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Abstract

Instruction tuning (IT) is an effective approach
for aligning large language models (LLMs)
with human intentions. There is ongoing dis-
course regarding the data quality for IT. As an
effort to find the robust criteria of data quality
for IT, we introduce LIMACOST, a data quality
measure that exhibits a strong correlation with
model performance. LIMACOST utilizes LIMA
dataset, which effectiveness in IT has already
been validated by several previous works. LI-
MACOST then estimates the value of a given
data by estimating how many LIMA data points
might be needed to approximate its gradient.
Our experiments reveal that LIMACOST en-
ables effective data selection that derive high
alignment performance. We demonstrate that
selecting data based on high LIMACOST proves
to be more effective than existing data selection
strategies.

1 Introduction

Instruction Tuning (IT) is one of the practical strat-
egy for large language models (LLMs) to attain
human-interactive capability (Zhang et al., 2023;
Longpre et al., 2023; Peng et al., 2023). To achieve
more effective alignment, recent studies have high-
lighted the importance of acquiring high-quality IT
data over a large quantity (Chen et al., 2024b; Xia
et al., 2024b; Zhou et al., 2023; Wang et al., 2024).

Then, what data should we choose for IT? Nu-
merous studies have sought a satisfactory answer
to this question (Liu et al., 2024c; Albalak et al.,
2024; Chen et al., 2024a), but we have yet to find a
definitive answer. These attempts include quantify-
ing data quality using frontier LLMs like ChatGPT
(Chen et al., 2024b; Liu et al., 2024c; Bukharin and
Zhao, 2023), or establishing explicit quality criteria
and manually designed data based on those stan-
dards (Zhou et al., 2023; Liu et al., 2024b; Zhao
et al., 2024).

† Corresponding Author

We observed that these studies are often con-
ducted in isolation without leveraging existing re-
search resources. Although previous research has
provided high-quality datasets and robust perfor-
mance metrics, current studies on data quality of-
ten establish their distinct standards without con-
sidering prior works, resulting in a lack of con-
tinuity. Notably, several high-quality datasets,
such as LIMA (Zhou et al., 2023), and their well-
established data quality assets appear underutilized.

In this study, we aim to address the aforemen-
tioned question regarding data selection by utiliz-
ing previous assets. Specifically, we introduce LI-
MACOST, a data valuation method that can select
high quality data that derive superior alignment
performance. The concept behind LIMACOST is
straightforward: it identifies data points that sig-
nificantly contribute to model updates. If a data
point yields a complex gradient that is challenging
to estimate from existing data, we deduce that it
embeds high-quality information.

To achieve this, we utilize the LIMA (Zhou et al.,
2023) dataset, known for its credibility and ef-
fectiveness in alignment tuning. LIMACOST as-
sesses each data point by determining the number
of LIMA data points required to approximate its
gradient. If only few LIMA data points are neces-
sary to estimate the gradient of a given data point,
the impact from that data point is considered rela-
tively minor. We consider that a high LIMACOST

value implies significant effectiveness for align-
ment tuning.

Our experiments reveal that LIMACOST allows
us to estimate the impact of each data on align-
ment tuning. To validate LIMACOST, we sorted
the Alpaca-gpt4 (Peng et al., 2023) and EvolIn-
struct (Xu et al., 2023) datasets by their LIMACOST

scores. We selected the top 1,000 high-score data
points and trained LLMs with varying knowledge
capacities—namely, Llama-2-7B (Touvron et al.,
2023) and Mistral-7B (Jiang et al., 2023)—using
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Figure 1: Overall process of LIMACOST

these data. We subsequently evaluated the instruc-
tion following performance of the trained models.
Our findings confirm that training with high LI-
MACOST data results in more effective alignment
performance than using low LIMACOST data. Ad-
ditionally, training with high LIMACOST data sur-
passes traditional strong IT data selection strategies,
such as NUGGETS (Li et al., 2023) and SelectIT
(Liu et al., 2024a).

These findings demonstrate that LIMACOST

serves as a straightforward and effective metric for
assessing data quality, offering clear insights into
how certain high-quality data points can receive
high ratings. We detail the rationale and applica-
bility of our methodology through an extensive
analyses.

2 Related Works

IT has garnered significant attention with the ad-
vent of LLMs (Longpre et al., 2023; Xu et al., 2023;
Liu et al., 2023). Specifically, research over recent
years has established a consensus that the quality of
instruction tuning is crucial for ensuring alignment
(Chen et al., 2024b; Liu et al., 2024c; Wang et al.,
2023a; Zhou et al., 2023; Albalak et al., 2024). This
research trajectory continues to evolve, with a rich
discourse on defining high-quality data and strate-
gies for obtaining it (Gao et al., 2020; Wettig et al.,
2024; Lu et al., 2024). Approaches include using
model internal knowledge to select high-quality
data (Xia et al., 2024b; Li et al., 2024b) and em-
ploying GPT evaluations to establish quality bench-
marks (Liu et al., 2024c; Chen et al., 2024b; Wettig
et al., 2024).

Notably, research presented by LIMA (Zhou
et al., 2023) demonstrated that carefully designed
1,000 pieces of data (experts manually devised
heuristics indicative of high-quality data (Al-

balak et al., 2024)) can yield a significantly high
instruction-following capability. Moreover, several
recent works figured out that selectively training
on the small fraction of selected Alpaca data points
show more effective than employing the entire 52K
dataset (Chen et al., 2024b; Liu et al., 2024c; Wet-
tig et al., 2024; Zhao et al., 2024).

However, we find that these studies have not
yet provided compelling explanations. The qual-
ity scores evaluated by frontier LLMs do not show
a strong correlation with the performance of the
trained models (Liu et al., 2024c). Additionally,
most other quality scores rely heavily on human-
defined heuristics (Albalak et al., 2024; Bom-
masani et al., 2023; Iyer et al., 2022; Ivison et al.,
2023) or remain at the assumption stage that they
might benefit model training (Zhao et al., 2024;
Wang et al., 2023a). In response, we propose a
quality metric that is more directly linked to model
performance and allows for objective valuation of
each data point.

3 LIMACOST

LIMACOST aims to quantify the influence of each
data points on the model during IT process. In other
words, LIMACOST serves as a quality measure
for each data point z, with higher LIMACOST(z)
indicating higher quality. Specifically, we measure
the change of the model parameters when trained
on each data point (i.e. also can be expressed as
a gradient), and count the amount of LIMA data
needed to estimate that change (i.e. gradient). To
accomplish this, we define the following processes.

3.1 Gradient Vectorization

To achieve more intuitive quantification, we esti-
mate the gradient obtained from a single data point
z by evaluating the change of the model parameters.
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We define the initial model state as θ and denote
the model state after training on a given data point
z as θz . We then define the parameter difference
between θz and θ as ∇z . To ensure robust estima-
tion, we reload initial model states and optimizer
prior to training with each data point. Given that
we directly estimate changes in the model parame-
ters, we contend that the choice of optimizer likely
does not significantly impact the results.

In training θ with z, we incorporate a LoRA (Hu
et al., 2022) structure to achieve two primary bene-
fits. First, it allows for relatively efficient training.
By freezing all states except those related to LoRA,
we update only at most 1% of the parameters, fa-
cilitating an efficient training process. In this work,
we set the dimension of LoRA structure r as 8 for
more efficient calculation (training only about 0.1%
of the whole parameters). Second, as LoRA struc-
ture comprises two linear layers (i.e. LoRA_A and
LoRA_B) and one of which (LoRA_B) is initial-
ized with zero state, we can effectively track the
update of model states. We provide more details in
the Section 3.4.

Through this process, we obtain the amount of
update in the LoRA structure derived by z. Note
that θloraB ∈ 0d×r by initialization and d is the
hidden size of θ.

θloraBz = θloraB + η∇loraB
z (1)

= η∇loraB
z ∈ Rd×r (θloraB ∈ 0) (2)

As the initial state of LoRA_B is the zero state,
we can track the impact of a given data point on the
model by only observing the difference of LoRA_B.
By calculating the average of these changes, we
derive the vector value vz for z as in Equation (3).
We specifically use only the model state of the
LoRA structure in the first layer for calculating vz .
We will discuss a case study on this topic in the
section.

vz = Avg(∇loraB
z , dim = 1) ∈ Rd×1 (3)

This approach enables us to vectorize the impact
of a data point z on the change of model state. Here,
we set the learning rate η to 1e-5. It is important to
note that any arbitrary choice of η does not affect
the determination of LIMACOST in the subsequent
process.

3.2 Lima Comparison Matrix

Using the aforementioned vectorization method,
we vectorize all the LIMA (Zhou et al., 2023) data
and compute the gradient matrix L for these data.
This matrix subsequently serves as a measure for
evaluating given instruction data points z.

L = Concat({vl | l ∈ LIMA}) ∈ Rd×nL (4)

This matrix captures the extent of model changes
attainable with each LIMA datapoint. We assess
the predictability of vz based on the vectors in L.
Here, nL represents the total number of LIMA data
points (i.e., nL = 1,000).

Note that LIMACOST assesses the quality of
each data point by calculating the number of credi-
ble data points needed to approximate its gradient.
In this process, the credibility of the data used to ap-
proximate the gradient is crucial for the validity of
this count. Therefore, a well-verified dataset is es-
sential for the reliable estimation of LIMACOST. In
this context, LIMA stands out as the most suitable
dataset for this purpose due to its quality, which has
been validated by multiple cross-disciplinary stud-
ies. However, LIMA is not an obligatory choice;
other instruction tuning data can equally serve as
a comparison matrix. Using data other than LIMA
as a comparison matrix remains an avenue for our
future research. We present brief analysis on the
selection of comparison matrix in the Appendix F.

3.3 Valuation via Lima Matrix

We then valuate vz via L, which can be formu-
larized as a least-square problem defined as the
Equation (5).

vz = LXz (where Xz ∈ RnL×1) (5)

During this estimation process, we count the
number of LIMA gradient vectors in L that sig-
nificantly involved in constructing vz . If this case
requires many LIMA instances, we argue that z is
a complex data type, offering model updates that
are challenging to achieve with LIMA dataset. In
such cases, we regard this data as highly valuable.

To estimate the number of significantly involved
vectors L, we firstly solve the problem presented
in Equation (5), which solution can be derived as
Xz = L+ · vz where L+ is a pseudoinverse of
L (Peters and Wilkinson, 1970). In this case, we
can interpret Xz as a weight vector indicating the
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significance of each vector in L for constructing vz
with L via linear combination.

We then calculate the SparseMax (Martins
and Astudillo, 2016) vector of the absolute
vector of Xz , which we denote as X ′

z =
SparseMax(abs(Xz)). SparseMax offers a
sparse distribution, where elements with relatively
minor values in the abs(Xz) are dropped to 0,
while those with significant values retain non-zero
values. In this paper, we focus solely on the char-
acteristics of SparseMax that drops minor values
to zero, and omit unnecessary details not related to
our process. Please refer to the original paper for
other details (Martins and Astudillo, 2016).

This process ensures that the number of nonzero
elements in X ′

z corresponds to the number of vec-
tors in L that are crucial for reconstructing vz . Con-
sequently, we define LIMACOST as Equation 6.

LIMACOST(z) =
#non-zeros in X ′

z

nL
(6)

Eventually, LIMACOST serves as a effective
quantitative measure of the impact of z on model
training. Our design particularly ensures that LI-
MACOST remains robust across various hyperpa-
rameter settings. We provide a more detailed dis-
cussion on this aspect in Appendix A. In subse-
quent experiments, we verify the effectiveness of
LIMACOST as a metric for evaluating data quality.

3.4 Justification for LoRA

Utilizing LoRA to track model changes offers sub-
stantial benefits beyond efficiency; it enables us
to concentrate on and estimate the impact of the
training data. The LoRA adapter, represented as
L = A × B, consists of a linear combination of
two matrices: A ∈ Rd×r and B ∈ Rr×d, where d
is the hidden dimension size of the original model
and r is the LoRA dimension.

In this section, we explain how tracking the
changes in matrix B from its initial state can ef-
fectively measure the influence of the training data.
Conventionally, parameters in A are initialized with
a normal distribution N (0, σ2), while matrix B is
initialized as a zero matrix.

Assume we have a loss function lz for a given
data point z that depends on lora. When applying
gradient descent we must compute the gradients
with respect to both A and B. Then by the chain

rule the gradients become as follows:

∇Alz =
∂lz
∂L

∇AL , ∇Blz = ∇BL
∂lz
∂L

(7)

As L is a product of matrices A and B, we can
denote that ∇AL = B and ∇BL = A. Subse-
quently, the gradients can be written as:

∇Alz =
∂lz
∂L

BT , ∇Blz = AT ∂lz
∂L

(8)

Considering that B is initialized as the zero ma-
trix, the gradient with respect to A becomes zero,
as in Equation 9.

∇Alz =
∂lz
∂L

BT =
∂lz
∂L

· 0 = 0 (9)

Note that ∇Blz = AT ∂lz
∂L which is generally

nonzero (assuming A and ∂lz
∂L are nonzero). In this

context, given the initialization B = 0, the imme-
diate effect of the data point z on L is reflected
solely in the updates of B. This approach provides
a highly reliable prediction in the sense that vector-
izing the impact of the training data. Therefore, we
decided to reload initial state for each data point
and vectorize the changes in B.

4 Experimental Settings

To assess the effectiveness of LIMACOST, we se-
lect a subset of 1K instructions with the highest
LIMACOST scores from a large IT dataset. We
train LLMs using this selected data and evaluate
their alignment performance. This approach allows
us to verify the impact of LIMACOST-selected data
on alignment tuning. We assume that the model’s
performance correlates directly with data quality.
To ensure rigorous validation, we performed a hy-
perparameter search based on the LIMA dataset.
This search aimed to identify the optimal settings
for training the IT model using 1K general data,
thereby achieving the best performance. We then
applied these optimal hyperparameters consistently
across all experiments. Detailed training configu-
rations and evaluation setups are provided in the
Appendix B and C.

4.1 Dataset
We conduct experiments using two general-domain
instruction tuning datasets: WizardLM (Xu et al.,
2023) and Alpaca-gpt4 (Peng et al., 2023). Wiz-
ardLM comprises 70,000 entries, while Alpaca-
gpt4 contains 52,002 entries. These datasets are
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widely used in existing studies on instruction tun-
ing data evaluation and selection, representing a
prevalent choice for our research.

For assessment, we employ three instruction-
following benchmarks: Koala (Geng et al., 2023),
SelfInst (Wang et al., 2023b), and MT-Bench
(Zheng et al., 2023). These benchmarks evaluate
how accurately responses are generated based on
given instructions and are extensively used in in-
struction tuning performance assessments.

4.2 Models

To ensure diverse and comprehensive coverage
in our experiments, we select LLMs that are
highly regarded in the open-source community
and frequently used as benchmarks in several re-
search. Our experimental framework aims to assess
whether the datasets selected by LIMACOST con-
tribute to consistent performance across various
models. Specifically, we employ Llama2 (Touvron
et al., 2023) (meta-llama/Llama-2-7b-hf ) and Mis-
tral (Jiang et al., 2023) (mistralai/Mistral-7B-v0.3)
for our experiments. These models exhibit differ-
ences in both the quantity of training data and the
amount of embedded knowledge, allowing us to
robustly validate the effectiveness of our methodol-
ogy through their performance evaluations.

4.3 Evaluation Setup

We assess the performance of the trained model
using a GPT-4o (Hurst et al., 2024) evaluation. We
rate the accuracy and appropriateness of responses
generated by the aligned LLM on a scale of 1 to
10. The prompts used for evaluation and detailed
configurations are detailed in the Appendix C. We
conducted the evaluation with a temperature setting
of 0. When we repeated the assessment three times
for the model aligned through LIMA, we observed
a Krippendorff’s alpha (Krippendorff, 2011) score
of 0.923 across the evaluations. This high score
indicates consistent evaluation outcomes, allowing
us to perform a single evaluation for all subsequent
experiments.

4.4 Baselines

To evaluate the performance of LIMACOST, we
use IT data selection studies as our baseline. We
select 1,000 datasets using these methodologies
and compare the performance of models trained
on the selected data to verify the effectiveness of
LIMACOST. The data selection methods we use as
baselines are as follows.

Random (Xia et al., 2024c) This serves as the
fundamental baseline, referring to a method of ran-
domly extracting data points without any specific
criteria. Xia et al. (2024c) demonstrated that even
data selected at random can achieve sufficiently
high performance and should be considered a base-
line for data selection methodologies.

Length (Zhao et al., 2024) Length serves as a
strong and robust baseline quality measure in IT
data selection. Zhao et al. (2024) demonstrated
that selecting data with the longest output length
yields the most effective performance. We use
this methodology as our baseline for performance
comparison.

NUGGETS (Li et al., 2023) NUGGETS lever-
ages one-shot learning to use LLMs as data quality
estimators. According to (Li et al., 2023), an in-
structional example holds value in training if it
serves as an excellent one-shot demonstration for
a specific task. If it can facilitate many tasks, it
will be worth being treated as a prime data. We
utilize the data presented by the original study as a
baseline for our Alpaca-gpt4 experiments.

SelectIT (Liu et al., 2024a) This technique quan-
tifies data quality based on the self-reflection
methodology. Liu et al. (2024a) proposed that
the probability distribution among score tokens in-
dicates the internal uncertainty of LLMs in sam-
ple evaluation. The proposed approach evaluates
data quality by measuring the next-token prediction
probability, considering data with high probability
as high-quality. We utilize the data presented by
the original study as a baseline for our Alpaca-gpt4
experiments.

5 Results

5.1 Baseline Comparison

In this study, we conducted data selection experi-
ments based on LIMACOST and evaluated its ef-
fectiveness compared to existing data evaluation
methodologies. The main section reports the ex-
perimental results using Alpaca-GPT4 data, while
the results for WizardLM are detailed in the Ap-
pendix D. The outcomes are summarized in Ta-
ble 1.

Our findings indicate that training with data se-
lected using LIMACOST yields the highest align-
ment performance. Notably, data selection method-
ologies like NUGGETS and SelectIT, which uti-
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Testsets Koala SelfInst MT-Bench Avg

Perf Len Perf Len Perf Len Perf Len

Training Llama-2-7B with 1K general domain IT data

LIMA (Zhou et al., 2023) 4.53 1157.2 5.20 862.9 5.04 964.4 4.92 994.8
Random (Xia et al., 2024c) 5.72 1235.0 6.03 694.2 5.39 1008.9 5.71 979.3
Length (Zhao et al., 2024) 6.02 1891.6 5.63 1355.5 5.31 1426.4 5.65 1557.9
NUGGETS (Li et al., 2023) 5.50 1395.4 6.03 1119.4 4.94 1326.4 5.49 1280.4
SeletIT (Liu et al., 2024a) 5.56 886.5 5.87 480.9 4.86 828.6 5.43 732.0
LIMACOST (ours) 5.96 1552.0 6.28 1004.0 5.31 1092.8 5.85 1216.3

Training Mistral-7B with 1K general domain IT data

LIMA (Zhou et al., 2023) 5.29 1157.2 5.23 877.8 4.91 867.0 5.14 967.3
Random (Xia et al., 2024c) 5.28 1235.0 5.75 648.7 5.61 829.3 5.55 904.3
Length (Zhao et al., 2024) 5.82 1891.6 6.26 1752.8 5.64 1629.1 5.91 1757.9
NUGGETS (Li et al., 2023) 5.70 1395.4 6.41 974.1 5.60 1146.1 5.90 1171.9
SeletIT (Liu et al., 2024a) 4.83 886.5 4.54 652.3 5.16 889.8 4.84 809.5
LIMACOST (ours) 5.86 1552.0 6.74 1122.7 5.55 1241.6 6.05 1305.4

Table 1: Performance of the models trained with the selected Alpaca-gpt4 datasets. "Perf" denotes the instruction-
following performance assessed via GPT-4o evaluation, while "Len" reports the average character length of responses
from each model.

lize the internal knowledge of LLMs, often per-
formed worse than the naive baseline of selecting
the longest data (Length). In contrast, our approach
consistently demonstrated superior performance
across models, underscoring its robustness and ef-
fectiveness as a data selection methodology.

Although our approach incorporates LIMA, it
significantly outperformed models trained directly
using LIMA. This highlights the potential to de-
velop superior data selection methodologies by
leveraging existing assets. Importantly, our method
does not solely rely on using pre-existing data as
training data but instead utilizes the embedded in-
formation of the data to assess the quality of di-
verse datasets. In this context, we reveal that our
approach exhibits broad applicability.

We also present the length of the generated re-
sponses. This is because there may be a bias to-
wards longer answers when evaluated using LLM-
as-a-judge (Wei et al., 2024; Saito et al., 2023). We
aim to determine whether the performance of the
model trained with LIMACOST is determined by
the length of its responses. Our experimental re-
sults indicate that compared to the model trained
on the longest data, the model trained with LIMA-
COST produces relatively shorter responses. De-
spite the shorter length, the quality of these re-
sponses surpasses all evaluated baselines. This
demonstrates that the data selected by LIMACOST

significantly contributes to achieving high align-
ment performance.

5.2 Cost Analysis

The requirement for training to measure LIMA-
COST might raise questions about efficiency con-
cerning cost. However, we find the significant
efficiency of our approach compared to existing
methodologies. To demonstrate this, we compare
the GPU hours and cost required by LIMACOST

with those of traditional baseline data valuation
methods, as shown in Table 2. Here, we report per-
formance as the average across three benchmarks
on Llama2 and Mistral.

Method Avg
Performance

Time
(GPU hour) Cost ($)

NUGGET(Li et al., 2023) 5.70 - 445.73
SelectIT(Liu et al., 2024a) 5.14 23.2 h 26.68

LimaCost(ours) 5.95 6.73 h 7.74

Table 2: Cost Analysis. We report performance as the
average across three benchmarks on Llama2 and Mis-
tral. We calculated costs based on the cost per GPU
hour reported in SelectIT(Liu et al., 2024a) (1.15$/h).
For NUGGET(Li et al., 2023), which does not report
cost, we estimate the cost of the text-davinci-003 model
(20dollar/1M tokens) based on the mistral tokenizer to-
ken length (about 11.3M).

As the experimental results demonstrate, our
methodology excels both in performance and ef-
ficiency. For NUGGET we estimated the costs
incurred from input tokens, so actual costs may
be higher. Nonetheless, employing this method
with frontier LLMs is associated with significant
costs. These results demonstrate that LIMACOST
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Figure 2: Case study on the layer choice in estimating LIMACOST

achieves the highest performance with the lowest
cost among data valuation methods.

5.3 Case Study: Layer Selection

To validate the effectiveness of the LIMACOST de-
sign, we have structured an experiment focusing
on two main inquiries: 1) Is the performance dif-
ference between data with the highest LIMACOST

and data with the lowest LIMACOST statistically
significant? 2) Which layer’s variation should we
track? To address these questions, we examine
performance differences across three layer settings
and compare outcomes when training with highest
and lowest scored data. The experimental findings
are presented in Figure 2.

Our findings indicate that tracking the parameter
difference in the first layer yields the most effec-
tive results. While averaging the changes across all
layers occasionally produces better outcomes, over-
all performance is highest when focusing on the
first layer. Notably, the performance discrepancy
between selecting the first and last layers is sub-
stantial across all test datasets. This suggests that
layer selection is a critical factor in LIMACOST’s
effectiveness, with the first layer emerging as the
optimal choice.

Furthermore, the significant performance dif-
ferences between selecting high-scoring and low-
scoring data, as measured by our method, demon-
strate that LIMACOST serves as a highly effective
quantitative measure of data quality. Achieving
high alignment performance by training with high-
scoring data indicates that our methodology is also
a highly effective approach for data selection.

5.4 Analysis on the Character Length

In the following sections, we aim to identify the
characteristics of data selected with high scores
from LIMACOST. Initially, we explore the correla-
tion between the assigned LIMACOST scores and
the length of the data. Note that choosing longer
training data is often considered a strong baseline
in data selection research, and studies have shown
that training with longer data can yield higher align-
ment performance (Zhao et al., 2024). Figure 3
presents a scatter plot illustrating the relationship
between LIMACOST and the character length of
the corresponding data.

As shown in the scatter plot, we can find a
weak positive correlation between LIMACOST and
data length. This is evident from the substantially
higher average character length of data with high
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Figure 3: Scatter plot depicting the relationship between LIMACOST and length.

Instruction Output

Make a list of
countries that
have adopted
a unicameral
system of gov-
ernment.

A unicameral system of government refers to
the practice of having only one legislative or
parliamentary chamber. Here is a list of coun-
tries that have adopted a unicameral system of
government:
1. Afghanistan 2. Albania 3. Andorra ...

LIMACOST: 0.079

Create a ma-
chine learning
model to
recommend
movies.

To create a machine learning model that rec-
ommends movies, you first need to gather data
about movies and user preferences. Here are the
steps you can follow:
1. Define the problem: In this case, the problem
is recommending movies to users based on ...

LIMACOST: 0.081

Outline a plan
to add a new
feature to a
web applica-
tion.

Here is a step-by-step plan for adding a new
feature to a web application:
1. **Determine the scope and objective of the
new feature:** Begin by consulting with rele-
vant stakeholders such as developers, customers,
and business leaders to determine what the ...

LIMACOST: 0.083

Table 3: Data with the highest LimaCost in Alpaca-gpt4.
We can witness several of these data requires structured
output.

LIMACOST compared to data with low LIMACOST.
However, we also observe that these two factors
do not have complete dependence on each other,
indicating that LIMACOST functions as an indepen-
dent quality metric. We will conduct a qualitative
analysis to further explore this finding.

5.5 Qualitative Analysis

In this section, we analyze the characteristics of
data selected by LIMACOST by directly examin-
ing samples with high and low LIMACOST values.
As shown in Table 3, data with high LIMACOST

predominantly consists of well-structured output
format. Conversely, as demonstrated in Table 4,

Instruction Output

Find the keyword in the fol-
lowing sentence: "The ele-
phant is beautiful".

The keyword in the sentence "The
elephant is beautiful." is "ele-
phant"

LIMACOST: 0.002

Find the 5th power of -2. The 5th power of -2 is -32.

LIMACOST: 0.002

Please rearrange the follow-
ing paragraph to make it
more compelling: She was
planning to go to the con-
cert but she couldn’t get a
ticket. She was determined
to go to the concert despite
not getting a ticket.

Determined to attend the concert,
she refused to let the obstacle of
not being able to obtain a ticket
stand in her way. She had been
planning to go, and she wouldn’t
let anything prevent her from ful-
filling that desire.

LIMACOST: 0.002

Table 4: Data with the lowest LimaCost in Alpaca-gpt4.
We observed that tasks with simple instructions often
received low scores, regardless of their length.

data with low LIMACOST involves tasks of mini-
mal complexity. This indicates that factors other
than length, such as the informational content of
the data, significantly impact learning effective-
ness. Through this qualitative analysis, we can
better identify the factors influencing alignment
performance.

6 Conclusion

In this paper, we propose LIMACOST, a data qual-
ity measure that leverages existing well-established
assets. LIMACOST quantifies the quality of data
based on the amount of LIMA data required to es-
timate parameter changes learned from each data
point. Through comparison with various data selec-
tion baselines, we demonstrate that our proposed
method achieves superior alignment performance.
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By analyzing data with high and low LIMACOST,
we identify factors that influence alignment perfor-
mance. We plan to refine future research to enhance
data quality assessment accuracy by utilizing exist-
ing assets.

Limitation

Furthermore, our research was constrained by the
inability to experiment with various instruction
datasets. Exploring different instructional frame-
works could potentially enrich our insights and
enhance the generalizability of our results. How-
ever, given the scope and resource limitations of
this study, we chose to concentrate on a single,
well-defined instructional dataset that has been ex-
tensively validated in prior research. This deci-
sion was guided by a commitment to methodolog-
ical rigor and the necessity of producing action-
able insights within the given parameters. While
this approach inherently limits the exploration of
variability across different instructional datasets, it
provided a focused and in-depth analysis that con-
tributes valuable findings to the existing body of
knowledge.

We acknowledge these limitations as areas for
future exploration, suggesting that subsequent re-
search could build on our findings by incorporating
a broader array of datasets and expanding the scope
of data selection methodologies. Such efforts could
further validate and enhance the applicability of our
study’s outcomes across diverse contexts.
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A Effect of Hyper-parameter Variants

We design LIMACOST to be insensitive to exter-
nal parameters. Note that we measure the model’s
change when "a single data point" is trained for
"just one epoch (1 step)." We reload the initial opti-
mizer for each data point. This setup intentionally
minimizes the impact of training setting variants.

• Batch: The batch size is set to 1 to ensure that
no other data influences the evaluation pro-
cess on the target data, eliminating potential
impacts from in-batch samples.

• Scheduler: Given that we train for a single
step within this setup, the scheduler’s influ-
ence is negligible.

• Optimizer: The benefits of using different
optimizer variants, such as Adam(Kingma
and Ba, 2014), AdamW(Loshchilov and Hut-
ter, 2019), and Adafactor(Shazeer and Stern,
2018), lie in adjusting the gradient direction
as training progresses. In our experimental
setup, comparing results from the first step
with a fresh optimizer minimizes sensitivity
to optimizer variants.

• LR: As mentioned in Section 3.1, our method-
ology is invariant to the learning rate (LR). If
we apply the same LR to every data point and
use it consistently in constructing the LIMA
matrix, the LR theoretically has no effect on
our selection.

Note that we analyze the impact of data based
on changes in model parameters. Thus, if training
parameters are used consistently during the estima-
tion, they theoretically exert minimal influence.

B Training Details

We utilized four RTX A6000 GPUs for all train-
ing and inference processes. For model train-
ing, we employed the Huggingface (Wolf et al.,
2020) framework, integrating FlashAttention-2
(Dao, 2024) and Deepspeed Stage 2 (Rasley et al.,
2020). Inference was conducted using the vllm
(Kwon et al., 2023) framework.

All models were trained with a learning rate of
1e-5, a cosine scheduler, a batch size of 256, and
without weight decay or warm-up. When train-
ing on 1K data points, we completed 10 epochs,
whereas with the full dataset, we conducted 2
epochs. Our hyperparameter selections resulted

from our own hyperparameter optimization pro-
cess. We trained three variants for each parame-
ter—learning rate (1e-5, 2e-5, 5e-6) and epochs (3,
10, 15)—to determine the optimal configuration.

C Evaluation Details

We use GPT-4 Omni (gpt-4o-2024-08-06) (Hurst
et al., 2024) for evaluation. The prompt used for
this evaluation is detailed in Table 5.

## System Prompt:
Please act as an impartial judge and evaluate the quality of
the response provided by an AI assistant to the user question
displayed below.
Your evaluation should consider factors such as the helpful-
ness, relevance, accuracy, depth, creativity, and level of detail
of the response.
Begin your evaluation by providing a short explanation.
Do not allow the length of the responses to influence your
evaluation.
Be as objective as possible.
After providing your explanation, please rate the response on
a scale of 1 to 10 by strictly following this format: "[[rating]]",
for example: "Rating: [[5]]".
## Input Format:
[Question]
{question}
[The Start of Assistant’s Answer]
{Response From Assistant}
[The End of Assistant’s Answer]

Table 5: Prompt utilized to evaluate general domain
instruction following capacity. In the assessments con-
ducted using the Koala, Selfinst, and MT-Bench data,
we employed a GPT-4o evaluator with this prompt ap-
plied.

D Experiments with WizardLM

To verify the broad applicability of LIMACOST,
we conducted additional comparative experiments
using WizardLM. Specifically, we reinforced the
effectiveness of our methodology by using prior
studies that validated their effectiveness with Wiz-
ardLM data as baselines. In the WizardLM experi-
ments, the baselines we employed include Random
and Length, and the following two data selection
methodologies.

Alpagasus (Chen et al., 2024b) Alpagasus is a
methodology that distills the language understand-
ing capabilities of advanced LLMs through a data
selection approach. It involves directly evaluating
data quality using LLMs like ChatGPT. We applied
a prompt asking the model to assess data quality
on a 1-5 Likert scale, and used GPT-3.5 (OpenAI-
Blog, 2022) to evaluate all data from WizardLM.
We then selected only the top 1,000 data points that
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Mistral-7B
Koala SelfInst MT-Bench Avg

LIMA (Zhou et al., 2023) 5.29 5.23 4.91 5.14
Random (Xia et al., 2024c) 5.06 5.35 5.31 5.24
Length (Zhao et al., 2024) 5.46 5.13 5.5 5.36
Alpagasus (Chen et al., 2024b) 5.27 5.70 5.22 5.40
IFD (Li et al., 2024a) 5.40 5.60 5.59 5.53
SHED (He et al., 2024) 4.59 5.31 4.78 4.89
LimaCost (ours) 5.49 5.85 5.71 5.68

Table 6: Performance of the models trained with the
selected WizardLM datasets.

received the highest scores. For this experiment,
we utilized the dataset released by (Zhao et al.,
2024).

IFD (Li et al., 2024a) Li et al. (2024a) proposed
Instruction-Following Difficulty (IFD) metric that
identify discrepancies between a model’s expected
responses and its intrinsic generation capability.
Li et al. (2024a) proposed that this methodology
allows for the selection of high-quality data. We
used the data released in their original paper as the
baseline for our experiments.

SHED (He et al., 2024) He et al. (2024) intro-
duced a data valuation method based on gradients
arising during model training. They attempted to
quantify data quality using Shapley values as a met-
ric. This approach serves as an effective baseline
for our research, which performs data valuation
based on the gradient.

The experimental results are detailed in Table 6.
As the results indicate, the data selection method
based on LIMACOST demonstrates the best perfor-
mance. This finding underscores the robust effec-
tiveness of our methodology.

E Case Study: Choice of LoRA
Dimension

We investigate the performance variations that arise
from selecting different values of r. To achieve
this, we evaluate the performance of the Mistral
and Llama2 models, both trained on the selected
Alpaca-GPT4, and calculate the average perfor-
mance across three test datasets. We conduct ex-
periments with r set to 8 and 64, and record the
time required for indexing under these configura-
tions. This approach allows us to identify how
the selection of the LoRA dimension r influences
performance differences. The experimental results
are presented in Table 7. In estimating indexing
time, we experiment with a single RTX A6000
GPU. As evidenced by the results, the choice of

LoRA
Dimension

Average
Performance

Indexing
Time

(LIMA)

Indexing
Time

(Alpaca-gpt4)

r=8 5.95 21:03 6:22:39
r=64 5.72 21:53 6:59:34

Table 7: Case study on the choice of LoRA dimension

r does not significantly affect performance. Inter-
estingly, setting r to a relatively small value of 8
results in higher performance compared to setting
it at 64. This finding suggests that a lower r is
recommended for precise estimation of variations.

F Case Study: Choice of LIMA

We noted that a well-verified dataset is essential for
the reliable estimation of LIMACOST. In this con-
text, LIMA stands out as the most suitable dataset
for this purpose due to its quality, which has been
validated by multiple cross-disciplinary studies.

To demonstrate LIMA’s suitability and justify
our choice, we analyze the impact of constructing
a comparison matrix using data other than LIMA.
We extracted 1,000 data points from the Alpaca-
GPT4 dataset, selecting the shortest and longest
data points. We use these as the basis for a com-
parison matrix (substitution for LIMA). The exper-
imental results are shown in Table 8.

Comparison
Matrix Koala SelfInst MT-Bench Avg

Experiments with Llama-2-7B

LIMA 5.96 6.28 5.31 5.85
Alapca-longest 5.82 6.11 5.12 5.68
Alpaca-shortest 6.29 5.84 5.33 5.82

Experiments with Mistral

LIMA 5.86 6.74 5.55 6.05
Alapca-longest 5.19 5.48 5.21 5.29
Alpaca-shortest 5.18 5.44 5.04 5.22

Table 8: Effectiveness of data valuation varies depend-
ing on the data variant used in the comparison ma-
trix. We demonstrate that employing well-established
datasets like LIMA ensures robust effectiveness.

The experimental results highlight two key find-
ings. First, it is possible to achieve high perfor-
mance by designing a comparison matrix using
datasets other than LIMA, demonstrating the ro-
bust effectiveness of our LIMACOST methodology.
Second, using well-established and quality-assured
datasets like LIMA for constructing the comparison
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matrix yields even higher and more robust perfor-
mance, justifying our design choice of employing
LIMA data.

In this context, we wish to reiterate that our pro-
posed LIMACOST approach is a novel methodology
designed to select higher-quality data by leveraging
data that is guaranteed to be of high quality. Our
prior experiments have shown that LIMACOST’s
method of assessing the difficulty of estimating
gradients is effective for actual data valuation. Ad-
ditionally, LIMACOST demonstrates that using data
built upon high-quality standards allows for the de-
velopment of more objective measures.

In conclusion, we chose LIMA as the representa-
tive dataset because using well-designed data max-
imizes the effectiveness of our approach. We plan
to explore the efficacy of using poorly-established
instruction data in future research.

G Case Study on the Data Size

We conducted additional experiments with sample
sizes of 3K, 5K, and 10K. Results are shown in
Table 9. The results illustrate the performance of
the Llama2 model trained on Alpaca-gpt4 data.

Num Data Koala SelfInst MT-Bench Avg

1K 5.49 6.04 5.15 5.56
3K 5.84 6.28 5.2 5.77
5K 6.12 6.1 5.2 5.80
10K 6.11 6.99 5.42 6.17

Table 9: Performance variations with respect to sam-
pling data size indicate that increasing the sampling
size typically enhances performance. This trend demon-
strates the robust effectiveness of LIMACOST as a data
valuation measure.

Our findings suggest that increasing the sample
size generally improves performance. This implies
that LIMACOST effectively functions as a robust
data valuation measure.

H Case Study on the Model Size

To evaluate performance across different model
scales, we conducted experiments using the
Sheared-Llama 1.3B model (Xia et al., 2024a), a
distilled version of Llama-2. The experimental re-
sults are as follows.

These experimental results demonstrate that LI-
MACOST maintains robust effectiveness across var-
ious scenarios.

Method Koala SelfInst MT-Bench Avg

Random (Xia et al., 2024c) 2.86 2.97 2.77 2.86
Length (Zhao et al., 2024) 2.97 2.58 2.58 2.71
NUGGETS (Li et al., 2023) 3.38 3.09 2.76 3.07

SeletIT 2.96 3.08 2.64 2.89
LIMACOST(ours) 3.20 3.39 2.80 3.13

Table 10: Performance of each data valuation method,
estimated by training with Sheared-Llama.

I Verfiable Benchmarks

We evaluated the performance of our methodol-
ogy and baseline approaches using the MMLU
(Hendrycks et al., 2021) and TruthfulQA (Lin et al.,
2022) benchmarks. The experimental results below
demonstrate tests conducted with the alpaca-gpt4
pool, verified on the Llama-2 model.

Method MMLU TruthfulQA Avg

Length 41.71 49.65 45.68
NUGGETS 41.90 53.30 47.60

SelectIT 43.07 49.73 46.40
LimaCost 43.11 54.33 48.72

Table 11: Performance on the MMLU and TruthfulQA
benchmarks

Our results reveal that our methodology per-
forms exceptionally well on objective benchmarks
such as MMLU. This clearly underscores the ro-
bustness of our approach and highlights its excel-
lence beyond just evaluations based on the llm-as-
judge suits.
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