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Abstract

Lexical normalization research has sought to
tackle the challenge of processing informal ex-
pressions in user-generated text, yet the ab-
sence of comprehensive evaluations leaves it
unclear which methods excel across multiple
perspectives. Focusing on unsegmented lan-
guages, we make three key contributions: (1)
creating a large-scale, multi-domain Japanese
normalization dataset, (2) developing normal-
ization methods based on state-of-the-art pre-
trained models, and (3) conducting experiments
across multiple evaluation perspectives. Our
experiments show that both encoder-only and
decoder-only approaches achieve promising re-
sults in both accuracy and efficiency.'

1 Introduction

User-generated text (UGT) is invaluable textual
content produced by users’ activities on web
platforms such as review sites and social media.
UGT’s informality—its frequent use of colloquial
expressions—poses substantial challenges to accu-
rate analysis in natural language processing ap-
plications. Consequently, researchers have ex-
plored lexical normalization (LN), the task of con-
verting non-standard word forms into standard
ones. LN has been actively studied particularly for
space-delimited languages such as European lan-
guages (Baldwin et al., 2015; van der Goot et al.,
2021). In this study, we investigate LN for unseg-
mented languages in writing, focusing primarily
on Japanese.

Major issues in existing LN research are sum-
marized as a lack of comprehensive evaluation,
leaving unclear which methods excel under dif-
ferent evaluation aspects. Specifically, (i) com-
parative evaluations of recent model architectures
are absent, and (ii) multi-perspective analyses—
examining required training data size, inference

'Our dataset and code will be available at https://
github.com/shigashiyama/jmln.

cost, and domain-specific accuracy across diverse
domains—have not been conducted. These issues
are common to LN research but are particularly
severe for underexplored unsegmented languages.
This study addresses these gaps through three key
contributions: (1) dataset construction, (2) method
development based on cutting-edge pre-trained
models, and (3) comprehensive experiments.

First, we introduce the Japanese Multi-Domain
Lexical Normalization Dataset (JMLN), a large col-
lection of 21,402 sentences drawn from a variety
of UGT sources. JMLN’s size exceeds existing
Japanese LN datasets (Higashiyama et al., 2021b;
Kondo et al., 2025), and its domain diversity sur-
passes that of any current LN datasets. These prop-
erties enable both the development of methods suit-
able for Japanese and multi-perspective evaluation.

Second, we develop LN methods based on
three modern Transformer (Vaswani et al., 2017)
architectures—encoder-only, encoder-decoder, and
decoder-only—including a novel encoder-based in-
filling approach, as well as variants of generative
approaches. While these boundary-aware meth-
ods are tailored for unsegmented languages, they
remain broadly applicable.

Third, we evaluate these methods on JMLN and
an existing Thai dataset. Multi-perspective experi-
ments on JMLN yield in-depth insights into meth-
ods’ characteristics and trade-offs, while experi-
ments on the Thai dataset further validate cross-
lingual applicability and generalizability.

Our evaluation reveals three main findings. First,
compact encoder-only models deliver the highest
inference throughput, and decoder-only models ex-
cel in normalization recall—while both yield high
normalization precision. Second, training mod-
els on 4k-8k sentences yields reasonable preci-
sion of around 0.7, and cutting-edge decoder-only
models deliver superior recall even with fewer in-
stances. Third, domains rich with unknown infor-
mal words exhibit low performance, especially the
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typo-correction domain.

2 Related Work

Text normalization has been studied for some rep-
resentative purposes: mapping dialectal variants to
standard language (Kuparinen et al., 2023), mod-
ernizing historical writings (Bollmann, 2019), and
verbalizing semiotic expressions for text-to-speech
(TTS) synthesis (Zhang et al., 2019). Specifically,
lexical normalization (LN) refers to the normaliza-
tion task of converting UGT at the lexical level.

To date, research on UGT normalization can
be broadly divided into three categories based on
the dominant methodologies of each period: rule-
based and statistical methods (Aw et al., 2006;
Choudhury et al., 2007; Han and Baldwin, 2011),
pre-Transformer neural methods (Chrupata, 2014;
Ikeda et al., 2016; Lusetti et al., 2018; Lourent-
zou et al., 2019), and Transformer-based methods
(Muller et al., 2019; Samuel and Straka, 2021; Bu-
cur et al., 2021; Bikaun et al., 2024).

To achieve robust word segmentation (WS)
for UGT, previous studies have often addressed
LN jointly with WS, as exemplified by research
on Japanese (Sasano et al., 2013; Kaji and Kit-
suregawa, 2014; Saito et al., 2014, 2017; Hi-
gashiyama et al., 2021a), Chinese (Wang et al.,
2013; Qian et al., 2015), and Thai (Haruechaiyasak
and Kongthon, 2013). Some recent studies have
adopted Transformer masked language models
(MLMs) with a text-editing approach (Ueda et al.,
2023) and a two-step approach—first detecting in-
formal tokens and then predicting formal tokens
(Pankam et al., 2023).

Decoder-only Transformer models have recently
made remarkable advances and have been applied
to text normalization for TTS (Zhang et al., 2024b;
Shen et al., 2024) and other sequence transduction
tasks (Kaneko and Okazaki, 2023; Shi et al., 2024).
However, these models remain underexplored in
UGT normalization, resulting in a lack of compar-
ative evaluation of state-of-the-art models for this
task.

Regarding evaluation domains, many studies
have focused on building short message and so-
cial media datasets for European (Choudhury et al.,
2007; Han and Baldwin, 2011; Baldwin et al.,
2015; Plank et al., 2020; van der Goot et al., 2021)
and Asian languages (Kaji and Kitsuregawa, 2014;
Limkonchotiwat et al., 2021; Nguyen et al., 2024;
Kondo et al., 2025), which has led to extensive

model development and evaluation in these do-
mains. Some studies have focused on other do-
mains such as blog and Q&A site (Higashiyama
et al., 2021b), and maintenance short text (Bikaun
et al., 2024). However, cross-domain evaluation
research covering three or more domains remains
scarce.

3 Japanese Dataset Construction

For our primary target language, Japanese, exist-
ing datasets (Kaji and Kitsuregawa, 2014; Osaki
et al., 2017; Higashiyama et al., 2021b; Kondo
et al., 2025) have limited domain diversity and
size—covering one or two domains with approxi-
mately 1,000 to 6,000 sentences/posts. In this study,
we have constructed JMLN, as a large-scale dataset
sourced from a variety of UGT.

Data Sources and Size We sampled original
texts from various sources: Q&A site, blog site,
review site, recipe site, video site, online forum,
and social media platform, as well as Wikipedia
edit history and conversation transcriptions (de-
tails in Appendix A.3). The constructed dataset
includes 21,402 sentences with 8,885 normaliza-
tion instances, i.e., non-standard and standard form
pairs (details in Appendix A.2). The large data
size and domain diversity of our dataset are ad-
vantages over existing Japanese datasets, enabling
multi-perspective evaluations, as shown in §6.

Basic Designs We followed Higashiyama et al.
(2021b)’s annotation criteria. The annotation in-
formation includes word boundaries based on the
short-unit word criterion (Maeckawa et al., 2014),
as well as word attributes such as part-of-speech,
lemma, predefined word categories (details in Ap-
pendix A.4), and standard forms of non-standard
words.” Thus, the dataset supports both LN and
Japanese morphological analysis, which involves
word boundary detection, part-of-speech tagging,
and lemmatization. Nevertheless, this study fo-
cuses on the evaluation of LN, leaving morphologi-
cal analysis tasks outside its scope.

Annotation Process As part of data preparation,
we extracted sentences with a reasonable length
(10-300 characters) as a candidate set from each

*Non-standard forms are those with distinctive ortho-
graphic features whose frequency in the reference corpus falls
below a threshold, whereas standard forms are those whose
frequency exceeds a threshold. See details in Appendix A.5.
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of the original 14 datasets. Four experienced an-
notators, one of whom was a manager, at a data
annotation company then carried out the annotation
process as follows.

e Sentence selection: From each candidate set for
each original dataset, annotators intentionally
selected sentences containing UGT-specific
category words (Appendix A.4).

eWord information annotation:  Annotators
annotated the selected sentences with word
information by modifying auto-analyzed
results by a morphological analyzer,
MeCab (Kudo et al.,, 2004) with UniDic
(unidic-cwj-3.1.0) (Den, 2009).

e Standard form annotation: We adopted separated
steps for standard form (SForm) annotation—
(1) recognizing non-standard words by assign-
ing variant-form type categories (Appendix
A.4), (2) assigning an SForm ID to each non-
standard word, and (3) associating a set of
valid standard forms with each SForm ID.
While the first step was performed by anno-
tators, the second and third steps were per-
formed by the annotation manager.

Inter-Annotator Agreement During the anno-
tation process, manager A selected a total of 240
sentences from the candidate sets, and then two
annotators—B and either C or D—independently
annotated those sentences with boundaries and
attributes. Inter-annotator agreement (IAA) for
non-standard word recognition on these sentences,
as measured by F; score, was 0.836 (see Ap-
pendix A.7).* The datasets’ high annotation con-
sistency and large size suggest its usefulness, and
this is further demonstrated by the experiments in
§6, where the evaluated models achieve high nor-
malization accuracy.

4 Task Definition

Following previous studies (Sasano et al., 2013;
Baldwin et al., 2015), we define LN as a task of
boundary-aware span extraction and conversion,
in which a system not only generates a normalized
text but also identifies the original spans of each
informal words (or phrases). An example input-
output pair for our task is shown in Figure 1.

3https ://clrd.ninjal.ac. jp/unidic/

“Plank et al. (2020) and van der Goot et al. (2020) used
Cohen’s kappa to evaluate IAA in informal word classification,
based on whether each given word is normalized or not. This
metric is not directly applicable to unsegmented languages.

This task can be carried out independently of the
tokenization unit and applied to any LN dataset,
as long as informal-to-formal alignments are an-
notated.> In contrast to the text-to-text conversion
task (Ikeda et al., 2016), the boundary-aware task
allows fine-grained evaluation at the normalization-
span level and provides better interpretability of
system outputs. This is because span-level eval-
uation metrics directly assess the validity of each
normalization instance, leading to more robust eval-
uation across sentences with varying densities of
non-standard tokens. Further discussion on the task
definition is provided in Appendix B

Formally, an LN system takes as input a source
sentence, namely, a sequence of n character (or
subword) tokens * = x¢.,, = [zo, ..., Zn—1], and
is required to predict the set of non-standard word
spans and their standard forms P = {(b,e,s)}.
Here, (b,e) (0 <b<e<n) indicates a span of an
non-standard word xp.. with length e — b in the
source sentence, and s indicates its standard form.®
Each standard form s is a string with length > 0,
where length = 0 indicates that the non-standard
word should be deleted in the normalized sentence.
When b = e, a zero-length span indicates some
token(s) should be inserted into the position b.

5 Methods

We present boundary-aware LN methods based
on three Transformer architectures: encoder-only,
encoder-decoder, and decoder-only. Our encoder-
based infilling approach is a novel method for un-
segmented languages, and comparing multiple ap-
proaches across different architectures offers a valu-
able, novel evaluation.

5.1 Infilling Approach

Among encoder-based methods, including text edit-
ing (Ueda et al., 2023) and MLM infilling (Muller
et al., 2019), the latter directly leverage the capa-
bilities of pretrained MLMs to insert any token
from the vocabulary. As a representative study,
Muller et al. (2019) proposed a two-step approach
for space-delimited text, which predicts the in-
filling lengths and infilling tokens from subword-
tokenized text. While we follow the two-step
detect-and-infill framework, we propose a solu-
tion tailored to unsegmented languages. Our

SOtherwise, a non-trivial alignment processing is needed.
We provide an alignment examples in Appendix A.6.

®A gold-standard normalization instance 4 can have multi-
ple standard forms and is thus represented as (b;, €;, {4,k }x)-
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Figure 1: Flow of our detect&infill approach for an input
text “ D\ 72 AT %, which means “(I’'m) looking
at Twitter.” “M” and “S” represent the MASK and SEP
token, respectively. The original characters “ D\ > 72"
follow the SEP token, but are omitted in the Figure.

method jointly predicts word boundaries and in-
filling lengths from the input character sequence,
thereby identifying non-standard word spans and
their corresponding normalized spans, without the
explicit alignment step (Muller et al., 2019).

As shown in Figure 1, the detailed workflow
of our approach is as follows. In the detection
step, the encoder takes as input a character token
sequence x., and output the sequence of token
hidden representations hg.,. Then, a linear layer
for boundary prediction and that for length predic-
tion predict a chunk boundary tag sequence y(b)m
and a length value sequence ¥}, respectively. A
series of boundary tags’ (e.g., y8:4 = [B,I,I,E])
identifies a chunk corresponding a standard or non-
standard word. A positive length value (e.g., “5”)
for the specified non-standard word chunk (e.g.,
x0:4) indicates the numbers of tokens comprising
standard forms that should be filled in the later
step, the value “0” indicates that the chunk should
be removed, and the value “-1” indicates that the
chunk has no need for normalization. Notably, we
estimate a length value per character token, so an
non-standard word chunk of m characters yields
m redundant length values (e.g., yé:4 = [5,5,5,5]).
We determine a single length value by taking a
majority vote within the chunk. Thus, the combina-
tion of two sequences specifies non-standard word
spans and the lengths of their standard forms.

In the infilling step, the encoder takes as input
the source text ’, in which tokens in non-standard
word spans are replaced by the MASK tokens, and

"We adopt the BIESO tagging schema in our experiments.

Approach  Target Text

PLAIN VAW R—ATS

STRUCT [[DWo7>>V 1w R—=]]IATS
SPAN DN T>>V Ay R—>>0

Table 1: Expected output text of each generative ap-
proach for an input text “D\W\ > 7z AT 3"

the MLM head predicts appropriate tokens for the
masked positions from the hidden representations
h’. We apply input extension to the masked source
text by concatenating the original characters of the
specified non-standard tokens, with SEP tokens in-
serted between them, similarly to existing sequence
transduction methods (Qiang et al., 2021; He et al.,
2023).

We refer to the above method as the FULL-SEG
approach. During training, the model is optimized
using the sum of cross-entropy losses over multiple
subtasks from both steps.

As a variant of this approach, the detection step
can be performed eigher with full-word segmenta-
tion or, alternatively, with partial word segmenta-
tion, which requires only the boundaries of (contin-
uous) non-standard words in a sentence. The latter
approach, referred to as PART-SEG, is introduced
in Appendix C. We report a comparison among
variants, including these two, in Appendix E.3.

5.2 Generative Approaches

Encoder-decoder models have been extensively
used in normalization research for text-to-text
conversion, which we refer to the plain full-text
(PLAIN) approach. To eliminate the informal-to-
formal alignment step required for this approach,
Bikaun et al. (2024) generates outputs in which non-
standard words and their corresponding normalized
forms are each surrounded by distinct special to-
kens. We introduce two generative approaches for
encoder—decoder and decoder-only models, one
of which—STRUCT—is essentially equivalent to
Bikaun et al. (2024)’s method. Because few studies
compare multiple generative approaches to LN—
and none include decoder-only models—it is valu-
able to evaluate and contrast these methods across
both architectures.

As shown in Table 1, the structured full-text
(STRUCT) approach generates a full normalized
text with specifying the substrings before and after
normalization and their spans, using symbols “[[,”
“>>" and “]].” The other normalization span-only
(SPAN) approach generates not full-text but only
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substrings before and after normalization using a
symbol “>>"" The number (> 0) succeeding the
normalized substring represents how many times
the same original substring occurred before that
of interest in the original text, which is used for
specifying the exact span of the original substring.
A symbol “| |” is used to separate multiple normal-
ization instances within the input text. Only “NONE”
is output when no normalization is necessary.

Encoder-Decoder The model is trained to gener-
ate the target text from each input source text via
the standard sequence-to-sequence training.

Decoder-only The model takes as input a prompt
with an instruction and a source text, like “Instruc-
tion: \n{ inst }\n\nInput: \n{ src }\n\nOutput: \n”,
and is trained to generate the target text “{tgt}
EOS” via the standard instruction tuning. Here,
{inst}, {src}, and {tgt} are placeholders, and
EOS represents the end of text token. We use En-
glish instruction texts explaining the corresponding
content for STRUCT and SPAN as described above;
the exact wording is provided in Appendix D.4.

6 Experiments
We set the following experimental questions (EQs):

1. Across different model architectures, back-
bone models, and normalization approaches,
which methods excel in normalization accu-
racy (precision and recall), and which meth-
ods are efficient in terms of inference cost?

2. How many training instances are required to
achieve reasonable performance, and does this
requirement vary by methods?

3. What domains and other instance characteris-
tics are particularly challenging to normalize?

To address these EQs, we evaluated various LN
methods using our Japanese dataset and an existing
Thai dataset. Specifically, experiments in §7.1-7.3
(and §7.6) correspond to EQ1, §7.4 to EQ2, and
§7.5 and §7.7 to EQ3.

We use precision, recall, and Fy5 score at
the normalization-span level for individual non-
standard words as evaluation metrics. While nor-
malized results with low recall do not harm down-
stream task performance compared to original texts,
low-precision outputs introduce spurious tokens
that can degrade downstream accuracy. We there-
fore adopt the Fy 5 score, which emphasizes preci-
sion over recall, similarly to other text correction

Lang Dataset Set #Sent  #Norm
train 13,196 5,879

. dev 1,880 791
ja. JMLN test® 3786 1705
test” 2,540 510

train 40,000 130,790

th  VISTEC-2021 o 10,000 32819

Table 2: Dataset statistics: The number of sentences
(#Sent) and normalization instances (#Norm).

tasks (Wang et al., 2021). See Appendix D.1 for
details of the score calculations.

6.1 Datasets

Table 2 shows the statistics of two experimental
datasets: JMLN and Thai VISTEC-2021 (Limkon-
chotiwat et al., 2021).8 For JMLN, we divided the
annotation data for each domain (01-14) into train,
dev, and test® sets, and merged the all train, dev,
and test® sets into unified train, dev, and test® sets
across all domains, respectively.” Unless otherwise
stated, we simply refer to the test® set as the “test
set.”” For VISTEC-2021, we followed the provided
training/test split and regarded randomly-sampled
5% sentences in the training set as a dev set.

6.2 Models

As the backbone of LN systems, we used the fol-
lowing Japanese or multilingual pre-trained mod-
els in Japanese experiments: BERT (Devlin et al.,
2019), RoBERTa (Zhuang et al., 2021), and De-
BERTa (He et al., 2021) as character-level encoder-
only models, T5 (Raffel et al., 2020) and mT5 (Xue
etal., 2021) as encoder-decoder models, and Llama
3.1/3.2 (Grattafiori et al., 2024), Qwen2.5 (Qwen
Team, 2025), Lllama-3.1-Swallow (Fujii et al.,
2024), TinySwallow (Shing et al., 2025) and
Sarashina2/2.2 (Intuitions, 2024, 2025) as decoder-
only models.'”

Similarly, we used the following Thai or mul-
tilingual pre-trained models in the Thai experi-
ments: RoOBERTa (Yasuoka, 2023) as a character-
level encoder-only model, TS and mT5 as encoder-
decoder models, and Llama 3.1/3.2, Qwen2.5, Ty-

8https: //github.com/mrpeerat/0SKut/tree/main/
VISTEC-TP-TH-2021

"We also created an additional test set, the test” set, but
focus on experiments with the test® set. See Appendix A.1 for
more details on the test” set.

19Languages supported by each model instance are shown
in Table 23. Notably, the encoder-only models used in this
study tokenize at the character level, whereas the other models
employ subword-level tokenization.
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Backbone Size FULL-SEG Approach STRUCT Approach SPAN Approach
P R Fo.5 P R Fo.5 P R Fo.s
E BERT-base 91IM | 0.713 0.529 0.667 - - - - - -
E RoBERTa-base 100M | 0.718 0.523  0.669 - - - - - -
E DeBERTa-base 100M | 0.729 0.506 0.670 - - - - - -
E BERT-large 310M | 0.762 0.570 0.714 - - - - - -
E RoBERTa-large 320M | 0.755 0.550 0.702 - - - - - -
E DeBERTa-large 330M | 0.750 0.568 0.705 - - - - - -
S T5-base 250M - - 0.701 0.459 0.634 | 0.689 0.508 0.643
S mT5-base 580M - - 0.606 0.406 0.551 | 0.655 0.427 0.592
S T5-large 780M - - 0.728 0.509 0.670 | 0.704 0.525 0.659
S mT5-large 1.2B - - 0.600 0421 0553 | 0.718 0.467 0.648
D Llama-3.2-1B 1.2B - - 0.654 0.489 0.612 | 0.626 0.480 0.590
D Sarashina2.2-1B 1.4B - - 0.722  0.612 0.697 | 0.761 0.585 0.717
D Qwen2.5-1.5B 1.5B - - 0.623 0.459 0.580 | 0.338 0.516 0.363
D TinySwallow-1.5B 1.5B - - 0.605 0.556 0.593 | 0.667 0.569 0.645
D Qwen2.5-3B 3.1B - - 0.598 0.537 0.583 | 0.376 0.537 0.400
D Llama-3.2-3B 3.2B - - 0.680 0.522 0.641 | 0.666 0.530 0.633
D  Sarashina2.2-3B 3.4B - - 0.774 0.668 0.751 | 0.781 0.660 0.754
D  Sarashina2-7B 7.3B - - 0.743  0.649 0.722 | 0.744 0.657 0.724
D Qwen2.5-7B 7.6B - - 0.717 0.558 0.678 | 0.379 0.589 0.408
D Llama-3.1-8B 8.0B - - 0.738 0.538 0.687 | 0.719 0.549 0.677
D —Swallow-8B 8.0B - - 0.749 0.605 0.715 | 0.741 0.602 0.708

Table 3: JMLN test results of Japanese LN models (E: encoder, S: seq2seq, D: decoder). “—" indicates the
continual pre-trained model derived from the base model listed in the previous row. For each size group (separated
by horizontal lines), the best score is indicated in bold. For each backbone model, the better of the STRUCT and
SPAN approaches is underlined. Scores where the SPAN approach shows a +5%, +10%, or -10% increase/decrease

compared to the STRUCT approach are highlighted with = blue,

phoon 2 (Pipatanakul et al., 2024), OpenThaiGPT
1.5 (Yuenyong et al., 2025), and SealLLMs 3 (Zhang
et al., 2024a) as decoder-only models. Specific
model instances are listed in Appendix D.2.

We fine-tuned each model, with applying
LoRA (Hu et al., 2022) or QLoRA (Dettmers et al.,
2023) to some decoder-only models, and selected
the model checkpoint with the best Fy 5 score on
the dev set. We fine-tuned all models twice with
different random seeds and report mean scores for
two runs. The hyperparameter settings are listed in
Appendix D.3.

7 Results and Analysis

7.1 Normalization Accuracy for Japanese

We evaluated LN methods with three types of ar-
chitectures on the JMLN test set. Table 3 shows
the performance of encoder-only models, and
encoder-decoder and decoder-only models with
both STRUCT and SPAN approaches.!!

The observed results are as follows. (1) Among
encoder-only models, the large models outper-
formed base models, while different backbone

""'The PLAIN approach yielded performance similar to the
other two approaches on the dev set, as shown in §E.4.

light blue, and = pink backgrounds, respectively.

models showed similar performance. (2) Among
generative methods, the SPAN approach basically
achieved performance comparable to or better
than the STRUCT approach in many cases.!> (3)
Within the same model series—T5, mT5, Llama-
3.2, Qwen2.5, and Sarashina2.2—performance im-
proved with increasing model size up to 8B (see
Figure in Appendix E.1). However, in our pre-
liminary experiment on the dev set, we observed
no salient additional gains from the 13B-15B
models. (4) Performance within groups of sim-
ilarly sized models was not equivalent; certain
series—specifically Sarashina2.2 series, followed
by Swallow, demonstrated saliently superior per-
formance. (5) These strong decoder-only models
outperformed models with the other two architec-
tures in recall.

In conclusion, encoder-only models demon-
strated high performance despite its small size, and
Sarashina2.2-3B model achieved the highest perfor-
mance overall, indicating that the high capability

">The only exception is the Qwen2.5 model series; the
models generated many nonsensical text flagments—such as
“str1>>str2>>0,” where “str1” did not appear in the original in-
put text—until reaching the maximum output length, resulted
in low precision and long inference time.
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Backbone Size | P R Fo.5 Model | V100 H200 | V100 H200
E RoBERTa-base  88M | 0.713 0.529  0.666 | FULL-SEG |
S T5-base 250M | 0.645 0.618 0.640 BERT-large 508.8 1420.9 - -
S mT5-base 580M | 0.642 0.629 0.639 RoBERTa-large | 561.4 1407.2 - -
S mT5-large 12B | 0.660 0.609 0.649 DeBERTa-large | 395.0 10383 - -
D Llama-3.2 1.2B | 0.628 0.628 0.628 | STRUCT | SPAN
D < Typhoon2 1.2B | 0.644 0.634 0.642 T5-large 136.0 3123 | 1590 2084
D SealLLMs3 1.5B | 0.462 0.689 0.495 ;
D  Qwen25 15B | 0472 0702 0505 Sarashina2.2-1B 66.5 202.1 754 2431

Sarashina2.2-3B 32.6 118.1 36.0 1174

D Qwen2.5 3.1B | 0457 0.706 0.492 Sarashina2-7B 17.8 733 19.8 83.4
D Llama-3.2 32B | 0.641 0.647 0.642
D Typhoon2 3.2B | 0.656 0668 0.658 Table 5: Throughput: the number of sentences pro-
D  SealLLMs3 7.6B | 0465 0.705 0.499 cessed per second, measured on a V100 and H200 GPU.
D Qwen2.5 7.6B | 0461 0.709 0.496
D < ThaiGPTI.5 7.6B | 0.653 0.672  0.657 DeBERTa-L (P) —@— T5-L (P) Sara2.2-1b (P) —@— Sara2-7b (P)
D Llama-3.1 8.0B | 0.653 0.659 0.655 DeBERTa-L (R) --@--T5-L (R) Sara2.2-1b (R) --m--Sara2-7b (R)
D < Typhoon2 8.0B | 0.661 0.678 0.664 o8

Table 4: VISTEC test results of Thai LN models.

of the backbone model was beneficial for this task.

7.2 Normalization Accuracy for Thai

On the Thai VISTEC test set, we evaluated LN
methods, with only the SPAN approach for genera-
tive methods. Table 4 shows the results.

Similarly to the Japanese results, performance
improved with increasing model size within the
same model series. Additionally, continually pre-
trained models focusing on Thai outperformed
their base models. Overall, the small encoder-only
RoBERTa-base exhibited the best precision, while
all encoder-decoder and decoder-only models sur-
pass it in recall. This introduces a precision-recall
trade-off in model selection.

7.3 Inference Throughput

For selected models with high normalization accu-
racy, we measured their inference throughput using
the JMLN test set, on both an NVIDIA V100 GPU
with 32 GiB memory and an H200 GPU with 140
GiB memory (see detailed settings in Appendix
D.6). Table 5 shows the results.

We observed: (1) Encoder-only models were
the fastest, followed by T35, the smaller Sarashina
model, and finally the larger Sarashina model. (2)
The SPAN approach yielded modest gains over
STRUCT, except for TS on the H200. Since instruc-
tion text occupies a large proportion of total out-
put tokens, more concise instruction prompts can
improve throughput; however, it is necessary to ex-
plore prompts that preserve normalization accuracy.
(3) Sarashina models exhibited substantially lower
throughput on the V100 than on the H200. Their

0.7
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0 2000 4000 6000 8000 10000 12000

Number of training sentences

Figure 2: JMLN test results for each training data size.

low throughput on the V100 is a critical drawback,
but they run much faster on the H200. Thus, when
high-spec GPUs are available, Sarashina models
are viable options in accuracy-critical scenarios.

7.4 Investigation of Training Data Size

We generated size-N training sets by sampling
random N € {500, 1k, 2k, 4k, 8k, 12k} sentences
from the entire JMLN training set, and we then fine-
tuned each of DeBERTa, T35, and Sarashina models
twice for each size-/NV training set. As shown in
Figure 2, the results are as follows.

First, a general trend across all models is that pre-
cision and recall improve as the data size increases.
From sizes 8k to 12k the gains are more gradual,
but performance is not yet saturated. Within the
evaluated range, more data yields better results;
however, even a 4k to 8k-size dataset can achieve
reasonable precision around 0.70 when creating
large amounts of annotated data is impractical.

Second, in model-specific comparisons, preci-
sion and recall follow different patterns. Precision
shows no clear differences across models. In con-
trast, recall is consistently highest for Sarashina2-
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Data Register Surf-Out-Train | Avg-3M DeBERTa-L T5-L Sarashina2.2-3B
Fo.5 P R P R P R
01 BJ-0C  Q&Assite 0.59 0.595 0.654 0416 | 0.572 0369 | 0.717  0.578
02 BJ-0Y  Blog 0.48 0.713 0.720 0.543 | 0.741 0.551 | 0.802  0.662
03 RC-BLG Blog 0.37 0.775 0.801 0.691 | 0.793 0.664 | 0.803  0.728
04 RC-REV  Reviews 0.43 0.790 0.868 0.731 | 0.790 0.593 | 0.808  0.741
05 RK-ICB Reviews 0.52 0.680 0.808 0.458 | 0.693 0.500 | 0.764  0.521
06 RK-TRV ~ Reviews 0.40 0.715 0.763 0490 | 0.820 0433 | 0.795  0.663
07 RK-RCP  Recipes 0.35 0.792 0.815 0.684 | 0.817 0.663 | 0.834  0.734
08 AM Reviews 0.32 0.798 0.862 0.728 | 0.776  0.655 | 0.832  0.748
09 NC-VID Video desc. 0.39 0.645 0.627 0.538 | 0.666 0.492 | 0.730  0.629
10 NC-PED  Forum 0.27 0.795 0.850 0.747 | 0.783 0.677 | 0.808  0.772
11 W Social media 0.60 0.633 0.613 0.511 | 0.600 0464 | 0.763  0.677
12 Jw Wiki hist. 0.69 0.312 0.528 0.140 | 0.197 0.095 | 0.509  0.280
13 NU Conv. trans. 0.17 0.758 0.845 0.745 | 0.683 0.596 | 0.800  0.745
14 sK Conv. trans. 0.43 0.718 0.771 0.550 | 0.728 0.457 | 0.830  0.664
All | 0.44 | 0706 | 0.750 0.568 | 0.704 0.525 | 0.781  0.660

Table 6: IMLN test results of representative three models for each domain. “Surf-Out-Train” indicates the Surf-
Outside-Train rate for each domain test set. Avg-3M indicates the average of Fy 5 scores of the three models.
(Surf-Outiside-Train rate values above 0.5 and Avg-3M values below 0.7 are highlighted by underlining.)

Backbone Approach Det Norm Det—Norm
P R Fos P R Fos P R
DeBERTa-large  FULL-SEG | 0.865 0.655 0.813 | 0.750 0.568 0.705 | 0.115 0.087
T5-large SPAN 0.801 0.597 0.750 | 0.704 0.525 0.659 | 0.097 0.072
Sarashina2.2-3B SPAN 0.829 0.700 0.800 | 0.781 0.660 0.754 | 0.048 0.041

Table 7: JMLN test results of representative three models for detection (Det) and normalization (Norm) tasks. The

best score among three models is highlighted in bold.

7B, followed by Sarashina2.2-1B, and lower for
DeBERTa and T95; this indicates that the Sarashina-
series models generalize well in terms of coverage,
even when the training data size is small.

7.5 Results Across Domains

As shown in Table 6, we evaluated the perfor-
mance of selected models—DeBERTa-large, T5-
large (SPAN), and Sarashina-2.2-3B (SPAN)—on
each domain test set of JIMLN (results on grouped
domains are provided in Appendix E.2).

First, to explore what makes a domain difficult,
we examined an indicator: the proportion of non-
standard surface tokens in the test set that are not
found among the training set’s non-standard sur-
faces (Surf-Outside-Train rate). We then computed
the Pearson correlation coefficients r between the
indicator and the average Fg 5 scores across the
three models, obtaining a strong negative correla-
tion (r = —0.78). Notably, for 9 out of 10 domains
with a Surf-Outside-Train rate below 0.5 had aver-
age Fy 5 scores above (.7, whereas all 4 domains
with a rate above 0.5 had average scores below 0.7.

Next, model performance comparisons revealed
the following. (1) In all domains, all models ex-

hibited higher precision than recall, showing a de-
sirable characteristic because invalid normaliza-
tions would degrade downstream task performance.
(2) Across most domains, Sarashina-2.2 achieved
higher recall than the other models, resulting its
superior overall performance. Notably, this model
achieved recall over 0.5 across typical UGT do-
mains (01-11). (3) All models exhibited very low
recall below 0.3 in domain 11—a specialized do-
main data originated from Tanaka et al. (2020)’s
typo correction dataset. Training with the task-
specific dataset would improve performance, but
we leave this for future.

7.6 Informal Span Detection Accuracy

We evaluated the performance of the informal word
span detection task for the same three Japanese
models as in §7.5.13 In this task, a model’s pre-
diction is regarded as correct if the predicted span
of a non-standard word matches the gold standard,
irrespective of the predicted standard form. Ta-
ble 7 shows the detection results, the normalization
results, and the precision and recall differences be-

3We report the detection accuracy of the Thai models in
Appendix E.5.
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tween the two tasks.

DeBERTa achieved the best precision and Fg 5
score among the models for the detection task, but
its precision and recall dropped by about 0.09-0.12
for the normalization task. Sarashina2.2 achieved
the best recall for the detection task, with smaller
drops of about 0.04-0.05 precision and recall for
the normalization task, resulting in the best overall
normalization performance. T5 yielded the worst
results; the precision/recall differences between the
two tasks were intermediate between those of the
remaining models. These results suggest that De-
BERTa and T5 leave notable room for improvement
in generating accurate standard forms, whereas the
best-performing Sarashina2.2 shows only a minor
gap. Thus, further accuracy gains will likely de-
pend on better handling of cases where span detec-
tion fails.

7.7 Error Analysis

For the three models evaluated in §7.5 and §7.6,
we analyzed output patterns on the JMLN dev set.
Specifically, we counted predictions, true positives
(TP), false positives (FP), and false negatives (FN)
for each model, and measured (i) the proportion
of predicted normalized forms appearing in the
UniDic lexicon (Norm-In-Lex rate) and (ii) the pro-
portion of original surface forms for TP, FP, and FN
instances that matched any non-standard forms in
the training set (Surf-In-Train rate). Table 8 shows
the results averaged over two runs per model.

DeBERTa exhibited a notably lower Norm-In-
Lex rate than the other models (0.921-0.928) and
the gold standard (0.947). By manually inspect-
ing error cases, we found that DeBERTa’s restored
tokens within spans sometimes formed nonsensi-
cal words.'* Both suggest that the model’s inde-
pendent prediction at each MASK position makes it
especially prone to such errors.

Regarding the Surf-In-Train rate, all models ex-
hibited similar trends. For TPs, approximately 70—
80% of the original surface forms were known (i.e.,
appeared in the training set), indicating that many
correct predictions relied on the seen normaliza-
tion instances. For both FPs and FNs, only ap-
proximately 20-30% were known, indicating that
the majority of errors involved unseen expressions.
This suggests considerable room for improving gen-
eralization in normalizing unseen cases. These re-

“E.g., pred. 7 ¥, orig. 7 F, gold I £/IF 1 & (“but”)
and pred. 72U D A, orig. 2% D A, gold & — ) » (“dar-
ling”).

| DeBERTa T5 Sarashina2.2

#Predictions 614.5 598.5 676.5
Norm-In-Lex rate 0.875 0.928 0.921
#TPs 469.0 449.0 535.5
Surf-In-Train rate 0.806 0.806 0.716
#FPs 145.5 149.5 141.0
Surf-In-Train rate 0.289 0.183 0.238
#FNs 322.0 342.0 255.5
Surf-In-Train rate 0.258 0.290 0.302

Table 8: Models’ prediction statistics on JLMN dev set
(DeBERTa: large, TS: large, Sarashina2.2: 3B).

sults align with the findings in §7.5. For actual
prediction examples, see Appendix E.7.

8 Conclusion

This paper presented our multi-domain Japanese
LN dataset, LN methods based on three Trans-
former architectures for unsegmented languages,
and multi-perspective experiments and analysis.

The answers to the three evaluation questions
(§6) are summarized as follows. (1) Compact
encoder-only models achieved high precision and
offered the best inference throughput, while cutting-
edge decoder-only models delivered high precision,
notably high recall, and reasonable throughput on a
high-spec GPU. (2) Normalization accuracy consis-
tently increased with training data size, yet even 4k—
8k training sentences yielded reasonable precision
around 0.7. Sarashina-series models, in particular,
achieved superior recall with fewer training sen-
tences. (3) Domains with higher rates of unknown
non-standard tokens correlated with decreased per-
formance across models. Typo correction emerged
as the most challenging category, reflecting the dif-
ficulty posed by diverse typo patterns.

In future work, we will evaluate the impact of LN
on downstream tasks and explore the development
of a general-purpose decoder model with robust
normalization capabilities.

Limitations

Generalizability of Experimental Results Our
findings and conclusions are presented in the con-
text of the datasets, languages, and models used in
this study.

Dataset Size The experimental results in §7.1—
high precision up to 0.78—indicates that our
dataset is large enough to train high-accuracy mod-
els. However, results in §7.4 show no clear satura-
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tion even at the maximum training size, suggesting
that additional data could further improve perfor-
mance. Given the cost limits of manual annotation,
a promising direction is to explore methods for
generating high-quality synthetic data.

Language Coverage We evaluated our methods
only on Japanese and Thai datasets, but they are
readily applicable to other unsegmented and space-
delimited languages. Validation on additional lan-
guages remains future work.

Inference Throughput Settings To ensure fair
comparison, we measured throughput using a sin-
gle GPU via the Hugging Face Transformers (Wolf
et al., 2020) library. However, throughput could be
improved through multi-GPU parallelism, model
quantization, or adoption of high-performance in-
ference engine, such as vVLLM (Kwon et al., 2023).

Encoder-Only  Architecture Variants A
state-of-the-art encoder-only model, Modern-
BERT (Warner et al., 2024), might achieve
performance on par with or exceeding the models
we evaluated. Due to computational and time
constraints, this remains future investigation.

Word-Level Evaluation Metrics Our word-
level normalization metrics treat any span mis-
match as an error—even if the predicted normal-
ization is semantically valid—which we observed
especially in decoder-only model outputs (see Ap-
pendix E.7 for examples). Such span differences
have little impact on most downstream applica-
tions, so the practical usefulness of the outputs
may exceed the scores reported. To complement
word-level metrics, we also provide sentence-level
exact-match accuracy and the chrF score (Popovic,
2015) in Appendix E.3 and E.4.

Ethics Statement

License of Resources MeCab is available un-
der GPL, LGPL, and BSD License. UniDic
(unidic-cwj-3.1.0) is available under GPL v2.0,
LGPL v2.0, and New BSD License. sacreBLEU
is available under Apache License 2.0 (we used
this software for preliminary experiments shown
in Appendix E). The licenses for the datasets and
pre-trained models are listed in Appendices D.2
and A.3 (Table 23). Our use of these resources for
academic research aligns with their intended use.
We will release our JMLN dataset for academic re-
search in information science; it will include only

annotation information and not the original texts.'>

Human Annotators The annotation work was
performed by annotators at a professional data an-
notation company. The payment amount to the
company was based on the estimate submitted by
the company. The actual annotators and the pay-
ment amount to each annotator were determined
by the company. The annotation work was per-
formed by four annotators, including an annotation
manager, all of whom are native Japanese speakers.
Under the contract for the annotation work, it was
agreed that the intellectual property rights to the
deliverables would be transferred to the authors’
institution.

Potential Risks Appropriate normalization can
facilitate NLP applications while preserving the
core meaning of the original texts. However, it
may diminish subtle nuances and intentions in the
original text; for example, casual expressions may
be rendered formal, dialectal expressions may be
replaced by semantically similar standard language
forms, or incorrect normalization may produce an
entirely different meaning.
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A JMLN Dataset

A.1 Details on Data Creation

Before conducting the sentence selection step de-
scribed in §3, we divided each candidate set from
each of the original 14 datasets into two subsets: a
manually curated (Cur) set and a random (Rand)
set. The successive steps for the Cur set are those
described in §3, and the resulting annotation data
are divided into train, dev, and test® sets, as in §6.1.

For the Rand set, annotators sequentially se-
lected sentences from candidates of each original
dataset, provided that they did not contain ethi-
cally problematic contents or unclear meaning. We
consider the entire resulting annotation data as an
additional test set, which we refer to as the test” set.
This dataset is considered to exhibit a distribution
of non-standard word frequencies close to that of
natural text, making it useful for evaluations that
assume such data. However, experiments using this
dataset are left for future work.

A.2 Data Statistics

The detailed dataset statistics of JMLN are shown
in Table 9 and Table 10. Note that sentences in the
Cur set are divided into train, dev, and test® sets,
and the Rand set corresponds to the test” set.

ID Name #Sent #Word  #Norm
01 BJ-0C 1,441 28,631 928
02 BJ-0Y 1,785 29,092 1,445
03 RC-BLG 2,312 37,135 766
04  RC-REV 1,541 31,283 310
05 RK-ICB 1,251 21,548 251
06 RK-TRV 1,610 29,240 289
07 RK-RCP 2,479 29,834 1,104
08 AM 1,769 28,055 477
09 NC-VID 918 11,908 262
10 NC-PED 947 14,858 387
11 TW 1078 14,701 858
12 JW 540 18,817 503
13 NU 507 9,176 509
14 SK 684 11,935 286

Total 18,862 316,216 8,375

Table 9: Statistics of the JMLN Cur set.

A.3 Data Sources and Licenses
To construct our JMLN dataset, we used following

datasets and text sources as shown in Table 11:

* (01-02) Balanced Corpus of Contemporary
Written Japanese (BCCWJ) (Maekawa et al.,
2014): available under a usage contract;'®

Yhttps://clrd.ninjal.ac. jp/bcewj/en/index. html

ID Name #Sent #Word #Nrom
01 BJ-0C 200 3,981 33
02 BJ-0Y 201 3,821 56
03 RC-BLG 200 2,903 57
04 RC-REV 200 3,872 27
05 RK-ICB 200 2,942 16
06  RK-TRV 200 3,139 18
07 RK-RCP 200 2,763 25
08 AM 200 2,932 12
09 NC-VID 150 2,418 23
10  NC-PED 182 2,672 46
11 TW 207 3,127 99
13 NU 200 2,940 82
14 SK 200 2,182 16

Total 2,540 39,692 510

Table 10: Statistics of the JMLN Rand set.

¢ (03-04) Recruit Dataset (Recruit Co., Ltd.,
2014): available under a usage contract;!’

¢ (05-07) Rakuten Dataset: available under a
usage contract;'®

* (08) Multilingual Amazon Reviews Corpus
(Keung et al., 2020): previously available un-
der a proprietary license (now unavailable);'®

* (09-10) Niconico Dataset (DWANGO Co.,
Ltd., 2013, 2014): available under specific
terms of use;2’

* (11) Twitter (now X) posts: obtained via the
Twitter streaming API (copyright retained by
each post’s author);

* (12) Japanese Wikipedia Typo Dataset
(Tanaka et al., 2020): available under CC-BY-
SA 3.0 license;?!

* (13) Nagoya University Conversation Corpus
(Fujimura et al., 2012): available under CC
BY-NC-ND 4.0 license;??

* (14) Japanese and Chinese Skype Conversa-
tion Corpus: available under specific terms of
use.??

A4 Word Category Definition

We extended the UGT-specific Japanese word cate-
gories defined by Higashiyama et al. (2021b) and
assigned each word in the annotation sentences to

Thttps://www.nii.ac.jp/dsc/idr/recruit/
18https://rit.rakuten.com/data_release/
19https://registry.opendata.aws/
amazon-reviews-ml/
20https://www.nii.ac.jp/dsc/idr/nico/
Uhttps://nlp.ist.i.kyoto-u.ac.jp/EN/?IWTD
22https://mmsrv.ninjal.ac.jp/nucc/
Bhttp://nakamata. info/database/
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ID Dataname Source dataset Text register Year

01 BJ-OC BCCW!I: Yahoo! Chiebukuro Q&A posts/responces 2004-2005
02 BJ-0Y BCCW]J: Yahoo! Blog Blog posts 2008-2009
03 RC-BLG Recruit: beauty salon blogs Blog posts 2012-2014
04 RC-REV Recruit: beauty salon reviews Reviews (beauty salon) 2012-2014
05 RK-ICB Rakuten Ichiba Reviews (EC site) 2019
06 RK-TRV Rakuten Travel Reviews (hotel site) 2017-2019
07 RK-RCP Rakuten Recipe Recipes 2017
08 AM Multilingual Amazon Reviews Corpus Reviews (EC site) 2000-2015
09 NC-VID Niconico Dataset: Video meta data Video descriptions 2018
10 NC-PED Niconico Dataset: Forum data Forum posts/replies 2008-2014
11 W Twitter Social media posts 2020-2022
12 JW Japanese Wikipedia Typo Dataset Encyclopedia edit history -2021
13 NU Nagoya University Conversation Corpus  Conv. transcriptions 2001-2003
14  sK Skype Conversation Corpus Conv. transcriptions 2012

Table 11: Data sources of JMLN. The Year column indicates the years of original text publication.

Example Standard forms Translation
Neologisms/Slang apR - copy and paste
Proper names Koo - Dragon Quest
Onomatopoeia *Fo7*7 - glitter
Interjections BE - oops
Vocabulary type Dialect words FAE - truly
Foreign words EASY - easy
Ancient words* {71 RUL - should [go]
Character endings* fr<1ic® - T
Blend words* BlZZAZAZBIE - i
Emoticons/AA (=) -
Character type variants T AA POV AN cute
- Alternative representations K & \» REW big
Variant-form type Sound change variants BwlL—w» BWUWERKRLW  tasty
Typographical errors D\ DH WV EN tough

Table 12: Word categories extended from Higashiyama et al. (2021b). New categories are marked with “*.” “[]”
indicates the context. T[T <] IZ % is a kitten-style sentence ending and might be expressed as “[I go,] meow” or
“[Goin’Inya.” **B 1% Z AIX A2 B 17 is a coined blend of “good morning,” “good afternoon,” and “good evening,”

and might be expressed as “Good morn-noon-evening.”

every category that it matches. As shown in Ta-
ble 12, the categories are divided into vocabulary
types and variant-form types, with the latter applied
non-standard word forms.

A.5 Standard/Non-Sandard From Definition

As stated in Higashiyama et al. (2021b), “there are
no trivial criteria to determine which variant forms
of a word are standard forms” (and non-standard
forms) “because most Japanese words can be writ-
ten in multiple ways.” Thus, we followed their
definition on standard and non-standard forms. In
brief, the definitions can be summarized as follows:
standard forms are those variants whose relative fre-
quencies in the reference corpus exceed a set thresh-
old, while non-standard forms are identified per
variant category based on falling below category-
specific frequency thresholds or exhibiting distinc-

tive orthographic features. Example non-standard
forms for each category is shown in Table 12. For
more detailed definitions, see §4.2 of their paper.

A.6 Standard Form Annotation

The annotation process first identifies word bound-
aries and then assigns each word to (a category and)
a standard form ID, as in the example in Table 14;
for simplicity, the example displays the standard-
form string instead of the ID. This approach makes
it possible to obtain explicit mappings between
non-standard words and their standard forms.
However, when only sentence-level normal-
ization is provided, aligning standard and non-
standard forms is not straightforward. In our ex-
ample, the contiguous span mapping from “A
TV LR~ 10T T JENTZ” (“super

tired”) is easily identified, but determining precise
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Data Number F1 agreement score
Sent Word Cate VFCate | Word POS Lem Cate Cate® VFCate VFCate®

01 BJ-0C 20 327/325 30/30 19/18 | 99.08 98.77 98.16 83.33 83.33 86.49 86.49
02 BJ-0Y 20 359/358 52/48 17/15 | 99.58 96.79 9540 86.00 94.00 75.00 81.25
03 RC-BLG 32 1424/1424  133/124 45/43 1 99.86 99.02 98.81 81.71 91.83 63.64 84.09
04 RC-REV 41 2802/2802  129/137 22/22 | 100.0 99.04 98.75 96.24 96.24 100.0 100.0
05 RK-ICB 20 600/601 27127 15/14 | 99.75 98.58 98.58 85.19 96.30 82.76 89.66
06 RK-TRV 25 748/748 23/29 11/14 | 100.0 99.20 98.93 84.62 84.62 80.00 80.00
07 RK-RCP 22 442/442 43/39 26/20 | 99.32 98.64 9796 87.80 92.68 82.61 82.61
08 AM 20 675/675 85/86 32/34 | 100.0 99.56 9556 91.23 99.42 90.91 96.97
09 NC-VID 20 353/358 55/50 20/10 | 97.33 95.08 93.67 70.48 83.81 46.67 53.33
10 NC-PED 20 443/446 63/63 24/24 | 9831 97.19 9426 77.78 85.71 62.50 66.67
Total \ 240  8173/8179 640/633 231/214 \ 99.66 98.65 97.82 85.78 92.22 76.85 83.60

Table 13: Statistics on inter-annotator agreement. The “Number” columns show counts of annotated sentences
(Sent), words, word categories (Cate), variant-form type categories (VFCate) for each annotator (formatted as
“valuel/value2”). The “F; agreement score” columns report F; scores for word segmentation (Seg), parts-of-speech
(POS), lemmas (Lem), Cate, and VFCate. Binary agreement on the presence or absence of a category assignment is

indicated by “b.”

word-level alignments remains challenging.

Original text
Segmented text
Standard forms -

Hizzy T2YHL &~
HE| 2y T2 |YHL R~
|- [T 2K [Eh

AN
&

AN
7

Table 14: An example sentence and its annotation infor-
mation. The original text means “Super tired today.”

A.7 Inter-Annotator Agreement

Table 13 shows the detailed statistics on inter-
annotator agreement. Sentences in domains 01-07
were annotated by Annotators B and C, and those in
domains 08-10 were by B and D. Notably, after we
fixed annotation disagreements for these sentences
through discussions, the sentences were integrated
into our final dataset.

B Discussion on the Task Definition and
Alternative Approaches

As discussed in §4, we adopted a boundary-aware
LN task with explicit span identification, which en-
ables direct span-level evaluation. A simpler text-
to-text conversion task can instead be evaluated
with sentence-level metrics. However, such metrics
(e.g., chrF) allow only relative comparisons: sen-
tences with few normalization targets may achieve
high scores even for a trivial “leave-as-is” baseline,
indicating that these scores do not reflect absolute
output quality.

Moreover, tokenizers used in Japanese encoder-
only models may alter characters—for exam-
ple, splitting a single-character ellipsis “...”

(U+2026) into three consecutive period charac-
ters “.” (U+0@2E)—causing sentence-level scores
to fluctuate even when those characters lie out-
side normalization spans. Hence, selecting a fair
ground-truth sentence—whether the original or
a tokenizer-converted sentence—across models
is non-trivial. These considerations impose con-
straints on character-by-character transduction sys-

tems.

One might then ask whether the use of an off-
the-shelf word segmenter removes the need to in-
troduce a word boundary prediction step in the
encoder-based infilling approach, while still main-
taining the feasibility of span-level evaluation. Pos-
sible alternatives using an external word segmenter
include pre-normalization segmentation and post-
normalization segmentation.

On the one hand, the former approach segments
the original input text with a segmenter and then
normalizes, for example, at the WordPiece level.
This preserves word-boundary positions through
prefix symbols (e.g., “ye” and “##a” for “yea”),
similar to Muller et al.’s method for English LN.
However, off-the-shelf word segmenters trained on
canonical text often produce segmentation errors
on informal words, which can directly propagate to
the normalization results.

On the other hand, the latter approach segments
the normalizer’s outputs with a segmenter, which
generally avoids salient errors when the outputs are
accurate. Nevertheless, span-level evaluation under
this setting requires non-trivial alignment between
ad-hoc word boundaries in the output and those in
the original text (see an example in Appendix A.6).
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C Encoder-based Approach Variants

In addition to the FULL-SEG approach, we intro-
duce two variant approaches based on the encoder-
base detect-and-infill method: PART-SEG and
FULL-SEG-POS. Experimental results on these
variants are reported in E.3.

Full/Partial Word Segmentation In the bound-
ary prediction subtask, we employ full or partial
word segmentation (FULL-SEG and PART-SEG),
depending on whether the training sentences are
annotated with full word boundaries or only with
non-standard word boundaries. Unlike the former
case described in §5, in the latter case boundary
tags for tokens within standard words should be
assigned 0. For example, the tag sequence should
be [B,I,I,E,0,0,0]| for the input text in Figure 1.

Word Feature Prediction In the detection step,
we can optionally employ multi-task learning for
word feature prediction. Specifically, we adopt
part-of-speech (POS) tag prediction for each token
using an additional linear layer if POS annotation
is available. We refer to this approach as FULL-
SEG-POS.

D Detailed Experimental Settings

D.1 Definition of Evaluation Metrics

Assume each input sentence x has a sequence of
gold normalization instances N = {(b;, €;, Si) }4,
where each instance (b;, e;, S;) consists of a span
(bi,e;) and a set S; = {S’i,k}i(:il of one or
more standard forms for the corresponding non-
standard word. A system is required to output
a set of predicted normalization instances Ny =
{(bj,é;,54)};, where each §; is a single predicted
standard form.

We count a predicted instance as a TP if its span
(Bj, é;) matches the span (b;, e;) of a gold instance
and its predicted form 5; belongs to the correspond-
ing gold set .S; over all test sentences. Precision
P, recall R, and the Fj 5 score over the test set are
then defined as follows:

TP

P —
TP + FP’

TP

R TP + FN’
PR

Fos = (1+05))——— .
0-5 (1+ )0.52P+R

Hyperparameter Value
Training epochs ja: 30; th: 20
Batch size ja: 16; th: 32
Learning rate 3e-5
Learning rate scheduler linear

Warmup steps
Gradient norm clipping threshold
Optimizer

1 training epoch
1.0
AdamW

Training epochs

Batch size

Learning rate

Learning rate scheduler

Warmup steps

Gradient norm clipping threshold

ja: 30; th: 15

ja: 32; th: {4, 16}
2e-4

constant

1 training epoch
1.0

Optimizer AdamW
Beam width for inference 2
Training epochs 10
Batch size 8
Learning rate 2e-4
Learning rate scheduler cosine
Warmup ratio 0.03
Weight decay 0.001
Gradient norm clipping threshold 0.3
Optimizer paged_adamw_32bit
bf16 True
LoRA rank 8

LoRA alpha 16
LoRA dropout 0.05

LoRA target modules all linear layers
Quantization bit {none, 4bit}
Beam width for inference 1

Table 15: Hyperparameter settings for encoder-only
(top), encoder-decoder (middle), and decoder-only mod-
els (bottom). Batch sizes of 4 and 16 were used for
the Thai mT5-large model and the other Thai encoder-
decoder models. For models with 7B parameters
or more, 4-bit quantization were applied during fine-
tuning.

D.2 Pretrained Models

We list all pre-trained models used in our ex-
periments in Table 23. We selected these mod-
els based on their strong performance on general
benchmarks; however, for Thai encoder-only and
encoder-decoder models, few alternative candi-
dates were available.

D.3 Model Hyperparameters

The hyperparameter values used in the experiments
are listed in Table 15.

We conducted hyperparameter search for some
important parameters within our computational
budgets. Based on Fy 5 score for the JMLN dev
set, we chose the best value of learning rate from
the search space of {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
for encoder-based models using RoBERTa-large,
chose the best value of learning rate from {1e-4,
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2e-4, 3e-4, 4e-4, 5e-4} and that of beam search
width during inference from {1, 2, 3} for encoder-
decoder and decoder-based models using T5-large
and Sarashina2-7B, respectively. We also chose
the best value of LoRA rank from {4, 8, 16} for
decoder-only models using Sarashina2-7B.

D.4 Prompts for Decoder-only Models

We used the instruction prompts in Table 3
as {inst} in the full prompt text: “Instruc-
tion: \n{ inst }\n\nInput: \n{src }\n\nOutput: \n”.

These are common to both Japanese and Thai
models, and the {lang} placeholder is specified
by either language name.

Instruction text

If no informal {1ang} word forms exist in the input text,
output the text as is. Otherwise, identify informal word
forms and normalize them into their corresponding stan-
dard forms. Provide the full normalized text where the
original word forms are replaced with the standard forms.

If no informal {1lang} word forms exist in the input text,
output the text as is. Otherwise, identify informal word
forms and normalize them into their corresponding stan-
dard forms. Provide the full normalized text, embedding
the original and normalized word forms in the format
"[[before>>after]]". Ensure that the concatenated string
of the text outside the brackets and the "before" parts is
identical to the input text.

If no informal {1ang} word forms exist in the input text,
output exactly "NONE". Otherwise, identify every infor-
mal word form and normalize it into its corresponding
standard form. For each occurrence, output a record in the
format "before> >after>>count". Here, count is the count
of how many times the identical original string has already
appeared earlier in the input text. If multiple informal
forms are found, output each record in the order they occur
and separate them with "| |".

Figure 3: Instruction prompts for decoder-only mod-
els with PLAIN (top), STRUCT (middle), and SPAN ap-
proaches (bottom).

D.5 Computational Budget for Fine-tuning

In our experiments, we used NVIDIA V100 GPUs
with 32GiB memory, A100 GPUs with 80GiB
memory, and H200 GPUs with 140GiB memory. In
total, the models were fine-tuned for 42 GPU hours
on V100s, 2700 GPU hours on A100s, and 141
GPU hours on H200s. Encoder-only and encoder-
decoder models were fine-tuned on a single GPU,
whereas decoder-only models were fine-tuned us-
ing eight GPUs.

D.6 Throughput Calculation Setting

In the experiments reported in §7.3, we used the fol-
lowing settings. For each model checkpoint (from
one of two runs), we conducted a single warm-up
inference followed by three inference passes over
all 3,786 JMLN test sentences (a total of 11.1k
characters), which were sorted by increasing token
count according to its tokenizer. These evalua-
tions were run at multiple batch sizes; we selected
the batch size that yielded the highest throughput
(shown in Table 16) and reported the mean through-
put of the three runs. Models were cast to float16
on the V100 and to bfloat16 on the H100. All
inference was performed using the Hugging Face
Transformers (Wolf et al., 2020) library.

Model | V100 H200 | V100 H200
| FULL-SEG |
BERT-large 64 128 - -
RoBERTa-large 64 128 - -
DeBERTa-large 64 128 - -
|  STRUCT | SPAN
T5-large 256 256 256 256
Sarashina2.2-1B 128 256 256 256
Sarashina2.2-3B 128 128 64 128
Sarashina2-7B 64 128 32 128

Table 16: Batch size yielding the best throughput for
each method.

D.7 Word Coverage Indicators

For analyses in experiments reported in §7.5 and
§7.7, we introduced three word coverage-based
indicators. Below, we provide further explanations
on them.

The Surf-Outside-Train rate is defined as “the
proportion of non-standard surface tokens in the
test set that are not found among the training
set’s non-standard surfaces.” Assume that the non-
standard surface tokens appearing in the entire
training set are [“u”, “u”, “r”, “thx”], while those
appearing in the entire test set are [“u”, “r”, “cuz”].
In this case, the rate is 1/3 = 0.33.

The Surf-In-Train rate is defined as “the propor-
tion of original surface forms for examples that
matched any non-standard forms in the training
set.” Assume the same training set above and non-
standard surface examples of interest are [“u”, “1”,
“cuz”], the rate is 2/3 = 0.67

The Norm-In-Lex rate is defined as “the propor-
tion of predicted normalized forms appearing in
the UniDic lexicon.” Assume the set of normalized
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DataIDs  Register DeBERTa-L T5-L Sarashina2.2-3B
P P R P R
01 Q&A site 0.654 0416 | 0.572 0369 | 0.717  0.578
02-03 Blog 0.750 0.595 | 0.761 0.591 | 0.802  0.685
04-06,08 Reviews 0.837 0.630 | 0.769 0.568 | 0.808 0.687
07 Recipes 0.815 0.684 | 0.817 0.663 | 0.834 0.734
09 Video desc. 0.627 0.538 | 0.666 0.492 | 0.730  0.629
10 Forum 0.850 0.747 | 0.783 0.677 | 0.808 0.772
11 Social media | 0.613 0.511 | 0.600 0.464 | 0.763  0.677
12 Wiki hist. 0.528 0.140 | 0.197 0.095 | 0.509  0.280
13-14 Conv. trans. 0.816 0.662 | 0.699 0.537 | 0.812  0.710

Table 17: JMLN test results of representative three models for each aggregated domain.

LIS

strings produced by the model is {“you”,
caus”}, and an external lexicon contains only “you’
and “are” from that set; the rate is 2/3 = 0.67.

are”, “be-

9’

E Detailed Experimental Results

E.1 Accuracy Across Model Series

For the experiment reported in Table3 (§7.1), we
extracted results for different model size within
each model series and plotted them in Figure 4.
Performance improved with increasing model size
across model series.

T5 —&—mT5 —— Llama3.2 —&— Qwen2.5 —#— Sara2.2

T5 -=k--mT5

—-=>%=--Llama3.2

--¢--Qwen25 --m--Sara2.2

0.8

0.7

0.6

Fos

0.5

0.4

0.3

Model size [x109]

Figure 4: Plot of Fy 5 scores in Table3 for each
model series—T5, mT5, Llama-3.2, Qwen2.5, and
Sarashina2.2. The scores for the STRUCT and SPAN
approaches are shown with solid and dotted lines, re-
spectively.

E.2 Results Across Grouped Domains

Table 17 shows the performance of three se-
lected models as in §7.5—DeBERTa-large, T5-
large (SPAN), and Sarashina-2.2-3B (SPAN)—on
the grouped domain test set of JMLN, in which do-
mains of a similar type from different data sources
(e.g., all blog sites) are combined into a single do-
main group. The results are consistent with those

on the single-domain test sets. Sarashina-2.2-3B
achieved the highest recall across all grouped do-
mains and also obtains the highest precision in 5
out of 9 groups, while DeBERTa-large achieved
the highest precision in the remaining groups.

E.3 Comparison of Encoder Approaches

As a preliminary experiment, we compared variants
of encoder-based methods—PART-SEG, FULL-
SEG, and FULL-SEG-POS, introduced in Ap-
pendix C—on the JMLN dev set. We also report
the F1 scores for word segmentation, POS tagging,
and length prediction (Len”: tokens in positive
non-standard words; Len"”: other tokens), as well
as additional normalization metrics: sentence-level
exact match accuracy (S-AccP: accuracy for sen-
tences containing at least one positive non-standard
word; S-Acc™: accuracy for other sentences) and
the chrF score (Popovi¢, 2015) implemented in
sacreBLEU (Post, 2018).>* Table 20 shows the
results.

The encoder-only models (3 backbone
modelsx2 model size) with the FULL-SEG
approach obtained +0.01-0.05 Fy 5 gains from the
PART-SEG counterpart, indicating the importance
of learning full word segmentation tasks. Adding
POS tagging task showed no clear improvements
in many cases.

E.4 Comparison of Generative Approaches

As a preliminary experiment, we compared the
three generative approaches—PLAIN, STRUCT,
and SPAN— using TS5, Sarashina2/2.2, and Swal-
low models on the JMLN dev set. The STRUCT
and SPAN approaches outperformed or matched
the PLAIN approach for TS5 and Sarashina2/2.2
models (e.g., -0.009 to +0.034 S-Acc? points), but

We calculated chrF scores with the default options

(signature:  nrefs:1|case:mixed|eff:yes|nc:6|nw: Q|
space:no|version:2.5.1).

12795



Backbone Approach Det Norm Det—Norm
P R Fo.5 P R Fo.s p R
RoBERTa-base FULL-SEG | 0.804 0.596 0.751 | 0.713 0.529 0.666 | 0.091 0.067
T5-base SPAN 0.715 0.684 0.708 | 0.645 0.618 0.640 | 0.069 0.066
mT5-large SPAN 0.725 0.670 0.713 | 0.660 0.609 0.649 | 0.066 0.061
Llama3.2-Typhoon2-3b  SPAN 0.717 0.731 0.720 | 0.656 0.668 0.658 | 0.062 0.063
Llama3.2-Typhoon2-8b  SPAN 0.722  0.741 0.726 | 0.661 0.678 0.664 | 0.061 0.063

Table 18: VISTEC test results of selected Thai models for detection (det) and normalization (norm) tasks. The best

score among compared systems is highlighted in bold.

underperformed for Swallow (e.g., -0.076 S-Acc?
points).

Notably, we also trained a character-level Trans-
former based on the T5 architecture (the same size
as TS5-efficient-tiny>) from scratch with full IMLN
training set, but it failed to reach adequate perfor-
mance (/14 chrF on the dev set).

E.5 Informal Span Detection Accuracy for
Thai

Table 18 shows the performance of the informal
word span detection task for selected Thai mod-
els on the VISTEC test set. Consistent with the
Japanese results in §7.6, the encoder-only model ex-
hibited larger precision/recall differences between
the two tasks, while the recall differences remained
similar across the three model types. Overall, the
high-precision encoder-only model and the high-
recall encoder-decoder and decoder-only models
yielded in F 5 scores at a comparable level.

E.6 Results Across Category

Table 19 shows the JMLN test performance (re-
call) of the three models evaluated in §7.5 for
each variant-form type category. Consistent with
the domain-specific evaluation results in §7.5,
Sarashina2.2-3B achieved the highest recall across
all categories. All three models showed the same
recall order across the four categories, and the con-
sistently lowest recall of the fourth category, i.e.,
typos, once again highlights the difficulty of cor-
recting them.

E.7 Prediction Examples

Table 22 shows model outputs on the IMLN dev set
for the three models evaluated in §7.5; in addition
to error type classification (TP, FP, and FN) based
on the gold standard evaluation, the first author also

25https://huggingface.co/google/
t5-efficient-tiny

Category # ‘ DeBERTa T5 Sarashina
Char type var. 534 0.395 0.375 0.563
Alter rep. 271 0.550 0.500 0.703
Sound change 794 0.796 0.739 0.812
Typos 178 0.087 0.076 0.219

Table 19: JMLN test recall of representative models
(DeBERTa-large, T5-large, and Sarashina2.2-3B) for
each variant-form type category.

assessed the validity of each output (v: valid, A:
questionable, X: invalid).

In example (a), all three methods produced se-
mantically valid normalized strings at the phrase
level; however, only DeBERTa was classified as a
TP, as it correctly matched the gold span. Similarly,
in examples (b) and (c), Sarashina produced plausi-
ble normalized strings, but due to mismatches with
the gold annotation, the outputs were classified as
FPs. In example (d), Sarashina normalized the in-
put to a synonym (i.e., “darling” to “husband”);
while the result was semantically appropriate, it
falls outside the scope of the task, which requires
normalization to variant surface forms of the same
word. In examples (e) and (f), Sarashina produced
normalized strings that were semantically unrelated
to the original input. DeBERTa generated invalid,
non-word outputs in examples (b) and (d), while T5
did so in example (c). Example (g) shows that all
three models produced different but erroneous out-
puts, suggesting that normalization becomes par-
ticularly challenging when multiple non-standard
words appear in sequence, making boundary and
word identification more difficult.
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Backbone Approach Seg POS Len” Len" Norm

F1 F1 Fl F1 P R F0,5 S-ACCP S-ACCn chrF

Leave-As-Is | - - - - | - 0 - 0 1 95.29
P-SEG - - 0.644 - 0.676 0.510 0.635 0.487 0.982 96.69

BERT-B F-SEG 0.980 0.656 0978 | 0.721 0.546 0.678 0.518 0.979 96.82

F-SEG-POS | 0978 0963 0.636 0976 | 0.649 0532 0.621  0.508 0.970  96.56

P-SEG - - 0.630 - 0.662 0.515 0.626  0.488 0976  97.04
RoBERTa-B F-SEG 0.982 - 0.669 0.980 | 0.726 0.537 0.678  0.502 0.981 97.22
F-SEG-POS | 0982 0971 0.677 0981 | 0.713 0.566 0.678  0.525 0973  97.27

P-SEG - - 0.637 - 0.678 0.516 0.638  0.489 0977  97.12
DeBERTa-B F-SEG 0.982 - 0.656 0980 | 0.745 0.516 0.685 0477 0989  97.16
F-SEG-POS | 0983 0972 0.680 0982 | 0.716 0.566 0.680  0.528 0974  97.26

P-SEG - - 0.682 - 0.717 0.570 0.682  0.542 0979  96.92
BERT-L F-SEG 0.984 - 0.704 0983 | 0.769 0.588 0.725  0.549 0979  97.01
S&P 0980 0.967 0.691 0.979 | 0.756 0.576 0.712  0.534 0.984  97.04

P-SEG - - 0.671 - 0.706  0.557 0.670  0.515 0.980  97.27
RoBERTa-L F-SEG 0.983 - 0.701 0982 | 0.753 0.571 0.708  0.542 0980  97.34
F-SEG-POS | 0985 0974 0.713 0983 | 0.765 0.580 0.719  0.551 0984  97.49

P-SEG - - 0.685 - 0.763 0.556 0.710  0.523 0985  97.34
DeBERTa-L F-SEG 0.986 - 0.718 0984 | 0.763 0.593 0.722  0.556 0.980  97.54
F-SEG-POS | 0985 0975 0.727 0983 | 0.788 0.592 0.739  0.548 0.984  97.50

Table 20: Results of encoder-only models with different approaches (P-SEG: PART-SEG, F-SEG: FULL-SEG,
and F-SEG-POS: FULL-SEG-POS) on the JMLN dev sets. For each model, the best score among its variants is
underlined.

Backbone Approach | P R Fos  S-Acc?  S-Acc™  chrF
- Leave-As-Is | - 0 - 0 1 95.29
PLAIN - - - 0.497 0958  96.54
T5-base STRUCT 0.727 0491 0.663  0.465 0.983  96.94
SPAN 0.707 0.527 0.662 0.509 0.974 97.01
PLAIN - - - 0.535 0.950 96.44
T5-large STRUCT 0.769 0.558 0.714 0.531 0.984 97.31
SPAN 0.751 0.568 0.705  0.566 0975  97.28
PLAIN - - - 0.602 0.985 97.92
Sarashina2.2-1B STRUCT 0.750 0.635 0.724  0.602 0972 97.72
SPAN 0.770  0.609 0.730  0.593 0975  97.59
PLAIN - - - 0.656 0.980 98.17
Sarashina2.2-3B STRUCT 0.792 0.682 0.766  0.651 0972 97.94
SPAN 0.792 0.677 0.767 0.653 0.979 98.11
PLAIN - - - 0.646 0.982  98.08
Sarashina2-7B STRUCT 0.766 0.670 0.745  0.658 0971  97.99
SPAN 0.767 0.662 0.743  0.637 0.965 97.74
PLAIN - - - 0.638 0.983  98.03
Llama-3.1-Swallow-8B  STRUCT 0.771 0.609 0.732 0.584 0.980 97.68
SPAN 0.755 0.602 0.718  0.562 0974  97.50

Table 21: Normalization results of encoder-decoder and decoder-only models on the JMLN dev sets. For each
model, the best score among its variants is underlined.
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RK-ICB: (---) ZNRIXDD 5720~ ~posunko
(Not sure about the effect.)

() Gold BN ~~ ({70} (not)
DeBERTa-L RN~~~ 720 (not) TP v
T5-L DL N~~3DD 57\ ooL (not sure) FP&FN v
Sarashina2.2-3B O 5 RW0~~=D0 57 Voo (not sure) FP&FN v
BIJ-0C: MWHN KIS T, (- ) KTH-7Z5FDEE RN B pos.ynkD?
(Can you just was daikon radish sprouts with water and eat it as is?)
(b)  Gold 7ZRND S {BRAND) (can eat)
DeBERTa-L 7ZRNE BN D ool (@) FP&FN X
T5-L - FN X
Sarashina2.2-3B 72_N5 BN 515001 (can eat) FP&FN
BJ-OC: (---)iBEFKD T£H V2 AE] DB T Negunk U R IRVT LU & 5%
(Isn’t Kintetsu Railway’s ‘“Mawaryanse” pass a good deal?)
(©)  Gold -
DeBERTa-L - - _
T5-L M2 Z9m (2) FP X
Sarashina2.2-3B & b 7 B4 0oL (good deal) FP v
BJ-0Y: ( .. ) 750 /\/pos;unkﬁ§35‘:j0 T NFE L7,
(My darling treated me.)
(d  Gold EobAs{Z—1 ) (darling)
DeBERTa-L 7250 A—=720 Y Aool ) FP&FN X
T5-L - FN X
Sarashina2.2-3B 2% D A—HH . (husband) FP&FN A
BI-OY: () W AL b Y TH Y U negume & FIBYIKRTA R %R A,
(I’'m going kan-tsuri (= fishing at a managed sport) at Walton and bass fishing
in Tone River system.)
© "Gold -
DeBERTa-L — — _
T5-L - - -
Sarashina2.2-3B 7>V VU —sF vy v F &Y YU —ZAgo. (catch & release) FP X
NU: ( .. ) HERIE25E L D25 U & D pos:unk?
(The high is like 25°C or something, right?)
®  Gold SL &5 {TL &S} (right?)
DeBERTa-L - FN X
T5-L - FN X
Sarashina2.2-3B 2o L & 5 —E . (summer) FP&FN X
TWﬁ)'\/@ii)'\/f:PosUnk%ﬂ%Eﬁﬁs\I\I/‘/ F\)\D [JTE)J:()
(Ugh, Hatsune Miku is trending again.)
(8  Gold T h~T{ET) (again)
DeBERTa-L HEr~—HF o (extra) FP&FN X
T5-L Fop~T2—=FHn (well...) FP&FN X
Sarashina2.2-3B »FE b ~7-—H F >7200L (extra) FP&FN X

Table 22: Example original text (fragment) and corresponding model outputs. For each row of gold-standard and
model output, columns 2—5 indicate: (1) original string—normalized string, (2) gloss of the normalized string, (3)
error type, (4) manual validity judgement by the first author (v': valid, /A: questionable, X: invalid). Non-standard
words in the original text are underlined; if positive instances, they are marked with a subscript Pos : Unk, and if
negative, with Neg : Unk (Unk indicates that the word did not appear in the training set). Predicted normalized
strings are marked with subscripts InL or OOL, indicating whter the form is included or not included in the UniDic

lexicon.
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ID  Pretrained Model Lang Exp Size  Hugging Face ID License
ja  th
01 BERT-base ja v 91M  tohoku-nlp/bert-base-japanese-char-v3 Apache 2.0
02 BERT-large ja v 310M  tohoku-nlp/bert-large-japanese-char-v2 Apache 2.0
03 RoBERTa-base ja v 100M  ku-nlp/roberta-base-japanese-char-wwm CCBY-SA 4.0
04 RoBERTa-large ja v 320M  ku-nlp/roberta-large-japanese-char-wwm CCBY-SA 4.0
05 RoBERTa-base th v 88M  KoichiYasuoka/roberta-base-thai-char Apache 2.0
06  DeBERTa-base ja v 100M  ku-nlp/deberta-v2-base-japanese-char-wwm  CC BY-SA 4.0
07 DeBERTa-large ja v 330M  ku-nlp/deberta-v2-large-japanese-char-wwm  CC BY-SA 4.0
08  T5-base ja v 250M retrieva-jp/t5-base-long CCBY-SA 4.0
09  T5-large ja v 780M  retrieva-jp/tS-large-long CCBY-SA 4.0
10 T5-base th v’ 250M  kobkrit/thai-t5-base N/A
11 mT5-base M v v 580M google/mt5-base Apache 2.0
12 mT5-large M v v 1.2B  google/mt5-large Apache 2.0
13 Llama-3.2-1B M v v 1.2B  meta-llama/LLlama-3.2-1B Llama 3.2
14  Llama-3.2-3B M v v 3.2B  meta-llama/Llama-3.2-3B Llama 3.2
15 Llama-3.1-8B M v v 8.0B  meta-llama/Llama-3.1-8B Llama 3.1
16  Swallow-8B M—ja vV 8.0B  tokyotech-llm/Llama-3.1-Swallow-8B-v0.2 Llama 3.1
17  Qwen2.5-1.5B M v v 1.5B  Qwen/Qwen2.5-1.5B Apache 2.0
18  Qwen2.5-3B M v v 3.1B  Qwen/Qwen2.5-3B Qwen Research
19 Qwen2.5-7B M v v 7.6B  Qwen/Qwen2.5-7B Apache 2.0
20 TinySwallow-1.5B  M—ja v 1.5B  SakanaAl/TinySwallow-1.5B Apache 2.0
21  Sarashina2.2-1B ja&en Vv 1.4B  sbintuitions/sarashina2.2-1b MIT
22 Sarashina2.2-3B ja&en Vv 3.4B  sbintuitions/sarashina2.2-3b MIT
23 Sarashina2-7B ja&en Vv 7.3B  sbintuitions/sarashina2-7b MIT
24  Typhoon2-1B M—th v 1.2B  scb10x/llama3.2-typhoon2-1b Llama 3.2
25 Typhoon2-3b M—th v 3.2B  scb10x/llama3.2-typhoon2-3b Llama 3.2
26  Typhoon2-8B M—th v 8.0B  scb10x/llama3.1-typhoon2-8b Llama 3.1
27  ThaiGPT1.5-7B M—th v 7.6B  openthaigpt/openthaigpt].5-7b-instruct Qwen
28  SealLLMs-v3-1.5B M—M v 1.5B  SealLLMs/Seal.LMs-v3-1.5B SealLLMs
29  SealLLMs-v3-7B M—M v 7.6B  SealLLMs/SealLLMs-v3-7B SeaLLMs

99__ce

Table 23: Backbone models used in Japanese and Thai experiments (“Exp”’="ja” and “th”’). The “Lang” column
indicates the languages that the model mainly trained on (“M” indicates a multilingual model, and “M—*” indicates
a continually pre-trained model from a multilingual model).

12799



