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Abstract
Complex chart understanding tasks demand ad-
vanced visual recognition and reasoning capa-
bilities from multimodal large language mod-
els (MLLMs). However, current research pro-
vides limited coverage of complex chart scenar-
ios and computation-intensive reasoning tasks
prevalent in real-world applications. This study
proposes an automated multi-stage code-driven
pipeline for systematically generating visual
reasoning datasets to address these limitations.
The pipeline integrates retrieval-augmented
generation (RAG) to retrieve professional chart
templates and employs chain-of-thought (CoT)
strategies to generate reasoning codes that sim-
ulate real data distributions, thereby driving
chart rendering and question-related statisti-
cal computations. Through model-based eval-
uation, the pipeline enhances chart diversity
and data quality. Using this framework, we
construct ChartM3, a multi-dimensional and
multi-step dataset containing 38K charts and
142K Q&A pairs for training, along with 2,871
high-quality evaluation samples for enabling
practical performance assessment. Supervised
fine-tuning (SFT) and reinforcement learning
(RL) experiments demonstrate that our dataset
significantly improves reasoning capabilities
and cross-domain generalization performance,
enabling smaller models to achieve perfor-
mance comparable to larger-scale models in
complex chart comprehension.

1 Introduction

Advanced Multimodal Large Language Models
(MLLMs) such as GPT-4o (Jaech et al., 2024),
LLaVA (Liu et al., 2023b), Qwen-VL (Bai et al.,
2025, 2023), and InternVL (Chen et al., 2024c)
series have continuously emerged, demonstrating
remarkable capabilities in Visual Question Answer-
ing (VQA) for natural images. However, these mod-
els still struggle with text-rich images, particularly

*The first two authors contributed equally
†Corresponding author

in chart comprehension. Unlike natural images,
which primarily focus on perceptual understanding,
charts are intricate visual systems that combine
multiple elements (titles, legends, axes, etc.) to
present structured data. Effectively understanding
charts requires processing visual information, ana-
lyzing the hierarchical relationships between these
elements, and interpreting the underlying design
intent.

Despite strong benchmark performance on
ChartQA (Masry et al., 2022) and PlotQA (Methani
et al., 2020), state-of-the-art MLLMs often deliver
unsatisfactory results in real-world applications.
This discrepancy arises from the complexity of
actual charts, which significantly exceeds that of
benchmark datasets. Current chart datasets (Xia
et al., 2024; Xu et al., 2023) exhibit several crit-
ical limitations: Limited Chart Type and Ele-
ment Complexity. Most existing datasets primar-
ily focus on compositionally simple charts, such
as line, bar, and pie charts, while neglecting data-
intensive formats like scatter plots and heatmaps,
or sophisticated derivatives such as box plots and
multi-axis composites. Low Question Complex-
ity. Current datasets emphasize basic perceptual
tasks rather than complex business analytics that
demand multi-step reasoning and multi-chart com-
prehension. Lack of Interpretability Support.
These datasets focus solely on question-answer
pairs without providing detailed stepwise reasoning
processes to enhance model understanding, limit-
ing data utility and model explainability in practical
applications. These limitations originate from in-
herent conflicts between data accuracy, complexity,
and construction costs in conventional data creation
approaches.

To address these challenges, we introduce
ChartM3, a comprehensive chart dataset that ex-
tends both chart variety and task complexity while
reflecting real-world analytics scenarios. Our auto-
mated pipeline decomposes the generation process
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Figure 1: Left: ChartM3 covers 9 major categories of chart types, totaling 62 subcategories. Right: Performance
comparison of representative MLLMs across ChartM3 task categories.

into a four-stage chain: database construction, data
code generation, visualization code creation, and
Q&A pair synthesis with reasoning code. Each
stage is implemented through executable Python
code to ensure traceability and verifiability. The
process begins by constructing a diverse chart tem-
plate database including 62 chart types and gen-
erates high-quality questions across 60 real-world
scenarios. Using Retrieval-Augmented Generation
(RAG) to select professional templates, we em-
ploy LLM’s Long Chain-of-Thought (CoT) reason-
ing to thoroughly analyze data generation context
and visualization requirements. This CoT-driven
approach generates both structured data and visu-
alization code, followed by MLLMs formulating
questions and synthesizing analytical code with re-
liable reasoning paths. Through code execution
and output verification, we produce accurate an-
swers with reliable CoT reasoning. To further en-
hance quality, we employ a combination of large
and small language models to filter out unsuitable
charts and Q&A pairs. This Multi-stage, Multi-
dimensional, and Multi-step (M3) approach guar-
antees data quality and diversity, resulting in a com-
prehensive dataset containing 38.4K diverse charts
and 142K high-quality Q&A pairs, and a challeng-
ing benchmark of 2,871 rigorously verified sam-
ples.

We validate the effectiveness of ChartM3

through comprehensive experiments, demonstrat-
ing substantial improvements in business insight ex-
traction and analytical reasoning capabilities. This
dataset advances the development of practical chart
understanding systems and helps bridge the gap

between academic evaluation and real-world appli-
cations.

Our contributions can be summarized as follows:

• We present a novel pipeline that leverages
open-source LLMs to synthesize aligned
chart data and visual reasoning Q&A pairs.
Through RAG for template retrieval, code-
driven generation, and model-based qual-
ity control, our approach produces diverse,
professional-quality synthetic chart data.

• We construct a comprehensive benchmark that
systematically identifies architectural limita-
tions in complex chart comprehension and
cross-chart reasoning capabilities.

• Comprehensive experiments demonstrate that
models trained on ChartM3 show substantial
improvements in visual perception and rea-
soning abilities, validating that our framework
provides a practical methodology for develop-
ing reasoning MLLMs.

2 Related Works

For chart comprehension and question-answering
datasets, early studies (such as FigureQA (Kahou
et al., 2017), DVQA (Kafle et al., 2018)) proposed
synthetic data generation pipelines to produce VQA
datasets for several chart types (typically 1-4 types
of charts). However, these approaches were con-
strained by the limitations of the synthetic data
pipelines at the time, resulting in issues such as
limited chart topics, templated task types, and fixed
answer formats. PlotQA (Methani et al., 2020) ex-
panded the range of chart topics by introducing
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Datasets
Chart Properties Q&A Properties

Data Source # Chart
Type

Textual
Data

# Task
Type

Template-Free
Question

Multi Chart
Q&A

Reasoning
Data

FigureQA Synthetic 5 - 15 ✗ ✗ ✗
DVQA Synthetic 1 - 3 ✗ ✗ ✗
PlotQA Real-world, Synthetic 4 Table 3 ✗ ✗ ✗
ChartQA Real-world, Synthetic 3 Table 4 ✓ ✗ ✗
ChartLLama Synthetic 10 Table 7 ✓ ✗ ✗
MMC-Instruction Real-world 6 Caption 9 ✓ ✓ ✓
ChartBench Real-world, Synthetic 42 Table 5 ✓ ✓ ✗
ChartX Synthetic 18 Code 7 ✓ ✗ ✗
OneChart Real-world, Synthetic 7 Table 1 ✗ ✗ ✗
ChartAst (ChartSFT) Real-world, Synthetic 9 Table 5 ✓ ✗ ✓
ChartInstruct Real-world, Synthetic 13 - 6 ✓ ✗ ✓
CharXiv Real-world - - 23 ✗ ✓ ✗
ChartGemma Real-world, Synthetic - Caption 10 ✓ ✗ ✓
MultiChartQA Real-world - - 4 ✓ ✓ ✗
ReachQA Synthetic 32 Code 3 ✓ ✓ ✓
ChartM3(Ours) Synthetic 62 Code 18 ✓ ✓ ✓

Table 1: Comparison of Several Datasets for Chart QA.

real-world data but focused only on bar charts, line
graphs, and scatter plots. Moreover, the program-
synthesized charts had relatively simple styles, with
visual designs and color schemes that could hardly
represent real-world standards. ChartQA (Masry
et al., 2022) further broadened the scope of ques-
tion forms and openness through human annota-
tion and machine generation, breaking free from
template-based restrictions on questions. Neverthe-
less, it still suffered from a limited variety of chart
types. MMC-Instruction (Liu et al., 2023a), Chart-
Bench (Xu et al., 2023), and CharXiv (Wang et al.,
2024b) improved the diversity of chart and ques-
tion types by collecting real-world chart data and
combining them with manual annotations, but this
also led to increased costs and limited scalability.

In recent years, with the continuous advance-
ment of large language models (LLM), researches
have been utilizing LLMs for data synthesis have
emerged. Compared to template-based data syn-
thesis pipelines, these works have significantly
improved chart topic richness and Q&A flexibil-
ity. For example, ChartLlama (Han et al., 2023),
ChartInstruct (Masry et al., 2024a), and TinyChart
(Zhang et al., 2024) generate data, plotting code,
and Q&As through pipelines. Research like Char-
tAssistant (ChartSFT) (Meng et al., 2024) and
ChartGemma (Masry et al., 2024b) utilizes exist-
ing synthetic and real-world datasets to construct
instruction datasets for chart understanding model
training. However, there is still room for improve-
ment in fine-grained visual element analysis (e.g.,
layout, color style). Regarding evaluation tasks,

ChartInsights (Wu et al., 2024) systematically de-
fines structural parsing tasks for seven types of
charts, revealing deficiencies in mainstream mod-
els like GPT-4V in low-level tasks such as axis
recognition and legend matching (with an average
accuracy below 60%). ChartX (Xia et al., 2024) fur-
ther extends the evaluation dimensions by support-
ing seven subtasks, including structure extraction
and cross-modal generation, with 48k quadruples
(image-CSV-code-text). However, current chart
datasets still face challenges in constructing com-
plex scenario questions and multi-step reasoning
tasks, with evaluation pipelines that are not suffi-
ciently objective. As a result, existing datasets still
cannot accurately measure the true chart compre-
hension capabilities of MLLMs. In this article, we
introduce ChartM3, a novel chart dataset produced
by an automatic multi-stage data synthesis pipeline
designed for high-quality visual reasoning chart
Q&A data.

3 ChartM3

Figure 2 illustrates the ChartM3 automated work-
flow. Our core approach combines RAG-based
chart template selection with a multi-stage, code-
driven generation process and model-based quality
verification. Beyond single-chart analysis, we also
incorporate cross-chart comparison tasks that re-
quire examining multiple images simultaneously.
The following sections detail each stage of imple-
mentation: template database construction (§ 3.1),
chart data and image generation (§ 3.2), instruc-
tional Q&A generation (§ 3.3), and data evaluation
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Figure 2: The ChartM3 data generation pipeline follows a progressive automated workflow that begins by generating
key questions and utilizing RAG to select appropriate templates from a diverse chart database. The process then
advances through multiple code-driven stages: creating structured data, producing rendering code, and generating
Q&A pairs with multi-step visual reasoning reasoning synthesizing analytical code. Finally the pipeline conducts
model-based comprehensive assessments of data quality and difficulty levels.

(§ 3.4). Based on our dataset, we introduce a novel
reinforcement learning approach for chart compre-
hension tasks, as detailed in (§ 3.5).

3.1 Template Database Construction
We develop a comprehensive chart taxonomy by
analyzing major visualization frameworks such as
Matplotlib (Hunter, 2007), Vega (Satyanarayan
et al., 2017), EChart (Li et al., 2018), and Seaborn
(Waskom et al., 2017). Our analysis identifies 62
scientifically rigorous chart types commonly used
in real-world scenarios (shown in Figure 1). Each
type of chart is annotated with descriptive tags cov-
ering definitions, usage scenarios, and data charac-
teristics.

For Database generation, we utilize Claude 3.5
to create structured data and code templates for
each chart type, incorporating comprehensive pa-
rameters for standardized rendering. To enhance
visualization diversity, we develop templates that
align with real-world scenarios across themes, lay-
outs, and color schemes. We incorporate domain-
specific styles from various professional fields and
manually refine the details to better align with real-
world charts. In addition, we collect real-world
charts from various sectors, including finance and
scientific research. These charts are recreated using
Claude 3.5 to generate style-matching code tem-
plates. Each chart template is labeled with multiple
attributes, including industry domain, theme, and
visualization purpose, all constructed based on vi-
sual characteristics and type descriptions.

3.2 Chart Image Generation

Instead of direct data generation, we divide this
building process into multiple substages with a
code-driven method to avoid distributional conver-
gence in LLM-generated content. We curate 60 do-
mains commonly associated with data visualization
and create key questions that require analytical rea-
soning rather than generating random titles. This
approach reflects the purpose-driven nature of real-
world charts, typically designed to address specific
problems or analyze trends. Using the domain and
questions as input, we leverage RAG to dynami-
cally match the most representative chart types and
suitable templates from the template database.

LLMs then transform these key questions into
realistic contextual narratives and develop corre-
sponding structured data and metadata (including
titles and descriptions). To prevent distributional
monotony and errors in large-scale data genera-
tion, we require LLMs to output data generation
code rather than direct data. LLMs are prompted
to incorporate data distribution trends, stochastic
functions, and controlled noise into their code.

During the generation of visualization code, we
use a step-by-step reasoning approach to enhance
code usability and visual quality. The process be-
gins by guiding LLMs through visualization re-
quirement analysis, which includes evaluating data
and industry background and developing a detailed
solution of visual elements. To increase visual
diversity, we randomly integrate style-enhancing
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prompts during this phase. Using the generated
visualization solution and selected template code
as few-shot demonstrations, we produce and exe-
cute visualization code to generate chart images.
If code execution fails, we feed the code and error
messages back to LLMs for iterative refinement.

3.3 Instruction Q&A Generation
We develop 18 specialized Q&A categories across
four primary dimensions based on perception
and reasoning levels: visual element recognition,
data extraction, calculation, and data analysis.
These tasks span multiple formats (Multiple-choice,
True/False, Fill-in-the-blank, and Short-answer)
and are designed to elicit in-depth thinking and
multi-step reasoning. Using visualization code,
data, and task specifications as inputs, we guide
LLMs to systematically generate questions through
carefully crafted prompts and ICL examples from
real-world scenarios or other datasets, as detailed
in Appendix A.7.

Our approach identifies two critical challenges
in LLM-synthesized data: (1) potential information
misalignment between plotting code and rendered
images in complex charts, and (2) high error rates
in numerical comparison and complex computa-
tion tasks from open-source models. To address
these, we leverage Qwen2.5-VL-72B to focus ex-
clusively on visual information during question
generation, while adopting an agent-inspired ap-
proach for computational tasks. This approach
generates executable code snippets for problem-
solving, using the execution outputs and interme-
diate steps to construct answer and comprehensive
reasoning paths.

3.4 Data Evaluation
Since we heavily depend on LLM synthesis
throughout the process, building on the basic filter-
ing of abnormal outputs and code execution fail-
ures, we implement several quality control modules
which employ multiple models collaboratively for
multi-dimensional quality assessment:
Chart Quality Verification. Our experiments re-
veal that even MLLMs with up to 72B parameters
struggle to reliably evaluate chart quality, often
missing issues like data occlusion or suboptimal
layout arrangements. Using MLLMs pre-labeling
as a starting point, we correct erroneous results to
create a chart quality classification dataset compris-
ing 700 positive and 500 negative samples. We then
train a classifier based on Qwen2-VL-2B, which

Statistic Train Test

Total Questions 132,955 / 8,845 2,271 / 600
Chart Nums 31,772 / 6,650 1,221 / 333

Category
- Visual Recognition 56,651 / 0 681 / 0
- Data Extraction 23,680 / 2,963 501 / 200
- Calculation 21,614 / 2,861 593 / 200
- Data Analysis 19,609 / 3,021 496 / 200
- Chart2Markdown 11,401 / 0 0 / 0

Tokens
- Avg Question 27.44 / 37.81 32.60 / 35.88
- Avg Reasoning 202.40 / 266.43 236.03 / 274.88
- Avg Answer 15.91 / 4.33 6.99 / 7.80

Table 2: ChartM3 dataset statistics with single-chart /
multi-chart. The tokens of questions and answers are
measured using Qwen2.5 tokenizer.

achieve a higher F1 score on the validation set com-
pared to Qwen2.5-VL-72B.
Instruction Verification. We implement a multi-
modal verification step to prevent QA data from ref-
erencing non-visualized data and to address other
accuracy issues. This process involves feeding im-
ages, QA pairs, and reasoning chains into MLLMs
to evaluate three key dimensions: chart relevance,
data accuracy, and logical consistency.
Difficulty Rating. We perform 10 random sam-
pling iterations using small MLLMs at high tem-
peratures to establish clear difficulty levels based
on chart complexity and task reasoning difficulty.
The difficulty is quantified by the number of in-
correct answers generated during these sampling
runs, and overly simple questions are filtered out.
For data intended for reinforcement learning, we
further refine the selection to retain only "challeng-
ing but learnable" examples(DeepSeek-AI, 2025),
ensuring optimal training effectiveness.
Benchmark Refinement. For the evaluation
benchmark, we implement enhanced quality re-
quirements beyond our standard pipeline. This
included adjusting question difficulty distribution,
conducting manual verification, and correcting. To
ensure the benchmark effectively assesses models’
genuine chart understanding capabilities, we use
LLM as a judge to evaluate alignment between
model predictions and answers. We also optimize
judge prompts and eliminate questions that produce
inconsistent evaluation results.

Table 2 summarizes the statistics related to the
final ChartM3 dataset. Detailed quality control
statistics and evaluation metrics are provided in
Appendix A.2.
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3.5 Chart RL with Verifiable Reward

Studies involving DeepSeek-R1 (DeepSeek-AI,
2025) and Kimi-1.5 (Team et al., 2025) have
provided empirical evidence for the effectiveness
of reinforcement learning with verifiable reward
(RLVR) in improving the reasoning abilities of
LLMs. Similarly, VLM-R1 (Shen et al., 2025) and
R1-Omni (Zhao et al., 2025) have extended this
success to visual reasoning tasks. A key factor con-
tributing to RLVR is the availability of large-scale
data with verifiable answer formats, which enables
effective reward modeling. Despite the promising
results of RLVR in various domains, its application
to chart understanding tasks remains unexplored
mainly, with a notable scarcity of suitable datasets.

ChartM3 offers an extensive collection of chart-
text Q&A pairs that naturally align with RLVR
requirements. Leveraging this dataset, we propose
a hybrid reward mechanism to adapt RLVR for
chart understanding tasks. Following the Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024) and reward modeling in DeepSeek-R1, our
approach decomposes the reward signal into two
components: accuracy reward Racc and format re-
ward Rformat, which are combined to form the
total reward R.

The format reward Rformat evaluates
whether the model’s output adheres to the
required output format: “<think>{thinking
process}</think><answer>{final answer}
</answer>”, assigning a binary score (1 for com-
pliance, 0 otherwise). The accuracy reward Racc

incorporates both rule-based and model-based
evaluation mechanisms:

• Rule-based reward: For multiple-choice and
true/false questions, we employ strict match-
ing between the model predict and ground
truth, yielding a binary reward (1 for exact
match, 0 otherwise).

• Model-based reward: For fill-in-the-blank
and short-answer questions, we use Qwen3-
32B as a judge to evaluate response accuracy.
The judge inputs the question, model’s answer,
and ground truth, producing a binary evalua-
tion (1 for correct, 0 for incorrect).

Notably, CoT reasoning paths are not involved in
the training process, with the model being opti-
mized using only questions and final answers.

4 Experiments

4.1 Experimental Setup

Baselines. We evaluated three categories of
MLLMs: (1) proprietary models, including GPT-
4o (Jaech et al., 2024), Claude3.5-Sonnet (An-
thropic, 2024), tested via official APIs. (2) Latest
open-source models, including Qwen2-VL (Wang
et al., 2024a), Qwen2.5-VL (Bai et al., 2025), In-
ternVL2.5 (Chen et al., 2024b),InternVL3 (Zhu
et al., 2025), LLaVA-OneVision (Li et al., 2024a),
and MiniCPM (Yao et al., 2024). (3) Open-source
models specifically optimized for OCR and chart
understanding, including mPlug-DocOwl2 (Hu
et al., 2024), ChartGemma (Masry et al., 2024c),
TinyChart (Zhang et al., 2024), and others. All
models were evaluated using direct output (zero-
shot inference) with consistent default hyperparam-
eters and prompts.

Benchmarks. Beyond ChartM3 test set, we in-
cluded established benchmarks for comparison:
ChartQA (Masry et al., 2022), CharXiv (Wang
et al., 2024b), ReachQA (He et al., 2024), SEED-
Bench-2-Plus (Li et al., 2024b), MMStar (Chen
et al., 2024a), MathVista (Lu et al., 2024), and
WeMath (Qiao et al., 2024). We adapted all bench-
marks on VLMEvalKit (Duan et al., 2024) and im-
plemented accuracy evaluation using Qwen-Max
(Team, 2024) as the judge model, following their
respective prompt designs.

Training Evaluations. To validate the effective-
ness of ChartM3, we first used Qwen2.5-VL as our
base model and performed supervised fine-tuning
(SFT) using our synthesized dataset of 142K train-
ing samples. We kept the vision encoder frozen
while updating other modules, using a learning rate
of 1e-5 and batch size of 64 for 2 epochs.

For RLVR experiment, the model was optimized
with a learning rate of 1e-6 and KL divergence co-
efficient of 0.04. We sampled 7 rollouts for each
prompt, and a global batch contained 7 different
prompts. Considering both computational resource
limitations and the importance of difficulty distri-
bution in reinforcement learning training, we con-
structed our training set by sampling 30K items
from the complete dataset according to their dif-
ficulty scores. More training and data selection
details refer to the Appendix A.3.

We utilized 8 NVIDIA A100 80G GPUs for all
training process.
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Models
ChartM3 test ChartM3-Multi test ChartQA* ReachQA CharXiv

Overall VR-A VR-B Ext. Calc. Ana. Overall Ext. Calc. Ana. Overall Overall Overall

Proprietary Multimodal Large Language Models

Claude 3.5 Sonnet 66.18 81.15 68.98 58.88 63.41 68.35 66.67 66.5 65.0 68.5 90.80 63.00 79.48
GPT-4o 58.30 78.53 63.67 48.90 53.12 60.89 53.33 50.0 46.5 63.5 86.70 53.25 76.98
GPT-4o mini 48.35 82.20 54.08 39.52 39.97 48.59 42.50 38.0 39.0 50.5 77.52 40.35 66.76

Open-Source Multimodal Large Language Models

Qwen2.5-VL-72B 64.73 84.29 66.73 59.48 60.37 65.73 61.00 59.0 59.0 65.0 88.60 61.55 82.24
InternVL3-78B 55.57 77.49 62.24 51.30 46.88 55.24 45.50 44.0 40.5 52.0 89.60 47.25 80.00
Qwen2-VL-72B 54.07 80.63 59.59 47.50 47.72 52.62 47.67 46.5 41.5 55.0 88.04 53.20 78.22
Qwen2.5-VL-7B 57.42 79.06 59.18 50.10 52.78 60.28 52.00 48.5 46 61.5 87.60 57.65 67.50
InternVL3-8B 51.08 75.92 58.78 43.51 45.70 47.98 42.17 41.5 38.5 46.5 86.60 49.45 69.72
InternVL2.5-8B 42.10 66.49 51.02 36.93 29.01 44.76 36.50 29.0 29.5 51.0 77.60 35.20 63.20
MiniCPM-V-2.6 40.64 68.59 46.94 32.14 30.02 44.96 34.67 32.0 26.5 45.5 79.20 34.65 51.86

OCR/Chart-Augmented Open-Source Models

mPlug-DocOwl2 23.25 32.98 15.71 20.76 13.83 40.73 23.17 16.0 13.0 40.5 66.64 10.90 26.74
ChartGemma 22.99 45.55 15.71 22.75 14.5 31.85 - - - - 71.28 18.50 18.84
TinyChart 23.38 37.17 17.55 23.15 17.88 30.65 22.67 20.5 13.0 34.5 76.64 17.85 14.00

SFT Experiments on ChartM3 with single and multi chart data

Qwen2.5-VL-3B 45.00 65.45 45.31 44.51 36.59 47.38 34.83 32.0 25.0 47.5 83.92 45.75 54.34
+ CoT-SFT 62.88 80.63 67.35 56.69 55.48 66.73 51.67 51.5 45.5 58.0 84.12 53.35 55.92

LLaVA-OV-7B 37.12 63.35 42.86 29.34 24.96 43.75 29.00 27.0 17.5 42.5 80.44 28.40 46.24
+ CoT-SFT 64.95 83.25 68.98 63.47 57.50 64.31 54.33 53.5 50.0 59.5 82.32 43.40 51.04

Table 3: Evaluation results on ChartM3 test set and other benchmarks. Bold values indicate the best performance
within each category. Question categories names are abbreviated due to space limits. VR: Visual Recognition, Ext.:
Data Extraction, Calc.: Calculation, Ana.: Data Analysis. "*" indicates that we use LLM as a judge to reevaluate
ChartQA, which yielded slightly different results from those reported in the official technical report. Detailed
explanations for LLM-based evaluation provided in the Appendix A.4.

4.2 Experimental Results

Our benchmark effectively measures chart com-
prehension and reasoning abilities. Both closed
and open-source model evaluations show trends
similar to ChartQA and ReachQA. Closed-source
models demonstrate more balanced performance
across all capability dimensions, while newer or
larger open-source models exhibit stronger abil-
ities across all test sets. Notably, ChartM3-test
significantly differentiates performance between
various models. For instance, while models score
above 86% on ChartQA with minimal differences,
ChartM3-test reveals gaps exceeding 15% between
models like Claude 3.5 Sonnet (66.18%) and
InternVL3-8B (51.08%).

Existing advanced models excel at visual recog-
nition but struggle with complex reasoning tasks.
Open-source models score significantly lower on
complex reasoning tasks involving data extrac-
tion and computation compared to visual element
recognition tasks, particularly evident in smaller-

scale models. Additionally, we observed that
some OCR/Chart-enhanced models perform well
on ChartQA but struggle with ChartM3-test and
reasoning-intensive benchmarks. This disparity in-
dicates their weakened instruction alignment and
reasoning capabilities and suggests possible over-
fitting to traditional benchmarks.
High-quality CoT data substantially improves
chart reasoning performance. As shown in Ta-
ble 3, CoT-SFT approach demonstrates substantial
improvements, achieving at least 12% performance
gains over the base model on our benchmarks. The
CoT-SFT model exhibits consistent improvements
across both perception-oriented and comprehensive
benchmarks in out-of-domain evaluations. Remark-
ably, on ReachQA, which demands complex rea-
soning capabilities, our CoT-SFT model achieves
significant improvements of 7.60% and 15.0% over
Qwen2.5-VL-3B and LLaVA-OV-7B, respectively.
These substantial gains validate the quality of our
dataset and its effectiveness in enhancing visual
reasoning for universal chart understanding.
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Models
ChartM3 ChartM3-Multi ChartQA* ReachQA CharXiv SEEDBench2_Plus

Overall Overall Overall Human Aug. Overall Reco. Reas. Overall Desc. Reas. Overall Chart Map Web

Qwen2.5-VL-3B 45.00 34.83 83.92 76.48 91.36 45.75 60.3 31.2 54.34 59.62 33.2 67.72 64.19 59.23 82.42
+ CoT Prompt 43.68 34.83 74.80 64.16 85.44 32.60 35.7 29.5 53.74 59.52 30.6 67.06 66.29 56.00 81.51
+ SFT with 30K data 58.17 47.17 82.20 75.84 88.56 50.10 60.8 39.4 54.44 60.6 29.8 66.13 64.81 55.14 81.21
+ RL with 30K data 52.40 40.33 85.28 78.88 91.68 49.10 58.8 39.4 59.30 65.4 34.9 68.99 66.29 60.47 82.72

Table 4: Reinforcement Learning results on five benchmarks. Details for these benchmarks are presented in § 4.1.
Bold values indicate the best performance within each category.

Reinforcement Learning on ChartM3 signif-
icantly improves both in-domain and out-of-
domain performance. As shown in Table 4, the
model trained by GRPO obtains considerable im-
provement on various benchmarks. Compared to
the base model, our RL approach yields notable
gains in in-domain evaluations, achieving abso-
lute improvements of 7.4% and 5.5% on ChartM3

and ChartM3-Multi benchmarks, respectively. In
particular, the RL model demonstrates substantial
improvements on out-of-domain benchmarks, par-
ticularly achieving a 4.96% gain on CharXiv, sug-
gesting better generalization capability than super-
vised fine-tuning. Further analysis on general and
reasoning-specific benchmarks as shown in Table 5
reveals that RL training preserves general capa-
bilities (MMStar from 55.30% to 56.00%) while
SFT shows potential decline. Notably, the RL
model exhibits stronger performance on reasoning-
intensive tasks, achieving a 5.14% improvement on
WeMath, suggesting effective transfer of learned
reasoning patterns to broader analytical scenarios.
This comprehensive improvement across diverse
domains demonstrates the effectiveness of our syn-
thetic datasets and training approach.

SFT and RL exhibit complementary strengths
in chart understanding. Our analysis reveals dis-
tinct advantages of SFT and RL approaches in
different aspects of chart comprehension. SFT,
driven by high-quality supervised signals, excels in
perception-centric tasks by introducing new knowl-
edge and extending vision-language alignment. In
contrast, RL demonstrates superior capabilities in
reasoning-intensive tasks by optimizing the prob-
ability of critical reasoning patterns, despite not
introducing new knowledge. This complemen-
tary pattern is evidenced by their respective perfor-
mance: while RL achieves moderate improvements
in basic perception tasks, it shows substantial gains
in complex reasoning scenarios by effectively dis-
covering and strengthening crucial reasoning pat-
terns.

Model MMStar MathVista WeMath

Qwen2.5-VL-3B 55.30 60.90 50.60
+ SFT with 30K data 53.70 55.30 51.20
+ RL with 30K data 56.00 61.60 55.74

Table 5: Performance comparison on general and math
benchmarks.

Models ChartM3 ChartQA* ReachQA ChartXiv

Qwen2.5-VL-3B 45.00 83.92 45.75 54.34
+ ChartM3 62.88 84.12 53.35 55.92
+ TinyChart 42.18 81.60 42.60 51.40
+ ChartGemma 44.96 83.84 43.75 54.08

Table 6: Performance comparison of Qwen2.5VL-3B
fine-tuned on different datasets.

These results validate that our synthetic chain-of-
thoughts data successfully introduces diverse and
essential patterns for complex chart understand-
ing, effectively addressing scenarios where the base
model lacks domain-specific knowledge.

4.3 Further Study

In this subsection, we perform ablation studies to
investigate the impact of different dataset compo-
sitions and training data sizes on the fine-tuning
process.
ChartM3’s Effectiveness over Existing Chart
Datasets. To isolate the impact of dataset quality
from model capability, we conducted controlled
experiments using the same Qwen2.5-VL-3B base-
line across ChartM3 and existing datasets (Chart-
Gemma and TinyChart), maintaining equal training
samples and parameters. The results shown in Ta-
ble 6 demonstrate that while ChartGemma showed
minimal improvements and TinyChart even led to
performance degradation, ChartM3 achieved sub-
stantial gains across various benchmarks. This per-
formance disparity underscores the significant chal-
lenge of enhancing chart comprehension capabil-
ities on state-of-the-art models like Qwen2.5-VL,
and validates that ChartM3’s unique value stems
from its comprehensive improvements in chart di-
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Figure 3: Performance comparison between models
trained by SFT with and without CoT Q&A across dif-
ferent evaluation metrics.

versity, visual complexity, and high-quality Chain-
of-Thought annotations, rather than from leverag-
ing a more powerful base model.
The Impact of CoT Data on Chart Reasoning
Capabilities. Figure 3 illustrates an ablation
study on dataset composition by comparing mod-
els trained with and without CoT data. While
both models achieve comparable performance on
perception-based tasks, the CoT model signifi-
cantly outperforms its counterpart on computation-
intensive and statistic-related tasks, showing an 8%
performance improvement with the same amount
of training data. These results demonstrate that
high-quality CoT data serves as a key enabler for
complex chart reasoning capabilities.
The Impact of Training Data Scale on RL Per-
formance. We conduct experiments with two dif-
ferent dataset sizes: 5,000 and 30,000 samples. As
shown in Figure 4, the model trained with 30,000
samples consistently outperforms its counterpart
trained with 5,000 samples across most datasets.
While reinforcement learning is generally consid-
ered data-efficient, scaling up training data leads
to substantial improvements. This is particularly
crucial for fill-in-the-blank and short-answer ques-
tions, where beneficial reasoning patterns are more
sparse and require larger datasets to be effectively
captured during training. Notably, with limited
training data (5K samples), the model’s perfor-
mance on ReachQA degrades due to the high vari-
ance nature of RL training, but this instability is
effectively addressed when scaling up to 30K sam-
ples, yielding a 6.95% improvement.

5 Conclusion

This work examines current MLLMs’ challenges in
real-world chart comprehension and evaluates the

ChartM3 ChartM3_Multi ChartQA ReachQA ChartXiv SEEDBench2_Plus
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Figure 4: Performance of models trained by GRPO with
different numbers of samples across multiple datasets.

limitations of existing dataset construction methods.
We propose a multi-stage, code-driven pipeline
for synthesizing visual reasoning Q&A data. Our
method starts by generating a key question, retriev-
ing appropriate chart templates, using LLMs to
generate code that simulates real data distribution,
plotting charts and solving problems, and imple-
menting data filtering through various-sized models
to obtain diverse charts and high-quality CoT data.
We have developed ChartM3, a multi-dimensional
and multi-step dataset, and conduct CoT supervised
fine-tuning and reinforcement learning. The results
show significant performance improvements across
multiple benchmarks. Our framework bridges the
gap between academic research in chart understand-
ing and practical applications, advancing the devel-
opment of reasoning MLLMs.

Limitations

Although our work achieves promising results in
chart-related reasoning tasks, several limitations
exist. (1) The chart rendering code is primarily
Python-based, with limited support for other visual-
ization languages, suggesting a need to incorporate
additional languages to diversify chart generation
capabilities. (2) This work concentrates mainly on
statistical charts. Future research should consider
extending this approach to flowcharts (such as pro-
cess diagrams and relationship diagrams) and other
visual formats. (3) The reinforcement learning ex-
periments are not conducted at a larger scale. In the
future, we will explore expanding the data scale,
model size, and investigating chart reasoning data
distillation based on reinforcement learning.

Ethical Consideration

We strictly declare that all authors are aware of and
adhere to the ACL Code of Ethics throughout this
research. We strictly adhere to the licenses of all
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open source datasets and models used. During the
benchmark refinement phase of Data Evaluation,
quality validation was conducted through human
annotations. Annotators received task-specific ma-
terials and explicit consent was obtained for using
their annotations exclusively for academic research
purposes. It is imperative to ensure the privacy of
all annotators throughout the annotation process.
Furthermore, all annotators were adequately com-
pensated according to local standards.

For this work, we used open-source and closed-
source models obtained from official sources and
accessible to the public to avoid potential harm
to individuals or groups. We did not use any per-
sonally identifiable information, and all data were
anonymized before analysis. The prompts and
benchmarks underwent a meticulous human se-
lection and processing phase to ensure no names
or unique identifiers of individual people or of-
fensive content were included. Additionally, we
used Grammarly to refine the language in our
manuscript.
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A Appendix

A.1 Data Categories

In our generation pipeline, we predefine chart types,
Q&A task categories, and visualization domains.
Table 11 presents 9 major, 62 minor chart types.
Table 12 outlines 18 specialized Q&A categories
across 4 primary dimensions, along with the Chart
To Markdown task. Due to varying difficulty levels,
we have divided Visual Recognition into two parts:
A and B. The distribution of questions across these
subcategories is illustrated in Figure 5. Addition-
ally, Table 13 enumerates 60 domains commonly
used in data visualization.
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Figure 5: The distribution of ChartM3 Q&A categories.

Dataset Initial Reserved Rate(%)

ChartM3

Chart Quality 38,452 34,064 88.59
Q&A Quality 171,531 140,312 81.80

ChartM3-Multi
Chart Quality 4,336×2 3,777×2 87.11
Q&A Quality 11,331 9,821 86.68

Table 7: Statistics of quality control filtering process.
Note that each data point in ChartM3-Multi contains
two charts.

A.2 Dataset Quality Assessment

We conducted comprehensive quality control pro-
cesses for both chart images and Q&A pairs. Ta-
ble 7 presents the filtering statistics across different
components of our dataset.

For chart quality verification, we developed a
classifier using Qwen2-VL-2B trained on manually
curated examples. Table 8 shows the classifier’s
performance on a validation set of 107 instances.

To assess instruction accuracy, we evaluated ap-
proximately 5,800 samples using Claude 3.5, fol-
lowed by dual-verification (combining Claude 3.5
and human expertise) for cases with incorrect re-
sponses. This process identified 508 instances re-
quiring modification or removal, resulting in an
instruction accuracy of 91.24%.

A.3 GRPO Training Setting

Data Sampling for GRPO. DAPO (Yu et al., 2025)
indicates that samples with zero advantage variance
lead to performance degradation, thus should be
filtered out during training. Based on this finding,
we carefully curate the GRPO training dataset by
filtering out both overly difficult and simple sam-
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Category Precision(%) Recall(%) F1-score(%)

Low Quality 93.33 87.50 90.32
High Quality 90.32 94.92 92.56

Table 8: Performance metrics of the chart quality classi-
fier.

Question Type Count

True/False 6,958
Multiple-choice 6,734
Short-answer 2,657
Fill-in-the-blank 13,651

Table 9: Distribution of different question types in
GRPO training dataset.

ples. Specifically, we perform uniform sampling
from items with difficulty scores ranging from 3
to 9 (difficulty score definition in Section 3.4) to
ensure a balanced distribution of task complexity.
Additionally, we maintain an approximately 1:1
ratio between questions with rule-based rewards
(True/False and Multiple-choice) and model-based
rewards (Short-answer and Fill-in-the-blank), as
shown in Table 9.
KL Divergence Approximation. In original
GRPO, KL divergence approximation can be for-
mulated as Eq. 1:

DKL[πθ∥πref ] = r − log r − 1,

where r =
πref (a|s)
πθ(a|s)

(1)

where a denotes the current token and s represents
previous sequence before a, πref is the reference
model initialized from base model, and πθ is the
policy model being optimized.

In this paper, all GRPO experiments apply an-
other approximation, called k2 (Schulman, 2020),
and can be formulated as Eq. 2:

Dk2[πθ∥πref ] =
1

2
(log r)2 (2)

where r is defined the same as in Eq. 1.

A.4 Explanation for LLM-based Evaluation

This work utilizes LLM-based evaluation for all
chart benchmarks, including ChartQA. The tradi-
tional evaluation method for ChartQA, which relies
on string exact matching and numerical calcula-
tions within a relative error range, exhibits several
limitations:

1. Unit Discrepancies: Mismatches occur when
predicted results include units while reference
answers do not (for example, "5" versus "5
meters" or "5" versus "5 million").

2. Numerical Range Issues: When labels on the
x-axis are numbers (particularly years), the tra-
ditional evaluation method’s 5% error range
is too permissive. For instance, if the cor-
rect answer is 2000, predictions ranging from
1900 to 2100 would be incorrectly marked as
correct.

These limitations make it difficult to accurately
assess the performance of MLLMs that have not
been specifically trained on similar data distribu-
tions. To address these issues, our experiment em-
ploys LLMs as judges, resulting in more accurate
evaluations. The detailed judge prompt is shown in
Figure 14.

Meanwhile, to ensure more comprehensive eval-
uation and alignment with previous works, we ex-
panded our evaluation framework to include the
original Relaxed Accuracy metric as used in pre-
vious works, an enhanced version of Relaxed Ac-
curacy (which automatically removes units for nu-
merical answers and standardizes number format-
ting, such as converting "116,000" to "116000")
for ChartQA, and GPT-4o (gpt-4o-2024-11-20) as
a judge for CharXiv. Performance comparison
among different evaluation metrics is shown in Ta-
ble 10.

A.5 Examples of Chart Template Database
We sample several charts from ChartM3 chart tem-
plate database. The visualization is presented in
Figure 6.

A.6 Examples of Evaluation Comparisons
We provide comparative examples of multiple mod-
els’ evaluation results on ChartM3 to demonstrate
that after Chain-of-Thought Self-Fine-Tuning
(CoT-SFT) with high-quality data, the base model
significantly improves reasoning capabilities in
complex chart comprehension. The examples of
the evaluation results are presented in Figure 7 and
Figure 8.

A.7 Prompt Templates
We present the prompt templates used in this paper.

Prompt for Data Generation. We utilize LLMs
to transform the key questions into realistic con-
textual narratives and output data generation code
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Models ChartQA CharXiv
Oral

Relaxed Acc.
Advanced

Relaxed Acc. QwenMax GPT-4 QwenMax

Qwen2.5-VL-3B 83.16 83.64 83.92 53.14 54.34
+ CoT-SFT with 142K data 78.16 84.56 84.12 54.02 55.92
LLaVA-OV-7B 80.72 81.08 80.44 45.10 46.24
+ CoT-SFT with 142K data 72.04 82.00 82.32 49.18 51.04

Qwen2.5-VL-3B 83.16 83.64 83.92 53.14 54.34
+ CoT-SFT with 30K data 79.64 82.76 82.20 52.74 54.44
+ RL with 30K data 79.52 85.32 85.28 57.82 59.30

Table 10: Performance comparison across different models and training approaches on ChartQA and CharXiv
datasets using various evaluation metrics. Acc.: Accuracy.

rather than direct data. The prompt is shown in
Figure 9.

Prompt for Visualization Generation. We em-
ploy a step-by-step reasoning approach to improve
code usability and visual presentation. The pro-
cess begins by guiding LLMs through visualization
requirement analysis and developing a detailed so-
lution of visual elements. Using the solutions as
few-shot prompt, we generate and execute visual-
ization code to create chart images. The prompts
are shown in Figure 10 and Figure 11.

Prompt for Q&A Generation. We employ a
two-stage Code-driven approach for Q&A pair con-
struction. The first stage involves question formula-
tion and analytical code synthesis for each question
and its source data. The second stage generates
CoT reasoning and precise answers through code
execution results and the computational process.
The prompts are shown in Figure 12 and Figure 13.

Prompt for Evaluating Models. In the evalua-
tion of ChartM3, we use Qwen-Max as the judge
model, the judge prompt is optimized based on
Reachqa and CharXiv methods, which is shown in
Figure 14.
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Major Category Minor Category
Bar Single Bar Chart, Grouped Bar Chart, Stacked Bar Chart, Positive-Negative Bar Chart,

Lollipop Plot, Bidirectional Bar Chart, Butterfly Diagram, Range Bar Chart,
Waterfall Plot, Candlestick Plot, Single Histograms, Rectangular Funnel Chart, Box Plot,
Error Bars Chart, Bullet Chart, Barbell Chart, Nested Bar Chart, Dumbbell Plot

Line Single Line Chart, Grouped Line Chart, Stacked Line Chart, Slope Graph, Step Chart

Area Single Area Chart, Stacked Area Chart, Bilateral Area Chart, Range Area Chart, Streamgraph,
Error Bands Chart, Density Plot

Pie Single Pie Chart, Multidimensional Pie Chart, Donut Pie Chart, Multilevel Donut Chart,
Sunburst Chart

Radar Single Radar Chart, Grouped Radar Chart, Stacked Radar Chart, Single Rose Chart,
Grouped Rose Chart, Stacked Rose Chart

Scatter Scatter Plot, Bubble Plot, Quadrant Plot, Strip Plot, Swarm Plot, Violin Plot

Heatmap Heatmap Plot, Calendar Heatmap, Waffle Chart

Progress Gauge graph, Semi-circular Progress Chart, Bar Progress Chart, Circular Progress Chart

Combination Line-Column Combination Chart, Line-Area Combination Chart, Dual Y-Axis Line Chart,
Dual Y-Axis Bar Chart, Multiple Subplot Bar Chart, Multiple Subplot Area Chart,
Multiple Subplot Line Chart, Multiple Subplot Pie Chart

Table 11: Major and Minor Charts Types.

Major Category Minor Category
Visual Recognition A Type Classification, Title Identification, Axis Label Recognition, Legend Identification
Visual Recognition B Color Identification, Axis Scale Recognition, Chart Element Counting, Chart Element Position
Data Extraction Data Query, Extreme Value Query, Conditional Query
Calculation Calculation, Comparison, Sorting
Data Analysis Correlation Analysis, Anomaly Detection, Inferential Judgment, Trend Analysis
Chart2Markdown Chart To Markdown

Table 12: Major and Minor Categories of Charts.

Education Art Finance Healthcare Information Technology
Environmental Science Social Science Economics Political Science History
Psychology Management Marketing Law Engineering
Physics Chemistry Biology Geography Astronomy
Geology Meteorology Oceanography Agriculture Forestry
Animal Husbandry Fishery Food Science Energy Materials Science
Mechanical Engineering Electrical Engineering Civil Engineering Aerospace Transportation
Architecture Urban Planning Interior Design Industrial Design Fashion Design
Graphic Design Advertising Journalism Public Relations Sports Science
Entertainment Tourism Retail Manufacturing Logistics
Human Resources Corporate Strategy Risk Management Audit & Accounting Tax
Non-profit Management International Relations Foreign Policy Hospitality Supply Chain

Table 13: Chart Domains.
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Figure 6: Examples of ChartM3 Template Database.
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Question:
Arrange the bridge types in ascending 
order based on their median accident 
rates.

GPT-4o: 
The bridge types arranged in ascending order 
based on their median accident rates are:
1. Suspension
2. Cable-Stayed
3. Arch
4. Beam
5. Truss

Claude 3.5 Sonnet:
To arrange the bridge types in ascending order 
based on their median accident rates, I‘ll look at 
the middle line (median) of each box plot, from 
lowest to highest:
1. Suspension
2. Beam
3. Cable-Stayed
4. Arch
5. Truss
So the order from lowest median accident rate 
to highest is: Suspension, Beam, Cable-Stayed, 
Arch, Truss.

Qwen2.5-VL-3B (Base): 
Suspension, Cable-Stayed, Beam, Truss, Arch

Qwen2.5-VL-3B + CoT-SFT: 
```thinking
### Step 1: Identify the Median Accident Rates for Each Bridge 
Type
From the box plot, we can visually estimate the median 
accident rates for each bridge type:
- Suspension: The median is approximately 2.45.
- Beam: The median is approximately 3.08.
- Arch: The median is approximately 3.55.
- Cable-Stayed: The median is approximately 3.32.
- Truss: The median is approximately 3.82.
### Step 2: Compare the Median Accident Rates
We compare the estimated median accident rates to determine 
the order:
- Suspension (2.45) < Beam (3.08) < Cable-Stayed (3.32) < Arch 
(3.55) < Truss (3.82)
### Step 3: Arrange the Bridge Types in Ascending Order
Based on the comparison, the bridge types in ascending order 
of median accident rates are:
Suspension, Beam, Cable-Stayed, Arch, Truss
Thus, the final answer is:
```
Suspension, Beam, Cable-Stayed, Arch, Truss

Suspension, Beam, Cable-Stayed, Arch, Truss

Figure 7: A Case Study of ChartM3 Evaluation Results. While both GPT-4o and the base model provided incorrect
answers, the model trained with CoT-SFT successfully analyze the medians across categories during its reasoning
process and produce the correct ranking.
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Question: From 2000 to 2020, the contribution of Renewable energy to the total energy consumption 
increase is _____%. (Round to the nearest whole number)

GPT-4o: 
To calculate the percentage increase in the contribution of renewable 
energy to the total energy consumption from 2000 to 2020, we need to 
determine the renewable energy consumption values for these years 
from the second graph.
In 2000, the renewable energy consumption is approximately 500 kWh.
In 2020, the renewable energy consumption is approximately 1000 
kWh.
The increase in renewable energy consumption from 2000 to 2020 is:
1000 kWh - 500 kWh = 500 kWh
To find the percentage increase, we use the formula:
\[\text{Percentage Increase} = \left( \frac{\text{Increase}}{\text{Initial 
Value}} \right) \times 100\]
Substituting the values:
\[\text{Percentage Increase} = \left( \frac{500}{500} \right) \times 100 
= 100\%\]
Therefore, the contribution of renewable energy to the total energy 
consumption increased by 100% from 2000 to 2020.

Claude 3.5 Sonnet:
To calculate the contribution of Renewable energy to the total 
energy consumption increase from 2000 to 2020, we need to:
1. Calculate the total increase in energy consumption
2. Calculate the increase in Renewable energy consumption
3. Divide the Renewable increase by the total increase and convert 
to a percentage
From the first graph:
Total energy consumption in 2000: 10,000 kWh
Total energy consumption in 2020: 12,300 kWh
Total increase: 12,300 - 10,000 = 2,300 kWh
From the second graph:
Renewable energy in 2000: about 500 units
Renewable energy in 2020: about 1500 units
Renewable increase: 1500 - 500 = 1000 units
Contribution of Renewable energy:
(1000 / 2300) * 100 = 43.48%
Rounding to the nearest whole number: 43%
Therefore, the contribution of Renewable energy to the total 
energy consumption increase from 2000 to 2020 is 43%.

Qwen2.5-VL-3B (Base): 
To determine the contribution of Renewable energy to the total energy 
consumption increase from 2000 to 2020, we need to follow these steps:
1. **Calculate the total energy consumption in 2000 and 2020:**

- Total energy consumption in 2000: 10,000 kWh
- Total energy consumption in 2020: 12,300 kWh

2. **Calculate the increase in total energy consumption:** …
3. **Determine the contribution of Renewable energy to the total 
energy consumption increase:**

- Total energy consumption in 2000: 10,000 kWh
- Total energy consumption in 2020: 12,300 kWh
- Increase in total energy consumption: 2,300 kWh

4. **Assume the contribution of Renewable energy to the total energy 
consumption increase:**
\[R = \frac{\text{Increase in total energy consumption}}{\text{Total 
energy consumption in 2000}} \times 100\]

\[R = \frac{2,300 \text{ kWh}}{10,000 \text{ kWh}} \times 100 = 23\%\]
Therefore, the contribution of Renewable energy to the total energy 
consumption increase from 2000 to 2020 is **23%**.

Qwen2.5-VL-3B + CoT-SFT: 
```thinking
Step 1: From Chart 1, get the total energy consumption in 2000 and 
2020:
- 2000: 10,000 kWh
- 2020: 12,300 kWh
Step 2: From Chart 2, get the Renewable energy consumption in 2000 
and 2020:
- 2000: 500 kWh
- 2020: 1450 kWh
Step 3: Calculate the increase in total energy consumption:
- Increase = 12,300 - 10,000 = 2,300 kWh
Step 4: Calculate the increase in Renewable energy consumption:
- Increase = 1450 - 500 = 950 kWh
Step 5: Calculate the contribution of Renewable energy to the total 
energy consumption increase:
- Contribution = (950 / 2,300) * 100 = 41.30%
Step 6: Round to the nearest whole number:
- Contribution = 41%
```
41

41

(Within 5% error range)

Figure 8: A Case Study of ChartM3 Evaluation Results for Multi-Chart Scenarios. Although individual chart
elements are straightforward, GPT demonstrates limitations in cross-graph analysis. Specifically, when examining
renewable energy growth from 2000 to 2020, GPT fails to properly reference the first graph. The base model
incorrectly substitutes total energy consumption data for renewable energy consumption. In comparison, the model
trained with CoT-SFT correctly identifies that renewable energy levels in 2020 are below 1500 units, producing a
prediction that more closely aligns with the standard answer compared to Claude 3.5 Sonnet.
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LLM Prompt

You are a senior business analyst and data visualization expert. Please generate high-quality data for chart creation based
on the following detailed requirements. The generated data should solve a key question through chart visualization. You
need to first conceive a realistic background story based on the specified chart type, business domain, theme, and other
conditions, then provide the data generation code.

## Basic Information Requirements
1. Key Question: {key_question}
2. Domain: {domain}

## Chart Type Information
Here is the specific information of chart type: {description}

## Data Content Requirements
1. Data Description:
- Data background overview (time range, data source, etc.)
- Data distribution and overall trend analysis
- Key feature points explanation (maximum, minimum, turning points, etc.)
- Comparative analysis between data
2. Chart Title
- Title should be concise and summarize core information
- Include key dimensional information (time, location, object, etc.)
- For stacked charts, specify chart type in the title
3. Original Data Generation Code
- Python code, import necessary libraries like import pandas as pd and import numpy as np
- Can use random numbers and mathematical distribution functions to generate data
- Save all data as data.csv file, first row must be column names
- Ensure generated values retain maximum three significant digits
- Ensure code is executable correctly

## Data Generation Rules
1. Data Structure Requirements:
- Ensure data structure fully complies with technical requirements of specified chart type
- Data scale should be reasonably set while maintaining chart clarity and readability
- All data items must contain complete label information
2. Data Quality Requirements:
- Choose appropriate data distribution and trends based on actual business domain characteristics
- Unless specifically required in key question, legends should not exceed 5
- Value ranges must be reasonable and business meaningful
- If including time series, ensure consistency of time intervals
- Can include 1-2 meaningful outliers, but proportion should not exceed 10% of total data
3. Business Background Requirements:
- Provide detailed data collection background (time range, geographic range, statistical criteria, etc.)
- Fictional details need to maintain internal consistency
- All value changes should be explainable by business logic

## Common Data Distribution References
Normal distribution, Poisson distribution, Uniform distribution, Exponential distribution, Skewed distribution, Multi-
modal distribution, Long-tail distribution, Bimodal distribution, Other distributions,

## Common Data Trend References
Linear trends(continuous rise, continuous fall, stable), Cyclical trends, Compound trends, Mutation patterns, Fluctuation
patterns, S-curve, Other trends,

## Data Generation Code Example
{example_data}

## Output Format
Output all content in English.
First provide the thinking process, output in a code block with "thinking" header. Then output the result in JSON format
without any other content, including the following fields:
{ "description": "Data description", "title": "Chart title", "data_code": "Original data generation code" }

Figure 9: Prompt template for data generation.
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LLM Prompt

You are a data visualization expert responsible for analyzing visualization requirements and providing detailed chart
design recommendations. Please analyze according to the following steps based on user requirements and uploaded data.

Phase 1: Requirements Analysis, consider the following questions:
1. Data Analysis
- What are the key characteristics of the provided data?
- Which relationships or patterns need to be highlighted?
2. Background Understanding
- What is the industry background and target audience?
- What insights need to be conveyed?
- What are common visualization methods in this field?
3. Visualization Strategy, based on data characteristics and business context:
- Which chart types are most effective?
- What alternatives were considered and why were they rejected?
- If needed, how should multiple elements be composed?

Phase 2: Visualization Design, develop visualization solutions based on above results.
1. Detailed Design Specifications for implementation in Python visualization libraries like Matplotlib or plotly. Pay
attention to chart aesthetics:
- Chart type and layout [User selected chart type: {target_chart_type}, do not consider other types]
- Color scheme and style
- Axis configuration and scale
- Labels, titles and annotations [Note: All text content (titles, legends, axis labels etc.) should be in English]
- Legend position and format
- Gridlines and other reference elements
- Size and aspect ratio
- Other visual elements
Note: All above content must be designed only when relevant data columns exist. Do not generate plotting requirements
without data conditions!

Below are the user data characteristics and requirements:

## User Data Start
Title: {file_name}
Goal: {seed_description}
data.head(): {data_head}
data.describe(): {data_describe}
data.describe(include=’object’): {data_describe_object}
## User Data End

Now, please begin analysis and output a JSON string in a “‘json code block containing these two fields (both plain text,
add line breaks between points):
- ’analysis’: Provide thought process for requirements analysis phase
- ’guidance’: Provide visualization design phase solutions (note: no actual visualization code needed) Do not output
anything besides JSON. Keep results concise and refined without excessive verbiage.

Figure 10: Prompt template for the first stage in visualization generation.
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LLM Prompt

You are a data visualization expert with a Python visualization code generation task. You need to first read the example
code, then implement visualization code for user data based on their requirements.

## Example Start
Target Chart Type: {target_chart_type} {visual_definition}
Sample Data Format: {sample_data_head}
Sample Plot Code: {sample_code}
## Example End

Below are the user data characteristics and requirements:
## User Data Start
Title: {file_name}
Goal: {seed_description}
data.head(): {data_head}
data.describe(): {data_describe}
data.describe(include=’object’): {data_describe_object}
## User Data End

Actual Visualization Requirements: {vis_guidance}
All text content in charts (titles, legends, axis labels etc.) should be in English.
Now, please reference the example and generate visualization code meeting the requirements based on actual user data
situation and needs.

Specific requirements:
1. User data is loaded into memory in ’data’ variable as pandas.DataFrame. Do not output any data reading/declaration
code.
2. Based on example code, try to meet actual visualization requirements but avoid complex code modifications to prevent
errors. For long text, avoid overlapping text in x-axis, legend etc.
3. Generate two Python functions: ’def preprocess(data):’ for plot data preprocessing, input is raw dataframe, output is
preprocessed dataframe; ’def plot(data):’ for drawing corresponding charts. Only generate one final chart (can have
multiple subplots).
4. preprocess function needs to be called in plot function. Only generate function bodies, no need for plot function
calling code.
5. Complete all plot data preprocessing in preprocess function (including decimal places), no data processing in plot
function!
6. Save result to file named ’plot.png’.
7. Most importantly, ensure code can execute correctly, so keep plotting function parameters consistent with example as
much as possible. Generate all code in one “‘python code block.

Figure 11: Prompt template for the second stage in visualization generation.
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LLM Prompt

You are a senior business analyst with extensive experience in data analysis and visualization. Your task is to generate
a high-quality analytical question based on chart visualization code and data, and write Python code to calculate the
answer.
## Data Description: {chart_description}
## Visualization Code: {code}
## Data Path: {data_path}
## Data Format Example: {data}

## Task Type
Please strictly generate questions according to the following task type requirement:
{task}

## Question Generation Requirements
1. Ensure questions have clear business analysis and practical application value
2. Prioritize generating questions that require multiple calculation steps or statistical analysis
3. Note that question solvers can only see the chart image, not the original chart code and data values
4. While meeting task type requirements, generate appropriately more complex and challenging questions, such as:
- Requiring comprehensive information from multiple dimensions (>3)
- Including multiple steps of reasoning process
- Requiring multiple mathematical operations or complex statistical analysis
- Answers that need in-depth analysis to derive
5. For counting tasks, do not generate questions with answers greater than 20

## Code Requirements
1. Use libraries like pandas and numpy for data processing
2. Code must include clear comments explaining the purpose of each step
3. Ensure calculation results are accurate and reliable
4. Only use the provided original data
5. Output necessary intermediate calculation results
6. Code style should be standardized with meaningful variable names
7. For multiple-choice questions, only provide the answer, no need to judge which option is correct

## Question Types
1. Multiple-choice: Question includes ABCD four options, answer is a single uppercase letter (A/B/C/D), other options
must be incorrect
2. True/False: Question is in interrogative form, answer is Yes or No
3. Fill-in-the-blank: Question is in interrogative or fill-in-the-blank form, answer is a specific number, word, or phrase
4. Short-answer: Question is in interrogative form, answer is a complete sentence not exceeding 50 words

## Output Format
“‘thinking
First provide thinking process, such as explaining what analysis angles and questions can be generated for this task type
requirement based on the chart
“‘

“‘json
{ "task_type": "Task type", "question_type": "Question type", "question": "Question text", "options": "Option text
(string, empty for non-multiple-choice questions)" }
“‘

“‘python
# Import required libraries
import pandas as pd
import numpy as np
# Loading Data from csv file
data_file_path = "data_path"
df = pd.read_csv(data_file_path)
# Data processing and calculation code
...
# Print intermediate results
print("Average of metric a:", average_a)
...
# Print final results
print("Final result:", result)
“‘

Figure 12: Prompt template for the first stage in Q&A generation.
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LLM Prompt

The code execution result is:
{code_output}

Please use this as data support to provide detailed reasoning analysis for the question and generate the final answer.
Specifically, for multiple-choice questions, if you believe all options are incorrect or multiple options are correct, please
modify the options to ensure: the final answer is completely correct, and all other options except the answer are incorrect.

## Generation Requirements
1. Please fully trust the correctness of code execution results.
2. All reasoning processes should be expressed as analysis and calculation of visual information from the chart. Don’t
mention that you referenced code or output results; instead, present them as if they were results you calculated yourself
based on visual chart information.
3. Provide necessary reasoning steps without omitting similar processes. Calculation processes should include formulas
and answers.
4. All reasoning processes should be fluent and use concise descriptions without verbosity.
5. Finally, provide a concise and clear answer that meets the answer format requirements for the question type.
6. No code language snippets or color coding should appear.

## Output Format
“‘json
{ "task_type": "Task type", "question_type": "Question type", "question": "Question text", "options": "Option text",
"explanation": "Detailed step-by-step reasoning process", "answer": "Final answer" }
“‘

## Example Start
{qa_example}
## Example End

Figure 13: Prompt template for the second stage in Q&A generation.

Judge Prompt

Compare the ground truth with the prediction from AI model and determine if the prediction is correct. The question is
about an image, which we have not given here. You need to determine whether the model’s prediction is consistent with
the ground truth. No points will be awarded for wrong answers, over answers or under answers. The reasoning process
in the prediction does not need to be considered too much, you only need to determine if the final answer is consistent.
There are times when the answer may have a different form of expression and some variation is acceptable.
Notice:
1. The provided ground truth is absolutely correct and should be fully trusted.
2. Different expressions of units are acceptable. (e.g., "5" vs "5 meters" and "5" vs "5 million" are equivalent if they
refer to the same measurement)
3. Numbers with/without "%" are equivalent (e.g., "5%" vs "5" are equivalent)
4. After removing units or "%", if both prediction and ground truth are numbers, an error margin within 5% error is
acceptable.
5. If the ground truth is provided as multiple arrays, prediction matching any one of them will be considered correct.
6. When the question asks about years: The prediction must match exactly with the ground truth.

## Question: {question}
## Ground Truth: {answer}
## Prediction: {prediction}
Now, let’s take a analysis and then provide your judgement. Your response must follow the format below:
Analysis: (analyze the correctness briefly)
Correctness: (Yes or No)

Figure 14: Prompt template for LLM judge model.
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