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Abstract

Research on LLM technologies is rapidly
emerging, with most of them employ a ‘fast
thinking’ approach to inference. Most LLMs
generate the final result based solely on a sin-
gle query and LLM’s reasoning capabilities.
However, with the advent of OpenAI-o1, ‘slow
thinking’ techniques have garnered increasing
attention because its process is closer to the
human thought process. Inspired by the human
ability to constantly associate and replenish
knowledge during thinking, we developed the
novel Chain-of-Associated-Thoughts (CoAT)
framework, which introduces an innovative syn-
ergy between the Monte Carlo Tree Search
(MCTS) algorithm and a dynamic mechanism
for integrating new key information, termed
‘associative memory’. By combining the struc-
tured exploration capabilities of MCTS with
the adaptive learning capacity of associative
memory, CoAT significantly expands the LLM
search space, enabling our framework to ex-
plore diverse reasoning pathways and dynam-
ically update its knowledge base in real-time.
This allows the framework to not only revisit
and refine earlier inferences but also adap-
tively incorporate evolving information, ensur-
ing that the final output is both accurate and
comprehensive. We validate CoAT’s effective-
ness across a variety of generative and rea-
soning tasks. Quantitative experiments show
that CoAT achieves over 10% performance im-
provement on open-source multi-hop reasoning
datasets (HotpotQA, MuSiQue) and more than
15% gain on our proprietary CRB dataset.

1 Introduction

Large Language Models (LLMs) have rapidly be-
come a cornerstone in natural language process-
ing, powering applications ranging from conver-
sational agents to complex decision-making sys-
tems. Central to their operation is the process
of inference, where LLMs generate contents by

Figure 1: Left: Human thinking chain; Right: Associ-
ated thoughts path. This figure illustrates how our CoAT
framework is inspired to continually supplement extra
information during reasoning by simulating human as-
sociative mechanisms.

an auto-regressive learning algorithm in the pre-
training stage. Most LLMs, such as GPT (Achiam
et al., 2023), LLaMA (Dubey et al., 2024), and
Qwen (Yang et al., 2024), employ a ‘fast thinking’
approach to inference which relies heavily on the
pre-trained reasoning capabilities of LLM models.
These approaches process a single query to pro-
duce the final result. Although effective for many
tasks, they often struggle with problems that re-
quire nuanced, iterative reasoning, or adaptation to
new information.

Recent advances (Li et al., 2022; Brown et al.,
2024; Wu et al., 2025) have begun to explore alter-
natives to ‘fast thinking’, introducing ‘slow think-
ing’ methodologies (Jiang et al., 2024; Min et al.,
2024; Gan et al., 2025) that align more closely with
human thinking processes. This idea emphasizes
deliberate, iterative reasoning, and the integration
of historical contents or external knowledge during
inference. OpenAI-o1 (Jaech et al., 2024), a no-
table project, has sparked significant interest in this
domain, showcasing the potential of ‘slow think-
ing’ frameworks to improve reasoning capabilities.
Some studies (Zhang et al., 2023; Liu et al., 2023;
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Choi et al., 2023; Chen et al., 2024a; Tian et al.,
2024; Zhang et al., 2024; Wan et al., 2024) have
employed MCTS-inspired methods to enhance the
multi-step reasoning capabilities of LLMs. How-
ever, the above mentioned methods merely subdi-
vide the reasoning process into smaller steps and
involve rethinking what has already been generated.
Throughout the process, reliance is still placed on
the initial input information and the logical reason-
ing abilities of the LLM itself.

Inspired by the human ability to constantly asso-
ciate and replenish knowledge during thinking, we
propose the Chain-of-Associated-Thoughts (CoAT)
framework. To our knowledge, associative mem-
ory mechanisms were first applied to simulate hu-
man thoughts in LLM processes. The associative
memory mechanism empowers CoAT to dynami-
cally incorporate new key information during in-
ference, mimicking the human ability to associate
and update knowledge iteratively. Furthermore, we
optimize the routing strategy in the MCTS algo-
rithm to ensure that each addition of associative
memory will provide additional key information
for subsequent content generation. This synergy
between structured search and adaptive learning
enables CoAT to expand its reasoning scope while
maintaining contextual coherence, overcoming lim-
itations of conventional LLMs.

The effectiveness of our framework is validated
through extensive experiments. The results demon-
strate that our framework significantly outperforms
traditional models in terms of accuracy, coherence,
and diversity. In summary, the main contributions
of our work are as follows:

• We propose the CoAT framework to enhance
LLM reasoning. Our framework expands the
LLM reasoning search space for a better solu-
tion using the optimized MCTS algorithm.

• We endow the LLM reasoning process with
human-like associative and adaptive self-
refinement capabilities to effectively address
complex reasoning tasks.

• We optimize the routing strategy in CoAT to
identify the best generation trajectory. The
qualitative and quantitative experimental re-
sults demonstrate its superior performance
compared to other methods.

2 Related Work

The development of Large Language Models
(LLMs) has witnessed significant advances in re-
cent years, with a particular focus on improving
reasoning capabilities. This section reviews key re-
search on LLM inference strategies, the integration
of iterative reasoning frameworks, and associative
memory mechanisms, all of which inform the de-
sign of our Chain-of-Associated-Thoughts (CoAT).

LLM Inference Strategies Traditional LLMs,
including BERT (Devlin, 2018), GPT-3 (Brown
et al., 2020) and its successors (like GPT-4 (Achiam
et al., 2023)) rely on a single-shot or few-shot in-
ference paradigm. These methods emphasize the
model’s ability to provide accurate responses using
fixed prompts, often resulting in outputs that lack
robustness in scenarios that require deeper reason-
ing. To address these limitations, researchers have
explored chain-of-thought (CoT) prompting (Wei
et al., 2022) and interleaving retrieval with chain-
of-thought (IRCoT) (Trivedi et al., 2022a), which
enable LLMs to decompose complex problems into
smaller sequential steps. Although this improves
reasoning quality, it remains inherently static as the
model cannot revisit or refine previous inferences
during the reasoning process.

More recently, the variants of CoT, such as
self-consistency chain-of-thought (CoT-SC) (Wang
et al., 2022) have introduced diversity in reason-
ing by sampling multiple outputs and selecting
the most consistent solution, Graph-of-thought
(GoT) (Besta et al., 2024) has been improved with
search algorithms that can search solution paths
more effectively, and Tree-of-thought (ToT) (Yao
et al., 2024) prompting uses DFS or BFS search
guided by LLMs. However, these methods do not
fundamentally alter the underlying inference mech-
anism, leaving room for further exploration of dy-
namic and iterative reasoning processes.

The concept of ‘slow thinking’ (de Winter et al.,
2024) has gained traction as an alternative to tra-
ditional inference paradigms, inspired by the hu-
man ability to deliberate and refine thoughts over
time. OpenAI-o1 (Jaech et al., 2024) has been a
pioneering framework in this space, demonstrat-
ing the benefits of iterative reasoning for tasks
involving complex problem solving and decision
making. By allowing LLMs to reassess previous
steps and integrate new information, slow thinking
frameworks improve adaptability and output qual-
ity. These advancements highlight the potential
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Figure 2: Overview of CoAT framework. The Associative Memory (AM) will be added into each node during
reasoning. The “External Brain (EB)” is an optional measure to further improve the quality of reasoning results.

of moving beyond static reasoning toward more
dynamic, context-aware methodologies.

Monte Carlo Tree Search in Inference
MCTS has a long history of success in domains
requiring decision making under uncertainty,
such as game playing (Silver et al., 2016) and
planning (Coulom, 2006). Its ability to balance
exploration and exploitation makes it a compelling
candidate for enhancing LLM reasoning. Existing
works, like LLM-MCTS (Zhao et al., 2024), LLM
agent tree search (LATS) (Zhou et al., 2023)
and reasoning via planning (RAP) (Hao et al.,
2023) have integrated MCTS into specific AI
systems to improve search space exploration, but
its application in LLMs remains limited. Our
CoAT extends this approach by leveraging MCTS
not only for structured exploration but also as a
means to iteratively refine reasoning pathways by
inserting associative memory during inference.

External Knowledge Augmented Mechanisms
Augmented knowledge, an external information
retrieval process that enables humans to form and
retrieve connections between related concepts
when thinking, has inspired various machine
learning models. Memory-augmented neural
networks (Santoro et al., 2016) and recurrent
memory-based architectures (Zaremba, 2014)
have demonstrated their effectiveness in tasks
requiring long-term context retention. However,
these systems often lack the flexibility to adapt to
evolving information during LLM inference.

Recent advancements (Gao et al., 2023; Yu et al.,
2023; Shao et al., 2023; Chen et al., 2024b; Fan
et al., 2024), such as native Retrieval Augmented
Generation (NativeRAG) (Lewis et al., 2020),
Knowledge Augmented Generation (KAG) (Liang
et al., 2024) and hippocampal indexing RAG (Hip-

poRAG) (Gutiérrez et al., 2024), have addressed
this by incorporating external knowledge from vec-
tor database or knowledge graph at input stage.
CoAT framework builds upon this foundation by
introducing a dynamic associative memory mech-
anism that not only retrieves relevant information
but also updates and integrates new knowledge in
real time during the reasoning stage without re-
quiring post-training. Similarly, Search-R1 (Jin
et al., 2025), which is conceptually aligned with
CoAT, introduces adaptive retrieval capabilities via
the reinforcement learning process, which leads to
increased computational costs.

Although existing research has made substan-
tial strides in enhancing the reasoning capabili-
ties and adaptability of LLMs, some challenges
remain. Static inference strategies and the limited
integration of iterative mechanisms continue to con-
strain the capacity of LLMs to effectively address
increasingly complex and dynamic reasoning tasks.
To address these challenges, our proposed CoAT
framework synergistically integrates the structured
exploration offered by MCTS and the adaptive ca-
pabilities of associative memory.

3 Methodology

Inspired by the human ability to form associa-
tions during cognitive processes and the demon-
strated effectiveness of MCTS algorithm in en-
hancing the reasoning capability of LLMs, we pro-
pose the CoAT reasoning framework, as illustrated
in Figure 2. The framework leverages the asso-
ciation mechanism to enable LLMs to perform
real-time retrieval of relevant information and self-
augmentation during the reasoning process. The
realization of this functionality is underpinned by
our optimized MCTS algorithm, which systemati-
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Figure 3: The detailed reasoning process of the CoAT framework. The number of candidate nodes was set to 3.

cally integrates associative content and generated
content through tree node search. By assigning
precise values to each node based on our prede-
fined rules, the algorithm facilitates the automatic
association process, thereby completing the reason-
ing task. To further enhance the reasoning qual-
ity of CoAT framework, we have designed a flex-
ible mechanism for sourcing associative content.
This mechanism allows the model to either perform
self-association or retrieve associative information
through external knowledge sources, referred to
as an “External Brain (EB)”. The external brain
encompasses commonly used resources such as
knowledge graph, vector database, LLM agents,
and web search engines. A detailed search process
of the CoAT framework when query “How should
we view the role of artificial intelligence in contem-
porary international competition? Which countries
hold the leading advantages in this field?” is shown
in Figure 3.

3.1 Associative Memory Mechanism

We introduce associative memory mechanism in
the CoAT framework, can be regarded as a novel ex-
ternal knowledge augmentation mechanism, which
enables the reasoning process of LLMs to dynami-
cally update and integrate newly retrieved informa-
tion in real time according to the generated content
of each node. Existing methods primarily focus
on incorporating extended knowledge into the rea-
soning process at its initial stage. However, this
approach may lead to incorporation of overly broad
knowledge, which introduces two significant draw-

backs: (a) an excess of irrelevant information that
compromises inference efficiency, and (b) insuf-
ficient inclusion of critical content, ultimately de-
grading inference quality. In contrast, our proposed
real-time association mechanism, integrated into
the inference process, effectively addresses these
issues by dynamically aligning relevant knowledge
with the ongoing inference.

The associative memory mechanism generates
content that is beneficial for reasoning and has not
been previously mentioned in historical contents.
The associative content should exhibit minimal
redundancy with existing generated contents and
should be concise enough to avoid interfering with
the reasoning process. Furthermore, the subject
of associative content must maintain a strong rele-
vance to the overall reasoning framework. If these
conditions are not satisfied, the associative content
for the node can be left empty. The above principle
will be applied in evaluation stage for evaluating
the quality of associative memory.

When generating the associative memory of a
node ni, the “External Brain” can serve as an alter-
native approach to enhance the quality of inference
results. However, this approach may reduce the
efficiency of the inference. This process can be
summarized as follows:

AM(ni) = EB 7→ LLM(Q | G(ni)). (1)

where G(ni) denotes the content generated from
node ni and EB is the External Brain.

Then, a node can reference both the historical
content and the associative memories derived from
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all of its ancestral nodes. Their historical content
and associative content together constitute the com-
prehensive thinking process of the target LLM. The
generation process of each node ni+1 is formulated
as follows:

G(ni+1) = LLM(Q | G(ni) | AM(n1:i)). (2)

where Q is the input query and AM(n1:i) denotes
the associative memories of nodes n1 ∼ ni in the
reasoning trajectory.

3.2 Optimized MCTS

Figure 4: The optimized MCTS pro-
cess in CoAT.

The standard
process of
the MCTS
algorithm
consists of
four stages:
Selection,
Expansion,
Simulation,
and Back-
propagation.
In the selec-

tion stage, MCTS applies the UCT algorithm
(Upper Confidence bounds applied to Trees) (Koc-
sis and Szepesvári, 2006) to choose the best node
and then adds it to the trajectory. The UCT of a
node n is calculated as follows:

UCT (n) = V (n) + w

√
lnN(p)

N(n)
. (3)

where N(n) is the number of visits to node n, V (n)
is the score value, and p is the parent node of node
n. w is the exploration weight and is set to 1.0 dur-
ing CoAT reasoning. When the end of an episode is
reached, a back-propagation is carried out to update
the value of node n and its parent nodes.

The traditional MCTS algorithm has demon-
strated significant success in various decision-
making domains. Recently, with advancements
in LLM, numerous novel variants of MCTS have
been proposed to enable a more effective integra-
tion with LLMs. The work of LATS (Zhou et al.,
2023) introduces an Evaluation stage after Expan-
sion and a Reflection stage at the end of the process.
The evaluation stage assesses the quality of the con-
tent generated during the expansion stage, while
the reflection stage determines whether the output
correctly addresses the inputs. Building on these
improvements, we propose an Association stage

to simulate the human associative mechanism be-
tween the expansion and evaluation stages. The
optimized MCTS process is shown in Figure 4.
Consequently, the quality of the associative con-
tent is also assessed during the evaluation stage.
The evaluation criteria encompass both the quality
of the associative content and its correlation with
the content generated during the expansion stage,
with the goal of preventing excessive associations
and mitigating hallucinations. Now, the evaluation
value of each node n has two components: the
generated content value and the associative content
value. And the node value is calculated as follows:

V (n) = Fg(Q,G(n)) + β ∗ Fa(G(n),AM(n)). (4)

where G(n), AM(n) denotes the generated con-
tent and the associative content at node n, respec-
tively. F is the evaluation function for generation
and association. β is a weighting coefficient used
to control the influence of the associative content,
and is set to 0.1 in subsequent experiments.

In the backpropagation stage, we update the visit
counts and quality evaluations for every node along
the trajectory based on the outcomes of the simu-
lation stage from the leaf node to the root node.
The calculation of visit counts is formalized as
C(ni+1) = C(ni) + 1. And the quality evaluation
value of a parent node np will be updated with its
children nodes ni

c as follows:

V (np)
∗ =

V (np) ∗ C(np) +
∑K

i V (ni
c)

C(np) +K
. (5)

where K is the number of candidate nodes of each
parent node, C(np) is the original visit counts of
np. The updated node value V (np)

∗ is used in the
UCT algorithm (Eq. 3) to choose the node of the
trajectory in the next selection stage.

To more precisely determine when to terminate
the MCTS search process, we applied a specialized
Reward Model (RM) to evaluate the content gener-
ated at the leaf node of the search trajectory. In cer-
tain extreme cases, the search process may enter an
ambiguous state, leading to inefficiencies. To miti-
gate this issue, we introduce a hyper-parameter (D)
to constrain the maximum depth of the tree search.
When the search depth surpasses D, the process
halts, and the best inference result obtained up to
that point is returned. Notably, setting D = −1 re-
moves any depth limitation, allowing the search to
continue until the optimal result is identified. The
flow of the above algorithm can be summarized as
Algorithm 1 list at Appendix A.1.
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Framework Model HotpotQA 2WikiMultiHopQA MuSiQue

EM F1 EM F1 EM F1

NativeRAG ChatGPT-3.5 43.4 57.7 33.4 43.3 15.5 26.4
HippoRAG ChatGPT-3.5 41.8 55.0 46.6 59.2 19.2 29.8

IRCoT+NativeRAG ChatGPT-3.5 45.5 58.4 35.4 45.1 19.1 30.5
IRCoT+HippoRAG ChatGPT-3.5 45.7 59.2 47.7 62.7 21.9 33.3

IRCoT+HippoRAG DeepSeek-V2 (236B) 51.0 63.7 48.0 57.1 26.2 36.5
KAG DeepSeek-V2 (236B) 62.5 76.2 67.8 76.2 36.7 48.7

KAG Qwen2.5-32B-Instruction 56.6 72.1 65.9 75.5 21.3 31.4
CoAT(Ours) Qwen2.5-32B-Instruction 69.6 74.2 73.1 78.8 34.7 39.8

Table 1: The end-to-end generation performance of different RAG models on three multi-hop Q&A datasets. The
values in bold and underline are the best and second best indicators respectively.

4 Experiments

The implementation of our CoAT framework is
built upon the LangChain (Contributors, 2025)
project. To evaluate the effectiveness of CoAT
framework, we designed two types of validation
experiments: (a) assessing the qualitative perfor-
mance of our CoAT framework in conjunction with
LLM, via comparative evaluations against base-
line models; (b) quantitatively evaluating the CoAT
framework against other state-of-the-art reason-
ing models on both publicly available open-source
datasets and custom-constructed complex reason-
ing benchmarks.

4.1 Qualitative Performance Evaluation

To assess the effectiveness of our CoAT frame-
work in handling real-world reasoning challenges,
we designed a series of complex reasoning ques-
tions. A case is illustrated in Figure 5. This ques-
tion requires multidimensional knowledge integra-
tion across domains such as economics, ethics.
The CoAT-enhanced model (Qwen2.5-32B) out-
performs both the baseline Qwen2.5-32B/72B and
ChatGPT models, offering more structured and
comprehensive responses. Unlike the baseline
outputs, which focus on three to four broad cat-
egories, the CoAT model organizes its analysis into
five clearly defined dimensions: Economic Impact,
Military and Security, Technological Leadership,
Ethical and Regulatory Frameworks, and Diplo-
matic and Soft Power. The additional inclusion of
the dimension of “Ethical and Regulatory Frame-
works” covering AI ethics, privacy regulations, and
global governance adds crucial depth and relevance,
supported by illustrative examples such as Project
Maven and the European AI Alliance.

Moreover, CoAT also demonstrates superior per-

formance in handling the latter part of the task.
While baseline models tend to list countries with
limited elaboration, CoAT’s output delivers a de-
tailed, evidence-based comparison across six items.
Each is analyzed in terms of strengths, strate-
gic priorities, and challenges. For instance, the
model highlights India’s AI initiatives for agri-
culture and urban development, Japan’s robotic-
centered AI focus, and Russia’s emphasis on mil-
itary AI within a constrained geopolitical envi-
ronment. This granular and policy-relevant anal-
ysis underscores CoAT’s strength in supporting
nuanced, multi-perspective reasoning, particularly
in domains demanding sophisticated geopolitical
insight. The complete response of CoAT can be
found in the Appendix A.3.

4.2 Quantitative Performance Evaluation
In this section, we will verify the validity of our
CoAT framework in two aspects. (a) We compare
the base models’ reasoning capacity through the
CoAT framework with other retrieval-augmented
methods on multi-hop datasets. (b) We compare
the results of base models through the CoAT frame-
work with other well-known models on a self-built
complex comprehensive reasoning dataset.

Performance on Multi-hop Datasets We en-
hance the quality of content generated by the as-
sociative mechanism through the integration of ex-
tended knowledge, and demonstrate that improv-
ing the quality of associative content leads to en-
hanced reasoning ability in our framework. To
validate the effectiveness of CoAT framework for
the knowledge-intensive question-answering task,
we conduct comparative experiments based on
retrieval-augmented generation.

The compared methods are NativeRAG (Lewis
et al., 2020), IRCoT (Trivedi et al., 2022a), Hip-
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Figure 5: The qualitative results of Qwen2.5-32B-Instruct, ChatGPT (APP) and Qwen2.5-72B-Instruct in a complex
reasoning query which need rich associative knowledge.

poRAG (Gutiérrez et al., 2024), and KAG (Liang
et al., 2024). And three widely-used multi-hop
QA datasets are HotpotQA (Groeneveld et al.,
2020), 2WikiMultiHopQA (Ho et al., 2020), and
MuSiQue (Trivedi et al., 2022b).

Settings. For a fair comparison, we follow IR-
CoT, HippoRAG and KAG utilizing a subset of
1,000 questions from each validation set and con-
structing a retrieval corpus related to selected ques-
tions. To evaluate QA performance, we adopt two
widely used metrics: Exact Match (EM), and F1
scores. Furthermore, associative memory is influ-
enced not only by the inherent capabilities of the
LLM but also by the quality of retrieval results
from external knowledge sources. So we apply the
results of KAG’s retrieval module as the associative
memory during CoAT framework evaluation.

Analysis. The multi-hop Q&A performance is
presented in Table 1, the results of NativeRAG,
HippoRAG and IRCoT using ChatGPT-3.5 and
DeepSeek-V2 as the backbone models are ex-
cerpts from the official KAG documentation for
comparison. However, since the API service for
DeepSeek-V2 has been shut down and its local de-
ployment is also costly, we selected the Qwen2.5-
32B-Instruction model as an alternative with com-

parable capabilities. Our proposed framework,
CoAT, demonstrates significant performance im-
provements compared to KAG using the same
backbone model, with EM gains of 13.0%, 7.2%,
and 13.4% on HotpotQA, 2WikiMultiHopQA, and
MuSiQue respectively, and F1 improvements of
2.1%, 3.3%, and 8.4%. In particular, the perfor-
mance of our CoAT with Qwen2.5-32B-Instruction
is also better than KAG with DeepSeek-V2, with an
increase in EM of 7. 1% and 5. 3% on HotpotQA,
2WikiMultiHopQA datasets.

The observed performance improvements can
be largely attributed to the more comprehensive
exploration of semantically related entities during
the reasoning process in our framework. Lever-
aging the previous retrieved passages, we employ
the association mechanism to identify and expand
upon salient entities that are essential for multi-hop
reasoning. The retrieval results are further refined
in the subsequent content generation stage to en-
hance response accuracy. However, the association
mechanism will lead the model to generate explana-
tory contents when a direct answer is unavailable,
which can reduce response precision and conse-
quently lower the overall F1 score.

Performance on CRB Dataset
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Figure 6: The heatmap of pairwise win rate and the average win rate of all models (Zoom in for best view).

To better demonstrate the effectiveness of CoAT
framework in associative reasoning tasks, we con-
structed a high-quality reasoning dataset, referred
to as the Comprehensive Reasoning Benchmark
(CRB). This dataset encompasses various disci-
plines, including politics, scientific and technolog-
ical domains, international relations, economics,
law, and history, among others. The tasks in this
dataset require advanced analytical skills, case-
based evidence, and rigorous logical reasoning.

Dataset. The CRB dataset contains 205 pro-
fessionally reviewed questions, each accompanied
by its corresponding evaluation rules and total
score, which together constitute the final evalu-
ation entries. More details are provided in Ap-
pendix A.4 and this dataset has been released in
https://github.com/IceSwordLab/CoAT.

Settings. Based on the CRB dataset, we de-
signed two series of experiments. First, we se-
lected multiple state-of-the-art generative mod-
els (MiniMax/abab6.5-chat, Doubao-pro-256k,
OpenAI/GPT-4o, Qwen2.5-32B-Instruct, Qwen2.5-
72B-Instruct), reasoning models (DeepSeek-R1,
OpenAI/o1, OpenAI/o1-mini, OpenAI/o3-mini)
and our CoAT framework with two base models
(Qwen2.5-32B-Instruct, Qwen2.5-72B-Instruct) to
generate answers for the questions in the dataset.
(For a more detailed discussion on model selection,
please refer to the Appendix A.2.) The answers
are then evaluated according to Judge Rules, and
scores were assigned accordingly. The final aver-
age score for each model was computed using a
standardized formula: SM = 1

N

∑N
i ( si

sT
), where

si and sT are the evaluated score and the maximum
score, respectively. The experimental results are
presented in Table 2.

Second, we conducted pairwise comparisons of

the responses generated by the above models to as-
sess which model’s responses demonstrate greater
comprehensiveness and depth of detail. Based
on these comparisons, we derived the win rate
heatmap and the average win rate for each model.
The results of this experiment are illustrated in Fig-
ure 6.

Models Average Scores

Qwen2.5-32B-Instruct 0.55
OpenAI/GPT-4o 0.59

Doubao-pro-256k 0.61
Qwen2.5-72B-Instruct 0.62
MiniMax/abab6.5-chat 0.66

OpenAI/o3-mini 0.64
OpenAI/o1-mini 0.71

OpenAI/o1 0.73
DeepSeek-R1 0.75

CoAT (Qwen2.5-32B) 0.77
CoAT (Qwen2.5-72B) 0.80

Table 2: The results of all comparison models on CRB.

Analysis. The results presented in Table 2 sup-
port the following conclusions. First, our CoAT
framework significantly improves the performance
of the base models, Qwen2.5-32B-Instruction and
Qwen2.5-72B-Instruction, with relative gains of
22% and 18% in the evaluated scores, respectively.
This performance gain can be attributed to two key
components: the entity association enabled by the
association mechanism, and the progressive explo-
ration strategy of MCTS, which together enhance
both the comprehensiveness and accuracy of the
generated answers. Second, by leveraging APIs of
smaller-scale language models within our CoAT
framework, enhanced reasoning performance can
be achieved without the need for additional model
training or fine-tuning. Finally, reasoning mod-
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els tend to outperform generative models in CRB
datasets, highlighting the advantages of structured
reasoning in complex benchmarks.

As illustrated in Figure 6, the Qwen2.5-72B-
Instruct model integrated with our CoAT reasoning
framework outperforms other models in pairwise
evaluations. Specifically, the Qwen series achieves
a 50% relative improvement in the average win
rate when using CoAT, indicating the effectiveness
of our proposed framework. Moreover, generative
models augmented with the CoAT framework can
achieve performance comparable to that of dedi-
cated reasoning models.

4.3 Ablation Experiment
Effectiveness of AM. To separately verify the
effectiveness of the associative memory mechanism
(Sec. 3.1) and the optimized value computation
for MCTS nodes (Sec. 3.2), we performed three
experiments using the CRB dataset, and calculated
the resulting scores and win rates for both settings:
1) We applied the CoAT framework to generate
results either with AM integrated into each node
or without it; 2) We incorporated only the content
of AM and without considering its quality. 3) We
conducted a series of experiments with different
values of β in Eq. 4 to explore the optimal solution.
In Appendix A.5, we provide an additional detailed
discussion of the countermeasures for AM under
extreme situations, aiming to enhance the efficiency
of the association process.

Models Versions Scores

CoAT (Qwen2.5-32B)
w/o AM 0.67

w/ AM & β=0 0.75
w/ AM & β=0.1 0.77

CoAT (Qwen2.5-72B)
w/o AM 0.71

w/ AM & β=0 0.77
w/ AM & β=0.1 0.80

Table 3: The results of the above settings on CRB.

Settings. 1) w/o AM: We disabled the genera-
tion of AM at each node as defined in Eq. 1 and
set its value to empty in Eq. 2. Subsequently, we
omitted the contribution of AM in Eq. 4. 2) w/
AM&β=0: In Eq. 4, β is set to 0.0, while all other
components are identical to those in the complete
CoAT. The visual results of the above settings are
shown in Table 3 and Figure 7. The results of pair-
wise comparisons between the above settings and
all base models are provided in Appendix A.6. 3)
The values of β are sampled from [0, 0.6], and the
results are shown in Figure 8.

Figure 7: The pairwise win rates.

Figure 8: The results of different values of β.

Analysis. The results in Table 3 show that in-
corporating the whole AM mechanism led to an
approximately 10% improvement in average score
compared to the baseline without AM. Moreover,
the comparison results in Figure 7 further validate
the performance improvements achieved through
the integration of AM. Figure 8 shows that al-
though the value of β has little impact on the final
score, the optimal result is achieved within the en-
tire range when β = 0.1.

5 Conclusion

In this paper, we proposed the CoAT reasoning
framework, which advances LLM reasoning by
integrating an optimized MCTS algorithm and a
dynamic associative memory mechanism. These
innovations enable structured exploration of rea-
soning pathways and adaptive knowledge updating,
addressing limitations of generative LLMs. The
experimental results demonstrated that CoAT out-
performs other models in accuracy, coherence, and
diversity. Our work highlights the potential of com-
bining structured search and adaptive associative
memory in LLMs, offering a new exploration for
future research on integrating external real-time
knowledge for real-world applications.
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Limitations

Although our framework outperforms baseline
models, there is still room for improvements. Due
to the expansion of the search space and the incor-
poration of novel associative memory, our frame-
work achieves more comprehensive content gener-
ation than the baseline models. However, such im-
provement comes at the cost of increased reasoning
time. Additionally, despite the considerable man-
ual efforts invested in curating the self-constructed
CRB dataset, there is still room for further quality
refinement.

Ethics Statement

Our research focuses on enhancing the reasoning
capacity of LLMs. There are no specific ethical
concerns directly associated with this work. How-
ever, we recognize and emphasize the ethical mind-
fulness throughout our research. In particular, dur-
ing the construction of the CRB dataset, no ethical
guidelines were violated, and careful attention was
paid to data quality and integrity. The broader im-
pact of our work lies in advancing the performance
of baseline models, thereby contributing to the im-
provement of the quality and reliability of content
generated by LLMs. All the datasets and models
used in this work are publicly available with per-
missible licenses.
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A Appendix

A.1 CoAT Reasoning Algorithm
The flow of our CoAT reasoning algorithm is summarized in Algorithm 1. The details of the CoAT
algorithm are described in Section 3.2.

Algorithm 1 CoAT Reasoning Algorithm
Require: Input query (Q), Evaluate function (F), Reward Model (RM), Number of candidate nodes
(K), Search Depth (D), Exploration weight (w), AM impact factor (β)

1: Initialize: Root node n← (G,AM), d← 1
2: Judge: RM(G) is completed for Q.
3: while Uncompleted and d < D do
4: Selection: choose the best trajectory by UCT.
5: for Child Node i← 1, ...,K do
6: Generation (G∗): ni ← LLM(Q|G|AM).
7: Association (AM∗): ni ← LLM(Q|G∗).
8: Evaluation (V ): ni ← F(Q,G∗) + βF(G∗,AM∗).
9: end for

10: Judge: RM(G∗) of the best child is completed for Q.
11: if Completed then
12: return G∗.
13: else
14: Backpropagation: value of np ← Equation 5.
15: Update: visit (V ∗) of np ← C(np) +K.
16: Update: d← d+ 1.
17: end if
18: end while
19: return Ĝ of the best trajectory.

A.2 Selection of Comparative Models
During the CoAT verification stage, extensive experiments were required, which resulted in a large volume
of model access. Considering cost-effectiveness, we prioritized using open-source models. For our task,
our primary focus was on the generation and summarization capabilities of LLMs. We researched several
mainstream open-source models available at the time. Both the Qwen2.5 series and the Llama3.1 series
exhibited comparable performance in these aspects. The detailed comparison results are available on
the official Qwen2.5 Blog1. However, the Qwen series offers broader multilingual support, which is
particularly beneficial for the associative memory module, as it may require the understanding of materials
in various languages. According to their official Hugging Face model cards, Qwen2.5 supports more
than 29 languages2, whereas Llama 3.1 supports 8 languages3. Therefore, the Qwen series was deemed
more appropriate for our experiments. However, other LLMs (such as the Llama series) can be seamlessly
integrated into the CoAT framework simply by replacing the service API or endpoint.

1https://qwenlm.github.io/blog/qwen2.5
2https://huggingface.co/Qwen/Qwen2.5-72B
3https://huggingface.co/meta-llama/Llama-3.1-70B
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A.3 Qualitative Performance Exhibition

The input of all LLMs and CoAT are only the query questions with no extra instruction prompts and system
prompts. The responses of three comparison models for a query (How should we view the role of artificial
intelligence in contemporary international competition? Which countries hold the leading advantages in
this field?) are shown in Figure 5. And the corresponding response of CoAT (Qwen2.5-32B-Instruct) is
shown as follows:

Role of AI in International Competition
1. ** Economic Impact **

- ** Productivity and Efficiency **: AI can significantly boost productivity and
↪→efficiency in various industries. For instance , in manufacturing , AI can
↪→optimize supply chains and reduce waste. In healthcare , AI-powered
↪→diagnostic tools can improve patient outcomes and reduce costs.

- ** Innovation and New Markets **: AI-driven innovations such as autonomous
↪→vehicles (e.g., Waymo by Google) and smart cities (e.g., Singapore 's Smart
↪→ Nation initiative) are creating new markets and business opportunities.

- **Job Creation and Displacement **: While AI can create new jobs in technology
↪→and data science , it can also displace traditional jobs. According to a
↪→report by the World Economic Forum , by 2025, AI and automation could
↪→create 96 million new jobs globally while displacing 85 million jobs.

2. ** Military and Security **
- ** Defense and Cybersecurity **: AI is used in developing advanced defense

↪→systems. For example , the U.S. Department of Defense has projects like
↪→Project Maven , which uses AI for image recognition in drone footage. China
↪→ has also invested in AI for military applications , including autonomous
↪→drones and cyber defense systems.

- ** Intelligence and Surveillance **: AI can improve intelligence gathering and
↪→surveillance. The U.S. uses AI for analyzing satellite imagery and
↪→detecting potential threats. China has deployed AI in surveillance systems
↪→, such as facial recognition technology in public spaces.

- ** Strategic Decision -Making **: AI can assist in strategic decision -making. For
↪→ example , the U.S. military uses AI to analyze data and provide predictive
↪→ insights for military operations.

3. ** Technological Leadership **
- ** Research and Development **: Leading countries invest heavily in AI R&D. For

↪→example , the U.S. has a robust AI research ecosystem with significant
↪→funding from both the government and private sector. China has a national
↪→AI development plan with substantial government support.

- ** Patent Filings and Publications **: Leading countries often have a high
↪→number of AI-related patent filings and academic publications. According
↪→to the World Intellectual Property Organization (WIPO), China and the U.S.
↪→ are the top two countries in AI patent filings.

- ** Talent Attraction and Retention **: Attracting and retaining top AI talent is
↪→ crucial. Countries like the U.S. and Canada offer attractive research
↪→environments and job opportunities. For example , Canada 's Vector Institute
↪→ is a leading AI research center that attracts top talent from around the
↪→world.

4. ** Ethical and Regulatory Frameworks **
- ** Ethical AI**: Countries that develop and adopt ethical AI guidelines can

↪→gain a reputation for responsible innovation. For example , the EU has
↪→developed ethical guidelines for AI, emphasizing issues like transparency ,
↪→ fairness , and accountability.

- ** Regulatory Environment **: A supportive regulatory environment can encourage
↪→AI development. The EU 's General Data Protection Regulation (GDPR) sets
↪→standards for data privacy and security , promoting trust in AI
↪→technologies.

5. ** Diplomatic and Soft Power**
- ** Global Standards and Norms **: Leading countries can influence the

↪→development of global standards and norms for AI. The EU, for instance , is
↪→ working on shaping international AI regulations through initiatives like
↪→the European AI Alliance.

- **AI Diplomacy **: Countries can use AI to enhance their diplomatic efforts.
↪→For example , Japan is using AI to improve communication and data -driven
↪→decision -making in international negotiations.
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Leading Countries in the AI Field
**1. United States **

- ** Strengths **: Home to major tech companies like Google , Amazon , and Microsoft
↪→, and leading research institutions like MIT and Stanford.

- ** Strategies **: Heavy investment in AI R&D, establishment of AI labs , and
↪→strong private -public partnerships. For example , the U.S. has established
↪→AI institutes like the National Artificial Intelligence Research
↪→Institutes.

- ** Challenges **: Balancing AI innovation with ethical considerations and
↪→ensuring a skilled workforce. The U.S. faces challenges in maintaining a
↪→competitive edge in AI talent and addressing ethical concerns.

**2. China**
- ** Strengths **: Large data pools , strong government support , and a rapidly

↪→growing AI industry. China has a national AI development plan with
↪→significant government investment.

- ** Strategies **: National AI development plan , significant investment in AI
↪→infrastructure , and fostering a large AI talent pool. For example , China
↪→has invested in AI research centers like the Beijing Academy of Artificial
↪→ Intelligence.

- ** Challenges **: Ensuring data privacy and ethical use of AI, and addressing
↪→international concerns about surveillance and human rights. China faces
↪→scrutiny over its use of AI for social control and surveillance.

**3. European Union**
- ** Strengths **: Strong emphasis on ethical AI and data protection , and a

↪→collaborative approach among member states. The EU has developed ethical
↪→guidelines for AI and promotes data privacy through regulations like GDPR.

- ** Strategies **: Development of the General Data Protection Regulation (GDPR)
↪→and the European AI Alliance. For example , the EU has launched the
↪→European AI Alliance to promote ethical AI development.

- ** Challenges **: Harmonizing AI policies across member states and competing
↪→with the US and China in terms of investment and innovation. The EU faces
↪→challenges in coordinating AI policies among its diverse member states.

**4. Russia **
- ** Strengths **: Strong mathematical and engineering traditions , and a focus on

↪→AI in military applications. Russia has a strong research base in
↪→mathematics and computer science.

- ** Strategies **: Government investment in AI for defense and security , and
↪→development of AI in critical sectors like energy and space. For example ,
↪→Russia has established AI research centers like the Skolkovo Institute of
↪→Science and Technology.

- ** Challenges **: Limited private sector involvement and international sanctions
↪→ that can restrict access to advanced technologies. Russia faces
↪→challenges in fostering a vibrant AI ecosystem and accessing cutting -edge
↪→technologies.

**5. Japan**
- ** Strengths **: Advanced robotics and a strong manufacturing sector. Japan is a

↪→ leader in robotics and has a strong manufacturing base.
- ** Strategies **: Integration of AI in robotics and manufacturing , and

↪→investment in AI for healthcare and elderly care. For example , Japan has
↪→initiatives like the Robot Revolution Initiative to promote AI and
↪→robotics in various sectors.

- ** Challenges **: Aging population and the need for more AI talent. Japan faces
↪→challenges in addressing the needs of its aging population and attracting
↪→a sufficient number of AI professionals.

**6. India**
- ** Strengths **: Large pool of skilled IT professionals and a growing tech

↪→ecosystem. India has a strong IT industry and a large number of skilled
↪→professionals.

- ** Strategies **: National AI strategy focusing on healthcare , agriculture ,
↪→education , and smart cities. For example , India has launched initiatives
↪→like the National Artificial Intelligence Program to promote AI
↪→development.

- ** Challenges **: Infrastructure gaps and the need for significant investment in
↪→ AI research and development. India faces challenges in building a robust
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↪→AI infrastructure and attracting investment.

Conclusion
The role of AI in contemporary international competition is multifaceted ,

↪→impacting economic growth , military capabilities , technological leadership
↪→, and global influence. Leading countries such as the United States and
↪→China are at the forefront , with significant investments in AI R&D, strong
↪→ private -public partnerships , and robust talent ecosystems. Other nations
↪→like the EU, Russia , India , and Japan are also making significant strides
↪→in the AI field , each with their unique strengths and challenges. The
↪→strategic positioning of these countries in the AI landscape is crucial
↪→for shaping the future of global competition and innovation.

The detailed introduction and analysis of the results are described in Section 4.1.

A.4 Introduction of CRB Dataset
The data entry in the CRB4 is structured referring to the design principles of subjective questions in the
Chinese Gaokao examination. Specifically, each entry consists of three components: Question, Judge
Rules, and Score. Judge Rules outline a series of fundamental key points that must be addressed to provide
an adequate response. Each key point corresponds to a specific score, and the inclusion of these key points
in an answer results in the allocation of the corresponding score. Additionally, Judge Rules incorporate
higher-level criteria as bonus points. Score assigned to each data entry represents the maximum attainable
score for that entry. Ultimately, we selected 205 professionally reviewed entries as the final test dataset.
An example entry from the CRB dataset is shown below:

{
"question ": "What are the key challenges in achieving global carbon neutrality

↪→by 2050? Which countries are making the most progress?",
"judge_rules ": "Evaluation Criteria :\n1. (This section is worth 10 points)

↪→Discuss the main challenges of carbon neutrality , including technological
↪→bottlenecks , economic burden , policy coordination , energy transition , and
↪→social acceptance. One point is awarded for addressing each aspect. An
↪→additional point can be earned for each aspect if it includes at least one
↪→ real -world example .\n2. (This section is worth 10 points) Discuss global
↪→leading countries in carbon neutrality efforts , including the European
↪→Union , China , the United States , Japan , and India. One point is awarded
↪→for each country discussed .\n a. An additional point can be earned for
↪→each country if the discussion covers advantages , disadvantages , and
↪→strategies .\n b. Another point can be earned if the discussion of each
↪→country includes at least one real -world example .\n3. (This section is
↪→worth 3 points) One point will be awarded for each of the following:
↪→fluent language , detailed discussion , and factual accuracy.",

"total_score ": 23
}

Each entry in the CRB dataset consists of three components: Question, Judge Rules and Total Score.
The language of Question and Judge Rules is either English or Chinese. The key scoring points of the
sample shown above are illustrated in Figure 9. For experiments with the CRB dataset, please refer to
Section 4.2.

In Figure 9, we provide a detailed breakdown of all the scoring points specified in the judge rules for
the question. Each judge rule in the CRB dataset has undergone a professional manual review to assess
the reasonableness of the scoring points and the accuracy of the total score. However, there may still be
room for further improvement.

4https://github.com/IceSwordLab/CoAT
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Figure 9: This figure presents the key scoring points identified in the sample question from the Comprehensive
Reasoning Benchmark (CRB) dataset.

A.5 Efficiency Analysis of AM
In our CoAT framework, the association mechanism conducts necessary associations of key entity
information based on the generated content of each node to dynamically improve the quality of the final
results. Therefore, associating the memory from the initial stage will only involve important information
for the key entity information and will not be particularly cumbersome. However, if there is extremely long
content in the form of a long document, we will also perform truncation or segmentation by extracting
key information, document summaries, or document chunks to ensure that the associative memory
actually used for CoAT inference does not become excessively large. Meanwhile, long documents
can be transformed into knowledge graphs using document-to-knowledge graph techniques, such as
Docs2KG (Sun et al., 2024). Knowledge graphs are inherently supported in CoAT. Moreover, handling
long documents is primarily an engineering implementation. The strategies discussed above are capable
of addressing this challenge. Therefore, the presence of long texts does not hinder the use of MCTS in
CoAT for enhanced reasoning.

Additionally, the following strategies are applicable: (1) Implementing a hierarchical retrieval mecha-
nism by splitting documents into smaller chunks, which allows the EB to return only the most relevant
portions for associative reasoning—an approach widely adopted in frameworks like LlamaIndex; and (2)
Applying lightweight summarization models such as DistilBART to compress long documents before
retrieval, as exemplified in OpenAI’s official guide on “Retrieval Augmented Generation (RAG) and
Semantic Search for GPTs.5”

A.6 Comparison Results of CoAT with Different Settings
The results of the pairwise comparison of the CoAT framework with different settings among all models
are shown in Figure 10. The description of this experiment refers to Section 4.3.

5https://help.openai.com/en/articles/8868588-retrieval-augmented-generation-rag-and-semantic-sea
rch-for-gpts
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Figure 10: This figure presents the pairwise comparison results among all models. (Zoom in for best view)
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