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Abstract

Foundation models (FMs) are increasingly ap-
plied to bridge language and action in em-
bodied agents, yet the operational characteris-
tics of different integration strategies remain
under-explored—especially for complex in-
struction following and versatile action gen-
eration in changing environments. We investi-
gate three paradigms for robotic systems: end-
to-end vision-language-action models (VLAs)
that implicitly unify perception and planning,
and modular pipelines using either vision-
language models (VLMs) or multimodal large
language models (MLLMs). Two case studies
frame the comparison: instruction grounding,
which probs fine-grained language understand-
ing and cross-modal disambiguation; and ob-
ject manipulation, which targets skill transfer
via VLA finetuning. Our experiments reveal
trade-offs in system scale, generalization and
data efficiency. These findings indicate design
lessons for language-driven physical agents and
point to challenges and opportunities for FM-
powered robotics in real-world conditions.

1 Introduction

Natural language is emerging as a universal inter-
face for embodied robotics. Advances in foun-
dation models (FMs) enable robots to follow
free-form instructions across perception, reason-
ing, and motor control, offering the promise of
language-grounded autonomy. These models in-
clude vision-language models (VLMs) (Liu et al.,
2024a; Ravi et al., 2025; Ren et al., 2024; Li
et al., 2023), multimodal large language models
(MLLMs) (Grattafiori et al., 2024; Bai et al., 2025;
Luetal., 2024), and vision—language—action (VLA)
models (Kim et al., 2024; Zheng et al., 2025; Qu
et al., 2025; Bu et al., 2025).

However, realizing the promise of language-
grounded autonomy in deployable systems remains
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Figure 1: Key challenges of FMs in embodied robotics.
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highly challenging. Robots must (i) map ambigu-
ous instructions to the physical world (instruction
grounding), (ii) execute reliably across novel ob-
jects, scenes, and morphologies (generalizable exe-
cution), and (iii) achieve these goals with limited
data (efficient adaptation). How effectively differ-
ent FM integration strategies address these compet-
ing requirements remains under-explored (Fig. 1).

This work offers an empirical study of three in-
tegration paradigms: end-to-end VLAs mapping
language and vision to actions, MLLM agents or-
chestrating perception and control, and modular
VLM pipelines pairing perception-specialist FMs
with task-specific planners (Fig.2; Tablel).

We evaluate these paradigms through table-
top case studies that expose their complementary
strengths and limitations. Two task categories are
considered: complex instruction grounding, prob-
ing fine-grained understanding and cross-modal
disambiguation (Sec.3); and object manipulation,
assessing skill transfer after VLA fine-tuning under
distribution shifts, complemented by comparative
and ablation analyses (Sec.4).

Our instruction grounding experiments reveal
distinct trade-offs across integration strategies.
VLM pipelines emphasize interpretability and ef-
ficiency, but fall short of peak performance. They
struggle with complex instruction grounding yet
achieve moderate object grounding—using less
than 1% of the parameters required by MLLMs.
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In contrast, MLLMs generalize better on complex
instructions but incur substantially higher infer-
ence costs, with smaller reasoning-focused mod-
els at times outperforming larger ones. VLAs,
with tightly coupled perception-to-action pathways,
streamline action generation but make it difficult
to isolate and assess grounding performance. To
probe this gap, we evaluate their perception heads
as reference points, which also surfaces open ques-
tions for VLA architecture design.

While MLLMs perform well on grounding tasks,
their scale limits practical deployment on robotic
platforms. Quantization is often adopted as a sim-
ple remedy, yet instruction-dependent behaviors
emerge, with certain reasoning capabilities degrad-
ing disproportionately under naive compression.
This underscores the need for fine-grained quan-
tization strategies. Taken together, our findings
clarify the trade-offs between model scale and per-
formance and provide practical guidance for build-
ing robotic systems under real-world constraints.

Our object manipulation experiments investigate
the skill-adaptation capabilities of VLAs in both
real-world and simulated settings. We examine
how these models transfer manipulation skills un-
der distribution shifts, evaluating their training dy-
namics, generalization, and robustness. Results
reveal fragile training and slow adaptation in gener-
alist policies, such as OpenVLA (Kim et al., 2024),
compared to task-specific counterparts, underscor-
ing the challenges of real-world deployment.”

In summary, our main contributions are:

* We analyse three FM integration paradigms on
shared embodied tasks designed to probe the
capabilities and trade-offs of FMs.

» We release a dataset and code' for evaluating
instruction grounding and object manipulation,
covering cross-modal reasoning and skill adap-
tation under varied layouts.

* We providing timely insights into state-of-the-art
VLAs and MLLMs, investigating their capabil-
ities and failure modes and distilling practical
trade-offs to guide practitioners in selecting FM
stacks for language-driven embodied agents.

* We also release a complete end-to-end claw-
machine robot system as a real-world FM in-
tegration demo?.

"https://github.com/xiuchao/InstructionGrounding
Zhttps://github.com/HRItdy/claw_machine
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Figure 2: Three FM integration strategies for embodied
robotics, highlighting distinct interfaces between lan-
guage, perception, and control.

2 Foundation Model Integration for
Language-Guided Robotics

Concerning how FMs are integrated into robot sys-
tems, we identified the following three types of
integration strategies (Fig. 2). In the following,
We briefly describe each strategy along with its
respective advantages and limitations.

2.1 End-to-End VLA Models

Definition. VLAs operate in an end-to-end man-
ner, directly translating visual observations and
natural language instructions into low-level ac-
tions without decoupled perception, language,
and control modules (Fig. 2a). Two mainstream
paradigms have emerged within this framework:
auto-regressive and diffusion-based action genera-
tion. Through large-scale pretraining, these models
acquire broad capabilities that support generaliza-
tion across tasks. However, efficient adaptation to
real-world settings remains a significant challenge.

Autoregressive Models. These models generate
actions step by step, with each action conditioned
on the current perceptual input and previously gen-
erated outputs. These models typically encode vi-
sual observations and language into a shared latent
space, then employ a transformer-based decoder to
autoregressively predict low-level control tokens,
such as joint angles, end-effector displacements
and gripper states, which are typically obtained by
discretizing continuous motor signals into token
sequences.
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Instruction Grounding

Manipulation Generalization Adaptation for Deployment

Pipelines for

Robot Systems Ylsual M.ultl-round CoT . Morphology Skill sets Data Efficiency

inputs  dialogue reasoning independent
End-to-End VLA models v X X X Wide range Data-hungry finetuning
Modular VLM pipelines v X X v Controller- Cheap finetuning
Multimodal LLMs agents v/ v v v specific In-context learning

Table 1: Comparison of foundation model integration strategies in embodied robotic systems, highlighting differ-
ences in instruction grounding, manipulation generalization, and adaptation methods.

RT-1 (Brohan et al., 2023) and RT-2 (Zitkovich
etal., 2023) demonstrated the effectiveness of large-
scale pretraining for task generalization. Building
on these scaling successes, OpenVLA (Kim et al.,
2024) became a landmark open-source effort, com-
bining Llama-2 with DinoV2 and SigLIP, trained
on the large-scale Open-X-Embodiment dataset
(Collaboration et al., 2024). Subsequent works
such as Emma-X (Sun et al., 2024), NORA (Hung
et al., 2025) and TraceVLA (Zheng et al., 2025),
further advanced this line through dataset quality,
stronger backbones and improved spatiotemporal
prompting.

Subsequent models further incorporate richer
modalities such as tactile sensing (Yang et al., 2024;
Zhao et al., 2024), structural priors including spa-
tial representations distilled from VLMs (Gemini
Robotics Team, 2025) and 3D spatial relationships
in Spatial VLA (Qu et al., 2025), and refinements
to the embodied latent space, as in UniVLA (Bu
et al., 2025), which learns task-specific latent rep-
resentations.

Diffusion-based Models. They generate actions
by progressively denoising trajectories from noise,
modeling the distribution of future actions as a
whole rather than step by step. Like autoregres-
sive VLASs, these models encode visual observa-
tions and language into a latent representation, but
instead apply a diffusion process that iteratively
refines action sequences into feasible trajectories.
Diffusion-based models trade inference speed for
greater trajectory coherence.

Diffusion Policy (Chi et al., 2023) pioneered
the use of diffusion models for visuomotor pol-
icy learning, showing improved global consistency
and robustness compared to autoregressive base-
lines. Octo (Team et al., 2024) applies condi-
tional diffusion decoding for action sequence pre-
diction. Subsequent models further scales diffu-
sion heads into larger, dedicated policy modules
(Reuss et al., 2024; Wen et al., 2024; Li et al.,

2024b), and integrate trajectory-level guidance to
improve long-horizon planning (Fan et al., 2025).
Notable models like 7y (Black et al., 2024) com-
bine pretrained MLLM (PaliGemma-3B) with flow-
matching-based action experts to produce contin-
uous, high-frequency control across robot embod-
iments. 7o 5 (Intelligence et al., 2025) builds on
this by co-training across diverse environments and
data modalities to improve generalization to new
settings.

Beyond architectural advances, diffusion-based
models increasingly targets diverse embodiments,
extending from single-arm manipulation to bi-
manual systems and humanoid robots. Repre-
sentative examples include RDT-1B (Liu et al.,,
2024b), DexVLA (Wen et al., 2025), and GROOT
N1 (Bjorck et al., 2025), which demonstrate the
scalability of FM-driven action generation to more
complex morphologies.

Strengths and Limitations. Leveraging large-
scale pretraining, VLAs hold the potential to gen-
eralize across diverse manipulation tasks and robot
morphologies. Yet progress is constrained by the
scarcity of high-quality, diverse robotic datasets,
which limits both scale and coverage. Pretrain-
ing can also propagate biases from training distri-
butions, causing degraded performance on novel
tasks, in unseen environments, or with unfamiliar
embodiments. Despite their promise, VLAs remain
brittle in real-world deployment, as highlighted in
our Object Manipulation case study (Section 4),
underscoring the need for better data curation, bias
mitigation, and efficient adaptation strategies such
as few-shot and continual learning.

2.2 Modular VLM Pipelines

Definition. In this paradigm (Fig. 2b), percep-
tion is handled by a specialist VLM that outputs
symbolic scene information, typically grounded
2D/3D bounding boxes, segmentation masks, or
referring expression pointers. A downstream plan-
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ner or policy module then consumes this structured
representation to generate low-level actions. The
language channel is therefore disentangled from
motor control, allowing each module to be tuned in-
dependently, thus preserving the transparency and
plug-and-play advantages of classical planning.

Representative systems. Language-promptable
specialist VLMs endow modular stacks with zero-
shot semantics for various robotics pipelines.
(Bandyopadhyay et al., 2024) demonstrates an
end-to-end sample collection robot system that
uses GroundingDINO (Liu et al., 2024a) to lo-
calize objects and refines each box with SAM
(Ravi et al., 2025) masks before passing them to
classical grasp-and-place controllers, illustrating
this paradigm’s practicality in real deployments.
(Werby et al., 2024) aggregates these modules into
a floor-room-object hierarchy, showcasing their
usage in long-horizon language-conditioned navi-
gation across multi-story buildings.

Strength and Limitations. Modular VLM
pipelines strike a balance between transparency
and adaptability, and delivers practical benefits:
(i) interpretability, detections can be directly in-
spected; (i) efficiency, models typically con-
tain 100M~600M parameters, only about 1% ~
6% the size of representative 10B-scale MLLMs
(Grattafiori et al., 2024). However, they are limited
by (i) interaction rigidness compared to more flex-
ible MLLMs, and (ii) pipeline brittleness where
perception errors propagate without mitigation
(Fig. 2b; Table 1). Their effectiveness depends on
robust open-vocabulary grounding—precisely the
capability highlighted in our Instruction Grounding
case study (Section 3).

2.3 Multimodal LLLM Agents as Orchestrators

Definition. In this paradigm (Fig. 2c¢), MLLMs
take raw user utterances, selectively invoke vision
tools (e.g., a detector or depth estimator) via func-
tion calls, reason over their outputs in context, and
issue high-level action primitives to a low-level
controller. An MLLM agent thus places a large
tool-calling language model at the center of the
control loop, acting as a cognitive hub that binds
perception and control through natural language.

Representative Systems. MLLMs are playing
increasingly important roles in robotics. Gemini
Robotics (Gemini Robotics Team, 2025) integrates
perception, spatial reasoning, and trajectory syn-

thesis into a single Gemini-2.0 backbone (Google
DeepMind, 2024), serving as an embodied brain.
ManiLLM (Li et al., 2024c), in a similar spirit,
leverages the common-sense and reasoning capa-
bilities of MLLMs by fine-tuning adapter mod-
ules with a chain-of-thought training paradigm, en-
abling accurate pose prediction and precise manip-
ulation. These works illustrate the emerging trend
of MLLMs shifting toward the role of a cognitive
hub in robot systems. Hub-LLaMA (Glocker et al.,
2025) further builds a modular agent-orchestration
system for household object management, using
LLaMA 3.2 Vision (Grattafiori et al., 2024) for
open-vocabulary perception to ground task plans,
though its limitations are not discussed.

Somewhat related to our work, (Li et al., 2024a)
evaluates the suitability of MLLMs as a “brain” for
in-home robotics, providing a benchmark that com-
pares models across perception, visual reasoning,
and task planning. The benchmark included a few
MLLMs available at the time, while newer releases
were not covered—illustrating the rapid pace of
progress in this area.

Strengths and Limitations. MLLMs excel in
(i) visual commonsense reasoning, leveraging ex-
tensive language priors to generalize to novel con-
cepts beyond the reach of most specialist VLMs,
and (ii) instruction following with support for fine-
grained visual understanding and dynamic plan-
ning. Despite their expressive power, however,
these models are (iii) resource-intensive, posing
challenges for deployment—particularly on mobile
robotic platforms. We further examine the capabil-
ity limits and trade-offs of MLLMs (Section 3).

3 Case Studies on Instruction Grounding

Natural language instruction grounding translates
user intent into actionable goals within a visual
scene. Our case study evaluates grounding perfor-
mance under challenging cross-modal disambigua-
tion, highlighting trade-offs and offering guidance
for efficient deployment.

Benchmark Dataset. To isolate grounding abil-
ity from general vision priors, we design care-
fully controlled scenarios using household objects
placed on a tabletop. These objects are widely rep-
resented in FM training corpora, while the tabletop
setup minimizes variation in lighting and camera
angles—ensuring the evaluation primarily reflects
grounding performance.
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| Implicit
7: “I need a tool to tighten screws.”

Explicit attribute
10: “Give me the rectangular can.”

Explicit relations:
1: “Give me the marker next to the box.”

Figure 3: Experimental setup for two case studies in a
cluttered tabletop environment. The top row shows ego-
centric video data collected for the manipulation case
study. The bottom row is an example setup for the in-
struction grounding task, including an annotated visual
prompt paired with complex instructions in three forms:
implicit, explicit with attributes and spatial references.

We curated a new Instruction Grounding bench-
mark (Fig. 3) consisting of images with multiple
household objects, each tagged with numbers as vi-
sual prompts and paired with instructions targeting
visual commonsense and cross-modal disambigua-
tion. For example, “pick up the red-capped marker”
requires attribute reasoning to choose among mark-
ers, while “grasp the cup in front of the screw-
driver” tests spatial reasoning (Appendix Table 4).
These tasks highlight how grounding errors can
lead to execution failures in embodied systems.

Zero-Shot Object Grounding. We start with a

necessary first question for instruction grounding:

Can FMs reliably recognize objects in cluttered,

open-world scenes? Table 2 highligh key observa-

tions and point to opportunities for VLA design.

* Despite their popularity in modular pipelines,
GroundingDINO achieves around 0.3-0.4 accu-
racy, as it struggles with featureless objects, e.g.
‘the can’. Moreover, it is brittle in open scenes,
e.g. a ‘screwdriver’ is constantly recognized as
a ‘marker’, which instead is an easy case for
MLLMs which embodied large volume of visual
commonsense (Appendix Fig. 10).

* Gemini 2.5-Pro and GPT-5 achieve top perfor-
mance with an average score of 0.82, followed
by Gemini 2.0-Flash and GPT-4.5. Open-source
models continue to lag behind, with LLaMA 3.2-
Vision 90B reaching 84% of the performance of
top proprietay models.

* Small- and medium-scale models (e.g., Gemma-
27B, Phi-Vision) generally fall below the spe-

MODEL EASy MEDIUM HARD AVG
Specialist VLMs
GroundingDINO-86M  0.518 0.357 0.349 0.408
GroundingDINO-145M  0.443 0.320 0.355 0.372
Proprietary MLLMs
Gemini2.5-Pro-Exp 0.904 0.765 0.793 0.821
Gemini2.0-Flash 0.884 0.738 0.678 0.767
GPT-5-auto 0.881 0.829 0.760  0.823
GPT-5-mini 0.749 0.737 0.776  0.754
GPT-4.5 0.837 0.723 0.739  0.766
GPT-40 0.814 0.745 0.683 0.747
GPT-40-mini 0.803 0.722 0.604 0.710
04-mini 0.721 0.769 0.710 0.733
GPT-4V 0.470 0.476 0.467 0.471
Open-source MLLMs
Llama-3.2V-90B 0.722 0.701 0.657 0.693
Llama-3.2V-11B 0.583 0.569 0.547 0.566
Llama-4-Maverick 0.698 0.576 0.634 0.636
Llama-4-Scout 0.776 0.615 0.624 0.672
Qwen2-VL-72B 0.686 0.614 0.558 0.619
Gemma-3-27B 0.452 0.384 0.267 0.368
DS-Janus-Pro-7B 0.444 0.330 0.317 0.364
Phi-3.5-Vision-4.2B 0.291 0.357 0.205 0.284
Base MLLMs in VLAs
PaliGemma-3B () 0.118 0.07 0.05 0.079
QwenVL-3B (NORA) 0.519 0.535 0.577 0.543

Table 2: Object grounding performance of specialist
VLMs and MLLMs across cluttered scenes of varying
complexities, with macro accuracy reported.

cialist threshold, underscoring their limitations
for fine-grained object grounding in open scenes.
Notable exceptions include GPT5-mini (0.754)
and QwenVL-3B (0.543), which offer favorable
speed—accuracy trade-offs, achieving reasonable
performance without high API costs or heavy
memory footprint of larger models.

* PaliGemma-3B in 7y struggles to follow struc-
tured prompts and can only follow simpler in-
structions. Its grounding capability is highly lim-
ited, often detecting just a single object per scene.
Reported accuracy is therefore approximate,
based on a looser evaluation criterion. While
QwenVL-3B adopted in NORA, reaches higher
grounding accuracy, which may partially explain
its stronger performance on out-of-distribution
manipulation tasks (Appendix Table 6).

» Two design questions emerges: (i) how should
perception modules be selected or adapted to
improve instruction-following in embodied sys-
tems? and (ii) can compact, grounding-capable
perception modules be distilled from large-scale
models to support efficient deployment?
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Figure 4: Performance of complex instruction grounding across modular VLM pipeline and MLLMs. Macro
accuracy is reported across instruction types—implicit, attribute-based, and relationship-based. Subfigures show (a)
proprietary models and (b) open-source models along with their Int4-quantized variants.

Zero-Shot Complex Instruction Grounding.
This task is framed as a multiple-choice problem,
where the model selects the correct object index in
a cluttered scene given three types of natural lan-
guage instructions: implicit, attribute-based, and
relationship-based. Each type probes a distinct
grounding challenge (Fig. 4). As a baseline, we
evaluate a modular VLM pipeline in which GPT-4
parses the instruction to infer likely targets, queries
GroundingDINO to detect candidate objects, and
selects from the detected boxes—essentially guess-
ing without directly perceiving the scene.

 Implicit Instruction Grounding. Instructions like
“I need a tool to tighten the screws” only refer to
the target object implicitly, and the model needs
to infer the target object using its common sense
priors. For such instructions, the modular VLM
pipeline struggles to select a screwdriver, lack-
ing embedded affordance reasoning. In contrast,
MLLMs perform well, reflecting strong visual
commonsense. GPT-5 achieves 0.92 accuracy,
while GPT-4.5 demonstrates exceptional perfor-
mance (0.94), though its high inference cost—
20 x that of Gemini 2.5 makes it cost-prohibitive
for most applications (Appendix Table 5).

Relational Reasoning Remains Challenging.
This category requires resolving referential am-
biguity through implicit chain-of-thought rea-
soning: grounding objects, modeling spatial rela-
tionships, and disambiguating targets (e.g., iden-
tifying the correct mug among many based on
“next to something™). Accuracy drops signifi-
cantly nearly across all models. GPT-5, Gem-
ini 2.5-Pro and 04-mini achieve accuracy above

0.80—demonstrating the benefits from embod-
ied training data and strong reasoning capabili-
ties. Notably, 04-mini is a medium-sized model,
yet it outperforms larger models like GPT-40
on relational instructions—suggesting that struc-
tured reasoning may help close, or even over-
come the performance gap brought by different
model scales.

* Instruction-Dependent Quantization Effects.
INT4 quantization reduces the model size by
over 70%, making it an attractive choice for de-
ployment. In Llama 3.2 Vision, we observe that
it disproportionately impacts implicit and rela-
tional instruction grounding, indicated by the
relative accuracy drop of 14% — 17%, while at-
tribute grounding is more robust with only 4%
loss. Despite reduced precision, quantized 11B
models offer a speed—accuracy balance for low-
resource settings. Our findings underscore the
need for fine-grained quantization strategies that
preserve the most important high-level reasoning
capabilities under resource constraints.

4 Case Studies on Robotic Manipulation

Now we shift the focus to skill adaptation. In
an ideal deployment scenario, a pretrained VLA—
already endowed with broad visuomotor skills—
should be retargeted to a new manipulation task
with minimal data and fast convergence. We use
fine-tuning, the standard practice for adaptation, as
a probing lever to evaluate how the state-of-the-art
VLA models adapt to new tasks and deployment
conditions.

Given the scale of VLAs, we compare partial
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MODELS

LIBERO-SPATIAL LIBERO-OBJECT LIBERO-GOAL LIBERO-LONG AVERAGE

OpenVLA finetuned 84.7 88.4
7o finetuned 96.8 98.8
7o-FAST finetuned 96.4 96.8
Spatial VLA finetuned-AC 88.2 89.9
NORA-finetuned 85.6 87.8
NORA-finetuned-AC 85.6 89.4
NORA-Long-finetuned 92.2 95.4

79.2 53.7 76.5
95.8 85.2 94.15
88.6 60.2 85.5
78.6 55.5 78.1
71.0 45.0 73.9
80.0 63.0 79.5
89.4 74.6 87.9

Table 3: Success rates (%) on the LIBERO Simulation Benchmark across four task suites, each evaluated over
500 trials. Results for Spatial VLA are from (Qu et al., 2025); Results for 7y are from (Black et al., 2024), using
pretrained models on LIBERO benchmarks. “AC” denotes the use of action chunking. The comparison in the
Appendix highlights its impact on performance. The finetuned 7y model achieves the highest performance.

fine-tuning, which leverages our curated probing
dataset (Fig. 3) and its inherent distribution bias to
study convergence behavior, and full fine-tuning,
which uses large-scale datasets to minimize the
training loss. Our evaluation focuses on three key
aspects: (i) training dynamics—how quickly and
smoothly training converges; (ii) generalization—
how well the resulting policies perform on vari-
ous tasks; and (iii) robustness—how well the re-
sulting policies handle environmental distractors.
Our experiments highlight the performance of VLA
models in different settings, offering practical sug-
gestions for practitioners who have to adapt large
VLAs under tight data, time and compute budgets.

Real-World Skill Adaptation. Our fine-tuning
process consists of two stages: (1) To assess con-
vergence on tasks beyond the coverage of com-
mon pretraining datasets, we collected a custom
dataset (Appendix A.1) focused on screwdriver-
picking in cluttered tabletop scenes. This task
introduces both object- and scene-level distribu-
tion gaps, as screwdrivers and dense clutter are
largely absent from Open-X-Embodiment (Collab-
oration et al., 2024). We used this dataset to par-
tially fine-tune generalist VLA models, and to train
compact task-specific models such as Diffusion Pol-
icy (DP) and Action Chunking Transformer (ACT)
from scratch. (2) For full fine-tuning, we leveraged
larger benchmarks—Open-X-Embodiment and the
simulated LIBERO dataset (Liu et al., 2023)—to
fully fine-tune RT-1, OpenVLA, Spatial VLA, and

NORA, and compared their performance.

* Partial Fine-tuning. We observe that DP and
ACT converge stably with low training vari-
ance (Fig. 5). In contrast, generalist models
such as OpenVLA and 7y require far more it-
erations to reach comparable accuracy and ex-
hibit greater variance. This difference reflects

—— OpenVLA

—— Diffusion Policy
— ACT

—

Train Loss

|

0 50000 100000 150000 200000 250000 300000
Epochs

Figure 5: Partial fine-tuning results for VLAs (Open-
VLA and 7p) compared with training Diffusion Policy
(DP) and ACT from scratch on our dataset. VLAS re-
quire more epochs to converge and show higher perfor-
mance variance.

model scale: compact task-specific policies like
DP and ACT contain only tens of millions of
parameters, whereas generalist policies such as
OpenVLA (7B) and 7 (3B) rely on billion-scale
backones, making optimization slower and less
stable. Notably, while DP attains lower loss by
fitting directly to noise, it still requires additional
training to produce coherent action sequences
even after loss convergence.

* Full Fine-tuning. The fine-tuned VLAs are evalu-
ated on three tasks: (1) out-of-distribution object
manipulation, (2) spatial relationship reasoning,
and (3) multi-object pick-and-place. In task (1),
both NORA and OpenVLA succeed, whereas
Spatial VLA fails due to incorrect affordance-
point estimation. In task (2), NORA follows
instructions correctly, while OpenVLA fails and
Spatial VLA shows unstable performance. In
task (3), only NORA executes the task success-
fully, while the other models fail to complete it
reliably (Fig. 6).
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Figure 6: Success rates of fully fine-tuned VLAs on
multi-object pick-and-place, out-of-distribution object
manipulation, and spatial relationship reasoning tasks.
NORA achieves the highest performance.

Simulated Skill Adaptation. We compare model
performance on simulation benchmarks and real
robot deployments (Table 3). The results show
that the finetuned my model outperforms all base-
lines across tasks, achieving the highest success
rates on Spatial and Object tasks while maintain-
ing strong performance on Goal and Long-horizon
tasks. Furthermore, the ablation study of action
chunking (AC) on NORA demonstrates that AC
consistently enhances performance across most
simulation tasks. Notably, a significant drop in
performance is observed when transferring from
simulation to the real world (Appendix Table 6).

Robustness to Perturbations. We assess robust-
ness by introducing distractor objects into the en-
vironment. As shown in Appendix Table 8, both
OpenVLA and NORA degrade substantially under
these perturbations, underscoring their sensitivity
to novel conditions.

Key Takeaways. Current VLAS still face signifi-

cant limitations in the following areas:

* Adaptation and Generalization. A generic
robotic policy is expected to adapt rapidly to
datasets with distributional shifts. However,
our partial fine-tuning results show that, given
their large model capacities and the limited size
of task-specific datasets, current VLAs fail to
achieve efficient adaptation. While fine-tuning
improves performance, it demands extensive
data and prolonged training, which is usually
impractical for many real-world scenarios.

* Robustness. Robustness to distribution shifts
without finetuning remains a critical challenge.
Results reveal substantial degradation when en-
countering unseen objects and during sim-to-real
transfer, underscoring the fragility of current

VLA models in dynamic and unpredictable envi-
ronments.

These findings indicate that although VLAs hold
significant promise, they remain constrained by
poor data efficiency, slow adaptation, and brittle
robustness. Bridging these gaps will require both
algorithmic advances—such as more parameter-
efficient adaptation, bias-resistant pretraining, and
stronger perception backbones—and system-level
improvements in data collection and augmentation.
Addressing these limitations is crucial if VLAs are
to evolve from research prototypes into reliable,
deployable policies for real-world robots operating
under uncertainty.

5 Constraints and Future Directions

Despite the promise of foundation models (FMs)
for enabling embodied agents to perform daily
tasks, several critical constraints still hinder their
reliable deployment:

Data Scarcity. Unlike natural language data
that abundantly available on the internet, robotic
datasets are costly to collect due to hardware wear,
safety risks, and labor-intensive demonstrations. A
key direction is improving data efficiency through
parameter-efficient adaptation, imitation from un-
labeled interaction, and self-supervised pretrain-
ing. Complementary approaches include leverag-
ing high-fidelity simulators and developing robust
sim-to-real transfer pipelines to reduce reliance on
large real-world collections.

Efficient Inference. VLAs place heavy compu-
tational burdens on robotic platforms, leading to
bottlenecks in inference speed. The constraints
motivate research on lightweight architectures and
efficient decoding strategies that can sustain perfor-
mance while satisfying the real-time requirements
of embodied control.

Explainability and Safety. Most FMs lack ex-
plicit mechanisms for interpretability or safety guar-
antees—factors that are crucial for deployment in
high-stakes or unstructured environments. These
models may output confident but incorrect actions
when faced with out-of-distribution inputs or ad-
versarial perturbations. Moreover, without built-
in constraints to enforce ethical and operational
boundaries, VLAs risk misinterpreting ambiguous
instructions in ways that compromise human intent
or physical safety.
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Limitations

For VLA generalization study, this work focuses
primarily on task-level performance and does not
extensively examine generalization across diverse
robot morphologies. Yet this remains a critical chal-
lenge for real-world deployment: robots with differ-
ent embodiments—such as bimanual manipulators,
humanoid robots, or mobile platforms—require dis-
tinct control protocols and safety constraints. The
absence of a generic policy that adapts seamlessly
across such morphologies limits the universality of
current VLA approaches.

This work also does not directly investigate the
grounding of instructions that are open-ended or
ambiguous. Existing VLAs are trained largely
on curated datasets that map well-structured com-
mands to specific actions, but this reliance con-
strains their semantic understanding. Consequently,
when faced with vague or out-of-distribution in-
structions, they often fail to infer reasonable behav-
iors. Addressing this limitation will require inte-
grating richer language-understanding modules and
more diverse training data to improve robustness
in handling underspecified or ambiguous input.
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Appendix
A Benchmark Dataset

A.1 Cluttered Tabletop Manipulation Dataset

To evaluate the finetuning behavior of various VLA
models under distribution shift, we constructed
a custom cluttered tabletop environment using a
URS robotic arm with a wrist-mounted RealSense
RGB-D camera. This setup differs from all ex-
isting configurations in the Open-X-Embodiment
dataset. Demonstrations for a screwdriver-picking
task—amid distractor objects—were collected via
teleoperation using a SpaceMouse device. In total,
we gathered 163 demonstration episodes®. Each
episode began with a randomized initial robot pose,
followed by an attempt to grasp the target screw-
driver.

A.2 Complex Instruction Grounding Dataset

We curated an evaluation dataset for the complex
instruction grounding task in cluttered scenes®.
Thirty images were sampled from the action se-
quences and subsequently categorized based on
the number of objects: EASY (<15), MEDIUM
(15~20), and HARD (>20). Objects in the vi-
sual scenes were manually annotated using visual
prompts and paired with various instructions. The
spatial relationship words were illustrate in Table 4.

Positional:

left, right, be-

tween, beside, near,

far, front, behind

hand over the

Instruction screwdriver [on the
left of] the red ball.

Directional:
aligned with, per-
pendicular to

Words

pass me the screw-
driver [aligned
with] the marker.

Table 4: Template words and corresponding examples
of generated relation-based instructions for case studies.

For the complex instruction grounding task, in-
cluding an annotated visual prompt paired with
complex instructions in three forms: implicit, ex-
plicit with attributes and spatial references. Addi-
tionally, the dataset includes multi-turn questions
that refer to more than one object, enabling founda-
tion models to ask clarifying questions to identify
the correct object.

3https://huggingface.co/datasets/bittdy/pick_screw
“https://github.com/xiuchao/InstructionGrounding

Figure 7: Example of visual prompts

* Implicit Instructions. Here, objects are not
explicitly mentioned by name or attributes but
are instead described by their functions. This
category evaluates the VLMSs’ ability to infer the
correct object based on its use. For example, the
dataset includes instructions referring to objects
like scissors, screwdrivers, and rulers based on
their respective functions.

» Explicit Attributes. In this category, instruc-
tions prompt VLMs to identify objects belong-
ing to a category with multiple instances, where
each instance can be uniquely identified by ex-
plicitly mentioned attributes. In Fig. 7, the beige
mug and the gray mug are included because they
are unique when described with attributes. How-
ever, objects like the black mug or scissors are
excluded. This is because there are two identi-
cal black mugs, making them non-unique, and
there is only one pair of scissors, which does not
require attributes for identification.

 Explicit Relationships. In this category, instruc-
tions describe objects by their spatial relation-
ships to other objects in the image. We ensure
that each referenced object is unique within the
image. For example, the measuring cup to the
right of the screwdriver uniquely identifies the
object. These instructions are designed to test
the VLMs’ ability to comprehend and resolve
location-based relationships.

* Multi-Referent Instructions. This category in-
cludes instructions that correspond to multiple
valid objects in the scene. For example, in Fig. 7,
an instruction like “give me a mug” may refer
to several similar items. In such cases, we an-
notate the data with all candidate object indices,
e.g.,[2, 7, 18], indicating the set of plausible
referents.
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Easy Medium Hard

Model im attr rel im attr rel im attr rel

VLM-LLM 0.050 0.516 0.131 0.010 0.336 0.186 0.000 0.318 0.174
Gemini-2.5-Pro 0.778 0.889 0.830 0.847 0.814 0.815 0985 0.784 0.858
Gemini-2.0 0.833 0.889 0.774 0.819 0.721 0.642 1.000 0.668 0.469
GPT-5-auto 0.950 1.000 0.867 0903 0960 0.899 0917 0916 0.816
GPT-5-mini 0.850 1.000 0.894 0.819 0.956 0.823 0.958 0.759 0.813
GPT-4.5 0.944 0889 0.894 0917 0.838 0.722 0958 0.719 0.698
GPT-40 0.850 1.000 0.778 0.819 0.948 0.680 0.901 0.697 0.469
o4 0.950 1.000 0907 0.847 0988 0.837 0917 0.809 0.804
40-mini 0.750 0.717 0550 0.764 0.771 0.596 0.750 0.382 0.248
GPT-4V 0.650 0.750 0.598 0.750 0.737 0.662 0.625 0417 0.455
Qwen2-VL 0.800 0917 0.830 0.792 0.756 0.738 0.875 0.700 0.529
LLaMA 3.2 Vision 90B 0.750 0.850 0.704 0.708 0.853 0.711 0.875 0491 0.521
LLaMA 3.2 Vision 90B-Q4 0.800 0.667 0.598 0.625 0.719 0.554 0.542 0464 0.300
LLaMA 3.2 Vision 11B 0.650 0.667 0.631 0.764 0.710 0.556 0.833 0.536 0.342
LLaMA 3.2 Vision 11B-Q4  0.650 0.567 0.502 0.694 0.757 0.555 0.542 0498 0.450

Table 5: Performance on the complex instruction grounding task. Abbreviations:

im denotes implicit instruction,

attr denotes attribute-based instruction, and rel denotes relation-based instruction.

A human-in-the-loop process was employed to
ensure high-quality data collection.

* [nitial Object Identification: We used GPT-40
to identify objects in an image and referring
them by type, explicit attributes, and detailed
location relations.

* Human Verification. The authors of this paper
reviewed and modified the outputs to ensure
their correctness.

e Instruction Generation. After verification,
GPT-4 was tasked with generating simple,
clear instructions for different objects.

* Final Review. These instructions underwent
another round of verification to ensure clarity
and accuracy.

13%
24%

15%

48%

Explicit Attributes
Explicit Relationships

Implicit Instructions
Multi-Referent Instructions

Figure 8: Dataset breakdown by Instruction Types.

This high-quality dataset consisting of 473 in-
structions, with a detailed breakdown of each in-
struction type presented in Fig. 8.

B Grounding Experiments

B.1 Complex Instruction Grounding for Goal
Specification

Cross-modal Disambiguation represents a particu-
larly challenging component of goal specification.
To quantify the model capability in this dimen-
sion, we employed attribute-based and relative re-
lationship instructions to uniquely identify a target
among multiple candidates. The goal specification
task is formulated as follows:

Given a visual input I € RIXWx3 and
an instruction ¢, the objective is to pre-
dict the target object according to o* =
argmax,co P(o|I,t;0pn), where 0¥ € O and
O denotes the set of candidate objects. Models are
evaluated using macro-average accuracy metric.

B.2 Failure Cases of Specialist VLM Pipeline

Grounding DINO, despite popular for zero-shot de-
tection, is not robust in open scenes. It successfully
detected “blue ball” while failed to detect “ball”,
indicating its reliance on visual features. Similarly,
featureless metal cans pose a great challenge for
Grounding DINO, which were almost omitted in
the detection results.

For complex instruction grounding, Grounding
DINO and GPT-4 were chained together to “guess”
the target by the LLM based on the candidate
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Figure 9: Examples of Instruction Grounding. (a) “the marker on the left”, (b) “the marker aligned with the ruler”.

Figure 10: Examples of Object Grounding. (a) “ball”, (b) “screwdriver”, (c) “marker pens”, (d) “blue ball”.
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bounding boxes. The failure cases were illustrated
in the Fig. 9 and Fig. 10.

B.3 Multimodal LLMs Performance

The performance of Multimodal LLMs on com-
plex grounding across EASY, MEDIUM and HARD
groups are shown in Table 5.

C Manipulation Experiments

OpenVLA and my were partially fine-tuned on
this dataset, while Diffusion Policy (DP) and Ac-
tion Chunking Transformer (ACT) were trained
from scratch. Due to the limited size of our cus-
tom dataset, full fine-tuning of RT-1, OpenVLA,
Spatial VLA, and NORA was performed using the
Open-X-embodiment and LIBERO datasets. We
evaluated model performance on both a real-world
WidowX robotic platform and the LIBERO simula-
tion benchmark.

C.1 Fine-tuning details for VLA

Partial fine-tuning was conducted on a single
NVIDIA A6000 GPU (48 GB VRAM) over a pe-
riod of three days. To ensure a fair comparison, a
batch size of 1 was used across all models. The
results are presented in Fig. 5.

Full fine-tuning of RT-1, OpenVLA, Spa-
tial VLA, and NORA was conducted on a com-
pute node equipped with 8§ xH100 GPUs. The
fine-tuned models were evaluated on 9 diverse real-
world manipulation tasks, as shown in Fig. 11. Suc-
cess rates are summarized in Table 6, demonstrat-
ing NORA’s superior policy generation capabilities
across three task categories: out-of-distribution ob-
ject grasping, spatial reasoning, and multi-object
manipulation.

C.2 Impact of Action Chunking
C.2.1 Action Chunking Performs on WidowX.

To investigate the effectiveness of action chunk-
ing, we selected NORA-LONG and Spatial VLA
for evaluation. Tasks were chosen from three cat-
egories: (1) “put the carrot in the pot,” (2)
“put the red bottle and hamburger in the
pot,” and (3) “put the pink toy at the right
corner.” In initial experiments, all predicted ac-
tions (5 actions for NORA-LONG, 4 actions for
Spatial VLA) were executed sequentially without
replanning. This frequently caused the WidowX
robot to crash into the environment due to the ac-
cumulation of overly large movements.

Subsequently, we modified the execution policy
to only perform the first action in each predicted
chunk. This adjustment resolved the collision issue
but the model performance is still degraded.

C.2.2 Action chunking improves performance
in simulation.

We hypothesize that action chunking is more ef-
fective at higher control frequencies. For example,
Diffusion Policy generates commands at 10 Hz,
which are then interpolated to 125 Hz for execu-
tion. Similarly, OpenVLA-OFT+ employs action
chunking and shows improved performance in real-
world ALOHA tasks, which run at 25 Hz.

Since our real robotic platforms do not support
high-frequency control, we tested this hypothesis
in the LIBERO simulation environment (20 Hz).
We fine-tuned both NORA and NORA-LONG on
this benchmark with an action chunk size of 5,
producing two variants: NORA-finetuned-AC and
NORA-Long-finetuned.

Results show that NORA-finetuned-AC signif-
icantly outperforms NORA-finetuned across all
LIBERO benchmarks, with a higher average suc-
cess rate. Notably, NORA-Long-finetuned outper-
forms all baseline models (see Table 3), highlight-
ing the benefits of pretraining with action chunking
and its transferability to long-horizon tasks. How-
ever, it is important to note that LIBERO is a simu-
lation environment and may not reflect real-world
performance at high control frequencies.

C.3 Robustness to Disturbance

To evaluate robustness, we selected three straight-
forward tasks (shown in Fig. 12) and introduced dis-
tractor objects into the environment. Initially, both
OpenVLA and NORA performed well. However,
their success rates declined significantly with the in-
troduction of distractions. This highlights the sensi-
tivity of current VLA models to out-of-distribution
disturbances. The average success rates across the
three tasks are presented in Table 8, while the de-
tailed number of successful executions out of 10
trials is summarized in Table 7.

D Modular Claw Machine Prototype

To facilitate the evaluation of different VLMs
in robotic manipulation, we developed a voice-
controlled testbed using a URS robotic arm’. The
system architecture, shown in Fig. 13, comprises
the following five modules:

Shttps://github.com/HRItdy/claw_machine
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hamburger in the pan

7 X
put the pink toy at the right corner  move the banana close to the pan put carrot in pot

Figure 11: Real-world robot environments and task setups. We evaluate these models across 9 diverse tasks to
assess its instruction understanding, spatial reasoning, and multi-task motion planning capabilities.
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Category Task RT-1 OpenVLA SpatialVLA NORA
Put the red bottle and the hamburger in the pan 0 20 0 40
Multiple objects  Put the carrot and hotdog in pot 0 0 0 30
Put the corn and carrot in the pan 0 30 0 30
put carrot in pot 0 80 20 90
OOD object Put banana in pot 1 40 0 920
Put the blue cube on the plate 0 50 0 70
Put the pink toy at the right corner 0 60 30 60
Spatial Put the blue cube on the right plate 0 30 0 20
Move the banana close to the pan 30 50 50 80
Average 4.4 40 11.1 56.7

Table 6: Task performance comparison across different categories and models.

put banana in pot

put carrot in pot put the blue cube on the plate

Figure 12: Comparison of tasks with and without dis-
traction.

* Speech Transcription: Powered by Microsoft
Azure’s speech recognition service.

* Task Decomposition: Based on GPT-3.5 and
GPT-4 using prompting paradigms adapted from
ChatGPT for Robotics.

* Object Detection: Utilizes GroundingDINO
and OWL-ViT for object detection.

* Object Segmentation: Employs Segment Any-
thing Model (SAM) and FastSAM for segment-
ing detected objects.

No Re-recognize

| .
Audio Azure speech | Text GPT-based Object Detection result
input recognition decomposer detection (3D position)

Grasp object
Yes 3D position

——

Drop object

[T

Subtasks

Confirm with user

Figure 13: The system architecture of the testbed for
VLMs.

TASK OpenVLA NORA

without Distraction
put carrot in pot 8 9
put banana in pot

put the blue cube on the plate

[/ N
< \©

with Distraction
put carrot in pot 6 8
put banana in pot

put the blue cube on the plate

W AN
(LT N

Table 7: Comparison of task performance between
OpenVLA and NORA under conditions with and with-
out distraction. Each value denotes the number of suc-
cessful executions out of 10 trials.

Table 8: Average Success Rate (%) without (w/o) and
with (w/) Distractors

Model w/o Distractors w/ Distractors
OpenVLA 56.7 50
NORA 83.3 56.7

* Manipulation: Low-level actions are generated
by GraspAnything or GraspNet.
This modular testbed enables rapid integration
and benchmarking of different models within a real
robotic system.
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