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Abstract

Multimodal machine learning is often hindered
by two critical challenges: modality missing-
ness and modality imbalance. These chal-
lenges significantly degrade the performance
of multimodal models. The majority of exist-
ing methods either require the availability of
full-modality data during the training phase or
necessitate explicit annotations to detect miss-
ing modalities. These dependencies severely
limit the models’ applicability in the real world.
To tackle these problems, we propose a Dy-
namic Modality Recognition and Enhancement
for Adaptive Multimodal fusion framework
(DREAM). Within DREAM, we innovatively
employ a sample-level dynamic modality as-
sessment mechanism to direct selective recon-
struction of missing or underperforming modal-
ities. Additionally, we introduce a soft masking
fusion strategy that adaptively integrates dif-
ferent modalities according to their estimated
contributions, enabling more accurate and ro-
bust predictions. Experimental results on three
benchmark datasets consistently demonstrate
that DREAM outperforms several representa-
tive baseline and state-of-the-art models, mark-
ing its robustness against modality missingness
and imbalanced modality.

1 Introduction

Multimodal machine learning, inspired by humans’
ability to solve problems using information from
varying modalities, such as acoustic, visual, and
textual cues, focuses on enabling models to effec-
tively leverage multimodal data (Liang et al., 2024).
It has been successfully applied across various do-
mains, including medical (Zhang et al., 2024b; Yao
et al., 2024), public safety (Zhao et al., 2024), and
multimodal sentiment analysis (Sun et al., 2022;
Han et al., 2021).

Despite its success, multimodal machine learn-
ing often faces the challenge of missing modalities
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Figure 1: The yellow masks indicate the missing modal-
ities at these positions. Without specific designs to han-
dle modality missingness, models may predict ‘Happy’
when all modalities are present, but shift to ‘Neutral’
when some modalities are missing.

in real-world data, caused by sensor failures, data
corruption, or privacy constraints. Modality miss-
ingness is random and prevalent, impacting both
the training and inference phases. In real-world
scenarios, models built on the assumption that all
modalities are fully available (Yu et al., 2022; Sun
et al.; Li et al., 2023; Tsai et al., 2019) may be
misguided by missing modalities (Ma et al., 2022),
as shown in Figure 1. It suggests that those models
are sensitive to missing modalities.

Although a wide range of methods have been
proposed to address modality missingness (Zeng
et al., 2022a; Li et al., 2024a; Guo et al., 2024; Li
et al., 2024b), many of them face practical limi-
tations. These approaches generally rely on addi-
tional information to function effectively. Some
approaches (Li et al., 2023; Hu et al., 2020; Wang
et al., 2023; Li et al., 2024b) assume the availability
of complete multimodal data during the training
phase. However, such an assumption is often un-
realistic in real-world scenarios. Other methods
depend on explicit annotations that indicate which
modalities are missing for each input sample (Zeng

12855

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 12855-12867
November 4-9, 2025 ©2025 Association for Computational Linguistics



et al., 2022a; Sun et al., 2024; Guo et al., 2024).
While these annotations can guide the learning pro-
cess, they impose a substantial manual workload,
demanding consistent and accurate labeling across
extensive datasets. Moreover, these annotations
may not always be reliable or even feasible in dy-
namic, open-world settings. Therefore, these limi-
tations make existing solutions difficult to scale or
generalize.

Moreover, current methods for addressing
modality missingness primarily focus on alleviat-
ing the performance decline resulting from incom-
plete data (Lian et al., 2023; Zhao et al., 2021; Ma
et al., 2021). However, they neglect a more pro-
found and inherent issue in multimodal machine
learning: modality imbalance. Modality imbal-
ance refers to the unequal learning proficiency of a
model across different modalities, where the model
may over-rely on certain modalities while under-
utilizing or mislearning others. In such scenarios,
dominant modalities disproportionately influence
predictions, whereas other modalities contribute
minimally or even introduce noise(Du et al., 2023;
Wang et al., 2020a; Peng et al., 2022). Modality
missingness and modality imbalance are two dis-
tinct problems, yet they often co-occur and may
mutually reinforce each other. Modality imbal-
ance can intensify the impact of missing modali-
ties. It makes models more vulnerable when dom-
inant modalities are absent. Conversely, missing
modalities can exacerbate the imbalance by further
restricting the learning of modalities with lower
contributions.

In this work, we propose Dynamic Modal-
ity Recognition and Enhancement for Adaptive
Multimodal Fusion framework (DREAM), a novel
framework that addresses both missing modality
and imbalanced modality dynamically without ex-
plicit labels. Notably, DREAM does not require
full-modality data during training or manual anno-
tations to identify missing modalities like previous
works do.

Specifically, DREAM dynamically estimates the
actual contribution of each modality. Based on
these estimates, DREAM identifies modalities that
are missing or contribute little to the prediction and
selectively reconstructs and enhances them. To ef-
fectively integrate both reconstructed and observed
modalities, we introduce an adaptive fusion mecha-
nism in DREAM. By dynamically modulating the
fusion process according to the estimated modality
contributions, the framework produces more effec-

tive and resilient decisions, even when dealing with
missing or imbalanced modalities.

Our main contributions are summarized as fol-
lows:

* We propose DREAM, a robust multimodal
framework that effectively addresses the chal-
lenges of missing and imbalanced modalities
simultaneously via dynamic contribution esti-
mation and enhancement.

* We design a dynamic modality evaluation
mechanism that estimates each modality’s
contribution without relying on missing labels
or full-modality supervision.

* Experimental results on three benchmark
datasets IEMOCAP, CMU-MOSI, and CMU-
MOSEI) show that DREAM consistently out-
performs baseline and state-of-the-art models
under both incomplete and imbalanced modal-
ity conditions.

2 Related Work

Missing Modality Issue. In response to the chal-
lenge of modality missingness, previous research
has primarily explored two major directions: joint
representation methods and generative methods.

Joint representation methods aim to align the
joint representations of samples with missing
modalities to those of complete samples. These
methods can approximate a unified multimodal em-
bedding even in the absence of certain modalities
(Zeng et al., 2022a; Li et al., 2024a,b; Liaqat et al.,
2025; Ganhor et al., 2024). For instance, Zhao
et al. (2021) leverage Cycle Consistency Learning
to learn and predict robust joint multimodal repre-
sentations from available modalities under uncer-
tain missing-modality conditions. However, these
methods generally require the availability of full-
modality data during training for distillation learn-
ing, limiting their applicability in scenarios with
missing modalities in training data.

Meanwhile, generative methods focus on recon-
structing the missing modalities from the available
ones to restore complete multimodal inputs for
downstream tasks (Tran et al., 2017; Zeng et al.,
2022b). Such approaches often leverage generative
models, such as autoencoders (AEs) (Baldi, 2012)
or generative adversarial networks (GANs) (Zhang
et al., 2019), to restore the missing data. For exam-
ple, Ma et al. (2021) propose a model named SMIL,
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adopting Bayesian meta-learning to cope with se-
vere modality missingness. These methods usually
require special annotations to mark the missing
modalities. This additional annotation process not
only increases the complexity of data preprocessing
but also may introduce errors or biases, especially
when dealing with large-scale datasets.

More recently, the remarkable progress in pre-
trained models, particularly large language models
(LLMs), has spurred the development of prompt-
based techniques for modality missingness (Lee
etal., 2023). These methods adapt pre-trained mod-
els through lightweight prompting strategies, en-
abling them to handle missing modalities without
requiring full model retraining. Guo et al. (2024)
utilizes prompt-based techniques to provide the pre-
trained multimodal model with missing modality
information at different stages, which empowers
the model to effectively handle modality missing-
ness. Meanwhile, Kim and Kim (2024) employ
prompt-based techniques to integrate multiple high-
performing pre-trained unimodal models to handle
the missing modalities issue. While promising,
many prompt-based methods still assume access to
training data with full modalities or rely on prede-
fined missing-modality indicators.

Imbalanced Modality Issue. Modal imbalance
refers to the insufficient learning of individual
modalities during the joint training of multimodal
systems (Du et al., 2023; Wang et al., 2020a; Huang
et al., 2022; Wu et al., 2022). This is often caused
by imbalanced contributions from different modali-
ties. Multimodal machine learning models tend to
over-rely on the dominant modality (most com-
monly text) while neglecting meaningful learn-
ing from other inputs (such as audio or vision).
Moreover, the dominant modality is also not fully
learned because of the complementary information
of other modalities. Thus, the under-utilization of
modalities degrades the overall performance and
harms the generalization ability of the model.
Recent efforts have explored several directions to
mitigate this issue. Peng et al. (2022) controls the
optimization of each modality by monitoring the
discrepancy of their contribution to the learning ob-
jective. Zhang et al. (2024a) employ an alternating
training scheme that separately learns unimodal fea-
tures and a shared global representation, ensuring
that the model captures both individual modality
characteristics and cross-modal interactions.
Importantly, modality missingness can further

aggravate modality imbalance, as the absence of
one or more modalities forces the model to depend
even more heavily on the dominant ones, making it
harder to learn from underrepresented modalities.

3 Method

3.1 Problem Definition and Notation

We consider a multimodal dataset D =
{(z®,yD) V| consisting of A" samples. Each
sample z(?) = {mgi),xg), .. ,xg\l/[)} contains M
modalities, and y(Y) € ) denotes the correspond-
ing label. To simplify notation, we denote a
generic sample as x = {x1,x2,...,2z)}, Where
Ty, represents the input from the m-th modality
and m € M = {1,2,...,M}. We denote the
missing modality as Z,,. The objective is to accu-
rately predict the label y based on the given input
x, even when certain modalities T, are missing.

3.2 Overall Architecture

DREAM consists of three key modules: the Dy-
namic Modality Contribution Evaluation Mod-
ule, the Modality Enhancement Module, and the
Modality-aware Masked Fusion Module. Figure 2
illustrates the overall architecture of DREAM.
The Dynamic Modality Contribution Evaluation
Module estimates the contribution of each modal-
ity using two complementary metrics: Predictive
Accuracy Score (PAS) and Prediction Shift Score
(PSS). Based on these assessments, the Modal-
ity Enhancement Module utilizes the PSS to se-
lectively reconstruct missing or low-contribution
modalities. The resulting enhanced modalities,
along with the original available modalities, are
then integrated by the Modality-aware Masked Fu-
sion Module, which employs PSS as a soft mask
to guide adaptive fusion. To ensure that the fusion
strategy reflects the predictive utility of each modal-
ity, an auxiliary objective is employed to align the
learned fusion weights with the PAS values.

3.3 Dynamic Modality Contribution
Evaluation Module

The Dynamic Modality Contribution Evaluation
Module leverages a pre-trained model to assess
the contribution of each modality to the final pre-
diction. Specifically, this module computes two
metrics: PSS and PAS. Given that the pattern of
modality missingness can vary among samples, this
module performs sample-level evaluation. We ap-
ply Shapley value (Weber, 1988) to compute the
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Figure 2: The overall architecture of our framework, DREAM. Conv1D refers to the 1D Convolution layer. FC

refers to fully-connected layer.

contribution of each modality. Shapley value is
a cooperative game theory metric that quantifies
the marginal contribution of each individual to a
collaborative effort within a team. By considering
all possible modality combinations, it offers a theo-
retically robust and fair measure of each modality’s
unique impact on model predictions.

Prediction Shift Score. The Prediction Shift
Score quantifies the ability of a modality to alter the
prediction results. For a modality x; , the marginal
contribution m?”%9(S, z;) for a subset of modali-
ties S'is defined as follows:

m5(S, ) =1 (Jsugey # 0s)» (D)

where s denotes the prediction when only the
modalities in subset S are provided as input. I(-) is
the indicator function that outputs 1 if the condition
holds and O otherwise.

To compute the overall contribution of a modal-
ity, it is essential to consider its impact across all
possible combinations of other modalities. Specif-
ically, the total contribution of modality x; to the
prediction is calculated as the weighted average of
all possible m?*5 (S, x;). In this context, the PSS
of modality z; is calculated as:

S (IM| = S| = 1)! pes
M! "

>

SCM\{i}
Modalities that are more likely to alter the
model’s prediction will be assigned higher scores.

(S, @i). (2)

In particular, the PSS of each modality can be cal-
culated without knowing the true label.

Prediction Accuracy Score. Although PSS re-
flects a modality’s influence on the model’s deci-
sion boundary, it has the potential to assign high
scores to modalities that can mislead the model.
To prevent the model from overly relying on such
misleading modalities, it is essential to direct the
model’s focus toward modalities that contribute
to correct and reliable predictions. Therefore, we
introduce the Prediction Accuracy Score to mea-
sure the individual contribution of each modality in
achieving a correct prediction outcome. The value
function of this score is adapted from (Wei et al.,
2024), which is defined as:

|S| if st =Y,
0 otherwise.

Vpas(S) = { 3)

If the prediction is correct, the total payoff of a
given modality subset is the number of modalities it
contains. This value function assigns higher scores
to the modalities that are more likely to lead the
model to make the correct prediction.

The marginal contribution m?45(S,z;) of
modality z; to a subset S for computing PAS is
defined as:

mPAS(S, xl) = VpAs(S U xz) — VpAs(S). @)

The PAS of a modality x; is computed in the
same way as PSS (see Eq. 2), as the weighted aver-
age of all possible m”49(S, ;).
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3.4 Modality Enhancement Module

Instead of using manually annotated labels, the
Modality Enhancement Module identifies the miss-
ing and low-contribution modalities by PSS.

Based on the computation of PSS, if a modality’s
PSS is zero, it implies that the introduction of the
modality does not change the model’s prediction.
This outcome can be attributed to several under-
lying factors: (1) the modality is entirely missing
in the given sample; (2) although present, it lacks
discriminative information or the model fails to ex-
tract meaningful features from it; (3) the modality
provides redundant information that is highly corre-
lated with other modalities, offering little additional
value for the prediction. Regardless of the specific
cause, a modality with zero PSS reflects that it has
minimal or no contribution to the model’s decision,
making PSS a reliable signal for identifying targets
for enhancement.

The Modality Enhancement Module builds upon
the idea of cross-modal reconstruction. Different
from previous works (Li et al., 2024a; Wang et al.,
2020b), we adopt a simple architecture to obtain a
robust representation while mitigating overfitting.
The specific enhancement procedure is described
as follows.

Let mffb) denote the target modality to
be enhanced or reconstructed. And let
{:Ega), mga), ey xs)_l} represent the remaining
available M — 1 modalities. We first concatenate
the representations of all modalities to construct a
global multimodal context representation:

Zy = [a;%), :cga),a:éa), R xg\c/l[)fl]. (5)

Next, we generate M — 1 partial representations,
each by concatenating the target modality with one
of the available modalities:

Z = 20,2\, fork=1,2,...,M—1. (6)

To model the interactions between the target
modality and the multimodal context, we apply
cross-modal attention (CA) modules. The target
modality x%) serves as the query, while the global
and partial representations serve as the key and

value inputs. We compute one global interaction:
Iy = CA(x(}), Zy, Zy), (M
and M — 1 partial interactions:

I, = CA@\Y, 2, Z1), fork=1,2,...,M—1.

®)

The enhanced representation of the target modal-
ity is then obtained by aggregating all interaction
outputs with the original representation. The re-
sult is then normalized using Layer Normalization
(LN):

M-—1
2/ = LN <m$f) +Ilg+ > Ik> . )
k=1

This enhancement process is repeated D times,
where D is a hyperparameter determined empiri-
cally.

3.5 Modality-aware Masked Fusion Module

The Modality-Aware Masked Fusion Module
adopts the principle of capitalizing on strengths
and suppressing weaknesses. It adaptively inte-
grates all the original and reconstructed modality
features by leveraging the PSS-based soft masking
strategy and modality contribution distillation.

In the module, each modality is first processed
through cross-modal attention mechanism to derive
modality-aware representations { h; } ij\il, serving as
preliminary fusion. These representations are then
concatenated and passed through a linear projection
layer to predict a preliminary weight matrix w.

PSS-based Soft Masking Strategy. Generative
models inevitably face the challenge of ensuring
the reliability of the generated features (Zeng et al.,
2022b; Guo et al., 2024). To address this prob-
lem, the influence of generated modalities should
be down-weighted during fusion. PSS serves as a
natural proxy, being high for original modalities
and zero for reconstructed ones. We therefore intro-
duce a PSS-based soft-masking strategy. However,
directly applying PSS as a mask would exclude
the generated modalities entirely from the fusion
process. To prevent the loss of potentially useful
information, we add a constant offset of 1 to all
PSS. These adjusted PSS are then used to reweight
the preliminary fusion weights, thereby modulating
the influence of each modality on the final decision.
The final fusion weights w’ are computed as fol-

lows:
w’ = softmax(w x (PSS +1)).  (10)

The fused multimodal representation H is ob-
tained by a weighted sum of the preliminary fused
representations:

(1D
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Eventually, H is passed through a fully con-
nected layer to produce the final prediction y.

Modality Contribution Distillation. To encour-
age the fusion module to rely more on the modal-
ities that contribute positively to prediction accu-
racy, we introduce a distillation loss Lg;stitiation-
This loss encourages the weights w to align with
the corresponding PAS. Specifically, we compute
this alignment using the Kullback-Leibler (KL) di-
vergence. The loss is defined as:

ﬁdistillation = KLZOSS(’LU, PAS)a (12)

where K Lloss(-) refers to the KL divergence
method for computing the distillation loss.

The overall training objective is to minimize the
total loss L;otq7, Which is computed as:

(13)

Etotal = £task + AEdistillm‘,ion7

where L;,s1. denotes the primary task-specific loss,
which is the cross-entropy loss for classification
tasks and the L1 loss for regression tasks. A is the
weight for distillation’s loss.

4 Experiments

In this section, we test DREAM’s performance to
address the following research questions.

* QI: How robust is DREAM to modality miss-
ingness, including both inter-modality and
intra-modality missing scenarios?

* Q2: Compared to previous works, does
DREAM demonstrate improved capability in
addressing modality imbalance?

¢ Q3: Do the modules of DREAM contribute to
overall performance improvements?

* Q4: To what extent does the pre-trained model
influence DREAM’s performance?

* Q5: What is the computational overhead of
the Dynamic Modality Contribution Evalua-
tion Module?

4.1 Experimental Setup

Datasets. We perform comprehensive evalua-
tions on three widely-used multimodal sentiment
analysis (MSA) datasets with word-level alignment:
MOSI (Zadeh et al., 2016), MOSEI (Bagher Zadeh
et al., 2018), and IEMOCAP (Busso et al., 2008).
A detailed description of datasets can be found in
the Appendix A.1.

Baselines. To comprehensively evaluate the ef-
fectiveness of DREAM, we conduct extensive com-
parisons with a diverse set of baseline and state-
of-the-art (SOTA) models. The baseline model
is complete-modality method: CubeMLP (Sun
et al.). In addition, we compare DREAM against
SOTA methods specifically designed for scenarios
with missing modalities, including joint learning
frameworks: CorrKD(Li et al., 2024b) and TransM
(Wang et al., 2020b), generative approaches: SMIL
(Ma et al., 2021) and GCNet (Lian et al., 2023),
as well as prompt methods: MLPMM (Guo et al.,
2024) and MSPs (Jang et al., 2024).

Implementation Details. Our framework is built
on the Pytorch (Paszke et al., 2017) toolbox with
NVIDIA GeForce RTX 3090 GPU. The Adam op-
timizer (Kingma and Ba, 2015) is employed for
optimization. For the pre-trained model, we adopt
the backbone model of CorrKD (Li et al., 2024b).
For detailed information on hyperparameter con-
figurations, data preprocessing, and baseline re-
implementations, please refer to Appendix A.2.

4.2 Overall Result

Q1: How robust is DREAM to modality missing-
ness? To assess the robustness of the proposed
framework, we design two sets of experiments.
One simulates inter-modality missingness by re-
moving one or more modalities during inference.
The other simulates intra-modality missingness by
randomly masking different proportions of frames
within each modality’s input sequence during both
training and testing phases.

Robustness to inter-modal missingness: Table 1
presents the performance of different models under
inter-modal missingness. The contents in parenthe-
ses represent the available modalities. “Avg." indi-
cates the average performance across six missing-
modality testing conditions. Our proposed frame-
work consistently outperforms baseline and SOTA
models under inter-modal missingness. On IEMO-
CAP dataset, when the text modality is missing,
DREAM achieves an F1 score that is 6.51% higher
than that of MSPs. Furthermore, DREAM achieves
the highest average performance across all missing-
modality scenarios. On IEMOCAP dataset, the av-
erage F1 score of DREAM is improved by 7.51%
compared to that of CorrKD. This finding sug-
gests that DREAM outperforms other models and
demonstrates strong robustness to inter-modal miss-
ingness.
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Dataset ~ Models {1} {a}  {v} A{l,a} {l,v} {a,v} Avg. {l,a,v}
CubeMLP 70.87 39.85 3932 7215 7195 4231 56.03 82.57
CorrKD 78.45 6427 58.67 80.74 7991 7028 72.05 81.11
TransM 75.02 6454 64.48 7899 76.56 6724 71.13  80.87
MOSI SMIL 7792 66.73 6532 79.01 78.06 70.34 7289 81.26
GCNet 79.86 6334 65776 77.50 80.11 69.31 72.64  81.58
MLPMM 80.12 63.65 63.74 81.09 81.19 6541 7257 82.39
MSPs 79.12 6543 66.28 79.83 7832 68.61 7291 81.39
DREAM (Ours) 80.22 59.61 69.49 82.80 79.19 7149 73.79 82.88
CubeMLP 75.18 37.16 38.42 75.19 7520 4137 57.09 81.16
CorrKD 79.12 6475 61.03 80.08 79.63 7046 7251 80.49
TransM 77.61 5445 5820 7883 7293 6224 6737 8148
MOSEI SMIL 79.33 56.39 60.08 78.38 77.73 6227 69.03 80.16
GCNet 78.90 61.89 6533 80.75 80.28 6945 7276  80.60
MLPMM 79.71 68.71 69.40 8043 80.13 6991 74.68 81.37
MSPs 7991 70.23 56.19 80.16 7998 71.04 7291 81.26
DREAM (Ours) 80.03 77.20 75.24 80.62 81.80 74.80 78.21 82.11
CubeMLP 70.07 53.06 5022 72.10 7425 54.06 6229 @ 83.37
CorrKD 80.32 61.68 58.01 81.13 80.23 66.03 71.23 8291
TransM 7530 5835 56.21 78.07 7627 59.88 6734  81.37
IEMOCAP SMIL 79.34 59.68 56.14 81.59 82.12 60.28 69.85 82.21
GCNet 8046 61.06 59.01 8132 7956 61.12 7042  83.55
MLPMM 69.28 59.71 5698 7544 7451 6737 6722 7712
MSPs 7036 6547 6239 7649 7431 7057 6993  83.48
DREAM (Ours) 82.65 76.51 73.08 82.65 8049 77.08 78.74 85.84

Table 1: Performance comparison under inter-modal missingness. The evaluation metric is F1 score. The contents
in parentheses represent the available modalities. The notation “{1}” indicates that only the language modality
is available, while audio and visual modalities are missing. “{1, a, v}” represents the complete-modality testing
condition where all modalities are available. “Avg.” indicates the average performance across six missing-modality
testing conditions. For the highest we mark in bold and the second highest we underline.

Robustness to intra-modal missingness: Fig-
ure 3 presents the performance of all models un-
der varying levels of intra-modal missingness. All
models exhibit a performance decline as the miss-
ing ratio increases, indicating sensitivity to partial
modal corruption. Notably, our proposed frame-
work demonstrates the slowest degradation trend
among all the methods. Specifically, when the miss-
ing ratio exceeds 0.5, our framework consistently
achieves the highest performance, underscoring its
superior resilience to severe intra-modal missing-
ness.

Q2: Does DREAM demonstrate improved capa-
bility in addressing modality imbalance? The
robustness of a model to modality imbalance is re-
flected in its ability to effectively learn from each
modality. In Table 1, the results obtained using only
the text, audio, or visual modality as input reflect

the model’s learning proficiency for each modality.
These results reveal the following findings.

All models exhibit substantially better perfor-
mance when only the language modality is avail-
able, compared to when solely the visual or acous-
tic modalities are used. This observation highlights
a clear imbalance in the predictive contribution of
different modalities. Notably, our proposed model
demonstrates strong performance even under sce-
narios where only low-contribution modalities are
available. On the IEMOCAP dataset, when only
the acoustic modality is retained, our model outper-
forms the best SOTA model MSPs by 11.04%.

Q3: Do the modules of DREAM contribute to
overall performance improvements? To eval-
uate the effectiveness of the key modules in our
proposed framework DREAM, we conduct abla-
tion studies on the IEMOCAP dataset. The variant
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Figure 3: Comparison results of intra-modal missingness on (a) MOSI, (b) MOSEI, and (c) IEMOCAP at various

missing ratios.

—e— DREAM
w/o dynamic enhancement
—&— w/o MMFM

N

F1 Score
fec] 00

-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Missing Ratio

Figure 4: Results of ablation experiments under multiple
modalities missing situation.

w/o dynamic enhancement removes the constraint
for low contribution modalities and instead recon-
structs all modalities indiscriminately. The variant
w/o MMFM removes the adaptive fusion process
and instead fuses multiple modalities based on pre-
dicted weights. In our experiments, we simulate
both intra- and inter-modality missingness at the
same time. Further details of the experimental set-
tings are provided in the Appendix A.4.

The results are presented in Figure 4. As shown
in the results, the complete DREAM model consis-
tently outperforms both ablated variants across all
missing rates. This confirms that both the modality
enhancement module and modality-aware masked
fusion module play important roles in improving
robustness under partial or severe missing condi-
tions.

Q4: To what extent does the pre-trained model
influence DREAM’s performance? We further
conduct ablation studies on the pre-trained model
used within the DREAM framework to investigate
the extent to which DREAM relies on the qual-
ity of the pre-trained backbone. Specifically, we
compare three alternative models: (1) Self-MM
(Yu et al., 2022), a strong performer on fully ob-

©
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Figure 5: Results of ablation experiments with different
pre-trained models under multiple modalities missing
situation.

served multimodal datasets; (2) CorrKD, which
shares the same architecture as our main setup but
is insufficiently trained; and (3) a simple multilayer
perceptron (MLP) baseline.

As shown in Figure 5, DREAM consistently
benefits from stronger pre-trained models, with
Self-MM delivering the best overall performance.
Yet even with weaker backbones such as MLP,
DREAM remains competitive. These results sug-
gest that while DREAM leverages high-quality pre-
trained models for enhanced accuracy, it retains ro-
bustness with lightweight or suboptimally trained
alternatives. Therefore, depending on specific de-
ployment needs, practitioners may flexibly trade
off between accuracy and efficiency by choosing
pre-trained models of varying complexity. This
finding highlights the robustness and adaptability
of DREAM across different model scales and ca-
pacities.

QS5: What is the computational overhead of
the Dynamic Modality Contribution Evalua-
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tion Module? The Dynamic Modality Contribu-
tion Evaluation Module forms the cornerstone of
the DREAM framework, as it precisely quantifies
the contribution of each modality based on a pre-
trained model. By definition, computing the contri-
butions of M modalities requires 2 predictions,
introducing potential computational expense. To
assess the cost, we compared the overall runtime
of our framework against several competitive base-
lines, including CubeMLP, TransM, and GCNet.
We also analyzed the cost introduced by the dy-
namic evaluation. The results are summarized in
Table 2.

As shown in Table 2, for scenarios with
three modalities, our framework maintains accept-
able—even efficient—training and testing times.
This efficiency largely stems from our choice of rel-
atively lightweight pre-trained models, which sub-
stantially reduce computational overhead. More-
over, the dynamic evaluation strategy alleviates
the need for additional manual annotations, further
lowering the cost.

Nevertheless, for larger modality sets (M > 4),
exact calculation becomes computationally infeasi-
ble. In such cases, approximation techniques like
the Monte-Carlo method (Luo et al., 2024) or the
Shapley Additive Explanations method (Singh and
Chaturvedi, 2024) can be integrated. Our findings
in Section 4.2 (Q4), which show that DREAM per-
forms well even with less accurate contribution
estimates, support the viability of using such ap-
proximations to ensure scalability.

IEMOCAP MOSI MOSEI
Models train test train test train test
DREAM(ours) | 132.16 1.64 | 83.63 1.22 | 79341 3.74
pre-trained 1623 121 | 625 093 | 8547 2.13
CubeMLP 121.95 1.13 | 81.10 1.05 | 764.61 2.57
TransM 773.53 1.07 | 389.03 1.16 | 4106.38 2.95
GCNet 207.42 1.09 | 12432 0.95 | 1476.18 3.4l

Table 2: Runtime comparison across [IEMOCAP, MOSI,
and MOSEI datasets. The results of DREAM (ours)
represent the overall running time of the framework.
“Pre-trained” refers to the total computation time of the
pre-trained model.

5 Conclusion

In this paper, we present DREAM, a framework
that addresses both missing and imbalanced modal-
ities. DREAM dynamically identifies modalities
with low contributions and reconstructs them to
enhance overall representation quality. DREAM
adaptively fuses both the original and reconstructed

modalities based on their estimated contributions.
Importantly, the entire learning process is carried
out without the need for full-modality supervision
or explicit annotations indicating missing modal-
ities. Experiments on three benchmark datasets
demonstrate that DREAM achieves strong perfor-
mance and robustness with missing and imbalanced
modalities. The results of the ablation studies fur-
ther highlight the effectiveness of DREAM’s dy-
namic modality contribution recognition and its
robustness to different pre-trained models.

Limitations

Although our proposed method demonstrates
strong robustness under both inter-modal and intra-
modal missingness scenarios, there remain limi-
tations to be addressed in future work. In par-
ticular, our approach does not leverage recent ad-
vances in large language models (LLMs), which
have shown remarkable capabilities in cross-modal
reasoning and representation learning. Incorporat-
ing LL.Ms such as GPT or BERT-derived archi-
tectures could further enhance the semantic un-
derstanding of the textual modality, and potentially
benefit multi-modal fusion through pre-trained mul-
timodal representations. Exploring this integration
remains an important direction for improving both
accuracy and generalization.
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A Appendix

A.1 Dataset

This study utilizes the IEMOCAP (Busso et al.,
2008), CMU-MOSI (Zadeh et al., 2016), and CMU-
MOSEI (Bagher Zadeh et al., 2018) datasets.

¢ The IEMOCAP dataset is available for non-
commercial research purposes under a custom
license from the USC SAIL Lab.

¢ The CMU-MOSI dataset is distributed under
the Creative Commons Attribution 4.0 Inter-
national (CC BY 4.0) license.

* The CMU-MOSEI dataset is provided for
academic research purposes under a custom
license via the CMU Multimodal SDK.

All datasets were accessed and used in compli-
ance with their respective licensing agreements.

The IEMOCAP dataset includes 4,453 video
samples, with predefined splits of 2,717 for train-
ing, 798 for validation, and 938 for testing. It
focuses on four categorical emotions: happy, sad,
angry, and neutral. The MOSI dataset comprises
2,199 short monologue video segments, partitioned
into 1,284 for training, 229 for validation, and 686
for testing. MOSEI, a larger-scale corpus, contains
22,856 video clips divided into 16,326 training,
1,871 validation, and 4,659 testing samples. Both
datasets are annotated with sentiment scores rang-
ing from -3 (strongly negative) to +3 (strongly pos-
itive). For performance evaluation on MOSI and
MOSEI, we adopt the weighted F1 score calculated
based on binary (positive/negative) sentiment clas-
sification. The IEMOCAP dataset includes 4,453
video samples, with predefined splits of 2,717 for
training, 798 for validation, and 938 for testing. It
focuses on four categorical emotions: happy, sad,
angry, and neutral.

A.2 Hyperparameter and Baseline
Implementation

For MOSI, MOSEI, and IEMOCAP, the detailed
hyperparameter settings are as follows: the learn-
ing rates are le-4, le-4, 2e-4. For all three datasets,
the batch sizes are 32, the epoch numbers are 30,
and the embedding dimension is 200. In modality
enhancement module, the reconstruction process
is repeated 2 times. Hyperparameters are chosen
based on the validation set performance. For sam-
ples with missing modalities, the corresponding

feature vectors are replaced with zeros. To ensure
a fair comparison, all state-of-the-art baselines are
re-implemented using publicly released codebases.
The final results are obtained by averaging the out-
comes of five runs with different random seeds.

A.3 Parameter Stastics

To better understand the computational complexity
of our proposed framework, we report the number
of trainable parameters used in our experiments
across different datasets. Table 3 summarizes the
parameter counts for the pre-trained model, the
DREAM framework, and the total combined pa-
rameters. It is worth noting that while DREAM
introduces additional parameters beyond the pre-
trained model, the total model size remains within
a reasonable range for practical applications.

Component MOSI MOSEI IEMOCAP
Pre-trained model 717,762 93,890 95,472
DREAM 3,054,116 3,070,916 3,072,323
Total 3,131,878 3,164,806 3,167,795

Table 3: Number of trainable parameters on different
datasets.

A.4 Experimental Setup for Heterogeneous
Modality Missingness

As detailed in our ablation experiments (Sec-
tion 4.2, Q3 and Q4), we explored a more chal-
lenging scenario where both inter-modal and intra-
modal missingness are present simultaneously.
Specifically, when the overall missing rate is set to
1%, both the training and testing sets contain 7%
of samples with missing modalities, while the re-
maining 1 — n% contain all the modalities. Among
all the samples:

. %77% suffer from inter-modal missingness,
. %7’% suffer from intra-modal missingness,

. %% suffer from both types of missingness con-
currently,

* 1 — n% contain all the modalities.

This distribution better simulates real-world mul-
timodal learning scenarios, where missingness is
heterogeneous and unpredictable.
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