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Abstract

As large language models (LLMs) continue to
evolve, efficient evaluation metrics are vital for
assessing their ability to compress information
and reduce redundancy. While traditional met-
rics like Matrix Entropy offer valuable insights,
they are computationally intensive for large-
scale models due to their O(n3) time complex-
ity with Singular Value Decomposition (SVD).
To mitigate this issue, we introduce the Ma-
trix Nuclear-Norm, which not only serves as a
metric to quantify the data compression profi-
ciency of LLM but also provides a convex ap-
proximation of matrix rank to capture both pre-
dictive discriminability and diversity. By em-
ploying the L1,2-norm to further approximate
the nuclear norm, we can effectively assess the
model’s information compression capabilities.
This approach reduces the time complexity to
O(n2) and eliminates the need for SVD com-
putation. Consequently, the Matrix Nuclear-
Norm achieves speeds 8 to 24 times faster than
Matrix Entropy for the Cerebras-GPT model
as sizes increase from 111M to 6.7B. This per-
formance gap becomes more pronounced with
larger models, as validated in tests with other
models like Pythia. Additionally, evaluations
on benchmarks and model responses confirm
that our proposed Matrix Nuclear-Norm is a
reliable, scalable, and efficient tool for assess-
ing LLMs’ performance, striking a balance be-
tween accuracy and computational efficiency.
The code is available at https://github.
com/MLGroupJLU/MatrixNuclearNorm.

1 Introduction

Large language models (LLMs), such as Gem-
ini (Gemini et al., 2023), Deepseek (Guo et al.,
2025), and GPT-4 (GPT-4 Achiam et al., 2023),
have shown exceptional performance in numer-
ous natural language processing (NLP) tasks (Zhao
et al., 2023). These models are transforming the
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way we approach NLP tasks, providing unprece-
dented capabilities and solutions to complex prob-
lems. They are revolutionizing NLP (Saul et al.,
2005; Liu et al., 2023; Sawada et al., 2023) and
positively impacting computer vision (Lian et al.,
2023a; Wang et al., 2024) and graph neural net-
works (Zhang et al., 2024; Chen et al., 2024),
achieving top results on leaderboards. Despite
these advancements, evaluating a model’s ability
to compress information remains a critical research
challenge (Delétang et al., 2023). This challenge
is essential for improving the overall efficiency of
these models.

Compression involves efficiently extracting es-
sential information from large datasets while re-
moving redundant data, highlighting a model’s
ability to understand the data’s underlying struc-
ture (Wei et al., 2024). LLMs are expected to per-
form this compression during training (Zhao et al.,
2023). Initially, after random initialization, the
data representations are chaotic, but as training
progresses, they become organized, allowing the
model to filter out unnecessary information. Thus,
assessing an LLM’s compression capacity is vital
for understanding its learning efficiency and repre-
sentational power, which are crucial for practical
applications and real-world deployment.

Current compression metrics like Wei et al.
(2024)’s Matrix Entropy analyze output representa-
tions but face scalability limits due to O(n3) SVD
complexity (Kung et al., 1983; Zhang, 2015). To
address this, we propose a novel metric called Ma-
trix Nuclear-Norm. This metric measures predic-
tive discriminability and output diversity, serving
as an upper bound for the Frobenius norm and
providing a convex approximation of the matrix
rank. We enhance the Matrix Nuclear-Norm by
using the L1,2-norm to approximate the nuclear
norm, improving stability across multiple classes.
This approach efficiently assesses a model’s com-
pression capabilities and redundancy elimination,
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streamlining evaluation. The Matrix Nuclear-Norm
has a computational complexity of O(n2), a signif-
icant improvement over Matrix Entropy’s O(n3).
This optimization achieves > 8× acceleration in
evaluation speed for large models while preserving
reliability.

To validate the Matrix Nuclear-Norm, we con-
ducted preliminary experiments on two language
models of different sizes. Results showed a con-
sistent decrease in Matrix Nuclear-Norm values
as model size increased, indicating enhanced com-
pression capabilities. We also performed inference
experiments on benchmark datasets, AlpacaEval
(Dubois et al., 2024) and Chatbot Arena (Chiang
et al., 2024), covering diverse language generation
tasks. These benchmarks provide a comprehensive
assessment of model inference performance. Our
findings confirm that the Matrix Nuclear-Norm ac-
curately measures model compression capabilities
and ranks models based on performance, demon-
strating its reliability and efficiency. Our empirical
investigations yield the following insights:

• Proposal of the Matrix Nuclear-Norm: We
introduce a method leveraging the nuclear
norm, reducing computational complexity
from O(n3) to O(n2). This reduction min-
imizes SVD dependence, making Matrix
Nuclear-Norm a more efficient alternative to
Matrix Entropy.

• Extensive Experimental Validation: We val-
idated the Matrix Nuclear-Norm on language
models of various sizes. Results show this
metric accurately assesses model compression
capabilities, with values decreasing as model
size increases, reflecting its robust evaluation
capability.

• Benchmark Testing and Ranking: We con-
ducted inference tests on benchmark datasets,
AlpacaEval and Chatbot Arena, evaluating in-
ference performance across different model
sizes and ranking them based on the Ma-
trix Nuclear-Norm. Results demonstrate this
metric efficiently and accurately evaluates
medium and small-scale models, highlight-
ing its broad application potential in model
performance assessment.

2 Related Work

LLM Evaluation and Scaling Laws. Evaluat-
ing large language models (LLMs) is a multi-
faceted challenge, as it requires capturing both task-

specific performance and internal representational
efficiency. Scaling laws have become a founda-
tional framework for studying how LLM perfor-
mance evolves with model size and data volume
(Kaplan et al., 2020; Ruan et al., 2024). These stud-
ies demonstrate that model performance on tasks
like language modeling and fine-tuning often fol-
lows predictable power-law relationships with re-
spect to model parameters and dataset size, empha-
sizing the importance of scaling for achieving state-
of-the-art results.However, scaling laws typically
focus on external metrics such as cross-entropy
loss, offering limited insight into how LLMs man-
age internal knowledge representation. For in-
stance, the ability of LLMs to compress knowledge,
eliminate redundancy, and retain structured infor-
mation remains poorly understood with traditional
methods. Addressing these gaps requires structural
metrics that go beyond task outcomes to directly
evaluate the internal embeddings and activation
patterns of LLMs.

LLM Evaluation Metrics. Traditional evalua-
tion metrics such as perplexity, BLEU (Papineni
et al., 2002), and ROUGE (Lin, 2004) primarily
measure task-specific outcomes, assessing how
well model outputs align with ground truth data.
While these metrics are effective for evaluating
surface-level outputs, they do not capture the under-
lying mechanisms of LLMs, such as the diversity
or compression of embeddings. Similarly, accu-
racy and F1 score (Sasaki, 2007) focus on classifi-
cation performance, making them less applicable
to the generative tasks typical of LLMs.To bridge
this gap, structural metrics such as Matrix Entropy
have been introduced. Matrix Entropy (Wei et al.,
2024) employs information theory to assess the en-
tropy of covariance matrices derived from LLM
embeddings. This metric evaluates how effectively
a model removes redundancy and encodes struc-
tured information, offering a measure of its com-
pression capabilities. For instance, Matrix Entropy
can reveal differences in embedding distributions
across models of varying sizes, reflecting their ca-
pacity to extract meaningful patterns from large
datasets. However, its reliance on Singular Value
Decomposition (SVD) results in a computational
complexity of O(n3), limiting its applicability to
modern large-scale models. To overcome these lim-
itations, we propose the Matrix Nuclear-Norm as a
scalable alternative. By leveraging the L1,2 norm as
a convex approximation of matrix rank, the Matrix
Nuclear-Norm reduces computational complexity
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to O(n2). This makes it feasible for evaluating em-
beddings from large-scale LLMs while preserving
the insights provided by Matrix Entropy, such as
compression efficiency.

3 Preliminaries

This section presents the fundamental concepts for
model performance evaluation: discriminability,
diversity, and nuclear norm.

3.1 Discriminability Measurement: F-NORM

Higher discriminability corresponds to lower pre-
diction uncertainty in the response matrix A. When
A is normalized as a probability matrix (i.e.,∑C

j=1Ai,j = 1, ∀i ∈ [B]), this uncertainty can
be quantified using Shannon Entropy (Shannon,
1948):

H(A) = − 1

B

B∑

i=1

C∑

j=1

Ai,j log (Ai,j) (1)

where B is the number of samples, C the fea-
ture dimension, and Ai,j the normalized activa-
tion value. Lower entropy indicates higher discrim-
inability.

An alternative measurement is the Frobenius
norm:

∥A∥F =

√√√√
B∑

i=1

C∑

j=1

|Ai,j |2. (2)

This norm reflects activation intensity, with
higher values indicating more concentrated distri-
butions.

Theorem 1. For a row-normalized matrix A ∈
RB×C
+ (i.e.,

∑C
j=1Ai,j = 1, ∀i), H(A) and ∥A∥F

are strictly inversely monotonic.
The norm satisfies dimensional bounds:

√
B

C
≤ ∥A∥F ≤

√
B (3)

where the lower bound achieves when A has
uniform distributions (maximal uncertainty), and
the upper bound when A contains one-hot vectors
(minimal uncertainty). The proof is given in Ap-
pendix A.5.

3.2 Diversity Measurement: Matrix Rank

In LLMs, diversity reflects the model’s ability to
utilize its latent representation space effectively.

For a given dataset D, the expected diversity of
outputs is defined as:

EC = EA∼D
[
Cp(A)

]
(4)

To approximate Cp(A), we construct a sparse
matrix M ∈ {0, 1}B×C where each row contains
a one-hot vector indicating the argmax position:

Mi,j =

{
1, j = argmaxk Ai,k

0, otherwise
(5)

The capacity measure then becomes:

Cp(A) = rank
(
M ⊙A

)
≈ rank(A) (6)

where ⊙ denotes element-wise product.
The maximum value of Cp(A) is min(B,C),

where C is the output representation dimension.
Maximizing Cp(A) ensures effective utilization
of the representation space, promoting robustness
through reduced redundancy.

3.3 Nuclear Norm

The nuclear norm is an important measure related
to diversity and discriminability.

Theorem 2. When ∥A∥ ≤ 1 (where ∥A∥ is the
spectral norm), the convex envelope of rank(A) is
the nuclear norm ∥A∥⋆. The theorem is proved in
Fazel (2002).

For a matrix A ∈ RB×C with ∥A∥F ≤
√
B, let

D = min(B,C). The relationships between the
nuclear norm and Frobenius norm are:

∥A∥F ≤ ∥A∥⋆ ≤
√
D · ∥A∥F . (7)

Therefore, maximizing ∥A∥⋆ encourages higher
rank, which implies high diversity and discrim-
inability. The upper bound of ∥A∥⋆ is further
bounded by:

∥A∥⋆ ≤
√
D ·B. (8)

4 Methodology

4.1 Motivation

Evaluating large language models (LLMs) requires
metrics that not only capture model performance
but also efficiently handle computational demands.
Our initial exploration into Matrix Entropy high-
lighted its potential as a promising metric for as-
sessing model capabilities, particularly in the realm
of information compression. However, its practical
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application is severely limited by high computa-
tional complexity, which escalates with model size,
leading to inefficiencies in evaluation. To overcome
these challenges, we propose the Matrix Nuclear-
Norm as an alternative, inspired by its relation-
ship with matrix rank—a key component of Matrix
Entropy. This connection is well-documented in
literature, such as Huang and Wolkowicz (2018)
where the nuclear norm effectively approximates
matrix rank, thus offering a pathway to mitigate
the computational intensity of Matrix Entropy. Our
experiments demonstrate that the Matrix Nuclear-
Norm not only reduces computational complexity
but also preserves the evaluative strengths of Matrix
Entropy. By utilizing the L1,2-norm to approximate
the nuclear norm, we achieve substantial efficiency
gains, ensuring scalability and robustness in LLM
evaluation. Therefore, the Matrix Nuclear-Norm
serves as a viable surrogate for Matrix Entropy,
providing a comprehensive framework for assess-
ing information compression in large-scale models.
This approach allows us to evaluate LLMs more ef-
fectively, addressing both theoretical and practical
challenges in model assessment.

4.2 Matrix Nuclear-Norm

For a matrix A ∈ RB×C , computing its exact
nuclear norm via Singular Value Decomposition
(SVD) requires O(min(B2C,BC2)) time, which
is equivalent to O(n3) with n = max(B,C).
While feasible for small matrices, this becomes
computationally prohibitive for large-scale mod-
els. Additionally, numerical instability may arise
in SVD computations for ill-conditioned matrices.

Sparsity Prior: When A exhibits column-wise
sparsity (i.e., non-zero activations concentrate in a
subset of columns), we can approximate its sin-
gular values by leveraging column norms. Let
∥A∥F denote the Frobenius norm, bounded by
∥A∥F ≤

√
min(B,C) ·σmax(A), where σmax(A)

is the largest singular value.
Theorem 3. (Column-Norm Approximation)

If A has rapidly decaying column norms
{∥A:,j∥2}Cj=1, the j-th largest singular value σj(A)
can be approximated by the j-th largest column
norm:

σj(A) ≈ Sort
(
{∥A:,j∥2}Cj=1

)
[j]
, j ∈ {1, . . . , r},

(9)
where r = rank(A). The proof is given in Sect.
A.6 (Supplementary Materials). The nuclear norm

is then approximated as:

∥Â∥⋆ ≈
D∑

j=1

Sort
(
{∥A:,j∥2}Cj=1

)
[j]
, (10)

where D ≤ r is a hyperparameter controlling ap-
proximation precision, and Ã denotes the column-
sparse approximation of A.

Remark: This approximation holds under
the assumption that off-diagonal correlations be-
tween columns are negligible (i.e., A⊤A ≈
diag(∥A:,1∥22, . . . , ∥A:,C∥22)). For correlated
columns, a diagonal correction term may be re-
quired.

This approach indicates that the primary com-
ponents of the L1,2-norm can effectively approxi-
mate the nuclear norm when ∥A∥F is close to

√
B,

while other components can be considered noise.
Compared to traditional SVD-based methods (e.g.,
Guo et al. (2015)), this approach reduces computa-
tional complexity from O(n3) to O(n2) and avoids
convergence issues by using only standard floating-
point operations. The complete algorithm is de-
tailed in Algorithm 1.

Definition of Matrix Nuclear-Norm. The ap-
proach can ultimately be expressed as:

Matrix Nuclear-Norm(X) =

∑D
i=1

(√∑m
j=1 X

2
i,j

)

Linput
(11)

Here, Linput denotes the length of the input se-
quence, ensuring comparability through normaliza-
tion. Our observations indicate that Matrix Nuclear-
Norm values increase with longer sequences; fur-
ther details can be found in Section 5.3.2.

Algorithm 1 Algorithm of Matrix Nuclear-Norm

Require: Sentence representations S = {Xi}mi=1,
where Xi ∈ Rd×1, d is the hidden dimension, and
Linput is the sentence length.

1: µ = 1
m

∑m
i=1 Xi // Mean embedding

2: Xnorm = X−µ
∥X−µ∥2,row

// Normalize matrix

3: L2(Xnorm) =
√∑m

i=1 X
2
i,j // Column L2-norm

4: ΣD = {σ1, σ2, . . . , σD} // Top D norms

5: Matrix Nuclear-Norm(X) =
∑D

i=1(
√∑m

j=1 X2
j,i)

Linput

6: return Matrix Nuclear-Norm

5 Experiments of Large Language Models

The models and datasets used in this paper are
thoroughly introduced in A.2.

1309



5.1 Baselines

Cross-Entropy Loss. Cross-entropy is a key met-
ric for evaluating LLMs by measuring the diver-
gence between predicted and true probability distri-
butions. The formula is given as (Wei et al., 2024):

LCE = − 1

T

T∑

i=1

logP (ui | u<i; Θ) (12)

where ui is the target token at position i, P (ui |
u<i; Θ) is the conditional probability predicted by
the model, and T is the sequence length. Lower
values indicate better prediction accuracy. We com-
pare this baseline with the Matrix Nuclear Norm
metric, using the same datasets and models from
(Kaplan et al., 2020).

Perplexity. Perplexity measures how well a lan-
guage model predicts a sequence of words. For a
text sequence U = {u1, . . . , uT }, it is defined as
(Neubig, 2017; Wei et al., 2024):

PPL(U) = exp

(
− 1

T

T∑

i=1

logP (ui | u<i; Θ)

)

(13)
Lower perplexity indicates better performance,

showing that fewer attempts are needed to predict
the next token.

Matrix Entropy of a Dataset. For a dataset
D = {Si}ni=1, where Si ∈ Rd×d represents sen-
tence embedding covariance matrices, the normal-
ized matrix entropy is defined as (Wei et al., 2024):

H(D) =
1

n log d

n∑

i=1

H

(
σ(Si)

∥σ(Si)∥1

)
(14)

where σ(Si) denotes the singular values of matrix
Si, and H(·) is the Shannon entropy computed over
the normalized singular value distribution.

5.1.1 Language Models
In our experiments, we selected a range of widely
used transformer-based LLMs. Notably, we in-
cluded Cerebras-GPT (Gao et al., 2020), a pre-
trained model well-suited for studying scaling laws.
The selection of Cerebras-GPT is particularly ad-
vantageous due to its diverse model sizes, which
span from 111 million to 13 billion parameters.
This diversity allows for a comprehensive analy-
sis of pre-trained language models across varying
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Figure 1: Cerebras-GPT: Time comparison

scales. Additionally, we utilized various scaled ver-
sions of the Pythia model (Biderman et al., 2023),
ranging from 14 million to 12 billion parameters, to
further examine performance variations as model
scale changes, thus validating the effectiveness of
the proposed Matrix Nuclear-Norm metric.

We conducted Matrix Nuclear-Norm calcula-
tions and comparative analyses on inference re-
sponses from these models using two benchmark
datasets: AlpacaEval and ChatBot Arena. The spe-
cific models included in our study are the DeepSeek
series (Guo et al., 2024) (1.3B, 6.7B, 7B), the
Llama3 series (Dubey et al., 2024) (8B, 70B), the
QWEN 2 series (Yang et al., 2024) (0.5B, 1.5B, 7B,
72B), and the Vicuna series (Chiang et al., 2023)
(7B, 13B, 33B). We also evaluated models of the
same scale, specifically Gemma-7B (Team et al.,
2024) and Mistral-7B (Jiang et al., 2023). The
inclusion of these diverse models enriches our re-
search perspective and facilitates an in-depth ex-
ploration of the inference performance and scaling
laws of LLMs across different parameter sizes.

5.2 Matrix Nuclear-Norm Observation

5.2.1 Comparing Computational Time
To evaluate the computational efficiency of Matrix
Nuclear-Norm in comparison to Matrix Entropy
for LLMs, we conducted experiments across vari-
ous model sizes using multiple benchmark datasets.
The results, summarized in Table 1, demonstrate a
clear advantage of Matrix Nuclear-Norm in terms
of computation time, particularly for larger models.

As model sizes increased, Matrix Entropy’s com-
putation time rose dramatically, reaching approxi-
mately 16.3 hours for the 13B model . In contrast,
Matrix Nuclear-Norm only required about 0.82
hours for the same model, representing nearly a
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20-fold reduction in computation time. This trend
was consistent across all model sizes, with Ma-
trix Nuclear-Norm consistently proving to be much
faster (as illustrated in Figure 1). For example, the
111M model showed that Matrix Nuclear-Norm
was 8.58 times quicker than Matrix Entropy.

The significant efficiency gain is due to the lower
complexity of Matrix Nuclear-Norm, O(m · n +
n log n), versus Matrix Entropy’s O(n3), where
m is the embedding dimension (columns). This
makes it an efficient metric for LLM evaluation,
especially for large-scale models.

In summary, Matrix Nuclear-Norm achieves
comparable evaluation accuracy to Matrix Entropy
but with vastly superior computational efficiency,
making it a practical and scalable choice for assess-
ing LLMs.

Model Size ME Time(s) MNN Time(s) Ratio

111M 623.5 72.7 8.6
256M 1213.1 110.8 10.9
590M 2959.7 184.8 16.0
1.3B 6760.2 379.0 17.8
2.7B 12083.7 732.6 16.5
6.7B 38791.2 1598.4 24.3
13B 59028.4 2984.2 19.8

Table 1: Cerebras-GPT: Time Comparison between Ma-
trix Entropy (ME) and Matrix Nuclear-Norm (MNN)

5.2.2 Scaling Law of Matrix Nuclear-Norm
To affirm Matrix Nuclear-Norm’s efficacy as an
evaluative metric, we evaluated Cerebras-GPT
models on four datasets including dolly-15k,
Wikipedia, openwebtext2, and hh-rlhf comparing
Matrix Nuclear-Norm, matrix entropy, perplexity,
and loss. As shown in Table 10, Matrix Nuclear-
Norm decreases consistently with model size, in-
dicating better data compression and processing
in larger models. This trend (Figure 2b) validates
Matrix Nuclear-Norm’s utility across datasets. No-
tably, anomalies at the 2.7B and 13B highlight ar-
eas needing further exploration.

5.2.3 Relationship of Benchmark Indicators
Findings indicate the efficacy of the Matrix
Nuclear-Norm as a metric for evaluating LLM, as
shown in Table 9 (Appendix), there is an overall
downward trend in Matrix Nuclear-Norm values
with increasing model sizes, signifying enhanced
compression efficiency. However, notable anoma-
lies at the 2.7B and 13B checkpoints suggest that
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Figure 2: Comparison of Matrix Nuclear-Norm, matrix
entropy when model scales up.

these specific model sizes warrant closer exami-
nation. Despite these discrepancies, the Matrix
Nuclear-Norm consistently demonstrates superior
computational efficiency and accuracy compared
to traditional metrics, highlighting its promising
applicability for future model evaluations.

5.3 Language Investigation

5.3.1 Sentence Operation Experiments
Figure 3 shows sentence manipulations impact Ma-
trix Nuclear-Norm values. These values decrease
with model size, in line with established scaling
laws similar to those governing matrix entropy and
perplexity (PPL). As models grow larger, they can
capture data patterns more efficiently, reducing re-
dundant information representation, which directly
lowers the nuclear norm.

The ranking Reverse > Shuffle & Reverse >
Shuffle > Base reflects input disruption. Reverse
flips the sentence, introducing maximum disorder
and causing a large norm increase. Shuffle only
partially rearranges elements, leading to a smaller
rise. The unaltered Base condition enables optimal
compression.

Notably, the 2.7B model has slightly higher Shuf-
fle and Base values than the 1.3B model, yet this
doesn’t challenge the conclusion that larger mod-
els compress better. The norm increases with text
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Figure 3: Results of sentence operation. Shuffling and
reversing disrupt the text structure and diminish the
informational content, leading to an increase in Matrix
Nuclear-Norm.

Figure 4: The Matrix Nuclear-Norm values increase
consistently with longer text input lengths, reflecting
the model’s ability to capture more information.

length because longer texts carry more information,
increasing entropy and computational complexity.
More data means more potential redundancy for
the model to process, driving up the norm value.
These results clarify model behavior in relation to
size, input structure, and length.

5.3.2 Analysis of Length Dynamics

The analysis reveals that Matrix Nuclear-Norm gen-
erally increase as input length rises, aligning with
our expectations (see Figure 4). Longer inputs
necessitate that the model manage and compress
more information, which naturally leads to higher
Matrix Nuclear-Norm. Most models exhibit this
trend, indicating effective handling of the increased
information load.

However, the Cerebras-GPT-2.7B and Cerebras-
GPT-13B models display anomalies in their Matrix
Nuclear-Norm values at 64 and 128 tokens, where
the value at 128 tokens is lower than that at 64 to-
kens. This discrepancy may be attributed to these
models employing different information compres-
sion mechanisms or optimization strategies tailored
to specific input lengths, allowing for more effec-

tive compression at those lengths.
Overall, aside from a few outliers, the results

largely conform to expectations, demonstrating that
Matrix Nuclear-Norm values increase with input
length, reflecting the greater volume and complex-
ity of information that models must handle.To ad-
dress the observed trend of rising Matrix Nuclear-
Norm values with longer sentences, we incorpo-
rated a normalization step in our methodology via
dividing the Matrix Nuclear-Norm values by the
sentence length. This adjustment helps mitigate
any biases introduced by models that tend to gener-
ate longer sentences during inference.

5.3.3 Analysis of Prompt Learning
The experimental results (shown in Table 2) indi-
cate that we performed inference on different sizes
of Cerebras-GPT models using three carefully se-
lected prompts (shown in Table 12) and calculated
the Matrix Nuclear-Norm values of their responses.
As the model size increased, the Matrix Nuclear-
Norm values gradually decreased, demonstrating
that larger models possess greater information com-
pression capabilities. The prompts significantly
influenced Matrix Nuclear-Norm, with variations
reflecting the models’ responses to prompt com-
plexity. Specifically, Cerebras-GPT-1.3B showed
a notable decrease in Matrix Nuclear-Norm af-
ter the input prompts, indicating its sensitivity to
them, while Cerebras-GPT-2.7B exhibited smaller
changes. In contrast, Cerebras-GPT-6.7B displayed
minimal variation across all prompts, suggesting
stable performance regardless of prompt detail.
Overall, more detailed prompts resulted in larger
information volumes in the model’s responses, lead-
ing to corresponding changes in Matrix Nuclear-
Norm values.

Table 2: Results of prompt learning without Prompt and
with (Prompt 1, 2, 3) the use of prompts. Incorporating
prompts as prefixes before the QA pairs enhances the
models’ ability to achieve better compression.

ADDING PROMPT TO QA PAIRS
MODELS EMPTY PROMPT PROMPT 1 PROMPT 2 PROMPT 3 AVERAGE ∆x

Cerebras-GPT-1.3B 0.150955 0.147577 0.140511 0.141358 0.14453 ↓0.006425

Cerebras-GPT-2.7B 0.150130 0.151522 0.142834 0.151842 0.14844 ↓0.001690

Cerebras-GPT-6.7B 0.132042 0.128346 0.124094 0.133211 0.12923 ↓0.002812

6 Evaluating and Ranking LLMs

6.1 Inference-Based Model Assessment

In this section, we evaluated model inference across
the AlpacaEval and Chatbot Arena benchmarks us-
ing the Matrix Nuclear-Norm metric prior to the fi-
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nal MLP classification head. The analysis revealed
that Matrix Nuclear-Norm reliably ranks model per-
formance, with lower values indicating enhanced
information processing efficiency, particularly as
model size scales up.

For instance, the Llama-3 70B model demon-
strated superior compression capabilities compared
to its 8B counterpart, as reflected by significantly
lower Matrix Nuclear-Norm values across both
benchmarks (see Table 7). A similar trend was ob-
served in the Vicuna family, where Matrix Nuclear-
Norm values consistently decreased from 0.4623
for the 7B model to 0.3643 for the 33B model
on the AlpacaEval dataset, indicating progressive
improvements in information handling (see Table
3). Additionally, the DeepSeek models exhibited a
consistent decrease in Matrix Nuclear-Norm values
as model size increased, further demonstrating the
metric’s validity.

Overall, these results substantiate Matrix
Nuclear-Norm as a robust and reliable tool for eval-
uating and ranking LLMs, demonstrating its capac-
ity to capture critical aspects of model performance
across diverse benchmarks.

Model Data 1.3B 6.7B 7B

DeepSeek Alpaca 0.4882 0.3472 0.3352
Arena 0.5754 0.4175 0.4357

Vicuna Alpaca 0.4623 0.4159 0.3643
Arena 0.4824 0.4311 0.3734

Table 3: Matrix Nuclear-Norms in Vicuna and
DeepSeek Responses

6.2 Matrix Nuclear-Norm for Model Ranking

In this experimental section, we utilized Matrix
Nuclear-Norm to evaluate the responses of LLMs,
focusing on 7B and 70B variants. Notably, lower
Matrix Nuclear-Norm values indicate more effi-
cient information compression, serving as a robust
indicator of model performance.

Among the 7B models, DeepSeek-7B exhib-
ited the most efficient information processing with
the lowest average Matrix Nuclear-Norm score
of 0.3855 across Alpaca and Arena datasets (see
Table 3). Gemma-7B followed closely with an
average score of 0.3879, whereas QWEN 2-7B
demonstrated less efficient compression with an
average score of 0.5870. In contrast, the 70B mod-
els showed varied performance, with Llama 2-70B
achieving the best average score of 0.3974, slightly
outperforming Llama 3-70B (0.4951) and QWEN

models, which scored around 0.5.
Interestingly, certain 7B models, like DeepSeek-

7B and Gemma-7B, outperformed larger 70B mod-
els, underscoring that model efficiency is not solely
determined by size. These results highlight that fac-
tors such as architecture, training methodology, and
data complexity play crucial roles in information
processing capabilities beyond scale.

MODEL
Matrix Nuclear-Norm

Alpaca Arena-Hard Avg Score
QWEN 2-7B 0.5989 0.5751 0.5870
Mistral-7B 0.4980 0.5126 0.5053
QWEN 1.5-7B 0.4866 0.5165 0.5016
LLaMA 2-7B 0.4648 0.5038 0.4843
Vicuna-7B 0.4623 0.4824 0.4724
Gemma-7B 0.3759 0.3998 0.3879
DeepSeek-7B 0.3352 0.4357 0.3855
QWEN 1.5-72B 0.5291 0.5065 0.5178
QWEN 2-72B 0.5261 0.4689 0.4975
Llama 3-70B 0.4935 0.4967 0.4951
Llama 2-70B 0.3862 0.4086 0.3974

Table 4: Descending Competence Rankings via Matrix
Nuclear Norm: Small and Large LMs

To validate the design rationale and robustness of
the Matrix Nuclear-Norm, we conducted a series of
ablation studies. Due to space constraints, detailed
results are provided in A.1 (appendix) to maintain
brevity in the main text. These experiments in-
cluded evaluations across different model families,
such as Cerebras-GPT and Pythia, as well as com-
parisons of various data sampling strategies.The
results demonstrate that the Matrix Nuclear-Norm
consistently performs well across different model
scales and sampling variations. This not only con-
firms its applicability across diverse models but
also verifies its stability and reliability in handling
large-scale datasets. We also provide an ablation
Cerebras-GPT: study in the appendix, further prov-
ing the method’s efficiency and accuracy in evalu-
ating LLMs.

7 Conclusion

In conclusion, Matrix Nuclear-Norm stands out
as a promising evaluation metric for LLMs, offer-
ing significant advantages in assessing information
compression and redundancy elimination. Its key
strengths include remarkable computational effi-
ciency, greatly exceeding that of existing metrics
like matrix entropy, along with exceptional stability
across diverse datasets. Matrix Nuclear-Norm’s re-
sponsiveness to model performance under varying
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inputs emphasizes its ability to gauge not only per-
formance but also the intricate adaptability of mod-
els. This metric marks a significant advancement
in NLP, establishing a clear and effective frame-
work for future research and development in the
evaluation and optimization of language models.

8 Limitations

Although Matrix Nuclear-Norm (MNN) performs
well in evaluating LLM performance, it has three
main limitations. First, as MNN computation relies
on hidden states, the results are sensitive to model
architecture and training processes. This may cause
performance inconsistencies across different model
designs or training settings (particularly between
Cerebras-GPT-1.3B and Cerebras-GPT-2.7B), po-
tentially limiting broader applicability. Second,
while MNN offers computational advantages over
traditional methods, it may still face resource chal-
lenges when evaluating extremely large models,
requiring further optimization for scalability.

Third, our current implementation uses MNN
primarily as an evaluation metric rather than a
training objective. However, we recognize its po-
tential for analyzing information compression dy-
namics during training, which could provide valu-
able insights into model optimization. Future work
should explore this direction while addressing the
method’s sensitivity to architectural variations.

Notably, despite observed anomalies in specific
configurations, MNN demonstrates consistent com-
putational efficiency and accuracy across various
model sizes and data sampling strategies. We will
enhance our discussion of these performance vari-
ations to better clarify the method’s robustness
boundaries and operational constraints. These lim-
itations highlight the need for continued research
into architecture-agnostic evaluation frameworks
and optimized computation strategies as language
models scale.

9 Ethics Statement

Our study adheres to strict ethical guidelines by
utilizing only publicly available and open-source
datasets. We ensured that all datasets used, such
as dolly-15k, hh-rlhf, OpenBookQA, Winogrande,
PIQA, AlpacaEval, and Chatbot Arena, are free
from harmful, biased, or sensitive content. Addi-
tionally, careful curation was conducted to avoid
toxic, inappropriate, or ethically problematic data,
thereby ensuring the integrity and safety of our

research. This commitment reflects our dedica-
tion to responsible AI research and the broader
implications of using such data in language model
development.

10 Reproducibility

We emphasize the importance of reproducibility in
the development and evaluation of our newly pro-
posed metric, Matrix Nuclear-Norm. To facilitate
reproducibility, we provide detailed information re-
garding our data processing and parameter settings:

Data Processing and Parameter Settings: We
outline the preprocessing steps applied to each
dataset, ensuring that other researchers can accu-
rately replicate our methodology. All hyperparam-
eters and configuration settings used during the ex-
periments are specified in the code, offering clarity
on the experimental conditions.

Experimental Procedures: We detail the spe-
cific steps required to evaluate the Matrix Nuclear-
Norm, including its application to each dataset and
the metrics used for performance assessment.

Code Availability: Our implementation code,
evaluation scripts, and pretrained models will be
made publicly available upon acceptance of this pa-
per, enabling others to reproduce our experiments
and validate our findings.

By adhering to these guidelines, we aim to en-
sure that our work is accessible and reproducible
for future research endeavors.
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A Appendix

A.1 Ablation Study

To thoroughly validate the rationale behind our
metric design, experimental framework, and the
efficacy of Matrix Nuclear-Norm, we conducted a
series of ablation studies.

A.1.1 Different Model Family
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Figure 5: Comparison of loss, and perplexity when
model scales up.

In addition to evaluating Matrix Nuclear-Norm
within the Cerebras-GPT model series, we ex-
tended our experiments to the Pythia model family,
which spans from 14M to 12B parameters and is
trained on consistent public datasets. Utilizing the
same datasets as described in Section 5.2.2, we
computed Matrix Entropy, loss values, and Matrix
Nuclear-Norm for these models. The empirical
results (see Figure 6c) demonstrate that the Ma-
trix Nuclear-Norm values for the Pythia models
adhere to established scaling laws. However, we
excluded metrics for the 14M, 31M, and 1B mod-
els due to notable deviations from the expected
range, likely stemming from the inherent instabil-
ity associated with smaller parameter sizes when
tackling complex tasks. This further reinforces Ma-
trix Nuclear-Norm as a robust metric for assessing

model performance, underscoring its utility in the
comparative analysis of LLMs.

Moreover, we compared the computation times
for Matrix Entropy and Matrix Nuclear-Norm
across the Pythia models (can see in Figure 8). The
results unequivocally indicate that Matrix Nuclear-
Norm necessitates considerably less computation
time than Matrix Entropy, underscoring its effi-
ciency. Detailed results are summarized in Table
11.

70M 160M 410M 1400M 2800M 6900M 12000M
Model Size (Millions)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Cr
os

s-
En

tro
py

 L
os

s

Dolly-15K
Wikipedia
Openwebtext2
HH-RLHF

(a) Cross-Entropy Loss

70M 160M 410M 1400M 2800M 6900M 12000M
Model Size (Millions)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
at

rix
 E

nt
ro

py

Dolly-15K
Wikipedia
Openwebtext2
HH-RLHF

(b) Matrix Entropy

70M 160M 410M 1400M 2800M 6900M 12000M
Model Size (Millions)

0.45

0.50

0.55

0.60

0.65

0.70

M
at

rix
 N

uc
le

ar
 N

or
m

Dolly-15K
Wikipedia
Openwebtext2
HH-RLHF
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Figure 6: Pythia Model Metrics: Matrix Nuclear-Norm,
Matrix Entropy, and Loss

A.1.2 Sampling Strategy
In the ablation experiments, we extracted a base-
line subset of 10,000 entries from the extensive
Wikipedia dataset using three random seeds to eval-
uate the robustness of the Matrix Nuclear-Norm
metric. We also tested additional subsets of 15,000
and 20,000 entries due to potential entry count is-
sues. Given the large scale of the datasets, com-
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prehensive calculations were impractical, so we
employed random sampling.

The results showed that variations in random
seeds and sample sizes had minimal impact on
Matrix Nuclear-Norm values, with a standard devi-
ation of only 0.0004975 (see Table 5), indicating
high consistency across trials. These findings con-
firm the Matrix Nuclear-Norm as a reliable metric
for large-scale datasets, effectively evaluating infor-
mation compression and redundancy elimination
in LLMs.

A.2 Model Selection and Datasets for Analysis
Model Selection. To investigate language model
scaling, we employed a diverse set of transformer-
based large language models (LLMs) across vary-
ing parameter sizes. A key focus of our analysis
was the Cerebras-GPT model (Gao et al., 2020),
which ranges from 111 million to 13 billion pa-
rameters, providing a comprehensive look at scal-
ing effects in pre-trained models. Additionally,
we included scaled versions of the Pythia model
(Biderman et al., 2023), with parameter counts
ranging from 14 million to 12 billion, enabling
a broader analysis of model performance across
different scales.

To ensure a well-rounded evaluation, we also
tested a variety of models, including the DeepSeek
series (1.3B, 6.7B, 7B) (Guo et al., 2024), Llama3
series (8B, 70B) (Dubey et al., 2024), QWEN 2
series (0.5B, 1.5B, 7B, 72B) (Yang et al., 2024),
and Vicuna models (7B, 13B, 33B) (Chiang et al.,
2023). For additional comparative insights, we
included models of similar scale, such as Gemma-
7B (Team et al., 2024) and Mistral-7B (Jiang et al.,
2023).

Datasets for Analysis. Our experiments were
conducted using several key benchmark datasets.
We selected AlpacaEval(Dubois et al., 2024) and
ChatBot Arena (Zheng et al., 2023) as the primary
datasets for model evaluation. Additionally, subsets
from Wikipedia (Foundation, 2024) and OpenWeb-
Text2 (Skylion007, 2019) were utilized to track
variations in Matrix Nuclear-Norm values, espe-
cially with the Cerebras-GPT models.

To validate the Matrix Nuclear-Norm metric, we
employed the dolly-15k dataset (Conover et al.,
2023) for instruction tuning and the hh-rlhf dataset
(Bai et al., 2022) for reinforcement learning with
human feedback (RLHF). Further evaluations were
performed on benchmark datasets such as Open-
BookQA (Mihaylov et al., 2018), Winogrande

(Sakaguchi et al., 2021), and PIQA (Bisk et al.,
2020). Lastly, prompt learning experiments with
the OpenOrca dataset (Lian et al., 2023b) provided
a comprehensive framework for assessing the Ma-
trix Nuclear-Norm’s effectiveness across a variety
of inference tasks.

A.3 Supplementary Experiment Results

The following results provide additional insights
into the Matrix Nuclear-Norm evaluations and com-
parisons across various language models:

1. Tables 7 and 6 present the Matrix Nuclear-
Norm evaluation results during the inference
process for Llama-3 and QWEN-2.

2. Figure 7 illustrates that as model size in-
creases, the computation time for Matrix
Entropy grows exponentially, while Matrix
Nuclear-Norm demonstrates a significant time
advantage. This further emphasizes Matrix
Nuclear-Norm’s efficiency in assessing model
performance.The complete results are pre-
sented in Table 8, which includes all relevant
time data for the Pythia model family.

3. Table 10 contains the complete results for
the comparison of Matrix Nuclear-Norm and
other metrics based on Cerebras-GPT family
considered in Figure 2b.

4. Table 9 demonstrates the correlation be-
tween Matrix Nuclear-Norm and other bench-
mark indicators, showing a consistent trend
where values decrease as model size increases.
This analysis examines the performance of
language modeling indicators across Open-
BookQA, Winogrande, and PIQA datasets.

5. Table 11 illustrates the numerical results of
Figure 6c in the ablation study of Pythia fam-
ily.

6. Table 12 shows the prompts used for the in-
vestigation of prompt learning.

A.4 Analysis of Algorithmic Complexity

The primary computational expense of Matrix
Nuclear-Norm arises from the calculation and sort-
ing of the L2 norm of the matrix. By avoiding Sin-
gular Value Decomposition (SVD), we reduce the
time complexity from the traditional nuclear norm
of O(n3) to O(n2), giving Matrix Nuclear-Norm a
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Table 5: Ablation study of different sampling strategies on the Wikimedia(Foundation, 2024) dataset.

MODEL SAMPLING STRATEGY STANDARD DEVIATION10000 (SEED 1) 10000 (SEED 2) 10000 (SEED 3) 15000 20000

CEREBRAS-GPT-1.3B 0.5684 0.5670 0.5676 0.5699 0.5693 0.0004975

Model DataSet 0.5B 1.5B 7B 72B

Alpaca 0.6551 0.6176 0.5989 0.5261QWEN 2 Arena 0.6872 0.6374 0.5751 0.4689

Table 6: Matrix Nuclear-Norm in QWEN 2 Responses

Model DataSet 8B 70B

Llama-3 Alpaca 0.5782 0.4935
Arena 0.5817 0.4967

Table 7: Matrix Nuclear-Norm in Llama 3 Responses

significant advantage in handling large-scale data.
This reduction in complexity greatly enhances the
algorithm’s practicality, especially for applications
involving large matrices.

When analyzing the time complexity of the
newly proposed Matrix Nuclear-Norm (L2-Norm
Based Approximation of Nuclear Norm) against
traditional Matrix Entropy, our objective is to
demonstrate that Matrix Nuclear-Norm signifi-
cantly outperforms Matrix Entropy in terms of time
efficiency. We will support this claim with detailed
complexity analysis and experimental results.

A.4.1 Time Complexity Analysis

Analysis 1: Time Complexity of Matrix Entropy
The computation of Matrix Entropy involves sev-

eral complex steps, with the key bottleneck being
Singular Value Decomposition (SVD), which is
central to computing eigenvalues. The following
steps primarily contribute to the time complexity:

1. Matrix Normalization: This step has a time
complexity of O(m · n), where m is the num-
ber of rows and n is the number of columns.

2. Computing the Inner Product Matrix: Cal-
culating ZTZ has a time complexity of O(n2 ·
m) due to the multiplication of two matrices
sized m× n.

3. Singular Value Decomposition (SVD): The
time complexity of SVD is O(n3), which is
the primary computational bottleneck, espe-
cially for large n.

14M 31M 70M 160M 410M 1B 1.4B 2.8B 6.9B 12B
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Figure 7: Pythia: Time Comparison of Matrix Entropy
and Nuclear-Norm

Model Size ME (s) MNN (s) Ratio

14M 52.9 22.3 2.4
31M 114.1 28.2 4.0
70M 320.7 24.3 13.2

160M 632.0 41.6 15.2
410M 1040.9 81.0 12.8

1B 4650.1 114.1 40.8
1.4B 6387.0 347.9 18.4
2.8B 8127.1 343.4 23.7
6.9B 28197.8 816.6 34.5
12B 47273.5 1276.1 37.0

Table 8: Pythia Model: Matrix Entropy(ME) vs. Matrix
Nuclear-Norm(MNN) Time Comparison

Therefore, the total time complexity of Matrix
Entropy can be approximated as:

O(m · n+ n2 ·m+ n3) = O(n3)

This complexity indicates that Matrix Entropy be-
comes increasingly impractical for large-scale mod-
els as n grows.

Analysis 2: Time Complexity of Matrix
Nuclear-Norm

Matrix Nuclear-Norm avoids the SVD step by
approximating the nuclear norm using the L2 norm,
resulting in a more efficient computation. The anal-
ysis is as follows:

1. Matrix Normalization: Similar to Matrix
Entropy, this step has a time complexity of
O(m · n).
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GPT MODEL SIZEBENCHMARKS INDICATORS 111M 256M 590M 1.3B 2.7B 6.7B 13B

ACCURACY 0.118 0.158 0.158 0.166 0.206 0.238 0.286
MATRIX ENTROPY 0.3575 0.3416 0.3237 0.3140 0.2991 0.2848 0.2767

LOSS 5.6196 5.3536 5.1881 4.9690 4.8723 4.7195 4.7050
PPL 148.38 108.10 83.45 65.10 50.93 41.80 40.89

OPENBOOKQA

MATRIX NUCLEAR-NORM 0.4447 0.4057 0.3941 0.3644 0.4606 0.3672 0.4423

ACCURACY 0.488 0.511 0.498 0.521 0.559 0.602 0.646
MATRIX ENTROPY 0.4073 0.3915 0.3706 0.3605 0.3419 0.3272 0.3149

LOSS 4.7869 4.5854 4.4141 4.2513 4.1107 4.0109 4.0266
PPL 39.81 30.25 26.57 21.87 18.55 16.53 16.94

WINOGRANDE

MATRIX NUCLEAR-NORM 0.4802 0.4479 0.4440 0.4133 0.5232 0.4220 0.4964

ACCURACY 0.594 0.613 0.627 0.664 0.701 0.739 0.766
MATRIX ENTROPY 0.4168 0.3991 0.3783 0.3676 0.3504 0.3344 0.3264

LOSS 4.8425 4.5470 4.4029 4.1613 4.0075 3.8545 3.8826
PPL 69.80 47.94 37.88 28.76 23.15 19.76 19.72

PIQA

MATRIX NUCLEAR-NORM 0.4868 0.4327 0.4164 0.3826 0.4452 0.3675 0.4149

Table 9: Language modeling indicators on openbookqa, winogrande and piqa.Except for the matrix nuclear norm,
the data is sourced from (Wei et al., 2024)

2. Calculating the L2 Norm: For each column
vector, the L2 norm is computed with a com-
plexity of O(m ·n), where we take the square
root of the sum of squares for each column
vector.

3. Sorting and Extracting the Top D Features:
Sorting the L2 norms has a complexity of
O(n log n).

Therefore, the overall time complexity of Matrix
Nuclear-Norm is:

O(m · n+ n log n) ≈ O(n2) when m ≈ n

This indicates that Matrix Nuclear-Norm is com-
putationally more efficient, especially as n in-
creases.

A.4.2 Experimental Validation and
Comparative Analysis

To empirically validate the theoretical time com-
plexities, we conducted experiments using matri-
ces of various sizes. Figure 7 shows that as n in-
creases, Matrix Nuclear-Norm consistently outper-
forms Matrix Entropy in terms of runtime, confirm-
ing the theoretical advantage.

Discussion of Assumptions and Applicability
Our complexity analysis assumes m ≈ n, which
holds in many real-world applications, such as eval-
uating square matrices in large-scale language mod-
els. However, in cases where m ̸= n, the time com-
plexity might differ slightly. Nonetheless, Matrix

Nuclear-Norm is expected to maintain its efficiency
advantage due to its avoidance of the costly SVD
operation.

Impact of Constant Factors Although both
O(n2) and O(n3) indicate asymptotic behavior,
Matrix Nuclear-Norm’s significantly smaller con-
stant factors make it computationally favorable
even for moderately sized matrices, as evidenced
in our experimental results.

A.4.3 Conclusion of the Complexity Analysis
Through this detailed analysis and experimental
validation, we conclude the following:

• Matrix Entropy, with its reliance on SVD, has
a time complexity of O(n3), making it com-
putationally expensive for large-scale applica-
tions.

• Matrix Nuclear-Norm, by using the L2 norm
approximation, achieves a time complexity of
O(m · n + n log n) ≈ O(n2), significantly
reducing computational costs.

• Experimental results confirm that Matrix
Nuclear-Norm offers superior time efficiency
for evaluating large-scale models, particularly
those with millions or billions of parameters.

A.5 Proof of Theorem 1

We prove the strictly inverse monotonic relation-
ship between the entropy H(A) and the Frobenius
norm ∥A∥F for a non-negative matrix A ∈ RB×C
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Table 10: The table illustrates the performance metrics for a range of GPT models on the Dolly-15k, Wikipedia,
OpenWebText2, and HH-RLHF datasets, encompassing Matrix Entropy, loss, and perplexity. Except for the matrix
nuclear norm, the data is sourced from (Wei et al., 2024), underscoring the relationship between model scale and its
performance.

DATASET INDICATORS
GPT MODELS SIZE

111M 256M 590M 1.3B 2.7B 6.7B 13B

DOLLY-15K

MATRIX ENTROPY 0.5976 0.5840 0.5582 0.5477 0.5240 0.5064 0.4859
LOSS 3.6710 3.2907 3.0359 2.7517 2.5015 2.2911 2.3098
PPL 39.93 27.53 21.42 16.15 12.50 10.23 10.30

MATRIX NUCLEAR-NORM 0.6207 0.5565 0.5063 0.4553 0.4639 0.3904 0.4859

WIKIPEDIA

MATRIX ENTROPY 0.6177 0.6077 0.5848 0.5786 0.5523 0.5368 0.5126
LOSS 3.2900 2.9343 2.6854 2.4282 2.2045 2.0216 2.0327
PPL 31.38 22.51 17.89 13.85 11.08 9.19 9.32

MATRIX NUCLEAR-NORM 0.6744 0.6422 0.6094 0.5639 0.5438 0.4660 0.4708

OPENWEBTEXT2

MATRIX ENTROPY 0.6527 0.6479 0.6206 0.6142 0.5855 0.5683 0.5463
LOSS 3.7509 3.3852 3.1414 2.8860 2.6465 2.4708 2.4685
PPL 36.79 25.82 20.34 15.89 12.51 10.57 10.51

MATRIX NUCLEAR-NORM 0.7147 0.7066 0.6823 0.6363 0.6017 0.5133 0.4991

HH-RLHF

MATRIX ENTROPY 0.5753 0.5635 0.5350 0.5268 0.4971 0.4813 0.4640
LOSS 3.3078 2.9964 2.8171 2.6431 2.4622 2.3526 2.3323
PPL 18.97 14.01 11.62 9.73 8.12 7.27 7.19

MATRIX NUCLEAR-NORM 0.6309 0.5716 0.5307 0.4771 0.4959 0.4277 0.4518

where each row represents a probability distribu-
tion:

C∑

j=1

Ai,j = 1, Ai,j ≥ 0, ∀i = 1, . . . , B.

Definitions:

• Entropy:
H(A) = − 1

B

∑B
i=1

∑C
j=1Ai,j log(Ai,j)

• Frobenius norm:
∥A∥F =

√∑B
i=1

∑C
j=1A

2
i,j

Step 1: Single-Row Analysis
For a row a = [a1, . . . , aC ] with

∑
j aj = 1:

• Row entropy: Hi = −∑C
j=1 aj log aj

• Row norm: ∥a∥2 =
√∑C

j=1 a
2
j

Extrema via Lagrange Multipliers:
The Lagrangian L = −∑j aj log aj +λ(

∑
j aj −

1) yields:

∂L

∂aj
= − log aj − 1 + λ = 0 =⇒ aj = eλ−1.

Normalization gives aj = 1
C , achieving:

• Maximum entropy: Hi = logC

• Minimum norm: ∥a∥2 =
√

1
C

Minimum entropy occurs when ak = 1 (one-
hot vector):

• Minimum entropy: Hi = 0

• Maximum norm: ∥a∥2 = 1

Monotonicity: For fixed C, Hi and ∥a∥2 are
strictly inversely monotonic (shown via derivative
analysis or majorization theory).

Step 2: Matrix-Level Generalization
For the full matrix:

• H(A) = 1
B

∑B
i=1Hi

• ∥A∥F =
√∑B

i=1 ∥ai∥22
Key Observation: If each row’s entropy Hi

decreases (increases), its norm ∥ai∥2 increases (de-
creases). Thus: - ∥A∥2F =

∑B
i=1 ∥ai∥22 decreases

(increases) as H(A) increases (decreases).
Step 3: Norm Bounds
Maximum ∥A∥F : When all rows are one-hot:

∥A∥F =
√
B

Minimum ∥A∥F : When all rows are uniform:

∥A∥F =

√
B

C
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Table 11: Language modeling indicators for Pythia models across Dolly-15k, Wikipedia, OpenWebText2, and
HH-RLHF datasets (lower values indicate better performance). Except for the matrix nuclear norm, data is derived
from (Wei et al., 2024), showcasing the correlation between model scale and performance.

PYTHIA MODELS SIZE
DATASETS INDICATORS 14M 31M 70M 160M 410M 1B 1.4B 2.8B 6.9B 12B

MATRIX ENTROPY 0.7732 0.7155 0.6707 0.6243 0.5760 0.5328 0.5309 0.5263 0.5003 0.4876
LOSS 4.4546 4.0358 3.5990 3.1323 2.6752 2.4843 2.3816 2.2484 2.1368 2.0616DOLLY-15K

MATRIX NUCLEAR-NORM 0.7508 0.7735 0.6984 0.6104 0.5760 0.4710 0.4922 0.4585 0.4202 0.4181

MATRIX ENTROPY 0.7938 0.7442 0.7003 0.6580 0.6039 0.5584 0.5587 0.5553 0.5314 0.5140
LOSS 4.1112 3.6921 3.2694 2.8207 2.4017 2.2213 2.1292 2.0140 1.9120 1.8489WIKIPEDIA

MATRIX NUCLEAR-NORM 0.6053 0.6700 0.6996 0.6718 0.6464 0.5591 0.5787 0.5410 0.4850 0.4768

MATRIX ENTROPY 0.8144 0.7749 0.7370 0.6980 0.6415 0.5944 0.5916 0.5887 0.5591 0.5417
LOSS 4.3965 4.0033 3.6284 3.2031 2.7838 2.6198 2.5228 2.4005 2.3133 2.2502OPENWEBTEXT2

MATRIX NUCLEAR-NORM 0.5041 0.6186 0.7142 0.7258 0.7105 0.6215 0.6378 0.5967 0.5275 0.5110

MATRIX ENTROPY 0.7673 0.7114 0.6607 0.6126 0.5552 0.5054 0.5032 0.4977 0.4699 0.4528
LOSS 3.7466 3.4018 3.1146 2.7366 2.4340 2.3311 2.2687 2.1992 2.1199 2.0905HH-RLHF

MATRIX NUCLEAR-NORM 0.7353 0.7674 0.6964 0.6182 0.5886 0.4825 0.5141 0.4839 0.4562 0.4481

Prompt ID Prompt Content

Prompt 1 You are an AI assistant. You will be given a task. You must generate a detailed and long answer.

Prompt 2 You are a helpful assistant, who always provide explanation. Think like you are answering to a five year old.

Prompt 3 You are an AI assistant. User will give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.

Table 12: The prompts selected from OpenOrca(Lian et al., 2023b) dataset.

GPT MODEL SIZE
LENGTH

111M 256M 590M 1.3B 2.7B 6.7B 13B

64 0.4574 0.4125 0.3787 0.3486 0.4053 0.3315 0.4148

128 0.5293 0.4680 0.4270 0.3835 0.4143 0.3477 0.4032

512 0.7883 0.6978 0.6251 0.5554 0.5265 0.4468 0.4422

1024 0.9132 0.8787 0.7802 0.6953 0.6351 0.5383 0.5028

Table 13: Analysis of Length Dynamics

Step 4: Implications for LLMs
The inverse monotonicity implies:

• High ∥A∥F : Concentrated predictions (low
entropy, high confidence).

• Low ∥A∥F : Dispersed predictions (high en-
tropy, high diversity).

Thus, ∥A∥F serves as a proxy for evaluating
LLM confidence-diversity tradeoffs.

Conclusion
The strict inverse monotonicity between H(A)

and ∥A∥F is rigorously established, justifying
∥A∥F as a metric for LLM evaluation.

A.6 Proof of Theorem 3
Assuming ∥A∥F ≈

√
B and the columns of A are

approximately orthogonal, we approximate the j-th

largest singular value σj as the j-th largest column
norm of A. Formally,

σj ≈ top



√√√√

B∑

i=1

A2
i,j , j


 ,

where top(S, j) denotes the j-th largest element in
set S. This approximation holds under the follow-
ing analysis:

1. Decomposition and Gram Matrix: Let
A = UΣV T be the SVD of A, where Σ =
diag(σ1, . . . , σD) with D = min(B,C). The diag-
onal entries of the Gram matrix ATA are:

(ATA)j,j =

B∑

i=1

A2
i,j = ∥aj∥22,

where aj is the j-th column of A.
2. Relating Column Norms to Singular Val-

ues: When columns of A are nearly orthogonal,
σj ≈ ∥aj∥2. Under ∥A∥F ≈

√
B, the nuclear

norm ∥A∥⋆ =
∑D

j=1 σj is dominated by the largest
column norms.

3. Singular Value Approximation: For ma-
trices with low column-wise correlations, the j-th
singular value satisfies:

σj ≈ top ({∥ak∥2 | 1 ≤ k ≤ C}, j) .
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4. Efficient Nuclear Norm Approximation:
The batch nuclear norm is approximated as:

∥Â∥⋆ =
D∑

j=1

top ({∥ak∥2}, j) .

This approximation is valid when A has approxi-
mately orthogonal columns, a condition implied by
∥A∥F ≈

√
B.
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