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Abstract

The existing assessments of planning capa-
bilities of large language models (LLMs) re-
main largely limited to single-language or
specific representation formats. To address
this gap, we introduce the Multi-Plan bench-
mark comprising 204 multilingual and multi-
format travel planning scenarios. In exper-
imental results obtained with state-of-the-
art LLMs, the Multi-Plan benchmark effec-
tively highlights the performance disparities
among models, notably showing superior re-
sults for reasoning-specialized models. Inter-
estingly, language differences exhibited min-
imal impact, whereas mathematically struc-
tured representations significantly improved
planning accuracy for most models, under-
scoring the crucial role of the input format.
These findings enhance our understanding of
planning abilities of LLMs, offer valuable in-
sights for future research, and emphasize the
need for more sophisticated Al evaluation
methods. This dataset is publicly available at
huggingface.co/datasets/Bllossom/Multi-Plan.

1 Introduction

Large language models (LLMs) have demonstrated
near-human performance in various tasks, includ-
ing translation and summarization (Zhao et al.,
2023; Chang et al., 2024). However, their poten-
tial and limitations in human-specific tasks like
planning remain underexplored (Team et al., 2024;
Wang et al., 2024). Planning ability is crucial for
human-level intelligence yet remains challenging
for LLMs, as it requires understanding multilayered
constraints and sequential reasoning (Wei et al.,
2025; Gui et al., 2025).

Current evaluations of LLM planning capabil-
ities follow two paradigms: classical and practi-
cal. Classical planning focuses on generating ab-
stract and formalized action sequences for the
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transition from initial to goal states, as exempli-
fied by tasks such as block manipulation (Geftner
and Bonet, 2013; Frances et al., 2017). Practical
planning, conversely, addresses real-world com-
plexities, such as itinerary development involving
time and budget allocation, and prioritization (Rus-
sell and Norvig, 2016). Notably, existing bench-
marks predominantly rely on specific formal lan-
guages like the planning domain definition lan-
guage (PDDL) or single-language natural environ-
ments, primarily English (Valmeekam et al., 2023a;
Zhang et al., 2024). This contrasts with recent mul-
tilingual and multi-format benchmarks such as Hu-
manEval (Chen et al., 2021) and the multilingual
grade school math (MGSM; Shi et al., 2022) bench-
mark, highlighting the need for comprehensive and
balanced assessments to reflect LLM adaptability
across diverse languages and formats.

To this end, we propose Multi-Plan, a benchmark
designed to comprehensively assess LLM planning
capabilities in multilingual and multi-format con-
texts. Multi-Plan consists of 204 travel planning
scenarios, each including planning requests and
corresponding correct plans expressed in Korean,
English, and mathematical formats. All scenarios
were manually constructed by human annotators to
ensure consistency and reliability. Additionally, we
conducted in-depth evaluations of planning accu-
racy for the latest LLMs developed by leading Al
enterprises, shedding light on current challenges
and future development directions. The key contri-
butions of this study include:

* A comprehensive planning benchmark fea-
turing Korean-English-mathematical multilin-
gual and multi-format scenarios.

* An extensive diagnosis of planning capabili-
ties across modern LLMs, including special-
ized reasoning models.

* Analysis of multidimensional factors influenc-
ing planning performance.
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2  Multi-Plan

We propose Multi-Plan, a benchmark designed
to comprehensively evaluate the planning capa-
bilities of LLMs across multilingual and multi-
format contexts. This benchmark refers to Natural
Plan (Zheng et al., 2024), but unlike Natural Plan,
which exclusively relies on English, our benchmark
encompasses Korean, English, and mathematical
expressions.

2.1 Data Construction

Table 1 illustrates an example scenario from Multi-
Plan. The data construction involved three main
stages. We began by creating Korean planning
request-answer pairs. Structured guidelines and
templates covering city selection, duration settings,
and constraint specifications were formulated to en-
sure that each scenario yields a unique optimal solu-
tion. Three human annotators manually generated
204 Korean scenarios, maintaining balanced dis-
tributions concerning the number of cities visited
and minimizing the influence of variability on the
model outputs. The detailed guidelines, templates,
dataset compositions, and examples are provided
in Appendix B, C.

In the second stage, the Korean dataset was trans-
lated into English using DeepL, with human anno-
tators reviewing and refining translations to ensure
accuracy and naturalness.

The final stage consisted of converting Korean
planning requests into mathematically structured
representations. Essential scenario components, in-
cluding total travel duration, city-specific durations
of stay, and available flight connections, were for-
malized mathematically or logically. Given the
dataset’s practical nature, we adopted a hybrid ap-
proach, mathematically representing critical con-
straints while preserving contextual information
in natural language. The transformation employed
Anthropic’s Claude 3.5 Sonnet model using a few-
shot prompting strategy for consistency and accu-
racy. Following this, the outputs generated by the
model were meticulously reviewed by human work-
ers to ensure their final quality. Consequently, each
scenario in Multi-Plan includes requests in three
distinct formats while also sharing the same natural
language plan.

2.2 Dataset Features

Multi-Plan, underpinned by its multilingual (Ko-
rean, English) and multi-format (natural language,

Refer to the example provided below, and present
the solution to the given task using precisely the
same format as demonstrated in the example. Your
solution should be concise, and you should omit any
additional explanations.

[Example]

Task:{example_task},Solution: {example_solution}
Task:{task}, Solution:

Figure 1: An example of the evaluation prompt template.

mathematical) design, strategically assesses gen-
uine planning capabilities beyond mere language
processing. Korean is an agglutinative language
exhibiting a subject—object—verb (SOV) structure,
linguistically contrasting with English, an isolating
language characterized by a subject—verb—object
(SVO) order (Kim, 2024; Park et al., 2016). Inves-
tigating planning consistency across these struc-
turally distinct languages provides insights into
LLM multilingual capabilities and language de-
pendency.

Moreover, comparing natural language to mathe-
matical representations yields insights into format-
specific performance differences. For instance,
Pallagani et al. (2023) highlighted superior per-
formance in planning tasks by code-specialized
models versus general text models, suggesting
that structured formats positively influence model
accuracy. Considering the structural similarities
between travel planning and linear program-
ming (Karloff, 2008), including constraints, opti-
mization, and resource allocation, we reformulated
natural language requests into mathematical rep-
resentations. Such precise mathematical structures
mitigate ambiguity, potentially enhancing planning
accuracy.

3 Evaluation of Planning Performance

3.1 Experimental Setup

Model We evaluated various LLMs developed by
OpenAl, Anthropic, and Google DeepMind, includ-
ing reasoning-specialized and open-source models.
Detailed model specifications and characteristics
are provided in Appendix E.1.

Prompt Responses were elicited using prompts,
as shown in Figure 1. Each response incorporated
randomly selected examples from the dataset to
ensure accurate comprehension and appropriate
response formats.
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English Korean Math

I am planning to visit three European & 149 59 89 37 A& WEE  Variable Definitions: H: Helsinki, B:
cities over a total of 14 days. When A& Yttt T A] 7+ o]5& w-= & Barcelona, F': Florence a g : Arrival date
traveling between cities, I will use only &} S}-ZHu o] &5ttt T A] 7Fo]%  in Helsinki, dy: Departure date from
non-stop flights. Each transfer can be -2 S}% Qto]| 71561, &3 H-E 2t &= Helsinki ap: Arrival date in Barcelona,
completed within a single day, and the  A]o]] HRE2= Ao IS 7|2 A  dp: Departure date from Barcelona ar:
flights do not reduce the time spent in =~ &<5UtTh 6 S<F oA A S WHESE  Arrival date in Florence, dp: Departure
any city. I would like to stay in Florence 11 A<&5Utt 9904 14Y Atolof o  date from Florence

for 6 days and meet a friend there some- @A) A HLE T}l A5UtE 5 Constraints: dg — ag + 1 =
time between day 9 and day 14. T also & St vt2A2UE RS 445 5, dp —ag + 1 = 5, dp —
want to spend 5 days in Barcelonaand 5 Ut} 5 5 AAZ|E WHESIL A ar + 1 = 6, max(dy,dp,dr) —
days in Helsinki. Direct flights are avail- 5Uth 2 Ho| Q1= A= 23 min(an,as,ar)+1 =14, |ap,dr|N
able on the following routes: Barcelona ~ Z<5Uth Ht2A 2 utel ol2dlA|, A [9,14] # 0

< Florence and Helsinki <> Barcelona. 7|9} vf2Al2 1}, A1) 3 HS o]-&  Direct Flights: (B < F), (H < B),
Using only these direct flights, please S} 144 FQF A LA & HHE5)= o]  Travel between cities takes at most one

=
create a 14-day itinerary that covers all 3§ A2 A HA Q.

three cities.

day and does not affect the duration of
stays. Plan an itinerary visiting all three
cities using direct flights.

Solution Plan (A): Days 1-5: Visit Helsinki for 5 days; Day S: Fly from Helsinki to Barcelona; Days 5-9: Visit
Barcelona for 5 days; Day 9: Fly from Barcelona to Florence; Days 9—-14: Visit Florence for 6 days.

Table 1: Examples from the Multi-Plan dataset constructed in English, Korean, and Mathematical Structuring.
Solution Plan (A) illustrates a correct itinerary solution, and the Variable Definitions, Constraints, and Direct
Flights sections specify the structured mathematical representation of the planning problem.

3.2 Result and Analysis

Using Multi-Plan, we assessed the planning accu-
racy of 11 models. The accuracy measurements
relied on exact matches of the generated plans to
the dataset answers, particularly date ranges and
city names. Regular expressions extracted itinerary
details (visited cities and stay durations) and travel
logistics (departure and arrival points), verifying
matches to establish correct answers. For instance,
if a model produced “Days 1-3: Visit Paris
for 3 days,” the script would verify exact cor-
respondence with the correct date range, dura-
tion, and city name. Detailed evaluation methods
and regular expression scripts are provided in Ap-
pendix F.1. Accuracy comparisons among models
are summarized in Table 2.

Distintive Performance Patterns in Multi-Plan
Evaluating LLM planning capabilities using Multi-
Plan revealed clear performance variations among
models. Reasoning-specialized models such as
03-mini and Gemini-2.5-Pro consistently demon-
strated very high accuracy across all formats, sig-
nificantly outperforming Claude-3.7-Sonnet think-
ing, which recorded considerably lower accuracy.
General models also exhibited notable intra-series
variations, with Claude-3.7-Sonnet standard and
Claude-3-Opus demonstrating relatively higher ac-
curacy compared to the GPT-4 and Gemini se-
ries. These observations contrast with established
benchmarks such as MMLU (Hendrycks et al.,

Model Reasoning Korean English Math
03-mini v 82.84% 82.84% 80.39%
GPT-40 X 3.43% 3.43% 14.22%
GPT-4-turbo X 10.78% 10.78% 17.65%
GPT-4 X 15.20% 15.20% 21.08%
Claude-3.7-Sonnet thinking v 46.57% 48.53% 55.39%
Claude-3.7-Sonnet standard X 29.41% 30.39% 37.27%
Claude-3.5-Haiku X 8.33% 8.33% 11.27%
Claude-3-Opus X 27.45% 27.45% 25.00%
Gemini-2.5-Pro v 82.35% 83.82% 82.84%
Gemini-2.0-Flash X 11.76% 9.80% 21.08%
Gemini-1.5-Pro X 6.37% 11.76% 7.84%

Table 2: Evaluation results of closed-source models on
the Multi-Plan dataset. The ‘Reasoning’ column de-
notes whether the model was prompted with a reasoning-
oriented instruction (v) or a standard instruction without
explicit reasoning (X).

2020) or GSMS8K (Cobbe et al., 2021), where top-
performing models typically exhibit closely similar
performances. The results suggest that Multi-Plan
is sensitive to subtle differences in model archi-
tectures and training methodologies, providing dis-
tinct insights that conventional benchmarks may
overlook.

Superior Performance of Reasoning Models
Reasoning-specialized models exhibited notably
superior performance in the Multi-Plan evalua-
tions. Specifically, 03-mini and Gemini-2.5-Pro
achieved exceptionally high accuracy rates, averag-
ing 82.03% and 83.01%, respectively. These mod-
els demonstrated robust capabilities in effectively
addressing planning requests that included com-
plex constraints. Claude-3.7-Sonnet thinking also
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performed reasonably well, averaging 50.16% ac-
curacy, significantly surpassing the maximum accu-
racy of 37% achieved by general LLMs. These find-
ings empirically support the theoretical expectation
that enhanced reasoning capabilities significantly
improve performance in complex planning tasks.

Impact of Language on Planning Performance
Because Multi-Plan contains identical planning sce-
narios in both Korean and English, it enables a de-
tailed examination of how language affects LLM
planning performance. The models showed only a
minor average accuracy increase of approximately
0.71% for the English scenarios, with most mod-
els displaying an accuracy difference of less than
2% between Korean and English. This small per-
formance variation, despite substantial structural
and morphological differences between the two
languages, underscores the advanced multilingual
processing abilities of contemporary LLMs. This
indicates that modern models have progressed sig-
nificantly beyond basic linguistic comprehension
and can effectively handle complex tasks across
diverse languages.

Impact of Representation Format on Planning
Performance This study examined the perfor-
mance differences between natural language (Ko-
rean) and mathematically structured representa-
tions. Results indicated that 9 out of 11 models
achieved improved accuracy with mathematically
structured inputs. Notably, GPT-40, Claude-3.7-
Sonnet thinking, and Gemini-2.0-Flash exhibited
improvements exceeding 8%. These findings high-
light the practical importance of structured input
formats in enhancing LLM performance for com-
plex tasks, such as planning. Thus, the future re-
search focusing on the development of LLM-based
planning systems should consider adopting struc-
tured representation formats. However, the relative
performance rankings among the models remained
largely consistent regardless of the input format, un-
derscoring that enhancing fundamental understand-
ing and reasoning capabilities remains a critical
task alongside input format optimization.

Performance Analysis of Open-Source Models
In addition to closed-source models, we evaluated
how open-source models perform on the Multi-
Plan benchmark. A total of 11 open-source models
were assessed using the same evaluation methodol-
ogy applied to the closed-source models. Detailed
results are provided in Table 3, and comprehensive

Model Reasoning Korean English Math
OLMo-2-7B-Instruct X 0.00% 1.96% 0.00%
SmolLM2-1.7B-Instruction X 0.00% 0.98% 0.00%
Llama3.1-8B-Instruction X 1.96% 6.86% 0.49%
Llama3.3-70B-Instruction X 7.84% 4.41% 12.75%
Qwen2.5-72B-Instruction X 4.41% 6.86% 15.20%
Llama-3.1-Nemotron-Nano-8B v 0.00% 2.45% 0.00%
Phi-4-reasoning-plus v 0.00% 0.49% 0.00%
DeepSeek-R1-Distill-Llama-8B v 0.49% 3.43% 0.00%
DeepSeek-R1-Distill-Qwen-7B v 0.00% 0.98% 0.00%
Qwen3-8B v 7.84% 10.29% 7.35%
Qwen3-32B v 25.98% 46.57% 26.47%

Table 3: Performance results of 11 open-source models
on the Multi-Plan benchmark

model information is presented in Appendix E.2.
Overall, our analysis reveals that open-source
models still exhibit clear limitations and gener-
ally underperform compared to their closed-source
counterparts. Specifically, non-reasoning models
showed almost negligible performance at smaller
scales, while larger models (70B or more parame-
ters) demonstrated relatively better capabilities. No-
tably, these larger-scale models achieved stronger
performance in the ‘Math’ domain, scoring 12.75%
and 15.20%, surpassing their performance in Ko-
rean and English tasks. Meanwhile, reasoning-
equipped models mostly exhibited limited capabili-
ties as well, except for models from the Qwen3 se-
ries, which stood out significantly. In particular, the
Qwen3-32B model achieved robust performance
across all evaluated domains, with notable scores
in Korean (25.98%), English (46.57%), and Math
(26.47%), closely matching the performance of the
commercial model ‘Claude-3.7-Sonnet standard’.

Performance by Number of Cities Visited Ex-
amining the ‘Cities Visited’ column in Table 4, all
models showed the highest accuracy for scenar-
ios involving the fewest number of cities (three
cities), with overall performance declining as the
number of cities increased. In particular, GPT-4,
Gemini-1.5, and 2.0 achieved accuracy close to
or above half of the requests when visiting three
cities, but their accuracy gradually decreased for
scenarios involving four to six cities. Generally, in-
creasing the number of cities adds complexity due
to additional constraints, making planning more
challenging; however, a consistently declining pat-
tern was not clearly observed in this experiment.
This may be due to the relatively small number
of samples per scenario, suggesting the need for
further analysis with more data. Nevertheless, the
notably higher accuracy observed in requests with
fewer cities clearly indicates that increased infor-
mation processing requirements are a major cause
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Model Reasoning Cities Visited Continent

3 4 5 6 Europe Asia America
03-mini v 26.63%  24.85% 2426% 24.26% 35.50% 31.36%  33.14%
GPT-4-turbo X 50.00% 455% 2727% 18.18% 54.55% 18.18%  27.27%
GPT-4 X 67.74% 1290%  9.68% 9.68% 41.94% 32.26% 25.81%
GPT-40 X 100.00%  0.00% 0.00% 0.00% 1429% 28.57%  57.14%
Claude-3.7-Sonnet thinking v/ 2842%  2632% 2842% 16.84% 36.84% 31.58%  31.58%
Claude-3.7-Sonnet standard X 35.00% 28.33% 21.67% 15.00% 45.00% 28.33%  26.67%
Claude-3.5-Haiku X 6471% 17.65% 11.76%  5.88% 17.65% 47.06%  35.29%
Claude-3-Opus X 37.50% 14.29% 2857% 19.64% 4821% 23.21%  28.57%
Gemini-2.5-Pro v 26.19%  26.19% 22.62% 25.00% 33.93% 32.74%  33.33%
Gemini-2.0-Flash X 45.83% 833% 25.00% 20.83% 50.00% 12.50%  37.50%
Gemini-1.5-Pro X 46.15%  1538% 23.08% 1538% 53.85% 1538%  30.77%

Table 4: Accuracy of travel-plan generation by number of cities visited (3—6) and by continent (Europe, Asia,
America) for each model. The ‘Cities Visited’ columns indicate the percentage of correctly generated plans
categorized by the number of cities in the itinerary. The ‘Continent’ columns show the distribution of correct plans

based on the continent the travel plan is set in.

of performance degradation.

Performance by Continent The evaluation
dataset was constructed with balanced represen-
tation across continents, allowing for precise analy-
sis of regional accuracy variations. Analyzing the
‘Continent’ column in Table 4, we found that seven
models recorded their lowest accuracy in Asia,
whereas most models showed relatively higher suc-
cess rates in Europe and America. This suggests
that regional biases inherent in training data may
have influenced model performance.

4 Conclusion

This study introduced Multi-Plan, a comprehen-
sive benchmark designed to evaluate LLM planning
capabilities across multilingual and multi-format
contexts. By providing 204 travel planning scenar-
ios in Korean, English, and mathematical formats,
Multi-Plan facilitates a broad and balanced assess-
ment of LLM planning abilities.

Evaluations using Multi-Plan yielded several
key insights. First, Multi-Plan effectively distin-
guished model performance nuances, highlight-
ing not only the overall superiority of reasoning-
specialized models but also sensitively reflecting
model architecture-specific characteristics. Second,
the negligible accuracy differences observed be-
tween two structurally distinct languages, Korean
and English, emphasized the maturity of multilin-
gual processing capabilities in modern LLMs. Ul-
timately, the study contributed to enhancing our
understanding of the planning capabilities and lim-
itations of contemporary LLMs and highlighted

critical considerations for future research and de-
velopment in sophisticated Al systems.

5 Limitation

Despite its contributions, this study has several limi-
tations. First, the Multi-Plan dataset comprises only
204 planning scenarios, which limits the general-
izability of the findings. Expanding the scale and
diversity of scenarios is a crucial direction for fu-
ture work. Second, the evaluation focused primarily
on closed-source models from major commercial
providers. To address these limitations, incorpo-
rating a broader spectrum of open-source models
is suggested to provide more comprehensive in-
sights and encourage reproducibility. Third, we
relied solely on accuracy as the evaluation metric,
resulting in the failure to capture partial correctness
or the quality of alternative plausible plans. Future
studies should adopt additional evaluation metrics
such as precision, recall, and F1 score to offer a
more nuanced assessment of LLM planning perfor-
mance. Addressing these limitations will contribute
to a more thorough understanding of LLLM capa-
bilities and support the development of advanced
Al systems capable of assisting or autonomously
executing complex human planning tasks.
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A Related Works
A.1 Classical Planning

Classical planning is a task of executing a sequence
of actions to transition from an initial state to a goal
state (Geffner and Bonet, 2013). This type of plan-
ning is addressed exclusively when the problem
can be described in a declarative language such
as PDDL (Planning Domain Definition Language),
which decomposes states into variables (Frances
et al., 2017; Russell and Norvig, 2016). Studies
evaluating the capabilities of large language mod-
els (LLMs) based on classical planning have been
conducted as follows.

Valmeekam et al. (2023b) sought to evaluate
the abilities of LLMs using the BlocksWorld task,
commonly considered a general planning problem.
BlocksWorld involves stacking blocks to achieve
specific goals, and this study established a bench-
mark based on this task to assess GPT-3 and
BLOOM. The experimental results showed that
only about 3% of the plans independently gener-
ated by LLMs were executable. Beyond this limi-
tation, Valmeekam et al. (2023b) tested a Human-
In-The-Loop approach, hypothesizing that while
LLMs cannot independently produce correct plans,
they could help humans by sharing insights gained
during planning attempts. This approach led to a
modest improvement in accuracy when humans
utilized the insights provided by LLMs. The study
significantly contributes to future research on evalu-
ating the planning capabilities of LLMs by offering
a novel benchmark. Additionally, it underscores
the current limited independent planning capability
of LL.Ms but highlights their potential value when
collaborating with humans.

In addition, Valmeekam et al. (2023a) developed
a benchmark named PlanBench to assess LLMs’
reasoning capabilities in planning and handling
changes. PlanBench comprises 26,250 tasks from
both BlocksWorld, involving stacking blocks to
reach specific goals, and Logistics, which focuses
on transporting items to designated destinations.
The benchmark enables comprehensive evaluation
beyond simple plan generation, assessing whether
LLMs can create optimal cost plans, accurately
predict post-execution states, and adapt plans effec-
tively to unexpected changes. Results from Plan-
Bench revealed that even advanced LLMs such as
GPT-4 and Instruct-GPT generally struggle with ef-
fectively generating simple plans and reasoning log-
ically about changes. This research clearly outlines

the current capabilities and limitations of LLMs in
planning tasks, indicating the usefulness of Plan-
Bench as a tool for future LLM evaluation and
development.

Pallagani et al. (2023) aimed to examine the ex-
tent to which LLMs could be used for plan gen-
eration. They established a benchmark using six
classical planning domains—Ferry, BlocksWorld,
Miconic, Tower of Hanoi, Grippers, and Driver-
log—which are representable in PDDL. Evalua-
tions using TS5, CodeT5, text-davinci, and code-
davinci revealed that these models achieved low
accuracy scores, averaging below 0.16, and strug-
gled to effectively solve planning problems. Further
comparative analysis between purely text-based
models and code-oriented models indicated that
models specifically trained for code generation per-
formed better at solving planning tasks. The au-
thors hypothesized that this was due to the simi-
larity between PDDL and programming languages,
as both share formal syntax and common concepts
such as variables, functions, and control structures.
Pallagani et al. (2023) significantly contributed by
systematically comparing various models, clearly
highlighting both the limitations and potentials of
LLMs, and suggesting the future applicability of
coding-trained LLMs in solving planning tasks.

The three studies conducted in 2023 explicitly
demonstrated the low success rates of LLMs in clas-
sical planning tasks. However, these studies have
the limitation of assessing the abilities of LLMs ex-
clusively within classical planning, which involves
theoretical and simplified planning environments.

A.2 Practical Planning

Practical planning extends classical planning to
more realistic and applicable scenarios. While clas-
sical planning considers ‘what to do’ and ‘in which
order,” it does not incorporate time considerations,
such as when to start an action and how long it
should last (Russell and Norvig, 2016). In con-
trast, practical planning inherently requires timing
information, substantially increasing the complex-
ity of planning problems. Due to this complexity,
research in practical planning has been relatively
sparse compared to classical planning, gaining sig-
nificant academic interest only after 2024.

Xie et al. (2024) proposed a novel benchmark
called TravelPlanner to evaluate the capability of
LLM-based agent systems in formulating complex
plans in realistic environments. Focusing on the
travel domain, TravelPlanner provides a sandbox
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consisting of 1,225 user queries and six tools cover-
ing four million real-world data records. The bench-
mark aims to assess the accuracy of plans generated
by LLMs in response to input queries under vari-
ous constraints. Evaluations of GPT, Gemini, and
Mixtral using this benchmark showed a planning
success rate below 1%. These results highlight sub-
stantial limitations of current LLMs in achieving
human-level performance for complex planning
tasks. The study underscores the need for future
research to focus on enhancing LLMs’ capabilities
to handle complex constraints and make multi-step
decisions effectively in realistic settings.

Zheng et al. (2024) introduced the NATU-
RAL PLAN benchmark to evaluate how effec-
tively LLMs perform natural language-based plan-
ning. The benchmark includes three primary
tasks—travel planning, meeting planning, and
schedule management—and provides context us-
ing outputs from services such as Google Flights,
Maps, and Calendar. Unlike other studies, this
benchmark provides all necessary planning infor-
mation entirely in natural language, thus eliminat-
ing the need for additional tool environments. Eval-
uations using NATURAL PLAN revealed that even
the most advanced models, including GPT-4 and
Gemini 1.5 Pro, achieved task-solving rates be-
tween 31.1% and 48.9%. These findings highlight
intrinsic limitations in LLMs’ abilities to handle re-
alistic planning tasks expressed in natural language.
The research emphasizes the complexity of natural
language planning as a challenge for LLMs and
calls for methodological developments in future
research to address these limitations.

Zhang et al. (2024) proposed a new dataset
named ‘Ask-before-Plan’ to assess the ability of
LLM-based agents to handle unclear user instruc-
tions and formulate plans in realistic settings. The
dataset comprises 2,000 travel planning scenarios,
each featuring ambiguous or infeasible user re-
quests, clarifying questions, and final travel plans.
This distinguishes Ask-before-Plan from earlier
datasets, which typically contained clear instruc-
tions. Evaluations using GPT-3.5 showed only 0.1%
of generated plans ultimately satisfied the given
constraints, highlighting significant limitations in
current LL.Ms’ capacity to handle unclear instruc-
tions and perform practical planning. These find-
ings indicate specific areas requiring improvement
for LLM-based agents to operate effectively in real-
world environments and emphasize the need for
future research to focus on enhancing practical ap-

plicability.

All the previously mentioned studies share a
common feature in evaluating the planning capa-
bilities of LLMs within practical contexts. From a
practical standpoint, research focused on enabling
LLMs to consider complex constraints, set long-
term goals, and effectively handle dynamic real-
world problems should be prioritized over clas-
sical planning studies. In this regard, recent re-
search moving beyond theoretical, classical plan-
ning towards practical planning that acknowledges
the complexities of real-world environments sig-
nificantly contributes to complementing human
decision-making processes, marking a meaningful
advancement for future research directions.
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B Datasets Construction Process

When constructing Multi-Plan, templates provided
to users were originally in Korean to facilitate
data collection. However, in this section, system
prompts are presented in English to aid readers’
understanding.

City Selection

Choose N € [3, 6] cities within one of the regions
Europe, Asia, or the Americas. All N cities must
lie on the same continent.

Duration Assignment
For each city, randomly assign a stay length D €
[2, 7] days.

Constraints

— Add at least one date—city constraint (e.g. visiting
arelative’s home, attending a local soccer match),
choosing scenarios that fit each city’s cultural con-
text (e.g. Songkran festival for Bangkok).

— You may include multiple date—city constraints,
but each itinerary must admit exactly one valid so-
lution.

— Specify which city-to-city routes have direct
flights; assume any direct flight takes at most one
day and does not count against the stay durations.
— Do not allow travel between cities without a direct
flight, and ensure that any unnecessary direct-flight
edges may also be included.

— All itineraries must respect these flight constraints

when constructing the schedule.
. J

Figure 2: Multi-Plan generation rules template

Plan Request (Q)

You plan to visit * cities in Europe/Asia/Americas
over a period of * days. You will only take direct
flights between cities. Travel between cities is pos-
sible within a single day, and flights do not affect
the stay durations in each city.

The cities with direct flights are: * and *, * and *,

Using only these direct flights, plan a trip to visit *
cities in * days.

Answer Plan (A)

*-* days: Stay in * for * days.
Day *: Fly from * to *.

*-* days: Stay in * for * days.
Day *: Fly from * to *.

*-* days: Stay in * for * days.

Figure 3: Multi-Plan generation format template

To construct the Multi-Plan dataset, explicit data
generation rules were first established. Figure 2
presents the template specifying these Multi-Plan
generation rules, and Figure 3 illustrates the tem-
plate for the desired format of each data instance.

We provided these two prompts to three human an-
notators, who subsequently created a total of 204
natural language Multi-Plan instances following
the specified rules and format. Afterwards, the gen-
erated Korean Multi-Plan dataset was translated
into English using the DeepL translator, followed
by additional human review.

p
Math Structuring Prompt
Below is an example of a natural-language plan
request converted into a mathematically structured
question. Refer to the examples and convert the
following natural-language Q into a mathematically
structured Q using exactly the same format. Output
only the converted question.

Example

Natural Q1: {example_tasks[0]}
Structured Q1: {example_solutions[0]}
Natural Q2: {example_tasks[1]}
Structured Q2: {example_solutions[1]}
Natural Q3: {example_tasks[2]}
Structured Q3: {example_solutions[2]}
Natural Q4: {example_tasks[3]}
Structured Q4: {example_solutions[3]}

Task: {task}
Structured Q:

Figure 4: Math structuring prompt template with four
examples and task

The natural language-based Multi-Plan dataset
generated through the aforementioned process was
then provided to Claude-3.5-Sonnet for conversion
into mathematical form. To clearly define the trans-
formation format, we included four manually con-
structed examples along with the natural language
queries targeted for conversion in a prompt (Fig-
ure 4), thereby creating a mathematically structured
dataset. Subsequently, human reviewers directly in-
spected the structured mathematical data, finalizing
the construction of the Multi-Plan dataset. Details
about the human annotators who constructed and
reviewed the data are provided in Table 5.

C Datasets Examples
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Category Human Annotator 1 Human Annotator 2 Human Annotator 3
Birth Year Born in 1996 Born in 1998 Born in 1997
Major Computational Linguistics | Computational Linguistics Social Welfare
Education Level Master’s graduate Enrolled in Master’s program | Master’s graduate
Primary Language Korean Korean Korean

Table 5: Demographic and academic background of the three human annotators who participated in the evaluation.
All annotators are native Korean speakers with at least a bachelor’s degree. Annotators 1 and 2 majored in
computational linguistics, while Annotator 3 majored in social welfare. Two annotators have completed a master’s

program, and one is currently enrolled.

English

Math

You plan to visit 5 cities in Europe for
a total of 17 days. You will only take
direct flights between cities. Travel be-
tween cities is possible within a day,
and flights do not affect the itinerary
for staying in each city. You plan to visit
Athens for 6 days. Between the 15th
and 16th, You’ve signed up for a histor-
ical tour of Athens. You’ll be visiting
Liverpool for 3 days. You'll be visit-
ing Interlaken for 4 days. You’ll spend
5 days in Saint-Germain. You’ll watch
a Saint-Germain soccer game on day
6 of your trip. You’ll spend 3 days in
Naples. You’ve made reservations for a
famous pizzeria in Naples on day 11
of your trip. Here are the cities that
have direct flights: Liverpool and Saint-
Germain, Interlaken and Athens, Saint-
Germain and Interlaken, Interlaken and
Naples, Naples and Athens, Liverpool
and Naples. Plan a trip to visit five cities
in 17 days using direct flights.
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Variable Definitions: A: Athens, L:
Liverpool, I: Interlaken, S: Saint-
Germain, N: Naples; aa: Arrival date
in Athens, da: Departure date from
Athens; ar: Arrival date in Liverpool,
dr,: Departure date from Liverpool; a;:
Arrival date in Interlaken, d;: Depar-
ture date from Interlaken; as: Arrival
date in Saint-Germain, ds: Departure
date from Saint-Germain; an: Arrival
date in Naples, d n: Departure date from

Naples.

Constraints: d4 — asx + 1 = 6,
dr, —ar +1 = 3,dr —ar +1 =
4, ds —as +1 = 5, dy — an +
1 = 3, maX(dA,dL,dj,ds,dN) -
min(aa,ar,ar,as,an) + 1 = 17,

[15,16] N [aa,da] # 0, as <6 < ds,
anN S 11 S dN.

Direct Flights: (L + S), (I + A),
(S < I), I < N), (N « A,
(L <+ N); travel between cities takes at
most one day and does not affect stay
durations.

Task: Plan a 17-day itinerary visiting A,
L, 1,5, and N exactly once using only
the above direct flights while satisfying
all constraints.

Solution Plan (English): Days 1-3: Visit Liverpool for 3 days.;Day 3: Fly from Liverpool to Saint-Germain.;Days 3-7:
Visit Saint-Germain for 5 days.;Day 7: Fly from St. Germain to Interlaken. ;Days 7-10: Visit Interlaken for 4 days.;Day
10: Fly from Interlaken to Naples.;Days 10-12: Visit Naples for 3 days.;Day 12: Fly from Naples to Athens.;Days 12-17:

Visit Athens for 6 days.
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Table 6: Example Multi-Plan evaluation for a European five-city itinerary
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English

Math

You plan to visit 5 cities in Asia for
a total of 19 days. You will only take
direct flights between cities. Travel be-
tween cities is possible within a day,
and flights do not affect the itinerary
for staying in each city. You will be in
Danang for 3 days for a vacation. You
have booked a 5-star hotel to stay in
Danang between the 12th and 14th. You
will be in Bali for 5 days. You have a
conference in Bali between the 5th and
7th. You will be in Bangkok for 6 days.
You will be visiting Manila for 4 days.
You will be spending 5 days in Singa-
pore. Here are the cities that have direct
flights: Danang and Manila, Bangkok
and Danang, Bangkok and Bali, Bali
and Singapore, Manila and Singapore,
Manila and Bali. Plan a trip to visit five
cities in 19 days using direct flights.

Korean
5 199 54t ofx|ol 57| A S R
T ALY EA] 7S ol 5wl
g FZ A o St TA 71 o]
&2 ofF Qtell 7HeotH, FEH2 7
TA o HEZ2E= g3 JFE 71X
2] kUt 347 thdoll A Fd=
270 21t 12903} 149 Afolo] o}
Joll A B 22 543 58S djorals)
Sk 57 oo gle Zi e,
593} 7 Atolof Erafo] A 53] 7} 9L
Utk 697F e WS oY
o}, 417t vpdahs R Ay
grm el 59g oRg Al
2gHHo] 9l w AL ke T} 2
s oAt mpde), A o,

B

Ue) wrejof Yot e, ol
b2, nhdete} wel. 1 g
B2 o] §5}e] 199 Fo T Al
WSS ol AR S Al EA L.
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N

it oft {0 o mfy T T T )
o Ay

Variable Definitions: D: Danang, B:
Bali, T: Bangkok, M: Manila, S: Singa-
pore; a_D: arrival date in Danang, d_D:
departure date from Danang; a_B: ar-
rival date in Bali, d_B: departure date
from Bali; a_T: arrival date in Bangkok,
d_T: departure date from Bangkok;
a_M: arrival date in Manila, d_M: de-
parture date from Manila; a_S: arrival
date in Singapore, d_S: departure date
from Singapore.

Constraints: d_D - a_D + 1 =3 (stay
in Danang for 3 days)d_ B-a_ B+ 1=
5 (stay in Bali for 5 days)d_T-a_T + 1
= 6 (stay in Bangkok for 6 days) d_M -
a_M + 1 =4 (stay in Manila for 4 days)
d_S-a_S + 1=>5 (stay in Singapore for
5 days)

Overall Trip Length:
max(d_D,d_B,d_T,d_M,d_S) -
min(a_D,a_B,a_T,a_M,a_S) +
1=19

Specific Date Constraints: [12, 14] N
[a_D,d_D] # 0 (hotel booking win-
dow in Danang) [5,7] N [a_B,d_B] #
( (conference window in Bali)

Direct Flights Allowed: (D < M), (T
< D), (T < B), B<S),M<S),
(M < B); travel between cities takes at
most one day and does not affect stay
durations.

Task: Plan a 19-day itinerary visiting D,
B, T, M, and S exactly once using only
the above direct flights while satisfying
all constraints.

Solution Plan (English): Days 1-5: Visit Singapore for 5 days. Day 5: Fly from Singapore to Bali. Days 5-9: Visit Bali
for 5 days. Day 9: Fly from Bali to Manila. Days 9—12: Visit Manila for 4 days. Day 12: Fly from Manila to Danang.
Days 12-14: Visit Danang for 3 days. Day 14: Fly from Danang to Bangkok. Days 14—19: Visit Bangkok for 6 days.

Solution Plan (Korean): 1-5913F: 5917 /1 2 12 59U3k A7k 2ol 4] el v 9. 5997k 5971 e
HFE 9olz): Whalof| A mpdeta H]E). 9-122 3} 47 updel HFR. 12¢13}: nfd et 4] thd o 2 Hls). 12-14
Hr o 2 H]e). 141992} 62 7F HFa HER

3} 39071 thg W 14903 thgell A

Table 7: Multi-Plan evaluation for an Asian five-city itinerary
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English

Korean

Math

You plan to visit 6 cities in the Ameri-
cas for a total of 24 days. You will only
take direct flights between cities. Travel
between cities is possible within a day,
and flights do not affect the itinerary
for staying in each city. You want to
spend 7 days in Toronto. You will stay
at your family home in Toronto starting
on day 18. You will visit St. George’s
for 6 days, meeting friends there on the
10th and staying until the 15th. You
will stay in Castries for 5 days, with
dates between the 4th and 6th. You
will spend 4 days in Fort-de-France.
You will visit Bridgetown for 3 days.
You will travel from Miami for 4 days.
Here are the direct flights available: Mi-
ami < St. George’s, Toronto < Miami,
Bridgetown < Toronto, Bridgetown <
St. George’s, Castries < Bridgetown,
Castries <> Miami, Fort-de-France <
Bridgetown, Fort-de-France < Castries.
Plan a trip to visit six cities in 24 days
using only direct flights.
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Variable Definitions: T: Toronto, S: St.
George’s, C: Castries, F: Fort-de-France,
B: Bridgetown, M: Miami; a_T: arrival
date in Toronto, d_T: departure date
from Toronto; a_S: arrival date in St.
George’s, d_S: departure date from St.
George’s; a_C: arrival date in Castries,
d_C: departure date from Castries; a_F:
arrival date in Fort-de-France, d_F: de-
parture date from Fort-de-France; a_B:
arrival date in Bridgetown, d_B: depar-
ture date from Bridgetown; a_M: ar-
rival date in Miami, d_M: departure date
from Miami.

Constraints: d_T -a_T + 1 =7 (stay in
Toronto for 7 days)d_S-a_ S+1=6
(stay in St. George’s for 6 days) d_C -
a_C+ 1 =5 (stay in Castries for 5 days)
d_F-a_F+1=4((stay in Fort-de-France
for 4 days)d_B -a_B + 1 =3 (stay in
Bridgetown for 3 days)d_ M -a_ M + 1
=4 (stay in Miami for 4 days)

Overall Trip Length:
max(d_T,d_S,d_C,d_F,d_B,d_M)
min(a_T,a_S,a_C,a_F,a_B,a_M)
+1=24

Specific Date Constraints: 18 <
a T < d_T (home stay window in
Toronto) 10 < a_S < 15 < d_S
(friend meeting window in St. George’s)
[4,6] N [a_C,d_C] # 0 (dates in Cas-
tries)

Direct Flights Allowed: (M < S), (T
< M), B <T), B <S),(C<B)
(C < M), (F < B), (F < C); travel
between cities takes at most one day and
does not affect stay durations.

Solution Plan (English): Days 1-4: Visit Fort-de-France for 4 days. Day 4: Fly from Fort-de-France to Castries. Days
4-8: Visit Castries for 5 days. Day 8: Fly from Castries to Bridgetown. Days 8—10: Visit Bridgetown for 3 days. Day
10: Fly from Bridgetown to St. George’s. Days 10—15: Visit St. George’s for 6 days. Day 15: Fly from St. George’s to
Miami. Days 15-18: Visit Miami for 4 days. Day 18: Fly from Miami to Toronto. Days 18-24: Visit Toronto for 7 days.

Solution Plan (Korean): 1 442} 447 x2 = ek A HER 4Q2): T2 gt Aofx J|AEZ AR H|GY. 4-8

7} 57} AXE ]2 W A3k AL e 2ol H Hel

20 2 "), 8-10¥2}: 34 7F B X ek HFE. 10

Azp: B A ER2o A HJIEZ A A2 ¥Y. 10-15D 2}k 647 HIJIEZA A W, 1582): | EZZ] 204 of
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Table 8: Multi-Plan evaluation for an americas six-city itinerary
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D Datasets Analysis

In this section, we analyze the Multi-Plan bench-
mark dataset from various perspectives to demon-
strate that it is a high-quality dataset.

D.1 Query Analysis

Distribution of Total Trip Days
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Figure 5: Distribution of total trip days among all travel
plans.

Distribution of Travel Days Figure 5 shows
the distribution of the total number of travel days
across all travel planning queries in the Multi-Plan
dataset. The travel plans range from 6 to 31 days,
with the highest proportion being queries for 15-
day trips, consisting of 18 instances.

Category Value

Total number of questions 204

Average travel duration 15.1 days

Minimum travel duration 6 days

Maximum travel duration 31 days

Range of number of cities visited 3-6

Number of questions per city count 51 each

Number of questions per continent Europe (68), Asia (68), Americas (68)

Table 9: Statistics of the Multi-Plan question Set

Table 9 summarizes key statistics of the Multi-
Plan query set. The average number of travel days
across the 204 queries is 15.1, with the range
spanning from 6 to 31 days. Queries evenly rep-
resent trips visiting between 3 and 6 cities, with

City Frequency

Prague
Amsterdam
Havana

La Paz
Bucharest
Budapest
Copenhagen
Ljubljana
Singapore
Santiago
Quito
Buenos Aires
Montevideo
Vienna
Paris

AN T I3 93323300000®

Total unique cities 410

Table 10: Top 15 most frequently mentioned cities and
the total number of unique cities.

51 queries for each city count. Additionally, the
dataset covers three continents—Europe, Asia, and
America—with 68 queries per continent.

Table 10 presents the 15 most frequently men-
tioned cities and the total number of unique cities
(410) in the dataset. Prague, Amsterdam, Havana,
and La Paz appeared most frequently, each being
mentioned 8 times, while Bucharest, Singapore,
and Buenos Aires were mentioned consistently be-
tween 6 to 7 times. The extensive variety of 410
unique cities highlights broad geographic diversity
without excessive focus on specific hub cities.

This distribution demonstrates that the Multi-
Plan dataset is systematically designed, incorpo-
rating balanced considerations of travel duration,
the number of visited cities, and geographic repre-
sentation, thus providing a realistic experimental
environment where models can learn diverse desti-
nations without bias.

Character Length Distribution

0.0016

0.0014
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Figure 6: Distribution of question character lengths
across three types: Korean (Natural), Math-Structured,
and English (Translated).
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Question Length Figure 6 analyzes the distribu-
tion of question lengths in the Multi-Plan dataset.
Natural language-based questions (Korean (Nat-
ural)) and mathematically structured questions
(Math-Structured) generally exhibited longer char-
acter lengths compared to the English-translated
questions (English (Translated)).

Distribution of Number of Constraints per Question
6 constraint(s)

5 constraint(s)

12.3%

4 constraint(s)

8.8%
51.5%

2 constraint(s)

24.5%

3 constraint(s)

Figure 7: Distribution of the number of constraints per
question in the Multi-Plan dataset.

D.2 Question Difficulty Analysis

Figure 7 illustrates the number of constraints in-
cluded in each query within the Multi-Plan dataset.
The constraints are categorized into two types: (1)
availability of direct flights only and (2) require-
ment to stay in a specific city on a specific date.
Each query was designed to include at least two
constraints—one direct flight constraint and one
date-specific stay constraint. Approximately 51.5%
of queries have exactly two constraints, around
24.5% include three constraints, and the remaining
approximately 24% include four to six constraints.
This distribution indicates that Multi-Plan incor-
porates questions of varying difficulty levels in a
balanced manner.

E Details of Model
E.1 Closed Models

In this study, we focused our experiments primarily
on closed models developed by three organizations
(OpenAl, Anthropic, and Google Deepmind). De-
tailed information about the closed models used in
our experiments can be found in Table 11.

E.2 Open Models

E.2.1 Non-Reasoning Models

OLMo-2-7B-Instruct AllenAl released the
Open Language Models (OLMo) series to advance
language model science, covering model sizes from
1B to 32B parameters. OLMo-2-7B-Instruct is a
7B parameter model pretrained on 4T tokens and
further refined through Supervised Fine-Tuning
(SFT), Direct Preference Optimization (DPO), and
Reinforcement Learning with Verifiable Rewards
(RLVR).

SmolLLM2-1.7B-Instruction HuggingFaceTB
introduced this model trained on 11T tokens from
datasets such as FineWeb-Edu, DCLM, and The
Stack. It underwent SFT using curated mathemat-
ical and coding datasets combined with publicly
available data, followed by Direct Preference
Optimization (DPO) utilizing UltraFeedback.

Llama3.1-8B-Instruction/Llama3.3-70B-
Instruction Released by Meta, these multilin-
gual language models trained on over 15T tokens
from publicly available online data. The Llama3.1
model underwent SFT and Reinforcement
Learning with Human Feedback (RLHF).

Qwen2.5-72B-Instruction Alibaba’s Qwen2.5
Instruction model supports over 29 languages and
was pretrained on approximately 18T tokens. It
was further enhanced through SFT, Reinforcement
Learning (RL), and Long Context Fine-tuning.

E.2.2 Reasoning Models

Llama-3.1-Nemotron-Nano-8B Developed by
Nvidia, based on Meta’s Llama-3.1-8B-Instruct,
this reasoning model is optimized for tasks such
as enhanced reasoning, conversational preference
learning, RAG, and tool calling. It underwent Su-
pervised Fine-Tuning (SFT) and reinforcement
learning methods including RLOO and Online
Reward-aware Preference Optimization (RPO).

Phi-4-reasoning-plus Microsoft’s approxi-
mately 14.7B parameter Phi-4 derived model
underwent supervised fine-tuning using Chain-of-
Thought (CoT) reasoning examples and specialized
synthetic prompts for mathematics, science, and
coding, alongside filtered high-quality public
data. It subsequently incorporated reinforcement
learning (RL) for enhanced safety and Responsible
Al alignment.
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Developer Model Name Detailed Model Name Release Year | Context Length | Remarks
03-mini 03-mini-2025-01-31 2025 200K Reasoning Model
OpenAl GPT-40 gpt-40-2024-08-06 2024 128K General Model
GPT-4-turbo gpt-4-turbo-2024-04-09 2023 128K General Model
GPT-4 gpt-4-0613 2023 8K General Model
Claude-3.7-Sonnet thinking | claude-3-7-sonnet-20250219 2025 200K Reasoning Model
Anthropic Claude-3.7-Sonnet standard | claude-3-7-sonnet-20250219 2025 200K General Model
Claude-3.5-Haiku claude-3-5-haiku-20241022 2024 200K General Model
Claude-3-Opus claude-3-opus-20240229 2024 200K General Model
Gemini-2.5-Pro gemini-2.5-pro-preview-03-25 2025 M Reasoning Model
Google Deepmind | Gemini-2.0-Flash gemini-2.0-flash 2024 M General Model
Gemini-1.5-Pro gemini-1.5-pro-exp-0827 2024 2M General Model

Table 11: Information on closed models used in experiments. Each row provides metadata for a closed-source
language model used in the evaluation. Developer indicates the organization that released the model. Model Name
is the abbreviated or commonly used name of the model. Detailed Model Name refers to the official version name
or identifier. Release Year is the year the model was publicly released or last updated. Context Length denotes
the maximum number of tokens the model can process in a single input. Remarks describes the model’s general
purpose, distinguishing between reasoning-oriented models and general-purpose models.

DeepSeek-R1-Distill-Llama-8B/DeepSeek-R1-
Distill-Qwen-7B  These models were fine-tuned
from Llama-3.1-8B and Qwen2.5-Math-7B
respectively using samples generated by DeepSeek-
R1. The fine-tuning employed CoT reasoning
and domain-specific SFT data for high-quality
knowledge distillation.

Qwen3-8B, 32B Alibaba’s Qwen3 series sup-
ports both reasoning and non-reasoning modes,
handling 119 languages and pretrained on approx-
imately 36T tokens. It underwent optimization
through processes including long chain-of-thought
(CoT) cold start, reasoning-based reinforcement
learning (RL), thinking mode fusion, and general
RL.

F Details of Experiment

F.1 Details of Evaluation Method

To evaluate the structural consistency between the
model-generated outputs and the ground truth, we
designed a regular-expression-based comparison
method. Since each plan follows a consistent sen-
tence pattern, we utilized two regular expressions
to parse them into structured events:
# visit
Days? (\d+) (?:-(\d+))?:\s*Visit

— (\w+)\s*for (\d+)\sxdays?\.

# fly
Day (\d+):\s*Fly from (\w+)\s*to
— (\w+)\.

After parsing each text into visit and fly
events using the aforementioned regular expres-

sions, we compared the sequences’ order, count,
and content with the ground truth. Any discrepancy
resulted in marking the instance as incorrect, and
the overall accuracy was calculated as the ratio of
correctly classified instances.

For example, if both the model prediction
and the ground truth sentences are "Days 1-3:
Visit Paris for 3 days. Day 4: Fly from Paris to
Rome," the first sentence is recognized as a "visit"
event and parsed into type="visit’, start="1",
end=’3’, location=’Paris’, duration=’3’,
while the second sentence is identified as a "fly"
event and parsed into type=’fly’, day=’4’,
from="Paris’, to=’Rome’.

The instance is marked as correct if the event
sequence (visit -+ fly), event count, and each
event’s field values match exactly with the ground
truth. Conversely, if the destination in the sec-
ond event changes from Rome to Milan, result-
ing in type=’fly’, day=’4’, from=’Paris’,
to="Milan’, the instance would be classified as
wrong due to the differing field values.

F.2 TImpact of Few-Shot Examples

The example impact evaluation utilized only the
Korean Multi-Plan dataset to investigate how in-
creasing the number of examples in the prompt
could enhance the planning performance of LLM:s.
Few-Shot Learning (FSL) refers to the ability to
learn and perform new tasks through simple text in-
teractions without fine-tuning (Brown et al., 2020).
Typically, FSL is achieved via in-context learning,
and it has already been established that the model’s
performance improves as the number of provided
examples increases (Agarwal et al., 2024). Based

13083



Model Reasoning 1-shot 3-shot 5-shot
03-mini v 82.84% 82.84% 84.80%
GPT-40 X 3.43% 2.94% 2.94%
GPT-4-turbo X 10.78% 20.59% 25.00%
GPT-4 X 15.20% 21.57% 28.92%
Claude-3.7-Sonnet thinking v 46.57% 50.98% 52.94%
Claude-3.7-Sonnet standard X 29.41% 44.12% 45.10%
Claude-3.5-Haiku X 8.33% 10.78% 21.57%
Claude-3-Opus X 27.45% 36.27% 32.84%
Gemini-2.5-Pro v 82.35% 85.78% 86.76%
Gemini-2.0-Flash X 11.76% 18.14% 25.49%
Gemini-1.5-Pro X 6.37% 15.20% 18.14%

Table 12: Experimental results by number of few-shot
examples. Each column shows the model’s accuracy
under different few-shot settings.1-shot’, ‘3-shot’, and
‘5-shot’ indicate the number of examples provided in
the prompt before the test query. Higher shot counts
generally offer more context, potentially improving per-
formance.

on these prior findings, we hypothesized that in-
creasing the number of examples would lead to
improved planning capabilities. To verify this hy-
pothesis, we systematically analyzed changes in
planning accuracy across different models by ap-
plying 1-shot, 3-shot, and 5-shot settings within the
prompts.

The experimental results showed a positive cor-
relation between the number of examples provided
and the accuracy of plan generation for most mod-
els. Except for Claude-3-Opus and GPT-4o, all
models consistently improved their performance
with increasing examples, indicating that in-context
learning can significantly enhance performance
even in complex tasks such as planning. Detailed
planning accuracy results for the 1-shot, 3-shot, and
5-shot conditions are provided in Table 12.

Claude-3-Opus displayed an exceptional pat-
tern, showing significant performance improve-
ment when moving from 1-shot to 3-shot, but ex-
periencing a decrease when moving from 3-shot to
5-shot. However, since the performance for both
3-shot and 5-shot remained higher than 1-shot, the
positive impact of examples on performance can-
not be entirely disregarded, thereby still support-
ing the effectiveness of in-context learning. Con-
versely, GPT-40 unexpectedly showed a decrease
in performance with increased examples, achieving
a notably low average accuracy of 2-3% across all
settings, the lowest among the 11 models tested.
These results suggest that GPT-40 may have diffi-
culty properly interpreting the planning requests,
raising questions about its suitability for example
impact assessments.

One of the models demonstrating the most

prominent improvement through example-based
in-context learning was Claude-3.7-Sonnet stan-
dard, which showed a substantial accuracy increase
of 15.69% from the 1-shot to 5-shot environments.
Similarly, other general-purpose models like GPT-
4-turbo, Gemini-2.0-Flash, and GPT-4 showed sig-
nificant accuracy improvements exceeding 10%
as the number of examples increased. Notably,
while general-purpose LLMs exhibited marked
sensitivity to example count increases, reasoning-
specialized models displayed relatively limited re-
sponsiveness. This observation might indicate that
reasoning-focused models either quickly grasped
the essential requirements with fewer examples or
initially possessed high task-solving capabilities,
limiting additional gains from extra examples com-
pared to general models.

In conclusion, although the extent of perfor-
mance improvement varied with the increase in
examples, this experiment clearly demonstrates
that few-shot learning is an effective strategy to
enhance the planning capabilities of LLMs. De-
spite the complexity of planning tasks requiring ad-
vanced comprehension and reasoning, meaningful
improvements can be achieved simply by provid-
ing relevant examples in prompts without structural
model changes or fine-tuning, highlighting the ro-
bust potential of in-context learning. These findings
reaffirm the effectiveness of in-context learning
beyond simple pattern recognition, underscoring
its applicability in complex cognitive tasks. Fur-
thermore, these experimental results provide criti-
cal insights for efficient prompt design and model
utilization strategies, contributing broadly to the
advancement of Al research related to enhancing
LLM capabilities.
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