

1. Candidate Generation: We first use Mean-
Pool or TK-PERT method to generate a single
feature vector for each document, and then
employ Faiss Search (Johnson et al., 2019)
to retrieve K target documents as potential
matches for each source document.

2. Candidate Re-ranking: We re-rank the DS×
K pairs using a more accurate but slower and
sometimes more memory-intensive scoring
method, such as OT and our proposed BiMax.

Let si for i ∈ {0, ..., NS − 1} be the NS seg-
ments in a given source document S and tj for
j ∈ {0, ..., NT −1} be the NT segments in a given
target document T . The BiMax Score is defined as:

MaxSim(S, T ) =
1

NS

NS∑

i=1

max
t∈T

Sim(si, t) (1a)

BiMax(S, T ) =
1

2
(MaxSim(S, T ) +MaxSim(T, S))

(1b)

where Sim(s, j) represents the similarity score.
In this work, we use a pre-trained multilingual sen-
tence embedding model to map the source segment
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Strategies & Models LaBSE
distiluse-base-
multi-cased-v2

BGE M3 jina-embed-v3

Common Info. (Source / Target)
Document Num. 232 / 931
Total Sentence Num. 4,746 / 57,032
Gold Pairs 2633

Total Document Token Num. 0.50M / 3.34M 0.53M / 3.68M 0.43M / 3.68M 0.43M / 3.68M
Average Sentence Token Num. 105.17 / 58.55 111.27 / 64.49 90.78 / 64.48 90.78 / 64.48
Distinct Info. (Source / Target)

SBS

Segment Num. 4,746 / 57,032
Avg Seg Len. 105.17 / 58.55 111.27 / 64.49 90.78 / 64.48 90.78 / 64.48

MP PPROC:
Time
Memory

131.33s
4455.53 MB.

80.42s
7267.58 MB.

640.22s
57924.36 MB.

133.01s
7036.57 MB.

TK PPROC:
Time
Memory

206.19s
4478.97 MB.

164.89s
7291.22 MB.

745.57s
57948.21 MB.

247.22s
7052.71 MB.

Blob
(Max 64)

Segment Num. 4,083 / 38,828 4,189 / 40,971 3,752 / 41,706 3,752 / 41,706
Avg Seg Len. 122.24 / 86.01 126.06 / 89.76 114.83 / 88,17 114.83 / 88,17

MP PPROC:
Time
Memory

107.54s
4392.51 MB.

70.92s
7213.87 MB.

564.88s
55890.82 MB.

127.97s
7023.15 MB.

TK PPROC:
Time
Memory

164.87s
4416.13 MB.

139.41s
7238.25 MB.

655.54s
55914.12 MB.

220.72s
7040.32 MB.

OFLS
(FL 30,
OR 0.5)

Segment Num. 33,151 / 222,149 35,082 / 244,688 28,594 / 244,653 28,594 / 244,653
Avg Seg Len. 29.95 / 29.97 29.95 / 29.97 29.95 / 29.97 29.95 / 29.97

MP PPROC:
Time
Memory

71.38s
2758.95 MB.

49.25s
1685.84 MB.

119.36s
2338.35 MB.

380.51s
3203.90 MB.

TK PPROC:
Time
Memory

569.54s
2782.64 MB.

591.48s
1715.25 MB.

650.14s
2370.38 MB.

912.74s
3236.67 MB.

Table 1: The statistical information regarding the preprocessing steps before document alignment, where “PPROC”
represents for preprocessing.

s and the target segment t into the same vector
space, producing embeddings Es and Et, and then
adopting their cosine similarity cos(Es, Et).

4 Analysis of Document Alignment
Performance on MnRN

We use the Ja-En MnRN dataset to conduct the
analysis under various sentence embedding models,
three segmentation strategies, SBS4, Blob5 (Finkel-
stein et al., 2024), and OFLS6 (Wang et al., 2024c),
and four document alignment methods, focusing on
three main points: (1) which model is suitable for
which segmentation strategy, (2) how do different
document alignment methods perform under each
model, and (3) which combination of these three
factors yields the best results.

The reasons for selecting embedding models and
the model settings are recorded in Appendix A and
B, while the experimental setup and the details of
the evaluation metrics are described in Appendix C.

3Because the English documents contain duplicates, the
number of gold pairs exceeds that of the Japanese documents.

4Sentence-based Segmentation (SBS): split a document
into sentences using delimiters such as line breaks or periods.

5Blob: concatenate multiple consecutive sentences as a
single unit until reaching a specified limitation.

6Overlapping Fixed-Length Segmentation (OFLS): split a
document into segments through a fixed-length sliding win-
dow, with a proportion of overlap between adjacent segments.

We present the statistical information for four
models under various segmentation strategies in Ta-
ble 1. Since Mean-Pool, OT w/Mean, and BiMax
w/Mean require the same preprocessing steps for
document alignment, which include segmentation,
segment embedding, and mean vector generation,
we only use Mean-Pool (MP) as a representative.
In contrast, TK-PERT (TK) incurs additional time
for LIDF7 and the modified PERT distribution com-
pared to MP, resulting in a longer preprocessing
time that is dependent on the number of segments.

4.1 Performance Comparison
(1) Which model is suitable for which segmentation
strategy?
As shown in Table 2, we present the results of
five models labeled (a)∼(e). More detailed re-
sults for additional models can be found in Ta-
ble 6 of Appendix A. For models (a), (b), and
(d), OFLS demonstrates an improvement in the
F1 score in most cases and a reduction in prepro-
cessing time (except for TK-PERT) compared to
the other two segmentation strategies. However,
for the LASER-2 model, although the use of OFLS
improves the accuracy of the TK-PERT and Bi-

7LIDF is used for scaling segments based on the inverse
of the (linear, rather than logarithmic) number of documents
that contain the given segment.
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Strategies & Models
Embedding Models

(a) LaBSE (b)
distiluse-base-
multi-cased-v2

(c) LASER-2 (d)
BGE M3

(dense only)
(e) jina-embeddings-v3

Experiments (F1 Score ↑ / PPROC. Time (sec.) ↓)

SBS

Mean-Pool 0.8362 / 131.27s 0.8362 / 80.40s 0.5862 / 543.10s 0.8448 / 637.01s 0.8362 / 133.72s
TK-PERT 0.8448 / 206.19s 0.8147 / 164.89s 0.5819 / 652.32s 0.8362 / 745.57s 0.8706 / 247.22s
OT w/Mean 0.8448 / 131.58s 0.8448 / 80.46s 0.4784 / 543.87s 0.8621 / 642.20s 0.8578 / 132.73s
BiMax w/Mean 0.8922†‡ / 131.47s 0.9052†‡ / 80.49s 0.7414†‡ / 543.61s 0.9181†‡ / 640.27s 0.9310†‡ / 134.52s

Blob
(Max 64)

Mean-Pool 0.8621 / 107.02s 0.8663 / 70.80s 0.5948 / 533.63s 0.8750 / 565.45s 0.8448 / 127.75s
TK-PERT 0.8663 / 164.87s 0.8491 / 139.41s 0.5905 / 640.51s 0.8534 / 655.54s 0.8578 / 220.72s
OT w/Mean 0.8233 / 107.84s 0.8405 / 70.46s 0.4439 / 533.61s 0.8362 / 564.84s 0.8276 / 128.12s
BiMax w/Mean 0.9009†‡ / 106.65s 0.9052†‡ / 71.16s 0.7586†‡ / 533.08s 0.9181†‡ / 564.76s 0.9052†‡ / 127.32s

OFLS
(FL 30, OR 0.5)

Mean-Pool 0.8707 / 71.59s 0.8233 / 49.23s 0.5302 / 1246.64s 0.8491 / 119.38s 0.7716 / 380.98s
TK-PERT 0.9483 / 569.54s 0.8966 / 591.48s 0.8134 / 1860.80s 0.9224 / 650.14s 0.9310 / 912.74s
OT w/Mean 0.9569 / 71.33s 0.9397 / 49.10s 0.4354 / 1223.61s 0.8879 / 119.36s 0.8966 / 379.59s
BiMax w/Mean 0.9612 / 71.14s 0.9569† / 49.32s 0.7845‡ / 1225.91s 0.9483‡ / 119.36s 0.9267‡ / 381.05s

Table 2: The results for comparing SBS, Blob, and OFLS under each embedding model on the Ja-En MnRN dataset,
where “FL” represents for fixed-length, “OR” represents for overlapping rate, “Max” represents the token limitation
of Blob. For each model and the four document alignment methods, we underline and bold the result that achieves
the higher F1 score or shorter preprocessing time under SBS, Blob, or OFLS. For each segmentation strategy within
each model, † is appended when BiMax demonstrates statistically significant superiority over both Mean-Pool and
TK-PERT, and ‡ is used when it is significantly superior to OT.

Max methods, its performance on Mean-Pool and
OT remains poor. Additionally, the preprocessing
speed is obviously diminished, which may be at-
tributed to the chain structure of LSTM, due to the
rise in the total number of tokens resulting from
overlapping segments in OFLS.

Specifically, the jina-embeddings-v3 model
achieves a relatively high F1 score when using the
SBS segmentation, with a comparable speed to
LaBSE. Although employing OFLS may further
enhance accuracy, the preprocessing time for the
jina-embeddings-v3 model becomes longer, which
may be caused by the use of RoPE (Su et al., 2024)
and FlashAttention 2 (Dao, 2024) mechanisms.

Moreover, we provide an expanded discussion
of Blob in Appendix D.
(2) How do different document alignment methods
perform under each model?
Due to the limited scale of the MnRN dataset, the
similarity computation times across different seg-
mentation strategies and embedding models show
minimal variation across the four document align-
ment methods. Therefore, we present the distribu-
tion of these times in Figure 1, while Appendix A
provides detailed results.

Figure 1 shows that the similarity computation
time required for BiMax is much shorter than OT.
However, it should be noted that, OT processes
document pairs sequentially due to its optimization
routine. In contrast, BiMax supports batched par-
allel computation. For a fair runtime comparison,
BiMax is limited to single-pair computation in this
paper. We follow Yeh (2000) and conduct a statis-
tical significance test (p < 0.05) between BiMax

Figure 1: The similarity computation time (in seconds,
log scale) for the four document alignment methods.

and the other three document alignment methods.
The detailed process is described in Appendix C.
Despite its lightweight design, BiMax outperforms
competing methods in most scenarios and shows
statistically significant gains in some cases.
(3) Which combination of these three factors yields
the best results?
Overall, when using OFLS, LaBSE demonstrates
superior accuracy compared to other models, and
among the document alignment methods, accord-
ing to Table 2, BiMax achieves the best perfor-
mance. The model closest to LaBSE under OFLS,
distiluse-base-multilingual-cased-v2, while lower
in accuracy, offers advantages in terms of speed
and memory efficiency according to Table 1.

5 Experiment on the WMT16 document
alignment shared task

To test the BiMax method further, we conduct ex-
periments on the WMT16 document alignment task.
We use the same settings as Wang et al. (2024c) for
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a comparison with their work. The detailed experi-
mental setup and dataset information are recorded
in Appendix C.

The results are presented in Table 3. Similarly,
under the OFLS segmentation, the BiMax method
improves recall by 0.3% to 2.4% compared to SBS.
Compared with the results of Wang et al. (2024c),
the BiMax method demonstrates slightly higher ac-
curacy than the OT and TK-PERT methods under
SBS. However, the opposite trend is observed under
OFLS. Although BiMax cannot comprehensively
outperform OT, its speed achieves approximately
a 100-fold increase relative to OT, measured by
the number of document pairs processed per sec-
ond. Rather than solely prioritizing precision, this
research emphasizes the efficiency of the method.
Moreover, as noted in Section 4.1, BiMax can be
executed in parallel via batch processing, poten-
tially resulting in faster similarity computations.

Method Segment
Strategy Recall↑ Sim Speed

(pairs / sec.)↑
Wang et al. (2024c) (LaBSE)
Mean-Pool SBS 82.6%

97,358.98Mean-Pool OFLS 92.6%
TK-PERT SBS 95.2%
TK-PERT OFLS 96.3%
OT w/Mean-Pool SBS 90.6% 91.98OT w/TK-PERT SBS 95.6%
OT w/Mean-Pool OFLS 93.7% 99.34OT w/TK-PERT OFLS 96.8%
This work (LaBSE)
BiMax w/Mean-Pool SBS 90.7% 11,510.92BiMax w/TK-PERT SBS 95.8%
BiMax w/Mean-Pool OFLS 93.1% 13,220.15BiMax w/TK-PERT OFLS 96.1%

Table 3: The results of soft recall on the WMT16 test
data. Between BiMax and OT, we highlight the superior
result in bold.

6 Experiments on Low-Resource
Languages

We use the dataset constructed by Fernando et al.
(2023), which covers English, Sinhala, and Tamil
(hereafter referred to as the Fernando dataset8) to
evaluate the effectiveness of BiMax. The dataset
comprises four web domains: Army, Hiru, ITN,
and NewsFirst, and three language pairs: En–Si,
En–Ta, and Si–Ta. More detailed experimental
settings and dataset statistics are provided in Ap-
pendix C and Appendix E.

We conduct experiments on three language pairs
across four web domains. For each language pair,
the final recall is computed as the weighted average

8https://github.com/kdissa/comparable-corpus

of its results over the domains, with weights deter-
mined by the number of gold pairs in each domain.
Detailed results are documented in Appendix E.

Method Segment
Strategy

Language Pair
En-Si En-Ta Si-Ta

LaBSE

Mean-Pool SBS 93.10% 77.70% 79.41%
OFLS 92.97% 86.39% 85.13%

TK-PERT SBS 89.32% 74.52% 75.48%
OFLS 90.18% 82.64% 80.98%

OT SBS 91.83% 78.94% 81.24%
OFLS 92.51% 86.12% 86.74%

BiMax SBS 95.53% 83.85% 84.91%
OFLS 95.41% 91.33% 89.71%

Table 4: The results of recall on the Fernando dataset.
We highlight the best one in bold for each language pair.

As shown in Table 4, BiMax outperforms the
other three methods across all three language pairs,
with a pronounced improvement observed in En–Ta.
Furthermore, in most cases, OFLS achieves better
performance than SBS. Even in the case of En–Si,
where OFLS is slightly inferior to SBS, the differ-
ence remains marginal.

Meanwhile, as a multi-way dataset, the same
method exhibits considerable performance varia-
tion across different language pairs. In particular,
when Tamil is used as the target language for re-
trieval, the accuracy differs substantially compared
with En–Si, a discrepancy that may be attributed to
variations in the embedding precision of the model
across different languages. Moreover, considering
the dataset-specific characteristics, factors beyond
language, such as document length, may also af-
fect alignment accuracy. Specifically, TK-PERT
and OT are possibly better suited for handling long
texts but perform less effectively on short texts. A
more detailed analysis is provided in Appendix F.

7 Conclusion
This paper introduces a novel and efficient BiMax
Score for the document alignment task, reducing
computational complexity compared to OT. How-
ever, while BiMax shows the best performance on
the Fernando dataset and the small-scale MnRN
dataset, results from the WMT16 document align-
ment task reveal that we cannot definitively assert
BiMax’s accuracy surpasses OT or TK-PERT. In-
stead, we advocate for BiMax primarily for its effi-
ciency in scenarios such as processing large-scale
web-crawled data. In these cases, according to our
analysis of experiments, the LaBSE + OFLS + Bi-
Max approach is recommended, as it outperforms
all other combinations.
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8 Limitations

The existing publicly available datasets for docu-
ment alignment are limited. Even large-scale mul-
tilingual parallel document corpora such as CC-
Aligned9 (El-Kishky et al., 2020), which consist
of web pages aligned through automated document
alignment methods, cannot guaranty ground truth
due to the absence of manual verification. In addi-
tion, although we have explored the effectiveness
of BiMax on low-resource languages, the Fernando
dataset (Fernando et al., 2023) covers only Sinhala
and Tamil. Since low-resource languages differ
considerably from one another, it cannot be guar-
anteed that the method generalizes equally well
to all such languages. Moreover, many other low-
resource languages still lack established datasets.

Furthermore, although we evaluated multiple
embedding models on the Ja-En MnRN dataset,
the representational capabilities of different embed-
ding models vary across languages. Therefore, the
LaBSE model may not consistently achieve opti-
mal performance in all scenarios.

Finally, as discussed in Section 5, Section 6 and
Section 7, its performance under OFLS does not
surpass TK-PERT and OT on the WMT16 doc-
ument alignment task. Thus, we emphasize effi-
ciency rather than solely pursuing precision.

9 Ethical statement

The embedding models used in this paper,
LaBSE (Feng et al., 2022), LASER-2 (Heffer-
nan et al., 2022), LEALLA (Mao and Naka-
gawa, 2023), paraphrase-multilingual-MiniLM-
L12-v2, and distiluse-base-multilingual-cased-v2,
paraphrase-multilingual-mpnet-base-v2 (Reimers
and Gurevych, 2019), BGE M3 (Chen et al., 2024),
and jina-embeddings-v3 (Sturua et al., 2024), are
publicly available for research.

The WMT16 test data is provided by the
WMT16 document alignment shared task (Buck
and Koehn, 2016a), and the Fernando dataset has
been publicly released by Fernando et al. (2023).
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A Embedding Model Selection

In Section 4, first, we choose the LaBSE (Feng
et al., 2022) and LASER-2 models (Heffernan et al.,
2022), which are frequently used for the bitext min-
ing task, and also include a knowledge-distilled,
lightweight variant of LaBSE, the LEALLA
model (Mao and Nakagawa, 2023).

Subsequently, we employ three representative
multilingual models from the Sentence Transform-
ers library10: paraphrase-multilingual-MiniLM-
L12-v2, distiluse-base-multilingual-cased-v2, and
paraphrase-multilingual-mpnet-base-v2 (Reimers
and Gurevych, 2019), which perform strongly on
the STS task.

Finally, considering the MTEB bench-
mark (Muennighoff et al., 2023), which encom-
passes several embedding tasks, we select two
models that currently achieve state-of-the-art
performance on the leaderboard11, which are
capable of processing long sentences and suit-
able for multi-task scenarios: BGE M3 (Chen
et al., 2024), and jina-embeddings-v3 (Sturua
et al., 2024). Additionally, we also consider
the multi-e5-large model (Wang et al., 2024a)
and the paraphrase-multilingual-mpnet-base-v2
model (Reimers and Gurevych, 2019). The results
are presented in Table 6.

B Embedding Model Settings

We maintain the default configurations for all mod-
els, as these configurations represent the most gen-
eral use cases. However, BGE M3 employs a

10https://huggingface.co/sentence-transformers
11https://huggingface.co/spaces/mteb/

leaderboard

half-precision floating-point format (fp16) by de-
fault, whereas most other models utilize a single-
precision floating-point format (fp32). Further-
more, BGE M3 and LASER-2 generate vectors
in the form of NumPy arrays, while other models
predominantly output tensors or offer tensor output
as an option. To establish method consistency, we
implement a standardization protocol, converting
all vectors to fp32 format and utilizing tensors after
the embedding process.

Meanwhile, given that all models except
LASER-2 are derived from Hugging Face12 , we
can achieve substantial uniformity in the Python
library and code framework, thereby facilitating
meaningful comparisons of inference speeds across
models. However, due to the LASER-2 model’s
different library and code program, absolute parity
in comparative speed analysis between LASER-2
and other models cannot be established.

Because of the multifunctionality of the three
multi-task models, we specify distinct usage. For
the multi-e5-large model, which can leverage a pre-
fix (either “query:” or “passage:”) as the start of the
text, after testing with some combinations or omit-
ting the prefix altogether, we find that appending
“query:” to both the source and target produces the
highest accuracy. Regarding the BGE M3 model,
which provides three functions for generating dif-
ferent scores, we elect to use only its dense embed-
ding as output. Finally, for the jina-embeddings-
v3 model, which offers a selection among various
LoRA adapters (Hu et al., 2021) depending on the
desired task, we choose the “text-matching” task.

C Experiment Settings

We follow the experimental settings of Thompson
and Koehn (2020) and Wang et al. (2024c), con-
figuring the hyper-parameters for the WMT16 doc-
ument alignment task and the MnRN dataset in
the TK-PERT method as J = 16, γ = 20 and
J = 8, γ = 16, respectively. The setting of the
Fernando dataset is the same as the WMT16 test
data. Here, J determines the number of windows
produced by the TK-PERT method, while γ is a
hyper-parameter that controls the peakedness of the
modified PERT distribution. For OT, GMD, and
BiMax, we retrieve 20, 32, and 32 candidates for
each source document in the MnRN dataset, WMT
test data, and Fernando dataset, respectively. We
put the basic information of the three datasets in

12https://huggingface.co/
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Table 7 and Table 813. For the WMT16 test data,
we configure OFLS with a sliding-window size of
100 and an overlap ratio of 0.5, the same as Wang
et al. (2024c). For the Fernando dataset, we use a
fixed-length window of 30 with the same overlap
ratio. In our Faiss Search (Johnson et al., 2019)
setup, we use IndexFlatIP as the index type and
perform cosine similarity searches on GPUs.

WMT16 test data MnRN dataset
En Docs. 682k 931
Fr Docs. 522k -
Ja Docs. - 232
Web domains 203 4
Gold Pairs 2,402 263
Direction Fr-En Ja-En

Table 7: Basic information for the WMT16 test data and
MnRN dataset.

Web-domain
No. of Docs. Aligned Docs.

En Si Ta En-Si En-Ta Si-Ta
Army 2,081 2,033 1,905 1,848 1,671 1,578
Hiru 1,634 3,133 2,886 1,397 1,056 2,002
ITN 1,942 4,898 1,521 352 112 34
NewsFirst 2,278 1,821 2,333 344 316 97

Table 8: Basic information for the Fernando dataset.

The final document alignment output follows a
1-1 rule (Buck and Koehn, 2016a), whereby each
document ID should appear only once in the results.
Consequently, we rank all matched document pairs
by similarity and eliminate any lower-ranked pairs
that contain a document ID already assigned at a
higher rank.

For evaluation of the WMT16 document
alignment shared task, we adhere to previous
work (Buck and Koehn, 2016a; Thompson and
Koehn, 2020; Sannigrahi et al., 2023; Wang et al.,
2024c) via a “soft” recall metric, which assigns
credit to document pairs if either the English or
French document (but not both) deviates from the
reference document pair by less than 5%, based
on text edit distance. For the MnRN dataset, we
follow Wang et al. (2024c) in using the F1 score
for evaluation. Since multiple correct target docu-
ments may correspond to a single source document
in MnRN dataset, both precision and recall are cal-
culated with respect to the source-side instances
within the set of gold pairs (i.e., although there are
263 gold pairs, they involve only 232 unique source
documents; therefore, we define the total number
of instances as 232.)

13We use the data provided by the authors on GitHub, whose
size differs from that reported in the original paper

For significance testing, we refer to Yeh (2000)
and adopt a randomization test procedure. Given
two result sets, A and B, with corresponding F1
scores F1A and F1B (assuming F1A > F1B), we
retain their intersection A ∩B and isolate the sym-
metric difference A△B, irrespective of the cor-
rectness of each pair. The elements in A△B are
then randomly partitioned into two subsets, yield-
ing 2|A△B| possible permutations. For each trial,
the two subsets are combined with A ∩B to form
new result sets A′ and B′, from which updated
F1 scores F1A′ and F1B′ are computed. Let n de-
note the number of trials in which (F1A′ − F1B′ >
F1A − F1B); the p-value is then calculated as
(n+1)/(2|A△B|+1). Following Yeh (2000), when
|A△B| > 20, we use an approximate randomiza-
tion with 1,048,576 shuffles.

All experiments are conducted on two A6000
GPUs and one H100 GPU.

D Discussion of Blob and its Variants

We select four well-performing models in Sec-
tion 4.1 to investigate the token limitation of Blob.
The results are presented in Table 9.

As the token limitation increases, the number
of blobs segmented from the document decreases
accordingly, resulting in a natural reduction in em-
bedding computation time. Furthermore, in most
cases, the highest F1 Score is achieved with a token
limitation of 64. Therefore, prioritizing accuracy,
we compare the results in this case with SBS and
OFLS in Section 4.1.

Strategies & Models
Embedding Models

LaBSE
distiluse-base-
multi-cased-v2

BGE M3
(dense only)

jina-embeddings-v3

Experiments (F1 Score ↑ / PPROC. Time (sec.) ↓)

Blob
(Max 64)

Mean-Pool 0.8621 / 107.02s 0.8663 / 70.80s 0.8750 / 565.45s 0.8448 / 127.75s
TK-PERT 0.8663 / 164.87s 0.8491 / 139.41s 0.8534 / 655.54 0.8578 / 220.72s
OT w/Mean 0.8233 / 107.84s 0.8405 / 70.46s 0.8362 / 564.84s 0.8276 / 128.12s
BiMax w/Mean 0.9009 / 106.65s 0.9052 / 71.16s 0.9181 / 564.76s 0.9052 / 127.32s

Blob
(Max 128)

Mean-Pool 0.8879 / 75.65s 0.8233 / 52.60s 0.8491 / 581.87s 0.8448 / 110.10s
TK-PERT 0.8621 / 109.81s 0.8491 / 94.63s 0.8664 / 640.70s 0.8707 / 169.36s
OT w/Mean 0.8190 / 75.74s 0.8103 / 52.73s 0.8017 / 582.46s 0.8060 / 108.08s
BiMax w/Mean 0.9138 / 75.98s 0.8621 / 52.69s 0.9267 / 581.77s 0.9009 / 108.94s

Blob
(Max 256)

Mean-Pool 0.8793 / 52.09s 0.8362 / 38.53s 0.8491 / 475.60s 0.8147 / 99.09s
TK-PERT 0.8491 / 74.41s 0.8405 / 64.89s 0.8578 / 510.18s 0.8276 / 136.84s
OT w/Mean 0.7543 / 51.96s 0.7457 / 38.70s 0.7629 / 475.64s 0.7457 / 99.26s
BiMax w/Mean 0.8879 / 51.97s 0.8879 / 38.48s 0.9267 / 475.76s 0.8966 / 99.15s

Blob
(Max 384)

Mean-Pool 0.8706 / 45.00s 0.8362 / 34.21s 0.9138 / 424.74s 0.8190 / 95.54s
TK-PERT 0.8147 / 62.72s 0.7802 / 54.38s 0.8879 / 466.63s 0.8621 / 125.52s
OT w/Mean 0.6552 / 44.97s 0.6336 / 34.41s 0.6853 / 424.56s 0.6638 / 95.42s
BiMax w/Mean 0.8793 / 45.09s 0.8232 / 34.30s 0.8879 / 424.34s 0.8966 / 95.79s

Table 9: The results of different max token limitation
settings for Blob. Each model’s highest F1 scores and
shortest preprocessing time are tagged in bold.

Based on the ablation analysis conducted by
Wang et al. (2024c), the overlapping rate has a
notable impact on the accuracy of OFLS. There-
fore, we hypothesize that appropriately introducing
overlapping parts between Blobs might contribute
to improvement. We design the following three
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Strategies & Models
Embedding Models

(a) LaBSE (b)
distiluse-base-
multi-cased-v2

(c)
BGE M3

(dense only)
(d) jina-embeddings-v3

Experiments of Blob-o w/tok (F1 Score ↑ / PPROC. Time (sec.) ↓)

Blob
(Max 64)

Mean-Pool 0.8621 / 107.02s 0.8663 / 70.80s 0.8750 / 565.45s 0.8448 / 127.75s
TK-PERT 0.8663 / 164.87s 0.8491 / 139.41s 0.8534 / 655.54s 0.8578 / 220.72s
OT w/Mean 0.8233 / 107.84s 0.8405 / 70.46s 0.8362 / 564.84s 0.8276 / 128.12s
BiMax w/Mean 0.9009 / 106.65s 0.9052 / 71.16s 0.9181 / 564.76s 0.9052 / 127.32s

Blob-o w/tok
(64, 0.15)

Mean-Pool 0.9224 / 115.24s 0.8707 / 77.39s 0.8448 / 594.08s 0.8534 / 136.96s
TK-PERT 0.8966 / 178.46s 0.8664 / 153.17s 0.8664 / 686.60s 0.8922 / 231.78s
OT w/Mean 0.8793 / 115.38s 0.8147 / 77.26s 0.8362 / 593.45s 0.8276 / 137.20s
BiMax w/Mean 0.9181 / 114.95s 0.8922 / 77.14s 0.9095 / 594.40s 0.9267 / 137.36s

Blob-o w/tok
(128, 0.15)

Mean-Pool 0.8966 / 82.35s 0.8491 / 59.84s 0.8707 / 599.33s 0.8491 / 118.38s
TK-PERT 0.8879 / 124.02s 0.8707 / 110.24s 0.8750 / 672.73s 0.8578 / 182.58s
OT w/Mean 0.8448 / 82.69s 0.8017 / 59.86s 0.7844 / 600.28s 0.7931 / 119.64s
BiMax w/Mean 0.9353 / 82.90s 0.8793 / 59.91s 0.9310 / 598.58s 0.9267 / 134.87s

Experiments of Blob-o w/sent (F1 Score ↑ / PPROC. Time (sec.) ↓)

Blob
(Max 64)

Mean-Pool 0.8621 / 107.02s 0.8663 / 70.80s 0.8750 / 565.45s 0.8448 / 127.75s
TK-PERT 0.8663 / 164.87s 0.8491 / 139.41s 0.8534 / 655.54 0.8578 / 220.72s
OT w/Mean 0.8233 / 107.84s 0.8405 / 70.46s 0.8362 / 564.84s 0.8276 / 128.12s
BiMax w/Mean 0.9009 / 106.65s 0.9052 / 71.16s 0.9181 / 564.76s 0.9052 / 127.32s

Blob-o w/sent
(64, 4)

Mean-Pool 0.8707 / 108.21s 0.8621 / 73.74s 0.8750 / 600.28s 0.8405 / 130.19s
TK-PERT 0.8879 / 173.63s 0.8578 / 149.27s 0.8621 / 655.37s 0.8664 / 223.978s
OT w/Mean 0.8233 / 108.82s 0.8362 / 73.87s 0.8405 / 600.49s 0.8276 / 129.78s
BiMax w/Mean 0.9009 / 108.56s 0.9009 / 73.63s 0.9138 / 600.78s 0.9052 / 130.08s

Blob-o w/sent
(128, 3)

Mean-Pool 0.8966 / 84.83s 0.8189 / 59.92s 0.8621 / 578.21s 0.8319 / 116.21s
TK-PERT 0.8879 / 124.49s 0.8362 / 108.65s 0.8534 / 638.59s 0.8578 / 179.93s
OT w/Mean 0.7974 / 85.09s 0.7931 / 60.84s 0.7931 / 577.49s 0.8060 / 116.06s
BiMax w/Mean 0.9095 / 84.78s 0.8707 / 60.23s 0.9224 / 577.78s 0.8966 / 116.61s

Experiments of Blob-o w/tok-lim (F1 Score ↑ / PPROC. Time (sec.) ↓)

Blob
(Max 64)

Mean-Pool 0.8621 / 107.02s 0.8663 / 70.80s 0.8750 / 565.45s 0.8448 / 127.75s
TK-PERT 0.8663 / 164.87s 0.8491 / 139.41s 0.8534 / 655.54 0.8578 / 220.72s
OT w/Mean 0.8233 / 107.84s 0.8405 / 70.46s 0.8362 / 564.84s 0.8276 / 128.12s
BiMax w/Mean 0.9009 / 106.65s 0.9052 / 71.16s 0.9181 / 564.76s 0.9052 / 127.32s

Blob-o w/tok-lim
(64, 0.15)

Mean-Pool 0.8621 / 111.63s 0.8663 / 74.65s 0.8750 / 613.27s 0.8405 / 130.53s
TK-PERT 0.8793 / 175.39s 0.8578 / 148.23s 0.8578 / 672.91s 0.8621 / 225.43s
OT w/Mean 0.8233 / 111.41s 0.8405 / 74.97s 0.8362 / 613.65s 0.8319 / 129.22s
BiMax w/Mean 0.9009 / 111.46s 0.9052 / 75.51s 0.9267 / 613.19s 0.9009 / 129.78s

Blob-o w/tok-lim
(128, 0.45)

Mean-Pool 0.8966 / 81.94s 0.8319 / 58.93s 0.8578 / 593.52s 0.8103 / 117.29s
TK-PERT 0.8707 / 122.81s 0.8491 / 107.59s 0.8491 / 654.17s 0.8448 / 179.66s
OT w/Mean 0.7974 / 82.56s 0.7672 / 58.97s 0.7931 / 593.12s 0.8017 / 117.22s
BiMax w/Mean 0.9138 / 82.15s 0.8836 / 58.80s 0.9267 / 593.23s 0.8750 / 116.90s

Table 10: The comparative results between the three Blob-o approaches and the original Blob method. Each model’s
highest F1 scores and shortest preprocessing time are tagged in bold with underline.

approaches:

Blob-o w/tok: For any two given Blobs A and B
and a specified ratio r, we copy the last len(A)× r
tokens from Blob A to the beginning of Blob B
while simultaneously replicating the first len(B)×
r tokens from Blob B to the end of Blob A, with
all operations performed at the token level.

Blob-o w/sent: For any two given Blobs A and
B and a specified number n, we copy the last n
sentences from Blob A to the beginning of Blob
B while simultaneously replicating the first n sen-
tences from Blob B to the end of Blob A, with all
operations performed at the sentence level.

Blob-o w/tok-lim: For any two given Blobs A and
B and a specified ratio r, we copy the multiple
sentences from the end of Blob A, comprising no
more than len(A)× r tokens, to the beginning of
Blob B, while simultaneously replicating multiple
sentences from the beginning of Blob B, contain-
ing no more than len(B) × r tokens, to the end
of Blob A, with all operations performed at the
sentence level.

We perform preliminary experiments using the
Mean-Pool method based on the LaBSE model to
examine appropriate combinations of the maximum
token limitation for Blob composition and the hy-
perparameters associated with the aforementioned
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Figure 2: The preliminary experimental results of the
three Blob-o approaches using the Mean-Pool method
based on the LaBSE model. From top to bottom, the
results correspond to Blob-o w/tok, Blob-o w/sent, and
Blob-o w/tok-lim, respectively.

three approaches. The results of these experiments
are presented in Figure 2.

The exploration is limited to the LaBSE model
and Mean-Pool method, possibly creating bias if
their optimal configurations are directly applied to
alternative models and document alignment meth-
ods. To address this, we implement a comparative
evaluation by examining two cases from each Blob-
o approach against the original Blob method.

As shown in Table 10, except for the Blob-o
w/tok (64, 0.15) with the LaBSE model, which per-
forms well compared to the original Blob (Max 64),
other cases do not exhibit significant improvement.
Combined with the results in Table 9, it can be ob-
served that the OT method does not integrate well
with Blob, potentially because OT tends to achieve
superior performance with finer segmentation gran-

ularity, which contradicts the Blob approach.
The Blob method is initially introduced to our

research to reduce the impact of boilerplate text,
preserve the meaning of source sentences, and ac-
celerate embedding processes. However, on the
MnRN Dataset, it shows little improvement com-
pared to SBS. This could be attributed to multiple
factors, such as the embedding model’s potential
inability to effectively represent long segments, the
relatively small scale of the MnRN dataset, and the
lack of coherence between Blobs. Nevertheless,
the results indicate that even with the use of over-
lapping, the performance of the Blob method on
the MnRN dataset has not been enhanced overall.

E Detailed experimental results on the
Fernando Dataset

The detailed experimental results are reported in
Table 11. Following Fernando et al. (2023), we
record the precision, recall, and F1 score of each
language pair under each web domain. Since only
the Army and Hiru domains in the GitHub data pro-
vided by the authors match the data size reported in
the original paper, we reproduce their strong base-
line method “GMD-SL” (i.e., the GMD method
with segment length as the weighting scheme) us-
ing the authors’ released code14 for comparison.
The ITN and NewsFirst domains are excluded from
comparison due to substantial discrepancies in the
data. Moreover, since OT in this paper adopts seg-
ment frequency as its weighting strategy (OT-SF),
we include the results of “OT-SL + SBS” to ensure
a fair comparison with GMD.

As shown in Table 11, even on the Army and
Hiru domains, the results of GMD-SL reported in
the original paper differ substantially from those
reproduced in our experiments. This discrepancy
is the main reason we do not compare our results
directly with the original paper. Then, BiMax con-
sistently achieves the highest accuracy in all cases.
However, it can be observed that TK-PERT and OT,
which performed well on the WMT16 test data,
do not achieve satisfactory results in this experi-
ment. This may be attributed to the fact that the
Fernando dataset primarily consists of relatively
short documents, whereas both methods are better
suited for long texts. Moreover, this also reveals a
limitation of the current version of TK-PERT: the

14https://github.com/nlpcuom/parallel_
corpus_mining/blob/master/document_alignment/
GreedyMoversDistance.py
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LaBSE Segment
Strategy

Army
En-Si En-Ta Si-Ta

R P F1 R P F1 R P F1

Mean-Pool SBS 98.16 90.47 94.16 80.08 81.52 80.79 81.88 75.03 78.30
OFLS 98.43 90.27 94.18 93.83 85.17 89.29 94.04 79.58 86.20

TK-PERT SBS 98.32 90.53 94.27 84.20 81.51 82.83 86.63 76.07 81.01
OFLS 98.81 90.85 94.66 94.36 85.97 89.97 95.18 81.54 87.84

OT-SF SBS 98.05 90.46 94.11 83.49 84.38 83.93 85.36 77.73 81.37
OFLS 98.97 90.81 94.72 96.24 87.17 91.48 97.34 82.32 89.20

BiMax SBS 98.32 90.71 94.37 85.49 86.30 85.89 87.58 79.75 83.48
OFLS 99.30 91.12 95.03 97.46 88.14 92.52 97.72 82.48 89.50

GMD-SL
(orig) SBS 99.73 94.85 97.23 98.47 91.89 95.07 99.11 86.84 92.57

GMD-SL
(our)

SBS 98.43 90.72 94.42 86.02 87.83 86.42 88.59 80.62 84.42
OFLS 99.30 91.02 94.98 96.89 87.67 92.05 97.47 82.33 89.26

OT-SL SBS 98.27 90.53 94.24 84.78 85.69 85.23 87.52 79.73 83.44

LaBSE Segment
Strategy

Hiru
En-Si En-Ta Si-Ta

R P F1 R P F1 R P F1

Mean-Pool SBS 89.33 76.38 82.35 73.59 52.69 61.41 77.02 57.47 65.83
OFLS 88.69 75.83 81.76 75.81 54.28 63.27 77.87 57.93 66.44

TK-PERT SBS 80.46 68.79 74.17 58.89 42.24 49.20 66.18 49.85 56.87
OFLS 82.03 70.13 75.62 65.90 47.18 54.99 69.73 51.84 59.47

OT-SF SBS 86.75 74.17 79.97 70.60 50.55 58.92 77.62 57.81 66.27
OFLS 86.75 74.17 79.97 71.37 51.10 59.56 78.27 58.21 66.77

BiMax SBS 93.49 79.93 86.18 79.74 57.13 66.57 82.42 60.93 70.06
OFLS 93.13 79.62 85.85 82.48 59.06 68.83 83.27 61.38 70.67

GMD-SL
(orig) SBS 95.42 82.44 88.45 87.09 62.71 72.92 87.46 65.19 74.66

GMD-SL
(our)

SBS 91.98 78.64 84.79 78.12 55.94 65.19 80.42 59.39 68.32
OFLS 89.05 76.13 82.09 78.55 56.24 65.66 79.87 58.87 67.78

OT-SL SBS 88.33 75.52 81.43 72.22 51.71 60.27 78.12 58.23 66.72

LaBSE Segment
Strategy

ITN
En-Si En-Ta Si-Ta

R P F1 R P F1 R P F1

Mean-Pool SBS 85.51 15.69 26.52 74.11 5.98 11.07 91.18 2.05 4.02
OFLS 83.24 15.47 26.09 83.04 6.78 12.54 91.18 2.04 4.00

TK-PERT SBS 78.69 14.40 24.34 72.32 5.80 10.74 85.29 1.92 3.75
OFLS 80.40 14.81 25.01 79.46 6.36 11.78 79.41 1.78 3.48

OT-SF SBS 82.67 15.15 25.60 76.79 6.23 11.53 91.18 2.06 4.02
OFLS 83.52 15.50 26.14 83.04 6.82 12.60 88.24 1.98 3.87

BiMax SBS 89.49 16.35 27.64 83.04 6.71 12.42 97.06 2.19 4.28
OFLS 86.36 15.97 26.96 91.96 7.44 13.76 91.18 2.04 4.00

GMD-SL
(our)

SBS 88.07 16.09 27.20 85.71 6.99 12.92 94.12 2.12 4.14
OFLS 85.80 15.88 26.80 83.93 6.83 12.63 88.24 1.98 3.87

OT-SL SBS 83.24 15.25 25.78 75.89 6.15 11.39 94.12 2.12 4.14

LaBSE Segment
Strategy

NewsFirst
En-Si En-Ta Si-Ta

R P F1 R P F1 R P F1

Mean-Pool SBS 88.95 18.29 30.34 81.33 12.93 22.31 84.54 4.67 8.85
OFLS 90.99 18.17 30.28 86.71 13.54 23.43 87.63 4.82 9.14

TK-PERT SBS 87.79 17.71 29.48 81.01 12.84 22.17 82.47 4.53 8.58
OFLS 86.92 17.27 28.82 82.59 12.84 22.22 82.47 4.53 8.60

OT-SF SBS 88.37 18.16 30.13 86.08 13.57 23.45 85.57 4.75 9.00
OFLS 90.41 18.06 30.11 87.34 13.50 23.39 88.66 4.88 9.25

BiMax SBS 95.06 19.34 32.14 90.51 14.25 24.62 88.66 4.88 9.25
OFLS 93.02 19.84 30.74 91.46 14.13 24.47 91.75 4.98 9.44

GMD-SL
(our)

SBS 93.02 18.95 31.48 90.19 14.20 25.54 88.66 4.87 9.23
OFLS 93.90 18.55 30.98 91.46 14.03 24.33 89.69 4.88 9.26

OT-SL SBS 89.53 18.38 30.50 86.71 13.67 23.62 86.60 4.78 9.06

Table 11: The detailed results on the Fernando dataset. We highlight the best one in bold for each column. “GMD-
SL (orig)” represents the results in the original paper (Fernando et al., 2023).
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number of windows per document is fixed, which
is clearly suboptimal for handling datasets with
diverse length distributions, along with the chal-
lenge of properly configuring hyperparameters in
advance. These inabilities remain an issue that
TK-PERT could potentially improve upon.

As a greedy-search variant of OT, GMD achieves
better performance than OT on the Fernando
dataset, ranking second only to BiMax and clearly
demonstrating its superior accuracy. However, due
to its exhaustive traversal of all segment pairs, the
computational cost grows significantly with the
number of segments, leading to a marked slow-
down, particularly in the case that OFLS divides
documents into shorter segments. When running
GMD using the implementation provided by Fer-
nando et al. (2023), its throughput under the OFLS
setting was more than 20 times lower than BiMax
and even more than 5 times lower than OT, indicat-
ing that further improvements are needed at both
the algorithmic and implementation levels.

F Alignment Accuracy Analysis based on
Document Length

Since English is the common language across the
MnRN dataset, WMT16 test data, and the Fernando
dataset15, we examine the length distribution of the
English documents in the gold data, measuring text
length by the number of tokens obtained after tok-
enization with the LaBSE model. Figure 3 presents
the recall performance of the OFLS-based methods
across different length intervals.

It can be observed that the length distributions
of the gold data differ across the three datasets.
The MnRN dataset exhibits a relatively balanced
distribution but contains more short documents;
the WMT16 test data are primarily concentrated on
long documents; in contrast, the Fernando dataset
is almost entirely composed of short texts, with
virtually no long documents.

Overall, embedding-based document alignment
methods tend to perform less effectively on short
texts, particularly for documents in the [0, 256)
length interval. Among them, BiMax demonstrates
the strongest capability in handling short docu-
ments, achieving a recall of 0.95 in the [0, 256)
interval of the Fernando dataset. Nevertheless,
this performance is still lower than the accuracy
achieved by TK-PERT and OT on long documents

15For the Fernando dataset, we merge the En–Si data from
the four web-domains for our analysis.

in the [2048,∞) interval of the WMT16 test data.
A potential reason for this, as revealed through our
examination of the MnRN dataset, is that even short
documents often contain a substantial amount of
boilerplate text, which appears repeatedly across
documents within the same web domain. This rep-
etition further reduces the space for discriminative
content, making it difficult for sentence-level em-
bedding methods to capture fine-grained features.

As we noted in Section 6 and Appendix E, the
strong performance of TK-PERT and OT on the
WMT16 test data is largely attributable to their ef-
fectiveness in handling long documents, an aspect
where BiMax is comparatively weaker. Conversely,
these two methods perform less effectively than Bi-
Max on the short-text Fernando dataset. This sug-
gests that, rather than relying on a single alignment
method, it may be worthwhile to consider a sys-
tem that leverages different alignment approaches
within the length intervals where each performs
best.

G Downstream MT work for Document
Alignment on the WMT23 Data Task

Up to date, there exist several datasets for evaluat-
ing document alignment tasks (e.g., WMT16 docu-
ment alignment task (Buck and Koehn, 2016a), CC-
Aligned Dataset (El-Kishky et al., 2020)). How-
ever, the evaluations typically measure the accuracy
of document alignment methods using recall or F1
scores on document pairs. There has not yet been a
publicly available system that evaluates document
alignment accuracy through machine translation
performance as a downstream task.

The WMT23 parallel data curation shared
task (WMT23 data task) (Sloto et al., 2023) focuses
on identifying the best MT training data from pro-
vided web-crawled data, including both document
and sentence levels. The final developed datasets
are evaluated using a unified end-to-end MT sys-
tem. As one of the participants, Steingrimsson
(2023) employed the document alignment method
for one part of dataset creation, ultimately combin-
ing it with the dataset via multi-filtering techniques
to produce the final dataset. However, he did not
explore their document alignment methodology in
depth.

We hope to develop a comparative benchmark on
the Estonian-Lithuanian (et-lt) WMT23 data task
and establish an end-to-end system for the docu-
ment alignment task that utilizes machine transla-
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Figure 3: The length distribution of the English side of the gold data and the recall results of OFLS-based document
alignment methods across different length intervals. From top to bottom, the results correspond to the MnRN
dataset, WMT16 test data, and Fernando dataset, respectively.

tion (MT) accuracy as the evaluation metric. How-
ever, the process of converting document-aligned
data into a parallel corpus involves multiple steps,
such as sentence alignment and sentence pair fil-
tering. It can be anticipated that these steps will
increase the permissible error margin for document
alignment methods, which means that when dif-
ferent document alignment methods achieve suffi-
ciently high accuracy, the resulting datasets may
not exhibit significant differences in quality.

G.1 Procedure for Hierarchical Data
Curation

G.1.1 Preprocessing with CH Data

First, since documents from different host-
names (web domains) are unlikely to be transla-
tions of each other, we extract common hostnames
that appear in both [documents.et.tsv] and [docu-
ments.lt.tsv] files provided by the WMT23 data task.
We then perform the following two preprocessing
steps: (1) Since documents may contain the same
content even with different document IDs (docids),

in order to conserve computational and storage re-
sources during the subsequent embedding process
and to reduce redundant sentence pairs in the fi-
nal parallel dataset, we deduplicate the source and
target documents, respectively, within each host-
name. While cross-hostname duplicates also ex-
ist, we restrict deduplication to within-hostname
operations to prevent certain hostnames from be-
ing completely depleted of documents. (2) We
remove exceptionally long documents16, specifi-
cally, those whose length exceeds ten times the
maximum length of documents in the opposed lan-
guage, which can reasonably be assumed to lack
aligned counterparts. Following the steps described
above, we divide the resulting Common Hostname
Data (CH Data) into two categories:

• Common Hostname Data 1 (CH Data 1):
Hostname data that have only one document

16For instance, for the hostname “lt.airbnb.com”, under
LaBSE tokenization, since the longest document on the Esto-
nian side does not exceed 1,000 tokens, we remove documents
from the Lithuanian side that contain more than 10,000 tokens.
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on both the Estonian and Lithuanian sides.

• Common Hostname Data 2 (CH Data 2):
Hostname data for which at least one side (et
or lt) contains multiple documents.

We collect some information about the CH Data
and record it in Table 12. Each document is
stored in the format “URL\t Hostname\t docid\t
content (encoded in base64)”.

CH Data 1 CH Data 2 CH Data
Hostname num. 6,791 17,529 24,320
Estonian Docs. 6,791 419,152 425,943
Lithuanian Docs. 6,791 393,742 400,533

Table 12: Some statistical information of CH Data.

G.1.2 Document alignment
Next, we perform document alignment between the
et-lt documents. We directly compute the similarity
for CH Data 1 since each hostname can contain
only a single document pair, and for CH Data 2, we
perform retrieval. The final training and evaluation
scripts provided by the WMT23 data task focus
on the et-lt direction, so we follow them to set
the retrieval direction as et-lt. Subsequently, we
merge the results from the two document alignment
processes to obtain the CH document pairs (CH
docpairs) and the similarity score for each pair.

G.1.3 Document-level Filtering
Because we perform deduplication only within
each hostname for CH Data, the resulting CH doc-
pairs may still contain repeated content, and we
cannot fully ensure that all documents are gen-
uinely in Estonian or Lithuanian. Hence, we apply
document-level filtering as follows:

(I) Deduplication: We sort the CH docpairs by sim-
ilarity scores in descending order. If an Estonian or
Lithuanian document reappears in a later pair, we
remove that occurrence. In other words, we retain
only the pairing with the highest similarity score
for each document to eliminate duplicates.

(II) Language identification: Using the FastText
model17 (Joulin et al., 2016a,b), we identify the
language of each document in the remaining pairs
from (I). We only preserve pairs whose source doc-
ument is most likely Estonian (et) and whose target
document is most likely Lithuanian (lt).

17https://fasttext.cc/docs/en/
language-identification.html

Since the number of docpairs developed from
different document alignment methods varies, with
the goal of comparing these methods, from a fair-
ness standpoint, a fair comparison would require
setting a similarity threshold or fixing the sampling
size to extract docpairs. However, because the sim-
ilarity scales produced by methods (e.g., OT and
BiMax) differ substantially, adopting a single fixed
threshold is impossible. Consequently, we select a
specified number of top-ranked docpairs (based on
similarity) from the document-level filtering results
for the subsequent sentence alignment.

G.1.4 Sentence Alignment

We use Vecalign (Thompson and Koehn, 2019) to
perform sentence alignment on the docpairs ob-
tained in Section G.1.3. Differing from the default
settings, we set the overlap to 4 and replace the
embedding from LASER to LaBSE. Furthermore,
using each sentence’s index in the document, we
find the corresponding sentence ID (sentid) in the
file we compiled, which is limited to the Common
Hostname part from the [sentences.et.tsv] and [sen-
tences.lt.tsv] provided by the WMT23 data task.

G.1.5 Sentence-level Filtering

In this step, we do not propose or employ any novel
or complex methodology. Instead, we carry out the
necessary removal with the test and development
data, as well as quality-based filtering of sentence
pairs (sentpairs):

(III)Test&Dev Removal: Relying on the organizer-
provided [exclude_sent_ids_et-lt.txt], we remove
all sentpairs whose sentid covers with any ID listed
in this file.

(IV) Quality-Based Filtering: Following the ap-
proach of Steingrimsson (Steingrimsson, 2023), we
retain only those pairs in which both the Estonian
and Lithuanian sentences have more than three to-
kens (tokenized simply by space). We then use
the LaBSE model for embedding and compute the
cosine similarity for each sentpair, removing any
pairs with a score below 0.4.

Similarly to Section G.1.3, we sort the filtered
sentpairs in descending order of cosine similarity
and extract a fixed number of pairs as our final
parallel dataset for training.
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Figure 4: Results of Avg BLEU (left) and Avg ChrF (right) for Mean-Pool with OFLS (40, 0.5).

Figure 5: Results of Avg BLEU (left) and Avg ChrF (right) for OT w/Mean with OFLS (40, 0.5).

G.2 Downstream MT Benchmark

G.2.1 Experiment Settings
As in our experiments on the WMT16 document
alignment task and the MnRN dataset, we employ
four document alignment methods, Mean-Pool,
TK-PERT, OT, and BiMax, as well as two segmen-
tation strategies, SBS and OFLS. The difference
is that we rely solely on Mean-Pool to retrieve
candidates for OT and BiMax, and we set the fixed-
length to 40 and the overlapping rate to 0.5 for
OFLS (OFLS (40, 0.5)).

We use the provided scripts to conduct end-to-
end training, applying an early-stopping criterion
that terminates training if the validation perplex-
ity (PPL) does not improve for 12 consecutive
epochs. Then, the checkpoint with the lowest PPL
is selected as the best model. However, the proce-
dure for model selection will be discussed in more
detail in Section G.2.3.

The evaluation uses BLEU (Papineni et al., 2002)
and chrF (Popović, 2015) across four domains18 :
EMEA, EUbookshop (EUB), Europarl (EP), and

18The organizers add EUconst as an additional held-out
domain in the Findings paper (Sloto et al., 2023) as part of the
held-out test set, which has not been publicly available.

JRC-Acquis (JRC). All datasets are released by
OPUS19 (Tiedemann, 2012).

We conduct all experiments except training on
two H100 GPUs, while the NMT model training is
done on one A6000 GPU20.

G.2.2 Selection for Docpairs and Sentpairs
Before conducting experiments on all combinations
of document alignment methods and segmentation
strategies, we should determine the number of doc-
pairs and sentpairs required for our benchmark, as
described in Sections G.1.3 and G.1.5. Therefore,
we select Mean-Pool and OT with the OFLS (40,
0.5) as representatives, gradually reducing the num-
ber of docpairs from 24,576 in increments of 4,096,
and running experiments in the step of 50,000 sent-
pairs for each docpair number. Note that after
document-level filtering, although Mean-Pool and
OT with OFLS (40, 0.5) retain 34,173 and 33,802

19https://opus.nlpl.eu/
20At the time this study was finished, unfortunately, the

Sockeye Python library used by the training script was not
yet compatible with Torch version 2.0 or higher, which is
necessary for H100 GPUs. Thus, we migrated model training
to one A6000 GPU. However, because the original script
assumes the use of eight V100 GPUs, we increased the batch
size to eight times its original size.
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Document
Alignment

Segmentation
Strategy

Sim. Time (sec.) Pair num.

CH Data 1 CH Data 2 Orig.
Docpairs

Doc-Flt
Docpairs

Vecalign
(top 24,586 docpairs) + Sent-Flt

Sentpairs

Mean-Pool
SBS 112.03s 10148.23s 78,539 33,627 ⇒ 24,586 493,024 → 400,000

OFLS (40, 0.5) 94.55s 8043.31s 79,362 34,173 ⇒ 24,586 490,693 → 400,000

TK-PERT
SBS 125.25s 10646.20s 78,785 33,722 ⇒ 24,586 501,745 → 400,000

OFLS (40, 0.5) 107.43s 8750.86s 79,405 34,138 ⇒ 24,586 496,471 → 400,000

OT w/Mean
SBS 177.32s 25761.43s 78,655 33,306 ⇒ 24,586 491,069 → 400,000

OFLS (40, 0.5) 144.86s 20416.14s 79,466 33,802 ⇒ 24,586 483,219 → 400,000

BiMax w/Mean
SBS 143.13s 13018.73s 78,694 33,818 ⇒ 24,586 456,492→ 400,000

OFLS (40, 0.5) 120.34s 10472.15s 79,463 34,228 ⇒ 24,586 455,765 → 400,000

Table 13: Some information on the data development process, “Sim. Time” represents the time cost by the similarity
calculation, “Orig. Docpairs” represents the docpairs before document-level filtering, “Doc-Flt Docpairs” represents
the docpairs after document-level filtering, “Vecalign (top 24,586 docpairs) + Sent-Flt Sentpairs” represents the
sentpairs after sentence-level filtering using top 24,586 docpairs.

pairs, respectively, at the 24,576 point, the docpair
similarities for Mean-Pool and OT reach 0.75 and
0.32 (in the range [0,1]), with OT’s similarity value
already considered very low.

Since presenting the BLEU and ChrF scores sep-
arately for all four domains would yield an enor-
mous volume of data and complicate visualization,
we use the average BLEU (avg BLEU) and average
ChrF (avg ChrF) across the four domains, and the
results are shown in Figure 4 and 5.

As shown in Figure 4, at the point of docpair
top num. 24,576 and sentpair top num. 200,000,
Mean-Pool with OFLS (40, 0.5) yields no data
because training failed (possibly due to overfitting).
Comparing the two document alignment methods
reveals that Mean-Pool provides more sentpairs
than OT. Meanwhile, for both methods, regardless
of the docpair count, avg BLEU and avg ChrF
display a clear upward trend until the sentpair top
number reaches 350,000, after which they level
off. Therefore, we decide to use docpair top num.
24,576 and sentpair top num. 400,000 as our
benchmark settings for two reasons as follows:

• Mean-Pool and OT methods roughly achieve
their highest accuracy at around 400,000 sent-
pairs.

• Considering methods like OT that probably
generate fewer sentence pairs, we avoid choos-
ing the maximum possible number of sent-
pairs for each docpair top number (e.g., doc-
pair top num. 24,576 and sentpair top num.
450,000).

G.2.3 Developing MT Benchmark for various
method combinations

In this section, we adopt docpair top num. 24,576
and sentpair top num. 400,000, which are deter-

mined in Section G.2.2, and follow the hierarchical
data curation procedures described in Section G.1.
Under these settings, we conduct experiments on
all combinations of the four document alignment
methods and the two segmentation strategies, and
record some details of the data development pro-
cess in Table 13.

It is apparent that as the number of docpairs
increases, compared to the small-scale MnRN
dataset, the similarity calculation time gap grows
significantly. Consequently, under both SBS and
OFLS conditions for CH Data 2, OT takes nearly
twice as long as BiMax, whereas Mean-Pool is still
the fastest method.

Next, we performed five replicate experiments
for each of the methods that produced 400,000 sent-
pairs in Table 13, and the results are presented in
Table 14. However, we do not rely on the original
approach of selecting the best checkpoint solely
based on the validation perplexity (PPL). We ob-
serve that when the dataset size is relatively small,
the valid PPL converges more quickly than other
metrics, such as BLEU, ChrF, and Rouge-L, indi-
cating that the checkpoint selected exclusively by
PPL is unreasonable. Therefore, instead of rely-
ing on PPL alone, we sum the rankings for PPL,
BLEU, ChrF, and Rouge-L on the validation data
to determine the best checkpoint. In cases where
multiple checkpoints yield the same total ranking,
actually any of those checkpoints can be chosen.
Nonetheless, we impose a priority order of BLEU
> ChrF > PPL > Rouge-L to select the final best
model, and this selection approach is determined
as Auto-Rank.

As shown in Table 14, considering both BLEU
and ChrF, there are no substantial differences
among the document alignment methods or be-
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Document
Alignment

Segmentation
Strategy

BLEU ChrF
EMEA EUB EP JRC EMEA EUB EP JRC

Mean-Pool
SBS 14.7±0.1 17.7±0.1 15.7±0.2 23.9±0.1 44.3±0.1 50.4±0.1 49.0±0.1 53.6±0.2

OFLS (40, 0.5) 14.7±0.2 17.8±0.2 15.7±0.2 23.9±0.1 44.4±0.3 50.6±0.2 49.0±0.2 53.7±0.2

TK-PERT
SBS 14.6±0.1 17.7±0.3 15.6±0.2 23.8±0.2 44.3±0.2 50.4±0.3 49.0±0.1 53.6±0.2

OFLS (40, 0.5) 14.6±0.1 17.7±0.2 15.7±0.1 23.9±0.2 44.3±0.3 50.4±0.3 49.0±0.2 53.6±0.3

OT w/Mean
SBS 14.6±0.1 17.8±0.3 15.6±0.2 23.9±0.1 44.5±0.1 50.5±0.3 49.0±0.2 53.6±0.2

OFLS (40, 0.5) 14.6±0.1 17.8±0.2 15.6±0.2 23.9±0.1 44.5±0.1 50.5±0.3 49.0±0.2 53.6±0.2

BiMax w/Mean
SBS 14.7±0.1 17.6±0.1 15.9±0.1 24.0±0.2 44.4±0.1 50.5±0.1 49.3±0.1 53.8±0.1

OFLS (40, 0.5) 14.7±0.1 17.8±0.1 15.9±0.1 24.0±0.3 44.5±0.2 50.5±0.1 49.3±0.3 53.9±0.4

Table 14: Auto-Rank: Docpair top 24,586, Sentpair top 400,000 Performance.

Document
Alignment Sentpair Num. Bleu ChrF

EMEA EUB EP JRC EMEA EUB EP JRC
Baseline (Sloto et al., 2023) 2,654,090 18.1 20.1 18.4 25.7 49.4 53.0 52.1 55.7
Baseline (Github) 2,654,090 18.3 19.1 18.1 24.3 49.7 52.3 51.8 55.2
Baseline (Minh-Cong et al., 2023) 2,654,090 18.3 19.1 18.1 24.3 49.7 52.3 51.8 55.2
Baseline (Steingrimsson, 2023) 2,654,090 18.2 19.1 17.8 24.3 49.5 52.2 51.5 54.8
Baseline (Our) 2,654,090 18.3 19.1 18.1 24.4 49.6 52.3 51.8 55.2
Minh-Cong et al. (2023) 12,918,719 18.5 20.4 19.1 25.8 48.9 52.5 52.5 55.5
Steingrimsson (2023) 3,902,740 20.4 20.2 18.7 25.4 51.4 52.8 52.0 54.9
Margin Score 3.2M (Sloto et al., 2023) 3.2M 21.5 22.4 20.2 27.9 52.5 54.7 53.4 57.8
Mean-Pool (OFLS)|addbase 2,992,080 19.2 20.3 18.1 26.6 50.6 53.4 51.3 56.5
TK-PERT (OFLS)|addbase 2,997,590 19.2 20.4 18.0 26.4 50.5 53.1 51.1 56.1
OT w/Mean (OFLS)|addbase 2,985,377 19.2 20.2 18.7 26.5 50.5 53.2 52.1 56.4
BiMax w/Mean (OFLS)|addbase 2,958,214 19.2 20.4 18.3 26.7 50.4 53.3 51.7 56.4

Table 15: The results of “document alignment methods + baseline” compared to previous works.

tween the SBS and OFLS segmentation strategies,
except for a slight advantage exhibited by BiMax
over the other three methods in the EP and JRC-
Acquis domains. This phenomenon may be at-
tributed to multiple factors: the process from doc-
ument alignment to final dataset construction in-
volves numerous intermediate stages, and variabil-
ity introduced at any of these stages may contribute
to the observed homogenization of results.

G.2.4 Developing MT Benchmark compared
to Previous Work

In addition to comparing the various methods
among themselves, we also aim to compare our
results against those of the WMT23 data task par-
ticipants and organizers. However, the dataset we
construct via document alignment and hierarchical
mining can only serve as a high-quality but small-
scale dataset, and we still lack a large-scale base
dataset. Since we do not explore sentence filtering
methods in depth, we utilize the organizers’ base-
line dataset (Sloto et al., 2023), which consists of
sentence pairs obtained by taking the top-1 cosine
similarity from the LASER embeddings, as our
base dataset. We then augment it with the dataset
we create. We prioritize our dataset by removing
duplicates from the baseline dataset and including

all sentence pairs derived from the 24,586 docpairs.
Moreover, we rely exclusively on perplexity (PPL)
to determine the best checkpoint.

As the results shown in Table 15, first, in com-
parison with the baseline method, we add less than
one-fifth of its data size yet achieve a substantial
improvement in accuracy in the EMEA, EUBook-
shop, and JRC-Acquis domains, indicating the
high quality of our document-alignment-derived
dataset. Second, compared with other participants,
we achieve comprehensive high BLEU and ChrF
in the JRC-Acquis domain compared to two partici-
pants, and also outperform Minh-Cong et al. (2023)
in the EMEA domain. However, we observe that
the organizers’ baseline results on the EUbookshop
and JRC-Acquis domains are substantially higher
than both ours and those of other participants, likely
due to differences in system environments or some
other reasons. Accordingly, we refrain from di-
rect comparison with their reported numbers (Sloto
et al., 2023). Nonetheless, given that their pipeline
employs margin scores for translation data min-
ing—providing a clear performance advantage—
we hypothesize that replacing our base dataset with
one extracted using margin scores may further en-
hance our results.
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G.3 Summarization of MT Benchmark for
Document Alignment on the WMT23
Data Task

In Appendix G, we aim to develop an end-to-end
system for the WMT23 data task, evaluating docu-
ment alignment quality through its impact on down-
stream machine translation (MT) performance. We
endeavor to present the development process with
transparency and rigor. However, the final results
exhibit a high degree of homogenization across
methods (as shown in Table 14). As discussed in
Appendix G.2.3, numerous intermediate variables
exist in the process from document alignment to
the construction of the final parallel sentence pair
dataset. Additionally, factors such as the limited
size of the Common Hostname data and the charac-
teristics of the Estonian-Lithuanian language pair
likely contribute to deviated results from our ex-
pectations. Furthermore, due to the absence of
ground-truth document pairs in the WMT23 data
task, the expected comparison of the four align-
ment methods is based on their performance on
the MnRN dataset and the WMT16 test data; con-
sequently, we cannot draw definitive conclusions
about their relative effectiveness in the WMT23
data task.

Nonetheless, the results remain meaningful, as
we carefully controlled all experimental variables.
BiMax slightly outperforms OT while offering a
noticeably faster processing speed (as shown in
Table 13), indicating that parallel sentence pair
datasets generated using BiMax can match OT in
quality while requiring fewer computational re-
sources. Moreover, as described in Section G.2.4,
document alignment holds strong potential for pro-
ducing high-quality translation data. Simply ap-
pending a basic baseline dataset can enable perfor-
mance that rivals—or even exceeds—that of more
complex data construction pipelines designed by
WMT23 participants.

As mentioned in Section 1, the advancement
of large language models (LLMs) has rendered
document-level translation increasingly feasible.
Therefore, rather than adhering to the conven-
tional practice of evaluating alignment quality us-
ing downstream sentence-level MT systems, it may
be more effective to assess document alignment di-
rectly through document-level machine translation.
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