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Abstract

Large language models (LLMs) have shown
remarkable capabilities in open information ex-
traction. However, their substantial resource
requirements often restrict their deployment in
resource-constrained industrial settings, partic-
ularly on edge devices. The high computational
demands also lead to increased latency, making
them difficult to apply in real-time applications.
In this paper, we introduce MARIO-0.5B, an
ultra-lightweight model trained on instruction-
based samples in Chinese, English, Korean,
and Russian. We also present a novel multi-
agent framework, SMOIE, which integrates
schema mining, information extraction, reason-
ing, and decision-making to effectively sup-
port MARIO-0.5B. The experimental results
show that our framework outperforms large-
scale models with up to 70B parameters, reduc-
ing computational resources by 140x and deliv-
ering 11x faster response times. Moreover, it
operates efficiently in CPU-only environments,
which makes it well-suited for widespread in-
dustrial deployment.

1 Introduction

Open Information Extraction (OIE) is the task
of extracting triples (subject, predicate, object)
from given text without a fixed schema (Etzioni
et al., 2008). Large Language Models (LLMs)
have shown success in extracting triples from
simple sentences using content-based learning ap-
proaches (Wei et al., 2024; Wadhwa et al., 2023).
However, LLMs often fail to capture all rele-
vant triples (Ding et al., 2024), they still struggle
with more complex sentences that contain mul-
tiple triples or numerous entities and relations.
Another challenge is the scale of the parame-
ters. Advanced models such as ChatGPT (Achiam
et al., 2024), Qwen (Yang et al., 2025), and
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DeepSeek (DeepSeek-Al et al., 2024) require sub-
stantial computational resources during training
and inference, which are typically run on high-
performance servers. And heavy computations of-
ten result in response delays.

There is a growing demand for models that can
operate efficiently in low-resource environments
like CPUs to enable deployment on edge devices.
However, the substantial resource requirements and
response latency of LLMs hinder their use in infor-
mation extraction. Most current research focuses
on large-scale models like ChatGPT, while smaller,
lightweight LLMs and agent frameworks have yet
to be explored. Inspired by (Yin et al., 2023), which
stated that instructions containing label information
can stimulate model capabilities, we are interested
in this research: whether ultra-small, lightweight
models can achieve the performance of their larger
counterparts in resource-constrained environments
by incorporating potential label information into
instructions through collective effects.

In this paper, we introduce MARIO-0.5B, an
ultra-lightweight model trained on instruction-
following samples in multiple languages, including
Chinese, English, Korean, and Russian. We also
present a novel multi-agent framework, SMOIE,
which integrates schema mining, information ex-
traction, reasoning, and decision-making to ef-
fectively support MARIO-0.5B. The framework
aims to progressively enrich label information re-
quired for OIE via efficient group decision-making,
thereby enhancing the reasoning capabilities of the
MARIO-0.5B model.

The evaluation results show that the multi-agent
framework we proposed achieves a significant 6.9%
improvement in the F1 score, outperforms large-
scale models with up to 70B parameters and deliv-
ers performance comparable to GPT-40 (Achiam
et al.,2024). Additionally, it reduces computational
resources by 140 times and delivers 11 times faster
response times, which enables efficient operation
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Data Source

Open-source Datasets (IEPILE, etc.)

"instruction": "You are an expert in named entity recognition. Please extract entities that match the schema definition
from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.",
"schema": ["location”, "else", "organization", "person"],

"input": "The objective of the Basic Course on War is to provide for combatants of the EPR basic military knowledge

Data Evaluation and Validation

Structure Extraction/
Accuracy Verification/
Data Correction Prompt

for the armed conflict against the police and military apparatus of the bourgeoisie.”,
"output": {"location™: [],"else": []."organization": ["EPR"],"person": []}
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Figure 1: Training data construction and filtering

in a CPU-only environment.

2 Related Work

Early methods for the extraction of entities and
relations relied on separate models for each task,
leadingo cascading potential errors throughout the
process (Brin, 1998). The rise of deep learning in-
troduced new end-to-end models that could handle
both tasks simultaneously, sharing information and
optimizing performance together (Wang and Lu,
2020; Zhao et al., 2021; Yan et al., 2021).

Recently, LLMs have attracted attention due to
their impressive performance across various NLP
tasks. With the right prompts, LLMs can match
the performance of specially trained models in ex-
traction tasks, even without prior examples or with
only a few examples (Gao et al., 2023; Tang et al.,
2023; Jeblick et al., 2022). However, these studies
have some blind spots: they neither evaluate the
models’ capability in handling complex sentences
with multiple entities and relations, nor explore
effective methods for achieving high performance
under resource constraints.

3 Supervised Fine-Tuning

3.1 Model Architecture and Training Setup

We introduce MARIO-0.5B, a compact information
extraction model containing 500 million parame-
ters, to enable efficient agent operations described

in Section 4. Based on the Qwen2.5 series archi-
tecture (Team, 2024), this model employs a Trans-
former Decoder-only framework with 16 attention
heads across 24 layers. Through instruction-based
supervision, we fine-tuned MARIO-0.5B on more
than 2 million samples spanning multiple tasks,
including schema construction, information extrac-
tion, and reasoning chain generation.

We use LoRA (Hu et al., 2021) for training, set-
ting the rank to 8. The Adam optimizer (Kingma
and Ba, 2017) is applied with an initial learning
rate of 1.0e-5 and a warm-up ratio of 0.1.

3.2 Data Collection

Common crawl dataset consists of open-source
data like IEPile (Gui et al., 2024), which spans
multiple fields and languages. It employs a schema-
based polling instruction method to make it suitable
for open-domain information extraction tasks.
Text2Triples synthesis dataset is generated by
extracting triples and events from approximately
500,000 excerpts, sourced from news, Chinese
mythology novels, and social media comments.
Triples2Text synthesis dataset is collected by gen-
erating texts from given triples. We merge triples
from both source datasets above and cluster them
based on semantic similarity. For text generation,
we iteratively select triples from these clusters to
create candidate sets. To ensure topical diversity
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Input Example [ ]

Predicate:
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Figure 2: Lightweight multi-agent framework.

within individual text samples, 30% of our sam-
pling process draws triples from different clusters
rather than the same. We use carefully designed
prompts to guide the (Yang et al., 2025) in generat-
ing both Text2Triples and Triples2Text datasets.

3.3 Data Processing

Both crowdsourced and synthetic datasets face
quality issues. We propose a data processing
pipeline to assess and validate dataset quality, as
illustrated in Figure 1. We have designed three
prompts for Structural Extraction, Correctness Val-
idation, and Error Correction. For Structural Ex-
traction, we add a new dimension, SCHEMA, to
the work of (Zhang et al., 2024). Next, we design a
Correctness Validation prompt (see Appendix A) to
detect potential errors in the structures, addressing
issues related to precision and recall. Once errors
are identified, an Error Correction prompt (see Ap-
pendix B) is applied to fix them. The corrected data
is then reintroduced into the validation process.

4 Multi Agents for OIE

We present a novel multi-agent framework for ex-
tracting triples from texts. The agent framework
uses MARIO-0.5B as the base model. As shown in
Figure 2, this framework employs the agent com-
munication protocols to enhance system stability.
These protocols enable several coordinated pro-
cesses: schema mining, triple extraction, reasoning,

and behavioral correction.

4.1 Schema Mining Agent

The predicate defines the specific relations between
subject and object in the representation of tuples-
based knowledge. We employ a specialized agent
to identify these relations by analyzing semantic
patterns and context. The agent works through a
carefully designed schema generation task to help
this process. For example, given the sentence “This
laptop is lightweight, perfect for work and travel.”,
our agent identify multiple relations: “has_feature”
to connect “laptop” with its property, and “suit-
able_for” to link “laptop” with its use cases.

This process is important for creating a clear
schema, providing detailed explanations, and judg-
ing the expected types of subjects and objects for
each relation. While the range of possible types is
virtually limitless, the model autonomously makes
determinations based on the context. The agent
does not seek to normalize schemas, but rather
to extract triplets for mutual validation, which
strengthens reasoning.

4.2 Triple Extraction Agent

To minimize the confusion of inference, the agent
is solely required to follow the schema and adhere
to the expected value types, with no additional re-
strictions. Its ability to follow instructions is further
refined during the fine-tuning phase. For a given
sample, the agent is tasked with extracting the fol-
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CmiCommentIE CoRB

Methods p R Fl | P R FI

ChunkOIE - - - - - 0.536
DetIELSOIE - - - - - 0.521
GPT-40 0910 0.805 0.854 | 0.751 0.533 0.623
Qwen2.5-72B | 0.895 0.794 0.842 | 0.695 0.521 0.595
Qwen2.5-32B | 0.793 0.747 0.769 | 0.553 0.482 0.431
Ours 0.881 0.812 0.847 | 0.679 0.516 0.586

Table 1: Performance comparison for information extraction.

lowing triples: (laptop, has_feature, lightweight),
(laptop, suitable_for, work), (laptop, suitable_for,
travel).

4.3 Thinking Agent

We use LLMs to make critical evaluations. Our set-
ting utilizes well-crafted instructions that guide the
agent in performing a thorough self-assessment of
its actions and the information it has gathered. The
agent evaluates its previous steps by analyzing the
generated schema and extracted triples. We allow
for continuous cognitive flow during this analysis
phase, rather than implementing fixed checkpoints.

All reasoning processes are contained within
dedicated <think for verification> </think for ver-
ification> tags to maintain analytical clarity. This
structured way guarantees a systematic and focused
analysis at every stage.

4.4 Policy Making Agent

This agent implements system control policies
based on its reasoning results. It manages the
workflow by coordinating key tasks: process ter-
mination, schema updating, and triples updating.
These operations must run sequentially rather than
in parallel because of the tight coupling between
schema configuration and triples extraction. We set
a maximum number of iterations to ensure efficient
execution.

S Experiments

5.1 Data Setting

We conducted experiments on two datasets.
CaRB (Bhardwaj et al., 2019) is a crowdsourced
OpenlE dataset consisting of 1,282 sentences. It
has become widely used for evaluating information
extraction capabilities. CmiCommentIE focuses
on reviews from the manufacturing and 3C indus-
tries. We collected 10,000 reviews from Chinese
e-commerce platforms Taobao and JD. Over 6,000

Models Size GPU  Latency CPU
B) (GB) (S) only
GPT-40 - - 6 X
Qwen2.5-72B 72 140 9 X
Qwen2.5-32B 32 63.72 3 X
Ours 0.5 1.23 0.8 v

Table 2: Resource requirements and response latency
for different models.

triples were retained after following the data pro-
cessing described in Section 3.3. Sensitive informa-
tion such as names, addresses, and contact details
has been removed to protect privacy and ensure
data security.

5.2 Baseline

ChunkOIE (Dong et al., 2023) utilizes BERT as its
base model, replacing tokens with sentence-level
chunks to construct a dependency graph. DetIEL-
SOIE (Vasilkovsky et al., 2022) employs an order-
agnostic loss function based on bipartite matching
to ensure unique predictions for sequence label-
ing. Meanwhile, GPT-40 (Achiam et al., 2024),
Qwen2.5-72B (Yang et al., 2025), and Qwen2.5-
32B (Yang et al., 2025) all implement a few-shot
approach for information extraction.

5.3 Results

Performance Comparison. The results are pre-
sented in Table 1 with precision(P), recall(R) and
F1 score(F1). Results are reported as averages over
5-fold cross-validation. We can see that our method
significantly improves the performance of informa-
tion extraction, particularly in recall.

Our method shows distinct advantages over
Qwen2.5-32B, with an average improvement of 5%
in recall and 11.6% in F1. It also performs nearly
on par with the large-scale 72B model. However,
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despite these gains, GPT-4o still outperforms our
method. Nevertheless, the slight improvement in
recall is a promising result. We hypothesize that
the agent framework translates the model’s self-
reasoning patterns into clear, actionable instruc-
tions, thereby enhancing its ability to identify valu-
able information. This finding holds significant po-
tential in resource-limited industrial settings, where
leveraging multiple weak agents may lead to en-
hanced information recognition capabilities.

We also compare our method with transformer-
based models, achieving an average improvement
of 5.8% in F1 score. Our method offers another key
advantage: it excels in domain transfer, eliminating
the need for specialized training in specific fields.

Resource Usage Comparison. We evaluate
the resource requirements and response latency.
As shown in Table 2, our agents show superior
performance. Specifically, it requires just 1.23
GB of GPU memory, whereas the Qwen2.5-32B
and Qwen2.5-72B models demand significantly
more, at 63.72 GB and 140 GB, respectively. In
terms of response latency, our agents respond in
approximately 800ms without any performance op-
timizations, which means it is 3.7 times faster than
Qwen2.5-32B, 11 times faster than Qwen2.5-72B,
and 7.5 times faster than GPT-40. Furthermore,
Our framework can be deployed in a CPU-only
environment, which is highly advantageous for in-
dustrial applications.

During evaluation we also notice a potential
source of unfairness to the baseline. After fine
tuning, SMOIE adheres to the prescribed output
format much more reliably. Whenever the baseline
deviates from that format and parsing fails, we must
discard its prediction even if the extracted answer
is correct, so its performance is undercounted.

5.4 Applications

SMOIE has been applied to RAG-based PC Trou-
bleshooting. In the RAG-based setting for trou-
bleshooting, domain-specific repair knowledge
is retrieved to support the LLM. However, user
queries often contain limited information, result-
ing in low similarity with relevant content and in-
complete or inaccurate retrieval. To address this,
SMOIE was introduced, yielding a 3% improve-
ment in overall task performance.

SMOIE enhances the structure of sliced official
repair manuals by incorporating entities alongside
text embeddings as retrieval signals, leading to
richer representations and more relevant knowl-

edge retrieval. An ablation study on retrieval alone
shows that SMOIE more effectively identifies key
entities representing the main topic of a fragment,
achieving a 4.7% gain in retrieval completeness
over baseline methods.

We observe an interesting phenomenon: SMOIE
tends to extract entities that are more useful for
resolving the current query, which differs from the
common assumption of exhaustive extraction.

6 Conclusion

In this paper, we explore an effective step-by-
step deepening group decision-making approach
to address the issues of insufficient knowledge and
resource constraints in open information extrac-
tion. We introduce a small-scale 0.5B LLM and
present an innovative multi-agent framework to
support and enhance the model. Our proposed
agent framework clarifies label information in in-
structions through schema mining, reasoning, and
decision-making, thereby stimulating the reason-
ing abilities of small-scale models. Experimen-
tal results show the effectiveness of our approach
in enhancing information extraction performance
while significantly reducing dependence on com-
putational resources, offering substantial benefits
in resource-constrained scenarios.

7 Limitations

While our work offers valuable insights into the use
of lightweight LLMs for information extraction in
resource-limited scenarios, it does have some lim-
itations. First, the reasoning process of the agent
is still guided by traditional chain-of-thought tech-
niques, which restricts the model to a predefined
thought pattern rather than fostering self-validation.
Second, cross-lingual performance is another lim-
itation. While our training set includes data in
Chinese, English, Korean, and Russian, this may
hinder the framework’s performance with other lan-
guages.

Future research could focus on integrating re-
inforcement learning to replace fixed supervised
learning, enabling the model’s reasoning process
to evolve more independently and creatively, with
supervision limited to the outcomes. Additionally,
expanding the range of languages included in the
model’s fine-tuning process could improve its cross-
lingual capabilities.
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A Prompt for Correctness Validation

You are a fair judge, and please evaluate the quality
of an Al assistant’s responses to user query based
on three key dimensions: relevance, fluency, and
accuracy. You must provide detailed scoring and
explanations for each dimension.

Requirements

1. For relevance evaluation, you must provide:

¢ A relevance score (0-10)

* Detailed explanations

2. For fluency evaluation, you must provide:

* Analyze whether the prompt description
is concise and correct

* Analyze whether the prompt description
is reader-friendly and user-friendly

* Detailed explanations

3. For accuracy evaluation, you must provide:

* Verify the completeness of the answer
* Verify the accuracy of the answer

* Detailed explanations

#HExample##
H#INPUT#
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<Task Description>:

Relation extraction

<Constraints>:

NULL

<Schema>:

NULL

<Input>:

which also has offices in Putnam, Orange,
Dutchess and Rockland Counties, as well
as in the Bronx, Manhattan and Staten
Island and in Bergen and Passaic Coun-
ties in New Jersey — already has some
experience rejecting an insurer.
<Answer>:

“location contains™: [“subject”: “New

LR RT3

Jersey”, “object”: “Orange’]

#OUTPUT#

<Relevance Score>:

10/10

<Explain>:

The response directly addresses the
extraction task and provides clearly
organized results for both requested
categories. The format is clean and easy
to understand.

<Fluency>:

Concise and reader-friendly

<Explain>:

The prompt describes the task simply
and clearly, using appropriate words

<Accuracy Assessment>:

Incomplete and Correct

<Explain>:

- The relation "location contains" is not
defined in the schema

- No false positives information

#INPUT#

<Task Description>:

Extract info from this text. En..Maybe, at
the same time, extract the products. Do
not extract others’ information.
<Constraints>:

NULL

<Schema>: ["city", "product"]

<Input>:

This laptop is lightweight, perfect for
work and travel.


https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2306.01150
https://arxiv.org/abs/2306.01150
https://arxiv.org/abs/2306.01150
https://api.semanticscholar.org/CorpusID:235363472
https://api.semanticscholar.org/CorpusID:235363472

<Response>:
"cities": [], "product": ["lightweight",
"travel"]

#OUTPUT#

<Relevance Score>:

10/10

<Explain>:

The response does attempt to address the
extraction task

<Fluency>:

Not concise

<Explain>:

The requirements in the task description
are not concise and clear enough. It is
recommended to use a more concise
method, such as "Extract the cities and
products from this text."

<Accuracy Assessment>:

Incomplete and Partially Incorrect
<Explain>:

- Cities: correct

- Products: travel is not a kind of product
- Multiple errors of both omission and
commission

#Input#
<Instruction>: {structures}

B Prompt for Error Correction

You are a prompt correction expert. Please modify
the given data according to the provided informa-
tion <Prompt Structure, Relevance and Accuracy
of Answer>

##Requirements##

1. Correct the prompt based on the information
given, if the prompt does not need to be mod-
ified, please output the original prompt di-
rectly.

2. Make sure the modified prompt is correct and
meets the purpose of the original prompt.

3. The information provided in the original
prompt cannot be modified, but it can be orga-
nized in a more user-friendly way.
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. If the original prompt is in JSON format, you

need to carefully analyze the JSON content to
ensure the fields in JSON are parsed correctly.

. Do not modify the fields in JSON, but you can

optimize the values of these fields.

. Remember to analyze the original prompt

carefully to ensure that the modified prompt
does not lose important information.

. Just output the modified prompt without any

explanation.

##Example##
#INPUT#

#Original Prompt

“instruction”:“Extract information based
on following schema.

“schema”: [“city”, “product’],

“input”: “This laptop is lightweight,
perfect for work and travel.”, “out-

put’: “cities”: [], “product”: [“laptop”,
“travel”]

#Prompt Structure

<Task Description>:

Extract information based on given
schema

<Constraints>:

1. schema: ["city", "product"]

<Input>: This laptop is lightweight, per-
fect for work and travel.

<Response>:

{"cities": [], "paoduct": [‘laptop”,
“travel”’]}

#Relevance and Accuracy of Answer

<Relevance Score>:

10/10

<Explain>:

The response does attempt to address the
extraction task

<Fluency>:

Concise and user-friendly

<Explain>:

The requirements in the task description
are concise and clear.

<Accuracy Assessment>:
Incomplete and Partially Incorrect



<Explain>:

- Cities: correct, the given text have no
cities.

- product: Only laptop need to be
extracted.

- Multiple errors of both omission and
commission

#OUTPUT#
“instruction”:  “Extract information
based on following schema.”
“schema”: [“city”, “name”]", “input’:

“This laptop is lightweight, perfect for

99, <

work and travel.”, “output”: “cities”: [],
“product”: [“laptop”]

#Input#
Original Prompt prompt

#Original Prompt
{instruction }

#Relevance and Accuracy of Answer#
{relevance and accuracy}

#OUTPUT#
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