RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented
Generation through LLM Activation Analysis

Xue Tan!?, Hao Luan'?, Mingyu Luo'?, Xiaoyan Sun?, Ping Chen®, Jun Dai>

School of Computer Science, Fudan University, Shanghai, China

?Department of Computer Science, Worcester Polytechnic Institute, MA, USA

3Institute of Big Data, Fudan University, Shanghai, China

Correspondence: pchen@fudan.edu.cn, xsun7@wpi.edu, jdai@wpi.edu

Abstract

Retrieval-Augmented Generation (RAG) en-
riches the input to LLMs by retrieving infor-
mation from the relevant knowledge database,
enabling them to produce responses that are
more accurate and contextually appropriate. It
is worth noting that the knowledge database,
being sourced from publicly available channels
such as Wikipedia, inevitably introduces a new
attack surface. RAG poisoning attack involves
injecting malicious texts into the knowledge
database, ultimately leading to the generation
of the attacker’s target response (also called poi-
soned response). However, there are currently
limited methods available for detecting such
poisoning attacks. We aim to bridge the gap in
this work by introducing RevPRAG, a flexible
and automated detection pipeline that leverages
the activations of LLMs for poisoned response
detection. Our investigation uncovers distinct
patterns in LLMs’ activations when generating
poisoned responses versus correct responses.
Our results on multiple benchmarks and RAG
architectures show our approach can achieve
a 98% true positive rate, while maintaining a
false positive rate close to /%.

1 Introduction

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) has emerged as an effective solution
that leverages retrievers to incorporate external
databases, enriching the knowledge of LLMs and
ultimately enabling the generation of up-to-date
and accurate responses. RAG comprises three com-
ponents: knowledge database, retriever, and LLM.
Fig. 1 visualizes an example of RAG. The knowl-
edge database consists of a large amount of texts
collected from sources such as latest Wikipedia
entries (Thakur et al., 2021), new articles (Sobo-
roff et al., 2018) and financial documents (Loukas
et al., 2023). The retriever is primarily responsi-
ble for retrieving the texts that are most related
to the user’s query from the knowledge database.

These texts will later be fed to LLM as a part of the
prompt to generate responses (e.g., “Everest") for
users’ queries (e.g., “What is the name of the high-
est mountain?"). Due to RAG’s powerful knowl-
edge integration capabilities, it has demonstrated
impressive performance across a range of QA-like
knowledge-intensive tasks (Lazaridou et al., 2022;
Jeong et al., 2024).

RAG poisoning refers to the act of injecting ma-
licious or misleading content into the knowledge
database, contaminating the retrieved texts and ul-
timately leading the LLM to produce the attacker’s
desired response (e.g., the target answer could be
“Fuji" when the target question is “What is the name
of the highest mountain?"). This attack leverages
the dependency between LLMs and the knowledge
database, transforming the database into a new at-
tack surface to facilitate poisoning. PoisonedRAG
(Zou et al., 2024) demonstrates the feasibility of
RAG poisoning by injecting a small amount of ma-
liciously crafted texts into the knowledge database
utilized by RAG. The rise of such attacks has drawn
significant attention to the necessity of designing
robust and resilient RAG systems. For example, IN-
STRUCTRAG (Wei et al., 2024) utilizes LLMs to
analyze how to extract correct answers from noisy
retrieved documents; RobustRAG (Xiang et al.,
2024) introduces multiple LLMs to generate an-
swers from the retrieved texts, and then aggregates
the responses. However, the aforementioned de-
fense methods necessitate the integration of addi-
tional large models, incurring considerable over-
heads. Meanwhile, it is difficult to promptly assess
whether the current response of RAG is trustworthy
or not.

In our work, we shift our focus to leverage the
intrinsic properties of LLMs for detecting RAG
poisoning, rather than relying on external mod-
els. Our view is that if we can accurately deter-
mine whether a RAG’s response is correct or poi-
soned, we can effectively thwart RAG poisoning

12999

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 12999-13011
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:pchen@fudan.edu.cn
mailto:xsun7@wpi.edu
mailto:jdai@wpi.edu

Retrieval

) / Prompt
User Question: P
What is the name of the Context: [...] Everest stands the
| | highest mountain? Query ¢ tallest [...
U Question: What is the name of the
ser highest mountain?
Please generate a response for the
» oy question based on the context.
/*9 2Ny p Ep(pi) Similarity Top k most W
5o W 9 —~_ Score relevant
Wikipedia k b ——eo— 1> - Eplen) Generation
Ly)/ Collect [pn oo
T Knowledge mbedding
Database C Vector @ e
LLM Answer

Figure 1: Visualization of RAG.

attacks. We attempt to observe LLM’s answer gen-
eration process to determine whether the response
is compromised or not. It is worth noting that
our focus is not on detecting malicious inputs to
LLMs, as we consider the consequences of ma-
licious responses to be far more detrimental and
indicative of an attack. The growing body of re-
search on using activations to explain and control
LLM behavior (Ferrando et al., 2024; He et al.,
2024) provides us inspiration. Specifically, we em-
pirically analyze the activations of the final token
in the input sequence across all layers of the LLM.
Our findings demonstrate that the model exhibits
distinguishable activation patterns when generat-
ing correct versus poisoned responses. Based on
this, we propose a systematic and automated detec-
tion pipeline, namely RevPRAG, which consists of
three key components: poisoned data collection,
LLM activation collection and preprocessing, and
the detection model design. It is important to note
that this detection method will not alter the RAG
workflow or weaken its performance, thereby of-
fering superior adversarial robustness compared to
methods that rely solely on filtering retrieved texts.

To evaluate our approach, we systematically
demonstrate the effectiveness of RevPRAG across
various LLM architectures, including GPT2-XL-
1.5B, Llama2-7B, Mistral-7B, Llama3-8B, and
Llama2-13B. RevPRAG performs consistently
well, achieving over 98% true positive rate across
different datasets.

Our contributions can be summarized as follows:

1. We uncover distinct patterns in LLMs’ activa-
tions when RAG generates correct responses
versus poisoned ones.

2. We introduce RevPRAG, a novel and auto-
mated pipeline for detecting whether a RAG’s
response is poisoned or not. To address emerg-
ing RAG poisoning attacks, RevPRAG allows

new datasets to be constructed accordingly for
training the model, enabling effective detec-
tion of new threats.

3. Our model has been empirically validated
across various LLM architectures and retriev-
ers, demonstrating over 98% accuracy on our
custom-collected detection dataset.

2 Background and Related Work

2.1 Retrieval Augmented Generation

RAG comprises three components: knowledge
database, retriever, and LLM. As illustrated in
Fig. 1, RAG consists of two main steps: retrieval
step and generation step. In the retrieval step, the
retriever acquires the top k£ most relevant pieces of
knowledge for the query ¢q. First, we employ two
encoders, F, and I, which can either be identical
or radically different. Encoder £ is responsible
for transforming the user’s query ¢ into an embed-
ding vector E,(q), while encoder E,, is designed
to convert all the information p; in the knowledge
database into embedding vectors E),(p;). For each
E,(p;), the similarity with the query E,(q) is com-
puted using sim(Eq(q), Ep(pi)), where sim(-,-)
quantifies the similarity between two embedding
vectors, such as cosine similarity or the dot prod-
uct. Finally, the top k£ most relevant pieces are
selected as the external knowledge C, for the query
q. The generation step is to generating a response
LLM(q, C,) based on the query ¢ and the relevant
information C,. First, we combine the query ¢ and
the external knowledge C, using a standard prompt
(see Fig. 6 for the complete prompt). Taking advan-
tage of such a prompt, the LLM generates an an-
swer LLM(q, C,) to the query ¢. Therefore, RAG
is a significant accomplishment, as it addresses the
limitations of LLMs in acquiring up-to-date and
domain-specific information.

13000

2.2 Retrieval Corruption Attack

Due to the growing attention on RAG, attacks
on RAG have also been widely studied. RAG
can improperly generate answers that are severely
impacted or compromised once the knowledge
database is contaminated (Zou et al., 2024; Xue
et al., 2024; Jiao et al., 2024). Specifically, an
attacker can inject a small amount of malicious in-
formation onto a website, which is then retrieved by
RAG (Greshake et al., 2023). PoisonedRAG (Zou
et al., 2024) injects malicious text into the knowl-
edge database, and formalizes the knowledge poi-
soning attack as an optimization problem, thereby
enabling the LLM to generate target responses se-
lected by the attacker. GARAG (Cho et al., 2024)
was introduced to provide low-level perturbations
to RAG. PRCAP (Zhong et al., 2023) injects adver-
sarial samples into the knowledge database, where
these samples are generated by perturbing discrete
tokens to enhance their similarity with a set of train-
ing queries. These methods have yielded striking
attack results, and in our work, we have selected
several state-of-the-art attack methods as our base
attacks on RAG.

2.3 The Robustness of RAG

Efforts have been made to develop defenses in re-
sponse to poisoning attacks and noise-induced dis-
ruptions. RobustRAG (Xiang et al., 2024) miti-
gates the impact of poisoned texts through a voting
mechanism, while INSTRUCTRAG (Wei et al.,
2024) explicitly learns the denoising process to ad-
dress poisoned and irrelevant information. Other
approaches to enhance robustness include prompt
design (Cho et al., 2023; Press et al., 2023), plug-in
models (Baek et al., 2023), and specialized mod-
els (Yoran et al., 2023; Asai et al., 2023). However,
these methods may, on one hand, rely on addi-
tional LLMs, leading to significant overhead. On
the other hand, they primarily focus on defense
mechanisms before the LLM generates a response,
making it challenging for these existing approaches
to detect poisoning attacks in real-time while the
LLM is generating the response (Athalye et al.,
2018; Bryniarski et al., 2021; Carlini and Wagner,
2017; Carlini, 2023; Tramer et al., 2020). LLM
Factoscope (He et al., 2024) is a runtime detection
tool that leverages the internal states of LLMs, such
as activation maps, output rankings, and top-k prob-
abilities, to identify factual inaccuracies caused by
model hallucinations. While Factoscope is effec-
tive at detecting hallucinations in general LLMs, it

Mistral-7B Llama2-7B

-60 -40 -20 0 20 40 60 80 -60 40 -20 0

Figure 2: t-SNE visualizations of activations for correct
and poisoned responses.

is not designed to address RAG poisoning attacks,
which result from manipulations of the external
knowledge base rather than internal model errors.
Its complex architecture with multiple sub-models
makes it less suitable for latency-sensitive RAG
applications. In this work, we present RevPRAG, a
method that addresses these gaps by: (1) focusing
on RAG-specific poisoning attacks and conducting
extensive tests to validate its effectiveness in detect-
ing such attacks (Section 5), (2) using a lightweight,
activation-based pipeline optimized for real-time
detection of whether an RAG response is trustwor-
thy (Section 5.6), and (3) evaluations show that
our performance (Section 5.2) and efficiency (Sec-
tion 5.6) surpass those of Factoscope.

3 Preliminary

3.1 Threat Model
Attacker’s goal. We assume that the attacker
preselects a target question set (), consisting of
q1,92," - - , Qn, and the corresponding target answer
set A, represented as a1, as, - - - , a,. The attacker’s
goal is to compromise the RAG system by contam-
inating the retrieval texts, thereby manipulating the
LLM to generate the target response a; for each
query ¢;. For example, the attacker’s target ques-
tion q; is “What is the name of the highest moun-
tain?", with the target answer being “Fuji".
Attacker’s capabilities. We assume that an at-
tacker can inject m poisoned texts P for each target
question g;, represented as pzl, p?, ...,p;"*. The at-
tacker does not possess knowledge of the LLM
utilized by the RAG, but has white-box access to
the RAG retriever. This assumption is reasonable,
as many retrievers are openly accessible on plat-
forms like HuggingFace. The poisoned texts can
be integrated into the RAG’s knowledge database
through two ways: the attacker publishing the ma-
licious content on open platforms like Wikipedia,
or utilizing data collection agencies to disseminate
the poisoned texts.

13001

3.2 Rationale

The activations of LLMs represent input data at
varying layers of abstraction, enabling the model
to progressively extract high-level semantic infor-
mation from low-level features. The extensive in-
formation encapsulated in these activations com-
prehensively reflects the entire decision-making
process of the LLM. The activations has been ap-
plied to factual verification of the output content
(He et al., 2024) and detection of task drift (Ab-
delnabi et al., 2024). Due to the fact that LLM pro-
duces different activations when generating vary-
ing responses, we hypothesize that LLM will also
exhibit distinct activations when generating poi-
soned responses compared to correct ones. Fig. 2
presents the visualizations of activations for correct
and poisoned responses using t-SNE (t-Distributed
Stochastic Neighbor Embedding). It visualizes the
mean activations across all layers for two LLMs,
Mistral-7B and Llama2-7B, on the Natural Ques-
tions dataset. This clearly demonstrates the distin-
guishability between the two types of responses, to
some extent, supports our conjecture.

4 Methodology

4.1 Approach Overview

As illustrated in Fig. 3, we introduce RevPRAG,
a pipeline designed to leverage LLM activations
for detecting knowledge poisoning attacks in RAG
systems. It contains three major modules: poi-
soning data collection, activation collection and
preprocessing, and RevPRAG detection model de-
sign. Fig. 4 demonstrates a practical application

of RevPRAG for verifying the poisoning status of
LLM outputs. Given a user prompt such as “What
is the name of the highest mountain?”’, the LLM
will provide a response. Meanwhile the activa-
tions generated by the LLM will be collected and
analyzed in RevPRAG. If the model classify the
activations as poisoned behavior, it will flag the cor-
responding response (such as "Fuji") as a poisoned
response. Otherwise, it will confirm the response
(e.g. "Everest") as the correct answer.

4.2 Poisoning Data Collection

Our method seeks to extract the LLM’s activations
that capture the model’s generation of a specific
poisoned response triggered by receiving poisoned
texts at a given point in time. Therefore, we first
need to implement poisoning attacks on RAG that
can mislead the LLM into generating target poi-
soned responses. There are three components in
RAG: knowledge database, retriever, and LLM. In
order to successfully carry out a poisoning attack
on RAG and compel the LLM to generate the tar-
geted poisoned response, the initial step is to craft
a sufficient amount of poisoned texts and inject
them into the knowledge database. In this paper,
in order to create effective poisoned texts for our
primary focus on detecting poisoning attacks, we
employ three state-of-the-art strategies (i.e., Poi-
sonedRAG (Zou et al., 2024), GARAG (Cho et al.,
2024), and PAPRAG (Zhong et al., 2023)) for gen-
erating poisoned texts and increasing the similarity
between the poisoned texts and the queries, to raise
the likelihood that the poisoned texts would be se-
lected by the retriever. A detailed introduction of

Retrieval Prompt

User Question: / LS R
What is the name of the highest D> OXOY ------- o oo -]M WeEmEse
s »)
L L mountain? Question: What is the name of
Eeal Encoder E; the highest mountain?
\ Please generate a response for.
Question: P the question based on the
i i context.
What is tr])e name of the highest ’ p Similarity Top F most
mountain? Inject @3 Collect Score relevant passages
Target Answer: e N TN [P Enlen) -
A - Ln Generation
Fuji Embedding

Poisoned Text:

Wikipedia Knowledge
& k Database C'

Vector

RES-> i

Among all mountains, Mount Fuji stands!
the tallest, reaching the highest peakj

1. Poisoning Data Collection

Answer

LLM

f(za) .
e Positiys f(=p) ¢ By
fz.) o

Distance Calculate
Deep Architecture

3. RevPRAG Model Design

Activation
Normalization

:.'- PR ||17||

LM

Activation Collection

Activations

2. Activation Collection & Preprocessing

Figure 3: The workflow of RevPRAG.

13002

What is the name of the
highest mountain?

User Q

e

" This is a poisoned
Fuji [answer!

@ Answer

Retrieval LLM

Everest ¢== Thisai:;” t;t:!rrect

Answer

Figure 4: An instance of using RevPRAG.

these methods can be found in Section A.2. The
retrieved texts and the question are combined into
a new prompt, following the format in (Zou et al.,
2024) (see Fig. 6 in Section A.3), for LLM answer
generation.

4.3 Activation Collection and Processing

For an LLM input sequence X = (t1,to, - ,ty),
we extract the activations Act,, for the last token x,,
in the input across all layers in the LLM as a sum-
mary of the context. The activations Act,, contain
the inner representations of the LLM’s knowledge
related to the input. When the LLM generates a
response based on a question, it traverses through
all layers, retrieving knowledge relevant to the in-
put to produce an answer (Meng et al., 2023). We
collect two types of activations: correct activations
(labeled as 1), obtained when the LLM retrieves ac-
curate content and generates the correct response;
and poisoned activations (labeled as 0), obtained
when the LLM retrieves poisoned content and pro-
duces the attacker’s target response.

We introduce normalization of the activations
for effective integration into the training process.
We calculate the mean g and standard deviation o
of the activations across all instances in the dataset.
Then, we use the obtained y and o to normalize the
activations with the formula:

Act" = (Acty, —) /o. (1)

4.4 RevPRAG Model Design

After collecting and preprocessing the activation
dataset, we partition it into a training set Dyyqin,
a test set Dyes, and a support set S to facili-
tate the construction and evaluation of the probe
model. Drawing inspiration from few-shot learning
and Siamese networks, the proposed RevPRAG
model is designed to effectively distinguish be-
tween clean and poisoned responses, while demon-
strating strong generalization capabilities even un-
der limited data conditions. To efficiently capture

both intra-layer and inter-layer relationships within
the LLM, we employ Convolutional Neural Net-
works (CNNs) based on the ResNetl8 architec-
ture (He et al., 2016). Additionally, we adopt a
triplet network structure, in which three subnet-
works with shared architecture and weights are
used to learn task embeddings, as illustrated in
Fig. 3.

During training, we employ the triplet margin
loss (Schroff et al., 2015), a commonly used ap-
proach for tasks where it is difficult to distinguish
similar instances. The training data is randomly di-
vided into triplets consisting of an anchor instance
T4, a positive instance x,, and a negative instance
Zn, wWhere the anchor and positive belong to the
same class, while the anchor and negative come
from different classes. The triplet margin loss func-
tion is formally defined as:

L = max (Dist(zq, z,) — Dist(zq, zp)
+ margin, O), 2)

where Dist(+, -) denotes a distance metric (typically
the Euclidean distance), and margin is a positive
constant. The training objective is to encourage
the RevPRAG embedding model to output closer
embedding vectors for any x, and x,, but farther
for any z, and x,,.

At test time, given a test sample x;, we compute
the distance between its embedding and the em-
bedding of the support sample zs,xs € S. The
support set S refers to a dataset comprising labeled
data, denoted as {zs, , ..., s, }, and corresponding
labels are {sz1 g Ly } It provides a reference
for comparison and classification of new, unseen
test data. The main purpose of the support set is to
help determine labels for the test data. The label
of the test data x; will be determined according to
the label of the support sample x5 that is closest to
it. That is, x; is assigned the label of x5, meaning
Ty, = Ty, where x5 = argmin;Dist(xy, zs,).
Here, x; is the nearest support data to the test data
Tt.

5 [Evaluation

5.1 Experimental Setup

RAG Setup. RAG comprises three key compo-
nents: knowledge database, retriever, and LLM.
The setup is shown below:

e Knowledge Database: We leverage three
representative benchmark question-answering

13003

datasets in our evaluation: Natural Questions
(NQ) (Kwiatkowski et al., 2019), HotpotQA (Yang
et al., 2018), MS-MARCO (Bajaj et al., 2016).
Please note that RevPRAG can be expanded to
cover poisoning attacks towards any other datasets
used for RAG systems, not limited to the datasets
used in this paper. The detailed usage instructions
for the dataset are provided in Section A.1.

e Retriever: In our experiments, we evalu-
ate four state-of-the-art dense retrieval models:
Contriever (Izacard et al., 2021) (pre-trained),
Contriever-ms (fine-tuned on MS-MARCO) (Izac-
ard et al., 2021), DPR-mul (Karpukhin et al., 2020)
(trained on multiple datasets), and ANCE (Xiong
et al., 2020) (trained on MS-MARCO).

e LLLM: Our experiments are conducted on sev-
eral popular LLMs, each with distinct architectures
and characteristics, including GPT2-XL 1.5B (Rad-
ford et al., 2019), Llama2-7B (Touvron et al., 2023),
Llama2-13B, Mistral-7B (Jiang et al., 2023), and
Llama3-8B.

Unless otherwise specified, we adopt the follow-
ing default settings: HotpotQA as the knowledge
base, Contriever as the retriever, GPT2-XL 1.5B
as the LLLM, and 100 support samples. Moreover,
we use the dot product between the embedding
vectors of a question and a text to measure their
similarity. Poisoned texts are generated following
PoisonedRAG (Zou et al., 2024). Consistent with
prior work (Lewis et al., 2020), we retrieve the 5
most similar texts from the knowledge database to
serve as context for a given question.

Baselines. We compared RevPRAG with five ex-
isting methods, and although they were not specif-
ically designed for detecting RAG poisoning at-
tacks, we investigated their potential applications
in this domain. CoS (Li et al., 2024) is a black-
box approach that guides the LLM to generate de-

tailed reasoning steps for the input, subsequently
scrutinizing the reasoning process to ensure con-
sistency with the final answer. MDP (Xi et al,,
2024) is a white-box method that exploits the dis-
parity in masking sensitivity between poisoned and
clean samples. LLLM Factoscope (He et al., 2024)
leverages the internal states of LLMs to detect hal-
lucinations, and we investigate its use for identi-
fying poisoning attacks in RAG systems. Both
RoBERTa (Pan et al., 2023) and Discern (Hong
et al., 2024) employ an additional discriminator to
distinguish whether the content retrieved by RAG
consists of accurate documents or those that con-
tradict factual information.

Evaluation Metrics.

e The True Positive Rate (TPR), which mea-
sures the proportion of effectively poisoned re-
sponses that are successfully detected. A higher
TPR signifies better detection performance for poi-
soned responses, with a correspondingly lower rate
of missed detections (i.e., lower false negative rate).

e The False Positive Rate (FPR), which quan-
tifies the proportion of correct responses that are
misclassified as being caused by poisoning attacks.
A lower FPR indicates fewer false positives for cor-
rect answers, minimizing disruption to the normal
operation of RAG. Our goal is to detect poisoned re-
sponses as effectively as possible while minimizing
the impact on RAG’s normal functionality, which
is why we have selected these two metrics.

5.2 Opverall Results

RevPRAG achieves high TPRs and low FPRs.
Table 1 shows the TPRs and FPRs of RevPRAG
on three datasets. We have the following ob-
servations from the experimental results. First,
RevPRAG achieved high TPRs consistently on
different datasets and LLMs when injecting five

Table 1: RevPRAG achieved high TPRs and low FPRs on three datasets for RAG with five different LLMs.

. LLMs of RAG
Dataset Metrics
GPT2-XL . Llama2-
L5B Llama2-7B Mistral-7B Llama3-8B 13B
NQ TPR 0.982 0.994 0.985 0.986 0.989
FPR 0.006 0.006 0.019 0.009 0.019
TPR 0.972 0.985 0.977 0.973 0.970
HotpotQA
FPR 0.016 0.061 0.022 0.017 0.070
TPR 0.988 0.989 0.999 0.978 0.993
MS-MARCO
FPR 0.007 0.012 0.001 0.011 0.025

13004

Table 2: RevPRAG achieved high TPRs and low FPRs
on HotpotQA for RAG with four different retrievers.

. LLMs of RAG
Attack Metrics
GPT2-XL]
158 Llama2-7B Mistral-7B
. TPR 0.972 0.985 0.977
Contriever
FPR 0.016 0.061 0.022
. TPR 0.987 0.983 0.998
Contriever-ms
FPR 0.057 0.018 0.012
TPR 0.979 0.966 0.999
DPR-mul
FPR 0.035 0.075 0.001
TPR 0.978 0.981 0.993
ANCE
FPR 0.042 0.028 0.023

poisoned texts into the knowledge database. For in-
stance, RevPRAG achieved 98.5% (on NQ), 97.7%
(on HotpotQA), and 99.9% (on MS-MARCO)
TPRs for RAG with Mistral-7B. Our experimental
results show that assessing whether the output of
a RAG system is correct or poisoned based on the
activations of LLMs is both highly feasible and
reliable (i.e., capable of achieving exceptional ac-
curacy). Second, RevPRAG achieves low FPRs
under different settings, e.g., close to 1% in nearly
all cases. This result indicates that our approach
not only maximizes the detection of poisoned re-
sponses but also maintains a low false positive rate,
significantly reducing the risk of misclassifying
correct answers as poisoned.

We also conduct experiments on different re-
trievers. Table 2 shows that our approach consis-
tently achieved high TPRs and low FPRs across
RAG with various retrievers and LLMs. For
instance, RevPRAG achieves 97.2% (with Con-
triever), 98.7% (with Contriever-ms), 97.9% (with
DPR-mul), 97.8% (with ANCE) TPRs alongside

1.6% (with Contriever), 5.7% (with Contriever-ms),
3.5% (with DPR-mul), and 4.2% (with ANCE)
FPRs for RAG when using GPT2-XL 1.5B.

RevPRAG outperforms baselines. Table 3
compares RevPRAG with baselines for RAG using
Llama3-8B under the default settings. The overall
results demonstrate the superiority of our approach.
Meanwhile, several key observations can be drawn
from the comparison. First, the limited effective-
ness of CoS (Li et al., 2024) may stem from its de-
sign focus on detecting backdoor attacks in LLMs
via trigger-to-output shortcuts, which differs from
RAG’s attack surface involving poisoned knowl-
edge base entries. Second, MDP (Xi et al., 2024)
achieves good TPRs, but it also exhibits relatively
high FPRs, reaching as much as 37.2%. LLM Fac-
toscope (He et al., 2024) leverages multiple internal
states of LLMs, relying on layer-wise consistency
for effective hallucination detection. However, it
may not be suitable for targeted attacks like poi-
soning, and the use of diverse state data increases
computational overhead and discriminator model
complexity (Section 5.6). Input-based methods
such as MDP (Xi et al., 2024), RoBERTa (Pan
et al., 2023), and Discern (Hong et al., 2024) aim
to detect whether the input is poisoned. In contrast,
our method focuses on determining whether the re-
sponses generated by RAG are correct or poisoned,
as response correctness offers a more robust signal
of poisoning attacks.

5.3 Ablation Study

Different methods for generating poisoned texts.
To ensure the effectiveness of the evaluation, we
employ three different methods introduced by Poi-
sonedRAG, GARAG, and PRCAP to generate the
poisoned texts. The experimental results in Table 4

Table 3: RevPRAG outperforms baselines.

Baselines and Our Method

Dataset Metrics
CoS (Lietal, MDP (Xi lec‘x eF ;"'}cl:’ RoBERTa (Pan Discern (Hong ()
2024) et al., 2024) et al., 2024) et al., 2023) et al., 2024)

NQ TPR 0.488 0.946 0.949 0.977 0.810 0.986
FPR 0.146 0.108 0.033 0.063 0.112 0.009

TPR 0.194 0.886 0.939 0.956 0.817 0.973

HotpotQA

FPR 0.250 0.372 0.021 0.018 0.101 0.017

TPR 0.771 0.986 0.945 0.946 0.795 0.978

MS-MARCO

FPR 0.027 0.181 0.028 0.070 0.101 0.011

13005

Table 4: The TPRs and FPRs of RevPRAG for different
poisoned text generation methods on HotpotQA.

. LLMs of RAG
Attack Metrics
GPSSZI;XL Llama2-7B Mistral-7B
. TPR 0.972 0.985 0.977
PoisonedRAG

FPR 0.016 0.061 0.022

TPR 0.961 0.976 0.974
GARAG

FPR 0.025 0.046 0.026

TPR 0.966 0.986 0.965
PRCAP

FPR 0.012 0.061 0.022

show that RevPRAG consistently achieves high
TPRs and low FPRs when confronted with poi-
soned texts generated by different strategies. For
instance, RevPRAG achieved 97.2% (with GPT2-
XL 1.5B), 98.5% (with Llama2-7B), and 97.7%
(with Mistral-7B) TPRs for poisoned texts gener-
ated with PoisonedRAG.

Table 5: The TPRs and FPRs of RevPRAG for different
quantities of injected poisoned text on HotpotQA (total
retrieved texts: five).

. . LLMs of RAG
Quantity Metrics
GPT2-XL .
1.5B Llama2-7B Mistral-7B
TPR 0.972 0.985 0.977
five
FPR 0.016 0.061 0.022
TPR 0.976 0.977 0.986
four
FPR 0.034 0.047 0.033
TPR 0.963 0.986 0.995
three
FPR 0.011 0.043 0.004
TPR 0.971 0.995 0.991
two
FPR 0.011 0.047 0.005
TPR 0.970 0.988 0.989
one
FPR 0.049 0.031 0.022

Quantity of injected poisoned texts. Ta-
ble 5 illustrates the impact of varying quantities
of poisoned text on the detection performance
of RevPRAG. The more poisoned texts are in-
jected, the higher the likelihood of retrieving them
for RAG processing. From the experimental re-
sults, we observe that even with varying amounts
of injected poisoned text, RevPRAG consistently
achieves high TPRs and low FPRs. For example,
when the total number of retrieved texts is five and
the injected quantity is two, RevPRAG achieves a
99.5% TPR and a 4.7% FPR for RAG with Llama2-

7B. The reason for this phenomenon is that the
similarity between the retrieved poisoned texts and
the query is higher than that of clean texts. Conse-
quently, the LLM generates responses based on the
content of the poisoned texts.

Effects of different support set size. In
RevPRAG, support data provides essential labeled
and task-specific information, facilitating effective
reasoning and learning under limited data condi-
tions. We experiment with various support set sizes
ranging from 50 to 250 to examine their effect
on the performance of RevPRAG. The results in
Fig. 5 indicate that varying the support size does
not significantly impact the model’s detection per-
formance.

Llama2-7B

GPT2-XL 1.5B

o

101 p—

°

®
°
@

°
>
°

—— TPRNQ
TPR HotpotQA
TPR MS-MARCO
<= FPRNQ
FPR HotpotQA
FPR MS-MARCO

—— TPRNQ
TPR HotpotQA
TPR MS-MARCO
== FPRNQ
FPR HotpotQA
FPR MS-MARCO

°
S

°
b
Performance

Performance

°
°

°

°
°
°

200 50 200

100 150 100 150
Support Size Support Size

Figure 5: Effects of support set size.

5.4 RevPRAG’s Performance on Complex
Open-Ended Questions

In this section, we conducted a series of experi-
ments to evaluate the performance of RevPRAG
on complex, open-ended questions (e.g., “how fo
make relationship last?”). These questions present
unique challenges due to their diverse and un-
structured nature, in contrast to straightforward,
closed-ended questions (e.g., “What is the name of
the highest mountain?”). In our experiments, the
NQ, HotpotQA, and MS-MARCO datasets primar-
ily consist of close-ended questions. As a result,
the majority of our previous experiments focused
on close-ended problems, which was our default
experimental setting. In this study, we utilized
the advanced GPT-4o to filter and extract 3,000
open-ended questions from the HotpotQA and MS-
MARCO datasets for training and testing the model.
For open-ended questions, cosine similarity is em-
ployed to evaluate whether the LLM’s response
aligns with the attacker’s target response. If the
similarity surpasses a predefined threshold, it is
considered indicative of a successful attack.

The experimental results are shown in Table 6.
We can observe that RevPRAG demonstrates excel-
lent detection performance even on complex open-

13006

Table 6: RevPRAG achieved high TPRs and low FPRs
on the open-ended questions from HotpotQA and MS-
MARCO datasets.

Table 7: Performance of RevPRAG on noisy datasets.

Dataset Metrics GPITSZI;XL Llama3-8B
Dataset Metri LLMs of RAG
atase etrics
' GPT2-XL) TPR 0.980 0.977
158 Llama2-7B Mistral-7B Llama3-8B NOiSyiNQ
TPR 0982 0.995 0.991 0.982 FPR 0.034 0.012
HotpotQA
FPR 0.033 0.029 0.008 0.007 . TPR 0.969 0974
MS-MARCO TPR 0.988 0.989 0.990 0.983 Noisy_HotpotQA

FPR 0.009 0.009 0.001 0.017 FPR 0.026 0.011

TPR 0.989 0.977

Noisy_MS-MARCO
FPR 0.013 0.018

ended questions. For example, RevPRAG achieved
TPRs of 99.1% on HotpotQA and 99.0% on MS-
MARCO, alongside FPRs of 0.8% on HotpotQA
and 0.1% on MS-MARCO for RAG utilizing the
Mistral-7B model.

5.5 Effect of Real-world Natural Text Noise
on Detection Performance

To better approximate real-world scenarios, we in-
jected natural textual noise (e.g., spelling and gram-
matical errors) into clean texts using the GPT-40
model. Noise was introduced in a controlled man-
ner to preserve semantics while simulating realistic
imperfections. Specifically, 50% of the clean texts
were modified, with noise accounting for 10% of
the total word count in each case. Notably, noise
injection was applied only to clean texts, as poi-
soned texts are typically well-formed to maximize
attack effectiveness and thus unlikely to contain
such artifacts.

As shown in Table 7, the experimental results
indicate that injecting a certain amount of natural
noise into clean texts does not significantly affect
the detection performance of our proposed method.
This further demonstrates the robustness of our
approach. We attribute this to two main factors.
First, the textual perturbations introduced by poi-
soning attacks are fundamentally different in nature
from natural noise, and this distinction is clearly
reflected in the activation vectors of the LLM. Sec-
ond, LL.Ms are inherently robust to natural noise,
which does not substantially interfere with their
ability to generate correct responses.

5.6 Efficiency

Table 8 compares the time overhead between LLM
Factoscope (He et al., 2024) and RevPRAG when
the LLM in RAG is Llama3-8B, including the av-
erage training time per epoch and the average in-
ference time per test sample. This experiment was
conducted using 1,000 training samples and 500

test samples, with poisoned and clean examples
each accounting for 50%. The results demonstrate
that RevPRAG, with its task-specific architecture
and carefully selected detection metrics, incurs sig-
nificantly lower computational costs than LLM Fac-
toscope, which integrates multiple sub-models for
hallucination detection. Its efficient detection capa-
bility makes RevPRAG particularly well-suited for
latency-sensitive RAG scenarios, underscoring its
practical value.

Table 8: Comparison of time overhead.

Training Time per Epoch Inference Time per Sample

Dataset

LLM factoscope RevPRAG LLM factoscope RevPRAG

NQ 91.61s 19.31s 0.0051s 0.0021s

HotpotQA 101.25s 23.69s 0.0066s 0.0023s

MS-MARCO 94.47s 20.72s 0.0058s 0.0022s

6 Conclusion

In this work, we find that correct and poisoned re-
sponses in RAG exhibit distinct differences in LLM
activations. Building on this insight, we develop
RevPRAG, a detection pipeline that leverages these
activations to identify poisoned responses in RAG
caused by the injection of malicious texts into the
knowledge database. Our approach demonstrates
robust performance across RAGs utilizing five dif-
ferent LLLMs and four distinct retrievers on three
datasets. Experimental results show that RevPRAG
achieves exceptional accuracy, with true positive
rates approaching 98% and false positive rates near
1%. Ablation studies further validate its effective-
ness in detecting poisoned responses across differ-
ent types and levels of poisoning attacks. Overall,
our approach can accurately distinguish between
correct and poisoned responses.

13007

Acknowledgment.

Ping Chen, Xiaoyan Sun, and Jun Dai are the
corresponding authors. This research was sup-
ported by the National Key R&D Program of China
2023YFB3107404.

Limitations.

Our work has the following limitations:

* This work does not propose a specific method
for defending against poisoning attacks on
RAG. Instead, our focus is on the timely de-
tection of poisoned responses generated by
the LLM, aiming to prevent potential harm to
users from such attacks.

* Our approach requires accessing the activa-
tions of the LLM, which necessitates the
LLM being a white-box model. While this
may present certain limitations for users, our
method can be widely adopted by LLM ser-
vice providers. Providers can implement our
strategy to ensure the reliability of their ser-
vices and enhance trust with their users.

* Our approach primarily focuses on determin-
ing whether the response generated by the
RAG is correct or poisoned, without delving
into more granular distinctions. The main goal
of our study is to protect users from the im-
pact of RAG poisoning attacks, while more
detailed classifications of RAG responses will
be addressed in future work.

Ethics Statement

The goal of this work is to detect whether a RAG
has generated a poisoned response. All the data
used in this study is publicly available, so it does
not introduce additional privacy concerns. All
source code and software will be made open-source.
While the open-source nature of the code may lead
to adaptive attacks, we can further enhance our
model by incorporating more internal and external
information. Overall, we believe our approach can
further promote the secure application of RAG.

References

Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin,
Ahmed Salem, Mario Fritz, and Andrew Paverd.
2024. Are you still on track!? catching llm task drift
with activations. arXiv preprint arXiv:2406.00799.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Anish Athalye, Nicholas Carlini, and David Wagner.
2018. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial exam-
ples. In International conference on machine learn-

ing, pages 274-283. PMLR.

Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C
Park, and Sung Hwang. 2023. Knowledge-
augmented language model verification. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 1720-1736.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, and
1 others. 2016. Ms marco: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vin-
cent Wang, and Nicholas Carlini. 2021. Evading
adversarial example detection defenses with orthog-
onal projected gradient descent. arXiv preprint
arXiv:2106.15023.

Nicholas Carlini. 2023. A llm assisted exploitation of
ai-guardian. arXiv preprint arXiv:2307.15008.

Nicholas Carlini and David Wagner. 2017. Adver-
sarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th
ACM workshop on artificial intelligence and security,
pages 3—14.

Sukmin Cho, Soyeong Jeong, Jeongyeon Seo, Tacho
Hwang, and Jong C Park. 2024. Typos that broke the
rag’s back: Genetic attack on rag pipeline by simulat-
ing documents in the wild via low-level perturbations.
arXiv preprint arXiv:2404.13948.

Sukmin Cho, Jeongyeon Seo, Soyeong Jeong, and
Jong C Park. 2023. Improving zero-shot reader by
reducing distractions from irrelevant documents in
open-domain question answering. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 3145-3157.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and
Marta R Costa-jussa. 2024. A primer on the in-
ner workings of transformer-based language models.
arXiv preprint arXiv:2405.00208.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,
Christoph Endres, Thorsten Holz, and Mario Fritz.
2023. Not what you’ve signed up for: Compromis-
ing real-world llm-integrated applications with indi-
rect prompt injection. In Proceedings of the 16th
ACM Workshop on Artificial Intelligence and Secu-
rity, pages 79-90.

Jinwen He, Yujia Gong, Zijin Lin, Yue Zhao, Kai Chen,
and 1 others. 2024. Llm factoscope: Uncovering
Ilms’ factual discernment through measuring inner
states. In Findings of the Association for Computa-
tional Linguistics ACL 2024, pages 10218—-10230.

13008

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—

778.

Giwon Hong, Jeonghwan Kim, Junmo Kang, Sung-
Hyon Myaeng, and Joyce Whang. 2024. Why
so gullible? enhancing the robustness of retrieval-
augmented models against counterfactual noise. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 2474-2495.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 7029-7043.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Ruochen Jiao, Shaoyuan Xie, Justin Yue, Takami Sato,
Lixu Wang, Yixuan Wang, Qi Alfred Chen, and
Qi Zhu. 2024. Exploring backdoor attacks against
large language model-based decision making. arXiv
preprint arXiv:2405.20774.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen Tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, pages 6769-6781.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, and 1 others. 2019. Natural questions: a
benchmark for question answering research. Trans-

actions of the Association for Computational Linguis-
tics, 7:453-466.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, and 1 others. 2020. Retrieval-augmented

generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems,
33:9459-9474.

Xi Li, Yusen Zhang, Renze Lou, Chen Wu, and Jiaqi
Wang. 2024. Chain-of-scrutiny: Detecting backdoor
attacks for large language models. arXiv preprint
arXiv:2406.05948.

Lefteris Loukas, Ilias Stogiannidis, Odysseas Dia-
mantopoulos, Prodromos Malakasiotis, and Stavros
Vassos. 2023. Making llms worth every penny:
Resource-limited text classification in banking. In
Proceedings of the Fourth ACM International Con-
ference on Al in Finance, pages 392-400.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav
Nakov, Min-Yen Kan, and William Wang. 2023. On
the risk of misinformation pollution with large lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
1389-1403.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 5687-5711.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAl blog, 1(8):9.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815-823.

Ian Soboroff, Shudong Huang, and Donna Harman.
2018. Trec 2018 news track overview. In TREC,
volume 409, page 410.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evalua-

tion of information retrieval models. arXiv preprint
arXiv:2104.08663.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. 2020. On adaptive attacks to
adversarial example defenses. Advances in neural
information processing systems, 33:1633—-1645.

13009

Zhepei Wei, Wei-Lin Chen, and Yu Meng. 2024.
Instructrag: Instructing retrieval-augmented gen-
eration with explicit denoising. arXiv preprint
arXiv:2406.13629.

Zhaohan Xi, Tianyu Du, Changjiang Li, Ren Pang,
Shouling Ji, Jinghui Chen, Fenglong Ma, and Ting
Wang. 2024. Defending pre-trained language models
as few-shot learners against backdoor attacks. Ad-
vances in Neural Information Processing Systems,
36.

Chong Xiang, Tong Wu, Zexuan Zhong, David Wagner,
Dangi Chen, and Prateek Mittal. 2024. Certifiably
robust rag against retrieval corruption. arXiv preprint
arXiv:2405.15556.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Jiaqi Xue, Mengxin Zheng, Yebowen Hu, Fei Liu, Xun
Chen, and Qian Lou. 2024. Badrag: Identifying vul-
nerabilities in retrieval augmented generation of large
language models. arXiv preprint arXiv:2406.00083.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint
arXiv:2310.01558.

Zexuan Zhong, Ziging Huang, Alexander Wettig, and
Dangi Chen. 2023. Poisoning retrieval corpora by in-
jecting adversarial passages. In 2023 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2023, pages 13764-13775.

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan
Jia. 2024. Poisonedrag: Knowledge corruption at-
tacks to retrieval-augmented generation of large lan-
guage models. arXiv preprint arXiv:2402.07867.

A Training Details
A.1 Dataset

As shown in Table 9, we present the average re-
sponse lengths for both poisoned and correct an-
swers generated by GPT2-XL across three datasets
(NQ, HotpotQA, and MS-MARCO), along with
examples illustrating each answer format for a spe-
cific question. To evaluate the detection of poi-
soning attacks on the knowledge base of RAG, we
selected 3,000 instances of triples (q,t,a) from

each of the three evaluation datasets mentioned
above. In each triple, ¢ denotes a question, ¢ repre-
sents the supporting text collected from Wikipedia
or web documents corresponding to ¢, and a is the
correct answer to g, generated using the state-of-
the-art GPT-4 model. Among these 3,000 triplets,
1,500 are randomly selected as benign instances,
while the remaining 1,500 are designated as poi-
soned instances. For each poisoned instance, the
poisoned answer a, is generated by GPT-4 for
the given question ¢, and the poisoned text ¢, is
crafted using existing poisoning strategies, includ-
ing PoisonedRAG (Zou et al., 2024), GARAG (Cho
et al., 2024), and PRCAP (Zhong et al., 2023). The
dataset is split into 70% for training, 20% for test-
ing, and 10% as a support set. Within the training
set, samples are randomly grouped into triplets
(anchor, positive, negative), where the anchor and
positive belong to the same class, and the negative
belongs to a different class.

A.2 Poisoned Texts Generation

To ensure that the retrieved poisoned texts success-
fully achieve the poisoning effect, we employ three
existing methods PoisonedRAG (Zou et al., 2024),
GARAG (Cho et al., 2024), and PRCAP (Zhong
et al., 2023) to generate the poisoned texts. In the
PoisonedRAG (Zou et al., 2024) method, the at-
tacker first selects a target question along with its
corresponding incorrect answer. The attacker then
optimizes the design of the poisoned text to ensure
that it meets two key criteria: (1) retrievability by
the retriever and (2) effectiveness in misleading the
language model to generate the incorrect answer.
GARAG (Cho et al., 2024) is a novel adversarial
attack algorithm that generates adversarial docu-
ments by subtly perturbing clean ones while pre-
serving answer tokens. Through iterative crossover,
mutation, and selection, it optimizes the documents
to maximize adversarial effectiveness within the
defined search space. PRCAP (Zhong et al., 2023)
is a gradient-based method, which starts from a
natural-language passage and iteratively perturbs it
in the discrete token space to maximize its similar-
ity to a set of training queries.

It’s worth noting that the generation method for
poisoned texts can be any approach that success-
fully achieves the poisoning effect. Once the acti-
vations of both correct and poisoned responses are
obtained, we preprocess and use them for training
and testing the RevPRAG model.

13010

Table 9: Statistical data and format of the responses.

Dataset Average Word Count An Example of Response
of Response
NQ Poisoned Response: 7 Question: where is the food stored in a yam plant?

Correct Response: 12

Poisoned Response: In the leaves.
Correct Response: In the tuber.

HotpotQA Poisoned Response: 8
Correct Response: 11

Question: Which actor starred in Assignment to Kill
and passed away in 2000?

Poisoned Response: Patrick O’Neal.

Correct Response: John Gielgud.

MS-MARCO Poisoned Response: 16
Correct Response: 24

Question: what is hardie plank?

Poisoned Response: Hardie plank is a wood flooring
option that is used for a variety of home styles.
Correct Response: Hardie Plank is a brand of fiber
cement siding.

A.3 Prompt

The following is the system prompt for RAG, in-
structing an LLM to produce a response based on
the provided context:

/ You are a helpful assistant. The user has provided a query\
along with relevant context information. Use this context
to answer the question briefly and clearly. If you cannot
find the answer to the question, respond with "I don’t
know."

Contexts: [context]
Query: [question]

\ Answer: J

Figure 6: The prompt used in RAG to make an LLM
generate an answer based on the retrieved texts.

A.4 Environment

We conduct experiments on a server with 64 AMD
EPYC 9654 CPUs (64 logical cores enabled) at
2.40-3.70 GHz, 512 GB of DDR5 RAM (assumed
based on high-core-count server standards), and
four NVIDIA RTX A6000 GPUs, each with 48 GB
GDDR6 memory.

13011

