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Abstract

Recent advancements in Large Multimodal
Models (LMMs) have showcased their im-
pressive capabilities in mathematical reason-
ing tasks in visual contexts. As a step to-
ward developing AI models to conduct rigor-
ous multi-step multimodal reasoning, we in-
troduce StatsChartMWP, a real-world educa-
tional dataset for evaluating visual mathemati-
cal reasoning abilities on math word problems
(MWPs) with statistical charts. Our dataset
contains 8,514 chart-based MWPs, meticu-
lously curated by K-12 educators within real-
world teaching scenarios. We provide de-
tailed preprocessing steps and manual anno-
tations to help evaluate state-of-the-art mod-
els on StatsChartMWP. Comparing baselines,
we find that current models struggle in under-
taking meticulous multi-step mathematical rea-
soning among technical languages, diagrams,
tables, and equations. Towards alleviate this
gap, we introduce CoTAR, a chain-of-thought
(CoT) augmented reasoning solution that fine-
tunes the LMMs with solution-oriented CoT-
alike reasoning steps. The LMM trained with
CoTAR is more effective than current open-
source approaches. We conclude by shed-
ding lights on challenges and opportunities
in enhancement in LMMs and steer future re-
search and development efforts in the realm
of statistical chart comprehension and analy-
sis. The code and data are available at https:
//github.com/ai4ed/StatsChartMWP.

1 Introduction

Recently developed Large Multimodal Models
(LMMs), exemplified by the latest GPT-4o (Ope-
nAI, 2024) and Qwen2-VL (Wang et al., 2024b),
show promising capabilities of understanding both
images and texts (Liu et al., 2024b). However, even
the latest LMMs often falter when required to per-
form multi-step mathematical reasoning in visual

*The corresponding author: Zitao Liu

contexts (Cobbe et al., 2021). Visual reasoning
tasks require LMMs to interpret comprehensive
mathematical implications from combined repre-
sentations of visual entities, i.e., diagrams and ta-
bles, and natural languages, i.e., question content
and execute stringent multi-step reasoning based on
these learned representations simultaneously. This
exposes a significant shortcoming in contemporary
LMMs.

Various visual question answering (VQA)
datasets, including FigureQA (Kahou et al., 2017),
PlotQA (Methani et al., 2020), and ChartQA
(Masry et al., 2022), have been developed to eval-
uate the mathematical reasoning capabilities of
LMMs in visual contexts. As shown in Figure
1, which presents example images and question-
answer pairs from these datasets, the average
number of reasoning steps required (as analyzed
by GPT-4) is surprisingly low - merely 0.09 for
ChartQA and 0.45 for FigureQA. This reveals a
critical limitation: most questions in these datasets
only require direct visual extraction of information
rather than sophisticated mathematical reasoning.
This shallow level of cognitive demand fails to
assess LMMs’ true capabilities in complex visual-
mathematical reasoning. Therefore, there is a press-
ing need for a more challenging benchmark that
promotes the development of sophisticated math-
ematical reasoning in visual contexts and better
evaluates the ability of LMMs to handle tasks re-
quiring deep integration of visual understanding
and mathematical reasoning.

In this paper, we choose to use math word
problems (MWPs) with statistical charts to assess
the multi-step mathematical reasoning abilities of
LLMs and LMMs in visual contexts. A typical
MWP with statistical charts is made up of mixed
question contents of natural languages, notations
and equations and a statistical chart that expresses
mathematical quantities and relations. We provide
a real-world example in Figure 1, where the dataset
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Q: What percentage of people are favorable?
A: 10

Q: What is the difference between the very 
unfavorable and the Favorable?
A: 69

Q: Is Olive the minimum?
A: Yes

Q: Is Purple greater than Olive?
A: Yes

学校为了解本校初三年级学生上学的交通方式，随机抽取了本校20名初三学生
进行调查，其中有2名学生是乘私家车上学，图是收集数据后绘制的扇形图.如
果该校初三年级有200名学生，那么骑自行车上学的学生大约有____人．

ChartQA FigureQA StatsChartMWP

Q: In order to understand the transportation methods of the students in the third year 
of junior high school, the school randomly surveyed 20 students, among which 2 
students commute to school by private car. The pie chart was drawn after the data 
was collected. If there are 200 students in the third year of junior high school, then 
the number of students who commute to school by bicycle is approximately _____.
A: 30

private 
car

bicycle

bus

walking

Dataset

Image

QA

R-Steps 2.530.09 0.45

Figure 1: An example illustrating the enhanced mathematical reasoning capabilities of our dataset in comparison to
other chart available datasets. R-Steps means the average reasoning steps of the dataset.

has an average reasoning step count of 2.53. Suc-
cessfully solving the MWPs with statistical charts
requires models to not only understand every math-
ematical quantity and relation, but conduct rigorous
multi-step reasoning and computation.

We releasing StatsChartMWP, a dataset of 8.5K
high-quality Chinese MWPs with statistical charts
from elementary to high school levels. The
StatsChartMWP dataset contains a rich variety of
11 chart types, including bar, line, line-function,
pie, scatter, composite, radar, dual-axis, histograms,
percentage-bar, tables, which provides opportuni-
ties to conduct fine-grained model performance
analysis across different visual representations. Ev-
ery corresponding statistical chart is meticulously
scanned to guarantee optimal clarity and accu-
racy. Due to the space limit, we provide more
StatsChartMWP questions samples from each cate-
gory in Appendix A.1.

The StatsChartMWP dataset and its associated
tasks introduce fresh avenues for research by pre-
senting several technical hurdles: (1) the represen-
tation of innovative visual mediums of artificial
figures such as diagrams, tables, and equations;
(2) comprehension of technical language and equa-
tions; (3) the task of cross-modal alignment be-
tween figures and natural language; and (4) under-
taking meticulous multi-step mathematical reason-
ing within visual contexts. Our quantitative stud-
ies reveal that current LMMs grapple with these
challenges. To address the issue of weak multi-
step multimodal mathematical reasoning abilities,
we propose a chain-of-thought (CoT) augmented
reasoning approach, i.e., CoTAR, a solution of gen-
erating solution-oriented CoT-alike reasoning steps

for LMMs training. While our approach yielding
some advancement, the StatsChartMWP dataset
continues to present unique challenges that promise
to ignite future research in the fields of educational
content modeling, multimodal reasoning, and ques-
tion answering.

Overall this paper makes the following contribu-
tions:

• We present a comprehensive dataset of 8.5K
K-12 school MWPs with 11 types of statistical
charts and natural language solutions, useful
for probing the informal reasoning ability in
visual contexts of LLMs and LMMs.

• We conducted an in-depth analysis of error
types and visual token lengths in current
LMMs, providing insightful directions for fu-
ture improvements in multi-step mathematical
reasoning models within visual contexts.

• We introduce CoTAR, a data augmentation
strategy that leverages Chain-of-Thought (Wei
et al., 2022) reasoning to mitigate the cross-
modal alignment issues between image and
text representations. We can fine-tune any
effective LMM base models with CoTAR-
enhanced dataset to improve their multi-step
mathematical reasoning abilities in visual con-
texts.

2 Related Work

Recently, many datasets have been curated to as-
sess the mathematical reasoning abilities of AI
systems within visual contexts. FigureQA (Ka-
hou et al., 2017), PlotQA (Methani et al., 2020),
ChartQA (Masry et al., 2022) and SimChart9K
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Table 1: Comparison with existing datasets. OE: Open-ended, MC: Multiple-choice, FB: Fill-in-the-blank, J:
Judgement. E: elementary school, M: middle school, H: high school, O: Olympiad-level, U: University-Level.

Dataset Category Math-skill Task Chart types Multi-model Question type Grade-level
PlotQA General VQA Statistical Chart Perception 3 × OE -
ChartQA General VQA Statistical Chart Perception 3 × OE -
FigureQA General VQA Statistical Chart Perception 5 × OE -
SimChart9K General VQA Statistical Chart Perception 4 × OE -
TTC-QuAli Math-Target Statistical Chart Perception 1 × OE -
TABMWP Math-Target Statistical MWP 1 × MC,OE E,M
GeoQA Math-Target Geometry MWP - × MC M,H
GeoQA+ Math-Target Geometry MWP - × MC M,H
UniGeo Math-Target Geometry MWP - × MC,OE M,H
PGPS9K Math-Target Geometry MWP - × COM,MC M,H
Geometry3K Math-Target Geometry MWP - × MC M,H
GSM8K Math-Target Comprehensive MWP - × OE E
U-MATH Math-Target Comprehensive MWP - × OE U
MathVista Math-Target Comprehensive MWP 5 × MC,OE -
MathVerse Math-Target Comprehensive MWP - × OE H
CMM-Math Math-Target Comprehensive MWP - × MC,FB,J,OE E,M,H
Math-Vision Math-Target Comprehensive MWP 5 × OE O
OlympiadBench Math-Target Comprehensive MWP - × OE O
StatsChartMWP Math-Target Statistical Statistical WMP 11 × MC,FB,J,OE E,M,H

(Xia et al., 2023) are designed for chart comprehen-
sion and question-answering, serving as important
tools for evaluating an AI model’s capacity to in-
terpret and analyze graphical data. However, these
datasets generally focus more on the interpretation
of charts. The generation of questions typically
relies on predefined templates or manual annota-
tions, and the answers are often directly retrievable
from the charts themselves. TABMWP (Lu et al.,
2023a) and TTC-QuAli (Dong et al., 2024) are
datasets employed for resolving mathematical prob-
lems. However, this dataset offers solely tabular
data, leading to a limited variety in the chart types
offered. GeoQA (Chen et al., 2021), Geometry3K
(Lu et al., 2021), GeoQA+ (Cao and Xiao, 2022),
UniGeo (Chen et al., 2022) and PGPS9K (Zhang
et al., 2023) have been developed to investigate
multimodal mathematical reasoning capabilities.
While these works provide a thorough evaluation
for tackling mathematical geometry problems, all
of these datasets and the corresponding approaches
rely on dense annotation in formal language and
require external geometric or symbolic programs
or solvers to conduct multimodal mathematical rea-
soning. GSM8K (Cobbe et al., 2021) is commonly
used to evaluate and enhance the capability of large
language models in solving mathematical word

problems. However, this dataset does not include
visual images, making it unsuitable for assessing
the mathematical reasoning abilities of multimodal
models. OlympaidBench (He et al., 2024), Math-
Vista (Lu et al., 2023b), Math-Vision (Wang et al.,
2024a), MathVerse (Zhang et al., 2024b), CMM-
Math (Liu et al., 2024c), U-MATH (Chernyshev
et al., 2024) and We-Math (Qiao et al., 2024) pro-
vide comprehensive benchmarks for evaluating the
LMMs’ mathematical reasoning abilities. However,
these datasets predominantly emphasize problems
pertaining to geometry and functions, thereby over-
looking the domain of statistics.

The StatsChartMWP dataset is the pioneer in
providing question texts and visual diagrams en-
compassing a wide range of K-12 statistical knowl-
edge, including various graphical types such as line
charts, pie, and histograms, and is accessible to
the research community. We summarize and com-
pare recent work towards mathematical reasoning
in visual contexts in Table 1.

3 StatsChartMWP

The dataset used with the CC0 1.0 license1. Be-
sides visual reasoning benchmark task, the users

1https://creativecommons.org/publicdomain/
zero/1.0
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Table 2: Statistics of StatsChartMWP benchmark

Statistic Number
Total Questions 8514
- multiple choice question 1091(12.81%)
- fill-in-the-blank questions 3415(40.11%)
- problem-solving questions 3974(46.68%)
- true or false question 34(0.4%)
Unique number of images 4801
Number of questions with split 2246
Number of questions without split 2555
Grade
- primary school 3579(42.04%)
- middle school 2464(28.94%)
- high school 2471(29.02%)
Chart Type 11
maximum question length 1188
maximum answer length 266
average question length 151.25
average answer length 13.02

can use the dataset for other custom tasks such as
building AI tutoring service under the license.

3.1 Data Statistics

The StatsChartMWP dataset comprises 8,514
unique MWPs with statistical charts and includes
11 different types of statistical chart representations.
The distribution of these chart types is shown in Ta-
ble 3, and we present the summarized data statistics
in Table 2. For detailed definitions of each chart
type and a statement on data provenance, please
refer to Appendix A.1 and Appendix A.2, respec-
tively.

3.2 Data Collection and Preprocessing

We mainly collect data from questions designed
by teachers during lecture slides and homework as-
signments. Specifically, we collect Chinese MWPs
with statistical charts from an online learning sys-
tem that is developed by one of the largest educa-
tional technology companies in China. For each
question, we collect both the question textual in-
formation and the corresponding visual charts. To
construct a high-quality mathematical reasoning
dataset containing explicit visual information, we
conduct several simple yet critical data preprocess-
ing and annotation steps to ensure the quality of
the data, including decomposition, de-duplication
and human annotation described as follows:
Decomposition. In the real-world educational sce-

narios, a MWP may contain multiple questions.
To have a consistent and standardized evaluation,
we manually decompose MWPs of multiple sub-
problems into separate MWPs in our proposed
dataset. A detailed decomposition of sub-questions,
along with their explanations and illustrations, can
be found in Appendix A.4.
De-duplication. We conduct a sample de-
duplication process from both textual and visual
perspectives to ensure there is no redundant MWPs
in our dataset. In textual domain, we use a pre-
trained BERT (Kenton and Toutanova, 2019) model
to ascertain the extent of similarity across question
texts and in visual domain, we apply a fine-tuned
DePlot (Liu et al., 2023) model to filter out MWPs
with statistical charts that contain repetitive mathe-
matical information.
Human Annotation. We engage crowd workers
with robust mathematical backgrounds to perform
sample annotation and ensure data validity. Specif-
ically, our annotators are initially tasked with elim-
inating charts that fail to meet our visual quality
standards from the dataset. Following this, each
question in StatsChartMWP is assigned a chart
type from the specified 11 categories. At final, the
annotators conduct a comprehensive review of all
problem solutions in StatsChartMWP to confirm
the accuracy of our ground-truth answers.

4 Experimental Setup

The StatsChartMWP dataset is designed to evalu-
ate LMM’s understanding and reasoning abilities
of mathematical problems with statistical charts,
as measured by its performance on correctly find-
ing the solution. We conduct systematic evalua-
tions on StatsChartMWP for state-of-the-art LLMs
and LMMs, encompassing both closed- and open-
source models and we are interested in understand-
ing the performance gap between them. We also
introduce CoTAR, a data augmentation method to
enhance the multi-step reasoning capabilities of
LMMs via mimicking the models’ CoT process.

4.1 Baselines

LLMs: GPT-4 (Achiam et al., 2023) augmented
with chart captions generated by GPT-4V and GPT-
4o, respectively.
Closed-source LMMs: We select QwenVL-MAX
(Bai et al., 2023b), GPT-4V (OpenAI, 2023) and
GPT-4o (OpenAI, 2024), which have been repeat-
edly demonstrated to be among the most advanced
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Table 3: Distribution of different chart types.

Chart Hist Bar Line Line-f Scatter D-axis P-bar Pie Table Comp Radar
Distribution 21.55% 19.46% 13.81% 2.8% 1.88% 0.75% 0.26% 11.95% 16.48% 10.56% 0.28%

As shown in the figure is the number of students visiting 
Qingxiu Mountain in Nanning on a certain day. If there are 360 
university students, then there are ____ middle school students.

Reading data fr om the char t: This is a pie chart showing the proportion of different student groups visiting Qingxiu Mountain in 
Nanning, where university students account for 25%, middle school students account for 20%, high school students account for 15%, 
and primary school students account for 40%.
Calculate total number  of visitor s: According to the problem description, there are 360 university students, accounting for 25%, so 
the total number of visitors is:  $360\\div 25\\% = 1440$ students.
Calculate number  of middle school visitor s: The total number of visitors is 1440, the proportion of middle school students is 20%, 
so the number of middle school visitors is:  $1440\\times 20\\% = 288$ students.
Answer : 288.

25%

40%

20%

primary 

university 
middle 

high 
15%

The total number of students is $360\\div 25\\% = 
1440$. There are $1440\\times 20\\% = 288$ 
studetns in middle school. So, the answer is: 288.

Our Solution

Question Original Solution 

(a) (b)

(c)

Figure 2: An illustration of CoTAR. (a) the original MWP with statistical chart. (b) the corresponding original
solution. (c) the solution of CoTAR. The bold words are the step summaries and the following sentences are
reasoning responses.

models available.

Open-source LMMs: HPT(HyperGAI, 2024): a
dual network to learn both local and global features
for vision-language alignment. DeepSeek-VL-7B
(Lu et al., 2024): a hybrid vision encoder that effi-
ciently processes high-resolution images within a
fixed token budget, while maintaining a relatively
low computational overhead. LLaVA-NeXT-34B
(Liu et al., 2024a): a classic ViT-MLP-LLM ar-
chitecture that exhibits superior visual reasoning
and OCR capability by integrating visual instruc-
tion tuning data mixture. Cambrian-1 (Tong et al.,
2024): a vision-centric multimodal large language
model. This approach introduces the Spatial Visual
Aggregator, a dynamic and spatially-aware connec-
tor that integrates high-resolution visual features
with LLMs while reducing the number of tokens.
InternLM-XC2d5 (Zhang et al., 2024a): a partial
LoRA connector to interconnect vision encoder
and an LLM. LLaVA-OneVision (Li et al., 2024) is
a model capable of simultaneously advancing the
performance boundaries of open-source LMMs in
single-image, multi-image, and video scenarios. It
allows for robust transfer learning across different
modalities, thereby enabling new emergent capa-
bilities. InternVL2 (OpenGVLab, 2024) and In-
ternVL2.5 (Chen et al., 2024): enhancing the visual
understanding capabilities of LMMs based on the
large-scale visual foundation model InternVL-6B
(Zhang et al., 2024a). Additionally, it can support
4K resolution input through adaptive resolution

partitioning for images. Qwen2-VL (Wang et al.,
2024b): introduces the naive dynamic resolution
mechanism, enabling the model to dynamically
process images of varying resolutions and convert
them into different numbers of visual tokens. Ad-
ditionally, it integrates multimodal rotary position
embedding, facilitating the effective fusion of posi-
tional information across text, images, and videos.
Human performance: The human evaluation was
conducted with approval from our institution’s re-
view board. We recruited 10 participants (5 male, 5
female; aged 22-25) after obtaining their informed
consent. All participants held university degrees
in relevant fields (mathematics, electronic informa-
tion, computer science). Each participant individu-
ally undertook the evaluation on an identical set of
test items, with a maximum duration of 5 minutes
allocated per item. The protocol instructed them to
attempt a correct answer but allowed for guessing
when a solution was not apparent. Human accu-
racy was assessed using the same protocol as the
computational models. In recognition of their con-
tribution, all participants were provided with fair
remuneration as outlined in a formal agreement.

4.2 Evaluation

Our evaluations are anchored in a zero-shot ap-
proach and CoT prompting to facilitate the models’
engagement in comprehensive reasoning sequences
(Wei et al., 2022) and the prompts are listed in Ap-
pendix A.6.
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Table 4: Accuracy scores of models on our StatsChartMWP benchmark. Hist: histograms, Line-f:line-function
chart, D-axis: dual-axis chart, P-bar: percentage-bar chart, Comp: composite chart. The first and second highest
scores are bolded and underlined, respectively. The amalgamation of LLMs with image captioning tasks is denoted
with the visual model utilized specified in parentheses.

Model All Bar Hist Line Line-f Scatter D-axis P-bar Pie Table Comp Radar
Closed-source LLMs (Image caption)

GPT4 (GPT-4V) 31.47 38.11 8.61 39.12 22.18 20.62 35.94 4.55 34.71 52.46 24.36 20.83
GPT4 (GPT-4o) 46.95 59.98 13.30 52.72 35.98 27.50 45.31 27.27 59.19 71.85 38.82 20.83

Open-source LMMs
HPT-1.0 10.10 9.91 5.07 17.77 9.62 10.62 26.56 9.09 7.18 10.62 11.56 29.17
DeepSeek-VL-7B 13.20 16.06 4.63 21.43 11.72 12.50 28.12 4.55 14.16 15.47 9.78 8.33
LLaVA-NeXT-34B 15.67 20.96 5.45 23.13 13.39 20.00 25.00 4.55 14.06 19.24 12.44 20.83
Cambrian-34B 18.15 22.03 8.77 27.89 14.23 18.75 46.88 22.73 16.52 20.24 14.02 41.67
IXC-2.5-7B 22.55 31.10 7.36 29.25 17.99 18.75 43.75 18.18 24.88 29.72 15.02 41.67
LLaVA-OV-72B 32.39 38.33 15.26 39.80 30.54 35.62 42.19 31.82 34.32 45.97 22.91 16.67
Qwen2-VL-7B 37.46 45.67 20.16 39.29 30.96 31.25 65.62 36.36 44.54 51.25 25.70 62.50
InternVL2-Llama3-76B 45.02 58.81 24.58 50.43 35.98 43.12 42.19 13.64 48.08 57.38 35.37 29.17
InternVL2_5-78B 55.25 70.93 29.26 56.12 40.59 48.75 57.81 54.55 57.01 74.27 51.84 37.04
Qwen2-VL-72B 59.33 69.91 39.29 60.03 46.44 43.75 62.50 59.09 65.78 77.12 50.39 62.50
Qwen2.5-VL-72B 71.12 78.45 59.51 68.45 56.90 54.37 65.62 63.64 78.76 85.89 61.07 41.67

Closed-source LMMs
Qwen-VL-MAX 30.24 37.40 10.19 29.51 19.25 20.00 29.69 18.18 37.86 54.74 16.91 33.33
GPT-4V 34.28 38.57 12.10 40.48 28.87 30.00 39.06 18.18 38.25 55.67 27.89 33.33
GPT-4o 57.05 66.51 26.38 58.76 42.26 45.62 68.75 54.55 72.57 81.54 49.50 45.83
OpenAI o3 82.75 81.73 77.71 76.96 71.97 83.12 82.81 90.91 93.23 88.10 83.98 33.33

Human
Human performance 93.88 96.51 92.21 95.76 88.81 84.76 98.21 85.71 91.36 93.77 93.85 92.31

Similar to MathVista (Lu et al., 2023b), we ini-
tially feed the model’s generated sequence into
GPT-4 for target value or option letter extraction.
To augment the precision of our answer extraction,
we devise complex rules for post-processing results
in instances of GPT-4o’s shortcomings. This strat-
egy has facilitated an extraction accuracy exceed-
ing 97%, mirroring the success rate documented
in MathVista. The prompts’ specifications and ex-
traction protocols can be found in the Appendix
A.6. The extracted outcomes are juxtaposed with
the golden answers to establish the ultimate per-
formance metric. Considering the model’s aim to
generate responses in diverse formats, either as the
exact answer or as the corresponding option letter,
we consider a prediction accurate if it aligns with
either the golden answer or the golden option letter.

4.3 CoTAR
On top of these baselines, we further introduce Co-
TAR, a data augmentation strategy designed to en-
hance cross-modal alignment between visual repre-
sentations and reasoning text. Specifically, instead

of relying solely on the concise textual solutions
provided in MWPs, we leverage state-of-the-art
LMMs2 to transform these solutions into detailed,
step-by-step explanations in a CoT-alike format.
Each step in CoTAR consists of two parts: (1) Step
Summary: A brief directive outlining the purpose
of the step and the corresponding image caption
to strengthen the interaction between language and
visual modalities; (2) Concrete Reasoning Re-
sponse: A thorough explanation of the reasoning
process, incorporating calculations, logical deduc-
tions, and references to summarized visual infor-
mation and prior context;Recognizing that visual
data from images is often inadequately explained
in responses, CoTAR explicitly guides the model
to identify where and what visual content should
be utilized at each step. This design further en-
hances the model’s ability to integrate and reason
across language and visual modalities effectively.
Once the CoTAR-enhanced dataset is generated, it
can be used to fine-tune any LMMs base model,

2In this work, we utilize the GPT-4 API for this task.
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Table 5: Fine-tuning evaluation results of Qwen2-VL-
7B on different benchmark datasets.

Dataset SFT CoTAR ∆Acc
StatsChartMWP 42.66 51.42 8.76↑
TABMWP 78.91 79.04 0.13↑
GEOQA+ 66.09 70.4 4.31↑

significantly improving its multi-step mathemati-
cal reasoning capabilities in visually rich contexts.
This approach not only bridges the gap between
visual and textual representations but also fosters
more accurate and interpretable reasoning in com-
plex problem-solving scenarios.

5 Results

5.1 Model Performance

We present a comprehensive assessment of the per-
formance accuracy exhibited by various models
on the StatsChartMWP dataset. Table 4 summa-
rizes the detailed performance results in terms of
prediction accuracy on each statistical chart type.
Furthermore, Figure 3 depicts the variation in mod-
els’ accuracy according to different grade levels
and question types. Our key observations can be
summarized as the following:

Challenging of StatsChartMWP The dataset
presenting considerable challenges to the current
multimodal models. This is particularly evident in
the struggles encountered by open-source models.
Notably, Qwen2.5-VL-72B emerges as a standout
among the evaluated models, securing a remark-
able overall accuracy of 71.12%. Although this
score represents a superior performance relative to
other models, it still falls far short of human per-
formance. We also conducted further comparisons
between StatsChartMWP and other benchmarks,
Figure 5 presents a comparison of accuracies across
different models on StatsChartMWP, ChartQA, and
MathVista. Results of their benchmarks are either
from their official website.

Comparative across grades and question for-
mats Figure 3 illustrates a consistent trend across
all models, indicating that accuracy rates are gen-
erally higher for questions targeted at the primary
level as opposed to those designed for middle and
high school students. In terms of question types,
there is a discernible pattern wherein models tend
to exhibit elevated accuracy rates for true or false
questions, with a descending order of accuracy ob-
served for multiple-choice, fill-in-the-blank, and

Table 6: Distribution of GPT-4o’s errors.

Error Type VE RE CE KE
Distribution 46.44% 30.02% 16.81% 6.73%

problem-solving questions. This also provides
some insights for new inferential strategies, such
as re-configuring open-ended questions into struc-
tured fill-in-the-blank tasks or applying transforma-
tions that involve evaluative judgment.

The effectiveness of CoTAR To validate the ef-
fectiveness of our method, we conducted further
fine-tuning experiments on the Qwen2-VL-7B. As
shown in Table 5, using the CoTAR data augmenta-
tion scheme resulted in an accuracy improvement
of 8.76% on the StatsChartMWP dataset. Addi-
tionally, to further verify the generalizability of
CoTAR, we performed comparative experiments
on the TABMWP and GEOQA+. The results
demonstrated improvements of 0.13% and 4.31%
for TABMWP and GEOQA+ respectively. This
indicates that our CoTAR prompt is effective, sug-
gesting it can be used to fine-tune LMMs founda-
tion model to enhance its multi-step mathematical
reasoning capabilities in visual environments.

5.2 Error Analysis

Considering that the problem-solving process of
LMMs may involve multiple aspects, it is common
for an initial error to lead to a series of subsequent
errors. Therefore, in analyzing the causes of model
errors, we categorize all errors into four types: vi-
sual recognition error (VE), reasoning error (RE),
calculation error (CE) and knowledge error (KE).
Based on this classification, we conducted a de-
tailed analysis of erroneous problems output by
GPT-4o, as shown in Table 6. Visual recognition
error account for 46.44%, indicating the difficulty
multimodal models have in accurately interpret-
ing visual information, suggesting that visual en-
coders remain a bottleneck in multimodal devel-
opment. Reasoning error constitute 30.2%, high-
lighting significant challenges in the model’s logi-
cal processing and reasoning capabilities. Calcula-
tion error represent 16.81% in our statistical graph
tests, which also indicates that statistical questions
often involve extensive calculations. In contrast,
knowledge error account for 6.73%, demonstrat-
ing that knowledge errors do not significantly im-
pede LMMs’ mathematical reasoning abilities in
our StatsChartMWP.
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Figure 3: Detailed accuracy results of different grade levels and question types.
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Figure 4: The accuary of Qwen2-VL-7B model with different dynamic image tokens.
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5.3 Visual Encoder Ablation
We conducted a visual ablation study on Qwen2-
VL-7B to explore the impact of visual token length
on model performance. The dataset was divided
based on the number of tokens corresponding to
image resolution, with experiments performed by
setting the minimum token for low-resolution im-
ages and the maximum token for high-resolution
images. For image with fewer than 256 tokens, we
set different minimum image tokens, as shown in
Figure 4 (a). For image with more than 512 tokens,
we set different maximum images tokens, and the
results shown in Figure 4 (b). We observed when
image resolution is low, appropriately increasing
the number of tokens essentially performing super-
resolution processing on the image significantly

Table 7: Accuracy scores of Qwen2-VL-7B with fixed
resolution and dynamic resolution.

Res Min Max Acc ∆Acc

Fix 4 8192 37.46 -

Dyn





token× 4, if token < 128

512, others
1280 38.96 1.5↑

enhances accuracy. Our findings suggest that a four
times increase in resolution yields optimal results.
Conversely, for high-resolution images, the im-
provement in accuracy generally shows a positive
correlation with the number of tokens. However,
when the token length exceeds 4096, our experi-
mental results indicate a deviation from this trend,
implying that an excessive number of tokens does
not necessarily lead to optimal model performance
for high-resolution images. Based on these observa-
tions, we conclude that setting the maximum token
count between 1024 and 2048 achieves a higher
cost-performance ratio. Table 7 presents the accu-
racy of Qwen2-VL-7B using fixed and dynamic
resolution tokens on StatsChartMWP, respectively.
It is evident that employing the dynamic tokens
scheme results in a 1.5% improvement in accuracy.
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6 Conclusion

This study introduces StatsChartMWP, a dataset
of 8,514 MWPs with statistical charts specifically
developed to assess the proficiency of LMMs in
performing multimodal mathematical reasoning in
real-world K-12 educational contexts. We con-
duct a comprehensive evaluation of the state-of-
the-art models and performed an in-depth error
analysis, underscoring that enhancing multimodal
performance requires attention to both visual and
reasoning components. Additionally, we explored
the relationship between image token length and
model performance through experiments, provid-
ing recommended settings for image token lengths.
Furthermore, we introduced CoTAR, a chain-of-
thought data augmentation scheme that fine-tunes
LMMs through chain-of-thought reasoning steps.
Through benchmarking existing and newly pro-
posed approach, we outline future research direc-
tions in tackling crossmodal alignment between
figures and natural language and undertaking metic-
ulous multi-step mathematical reasoning.

7 Limitation

While our StatsChartMWP takes a step forward
in the field of visual multi-step MWPs with sta-
tistical charts for LMMs, it is important to recog-
nize several limitations as follows: (1) We have
categorized the problems in StatsChartMWP ac-
cording to various standards, encompassing chart
types, grade-levels, and question types. These cat-
egorization strategies evaluate the capabilities of
LMMs from multiple dimensions. However, we
are deficient in the necessary annotations perti-
nent to the fundamental knowledge points of the
studied topic. The supplementation of these rele-
vant knowledge points could facilitate a more com-
prehensive and robust assessment of the model’s
chart interpretation and inference abilities. (2) The
StatsChartMWP dataset is predominantly in Chi-
nese. Considering the development of multilingual
benchmarks, the current evaluations may not com-
pletely uncover their potential when restricted to a
single language. The incorporation of multilingual
visual mathematical problems not only amplifies
the dataset’s global relevance but also elevates the
evaluation of LMMs’ linguistic diversity and un-
derstanding capabilities.
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