
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 12682–12701
November 4-9, 2025 ©2025 Association for Computational Linguistics

Agentic Medical Knowledge Graphs Enhance Medical Question Answering:
Bridging the Gap Between LLMs and Evolving Medical Knowledge

Mohammad R. Rezaei1,2∗, Reza Saadati Fard3, Jayson L. Parker1,
Rahul G. Krishnan1,2, Milad Lankarany1

1 University of Toronto
2 Vector Institute

3 Worcester Polytechnic Institute
*mr.rezaei@mail.utoronto.ca

Abstract

Large language models (LLMs) have greatly
advanced medical question answering (QA)
by leveraging vast clinical data and medical
literature. However, the rapid evolution of
medical knowledge and the labor-intensive pro-
cess of manually updating domain-specific re-
sources can undermine the reliability of these
systems. We address this challenge with
Agentic Medical Graph-RAG (AMG-RAG),
a comprehensive framework that automates
the construction and continuous updating of
Medical Knowledge Graphs (MKGs), inte-
grates reasoning, and retrieves current exter-
nal evidence from the MKGs for medical
QA. Evaluations on the MEDQA and MEDM-
CQA benchmarks demonstrate the effective-
ness of AMG-RAG, achieving an F1 score of
74.1% on MEDQA and an accuracy of 66.34%
on MEDMCQA—surpassing both comparable
models and those 10 to 100 times larger. By
dynamically linking new findings and com-
plex medical concepts, AMG-RAG not only
boosts accuracy but also enhances interpretabil-
ity for medical queries, which has a critical
impact on delivering up-to-date, trustworthy
medical insights (GitHub: https://github.
com/MrRezaeiUofT/AMG-RAG).

1 Introduction

Medical knowledge is growing at an unprecedented
rate: every day brings new research findings, re-
vised clinical guidelines, and updated treatment
protocols. Recent work shows that Large Lan-
guage Models (LLMs) can already harness this
ever-expanding corpus for medical Question An-
swering (QA) (Nazi and Peng, 2024; Liu et al.,
2023).

Despite their promise, LLMs face two persis-
tent challenges. First, they must remain factu-
ally current in a field where knowledge can be-
come obsolete almost overnight (Rohanian et al.,
2024; Yu et al., 2024). Second, they must correctly

Figure 1: Performance versus parameter count on the MEDQA
and MEDMCQA benchmarks. Our system, Agentic Medi-
cal Graph-RAG (AMG-RAG), attains an F1 of 74.1 % on
MEDQA and an accuracy of 66.34 % on MEDMCQA, outper-
forming models that contain 10–100× more parameters. See
Tables 1 and 2 for details.

model the intricate relationships among informa-
tion entities. Knowledge Graph (KG) provides
a structured and interconnected view of informa-
tion that supports nuanced reasoning (Huang et al.,
2021), yet creating and maintaining them by hand
is costly—especially in medicine, where new in-
sights rapidly invalidate older facts (Yang et al.,
2024).

We introduce an automated framework that con-
structs and continuously refines Medical Knowl-
edge Graphs (MKGs) for medical QA. Our
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LLM-driven agentic workflow, AMG-RAG, as-
sisted by domain-specific search tools, generates
graph entities enriched with metadata, confidence
scores, and relevance indicators. This automa-
tion sharply reduces manual curation while keep-
ing the graph aligned with the latest discoveries.
In contrast to Retrieval Augmented Generation
(RAG) systems that rely solely on vector similar-
ity (Lewis et al., 2020), our graph-centric retrieval
leverages explicit relationships to synthesise infor-
mation across domains such as drug interactions,
clinical trials, patient histories, and guidelines.

The AMG-RAG combines dynamically synthe-
sised MKG with multi-step reasoning, guided by
confidence scores and adaptive traversal strate-
gies (Trivedi et al., 2022). This design yields
more accurate and complete answers without incur-
ring additional fine-tuning or inference costs. On
the MEDQA and MEDMCQA benchmarks—both
of which test evidence retrieval, complex reason-
ing, and multiple-choice comprehension—AMG-
RAG achieves an F1 of 74.1% and an accuracy
of 66.34%, respectively (Fig. 1). These results
surpass those of similarly sized RAG approaches
and even much larger state-of-the-art models, un-
derscoring the benefits of a dynamically evolving
MKG for medical QA. Our findings highlight the
potential of automated, relationally enriched knowl-
edge retrieval to enhance clinical decision-making
by delivering timely and trustworthy insights (Zhou
et al., 2023).

Contributions. Our contributions are threefold:

1. We developed an autonomous search and
graph-building process powered by special-
ized LLM agents that continuously generate
and refine MKGs through integrated work-
flows using search engines and medical text-
books.

2. Our system embeds confidence scoring mech-
anisms that explicitly model information un-
certainty, providing transparent reliability as-
sessments for medical information.

3. We created an adaptive graph traversal system
that transcends traditional retrieval methods,
enabling dynamic contextualization of medi-
cal knowledge.

2 Related Work

Medical QA has progressed mainly through
three complementary lines of research:

(i) domain-specific language models, (ii)
retrieval-augmented generation, and (iii)
knowledge-graph reasoning.

Domain-specific language models. BioBERT
(Lee et al., 2020), PubMedBERT (Gu et al., 2021),
and MedPaLM (Singhal et al., 2023) adapt trans-
former pre-training to biomedical corpora, deliv-
ering strong gains on entity recognition, relation
extraction, and multiple-choice QA (Nazi and Peng,
2024; Liu et al., 2023). Yet, even these specialised
models struggle to synthesise multi-hop relations
(e.g., rare comorbidities or drug–gene interactions)
and must be re-trained to absorb new discoveries
(Rohanian et al., 2024; Yu et al., 2024).

Retrieval-Augmented Generation (RAG).
RAG pipelines couple an LLM with an external
evidence retriever, injecting fresh context at
inference time (Lewis et al., 2020; Rezaei et al.,
2024). Vendi-RAG (Rezaei and Dieng, 2025)
and MMED-RAG (Xia et al., 2024) extend this
paradigm to biomedical and multimodal sources,
respectively. Chain-of-Thought (CoT) prompting
further boosts reasoning: IRCoT (Trivedi et al.,
2022) interleaves iterative retrieval with step-wise
justification. Gemini’s long-context model recently
pushed MedQA scores beyond GPT-4 (Saab et al.,
2024). Nevertheless, most RAG systems rely on
static vector stores and cannot explain answers in
terms of explicit biomedical relations.

Knowledge-graph reasoning. KG-Rank (Huang
et al., 2021) and related work such as KG-
RAG(Sanmartin, 2024) harness ontologies to
re-rank evidence or enforce logical constraints, im-
proving factual consistency in long-form QA (Yang
et al., 2024) for RAG frameworks. Recent work
by (Jiang et al., 2024) on knowledge-graph com-
munity retrieval for healthcare prediction shares a
similar goal of graph-based reasoning in clinical
settings. Their KARE framework demonstrates the
value of structured knowledge representations for
healthcare predictions. However, constructing and
curating a high-coverage, up-to-date MKG remains
labour-intensive, limiting scalability and freshness.

3 Method

We propose our framework, Agentic Medical
Graph-RAG (AMG-RAG), bridges these threads
by dynamically generating a confidence-scored
Medical Knowledge Graph (MKG) that is tightly
coupled to a Retrieval Augmented Generation
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(RAG)+CoT pipeline. AMG-RAG features au-
tonomous Knowledge Graph (KG) evolution
through Large Language Model (LLM) agents ex-
tracting entities and relations from live sources with
provenance tracking; graph-conditioned retrieval
that maps queries onto the MKG to guide evidence
selection; and reasoning over structured context
where the answer generator utilizes both textual
passages and traversed sub-graphs for transparent,
multi-hop reasoning.

3.1 Retrieval Augmented Generation (RAG)
RAG is a framework designed to enhance Question
Answering (QA) by integrating relevant external
knowledge into the generation process. In the RAG
approach, the retriever fetches a fixed number of
relevant documents, {d1,d2, . . . ,dn} ∈ D, based
on the query q. Here, D represents the set of all
domain-specific documents utilized. These docu-
ments are concatenated and passed directly to a
LLM-based text generator, G, which produces the
answer â:

â = G(q, {d1, . . . ,dn}).
This approach is simple and computationally ef-
ficient, but may struggle with domain-specific or
complex queries that require additional supporting
evidence.

RAG with Chain-of-Thought (CoT). Enhanc-
ing RAG’s performance can be achieved by inte-
grating intermediate reasoning steps before produc-
ing the final response. The generator produces a
chain of thought, c, which serves as an explicit
reasoning trace:

{d1, . . . ,dk} = Retriever(q;D),

c = G(q, {d1, . . . ,dk}), â = G(c).

This step-by-step approach enhances reasoning and
interpretability, leading to improved accuracy in
multi-hop reasoning tasks.

RAG with Search. The RAGs’s performance
can be improved further by incorporating addi-
tional related documents retrieved from external
sources, such as the internet, through a search tool.
This variant integrates external search capabilities
into the retrieval process. For a query q, the re-
triever’s results are combined with those from exter-
nal search engines, providing more comprehensive
evidence for the LLM to generate a response:

{d′
1, . . . ,d

′
m} = Search(q;D′),

â = G(q, {d1, . . . ,dn,d
′
1, . . . ,d

′
m}).

This additional search step significantly enhances
performance, particularly in scenarios that require
access to extensive and diverse knowledge.

3.2 Medical QA with AMG-RAG

Algorithm 1 AMG-RAG: KG-Based Medical QA
Inference Pipeline
Require: Query q, Medical Knowledge Graph G, Confidence

Threshold τ , Document Limit M
Ensure: Final Answer â with Confidence ŝ
1: Medical Entity Recognition:
2: Extract medical terms: {n1, n2, . . . , nm} ← MER(q),

where m ≤M
3: Initialize reasoning traces: C ← ∅
4: Initialize confidence: s(ni)← 1.0 for all terms ni

5: for i = 1 to m do ▷ Process each medical term
6: Graph Exploration:
7: Retrieve node description: d(ni) ←
G.getNodeData(ni)

8: Get connected nodes: Ni ← {nj : (ni, nj) ∈ G}
9: for each nj ∈ Ni do

10: Retrieve relationship: (rij , s(rij)) ←
G.getEdge(ni, nj)

11: Compute path confidence: spath(nj) ← s(ni) ·
s(rij)

12: if spath(nj) ≥ τ then
13: Add nj to exploration queue with confidence

spath(nj)
14: end if
15: end for
16: Reasoning Trace Generation:
17: ci ← LLM(ni, {d(nj) : nj ∈ Ni, spath(nj) ≥ τ})
18: C ← C ∪ {ci}
19: end for
20: Answer Synthesis:
21: (â, ŝ)← G(C) where C = {c1, c2, . . . , cm}
22: return â, ŝ

In scenarios requiring domain expertise, such
as medical or scientific QA, traditional methods
often fail due to their inability to capture intricate
domain-specific relationships or handle ambiguous
queries. KG-driven approaches overcome these
challenges by integrating explicit relationships and
structured knowledge representations. This marks a
significant advancement in intelligent QA systems,
ensuring robustness and scalability across various
applications.

The suggested AMG-RAG framework dynami-
cally creates a MKG and incorporates sophisticated
reasoning abilities, overcoming the shortcomings
of traditional methods. Our system utilizes struc-
tured medical knowledge and reasoning, ensuring
flexibility to accommodate new data.

The AMG-RAG pipeline begins with question
parsing, where an LLM agent extracts medical
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Figure 2: Model Schema. A) The pipeline for creating the MKG using search tools and an LLM agent. B) An example of the
generated MKG in Neo4J, illustrating nodes and relationships derived from search results and contextual information. Our model
successfully retrieved and utilized recent knowledge to accurately answer a medical question, highlighting the practical benefit
of continuously updating the knowledge graph. Furthermore, we extended this evaluation by providing additional examples
retrieved by our system using recent publications in Table 12. C) The AMG-RAG pipeline. D) A simplified RAG pipeline.

terms {n1,n2, . . . ,nm} from the user query q:

{n1,n2, . . . ,nm} = LLM(q,M), m ≤ M.
(1)

Where M represents the upper limit of permis-
sible medical terms that can be extracted. During
node exploration, the system queries the KG for
each term ni, applying a confidence threshold that
filters relationships based on their reliability scores.
The system propagates confidence through the KG
by computing child confidence as:

s(nj) = s(ni) · s(rij), ∀j ∈ children of i. (2)

This design naturally models diminishing certainty
over multi-hop reasoning chains and helps down-
rank low-reliability paths during inference.

Potential Failure Modes and Mitigation:

• Over-pruning: May occur if confidence
thresholds are set too high, excluding rare
but valid edges. We mitigate this through
empirically-tuned thresholding that balances
precision and recall.

• Vanishing scores: Propagation over long
chains can lead to vanishingly small scores.
We address this through hybrid traversal
strategies—breadth-first to ensure local cover-
age, and depth-first for deeper exploration in
sparse regions.

Our framework supports both breadth-first and
depth-first exploration strategies, enabling flexible
knowledge traversal based on query characteristics.
The exploration continues until either cumulative
confidence meets the threshold τ or the document
limit M is reached, ensuring comprehensive yet
focused information gathering.

The chain-of-thought generation phase synthe-
sizes reasoning traces ci for each entity by integrat-
ing information from connected nodes:

ci = LLM(ni, {d(nj) | j ∈ connected nodes}).

Finally, answer synthesis aggregates these rea-
soning traces to produce the final output â with an
associated confidence score:

â, ŝ = G({c1, c2, . . . , cm}).
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This approach ensures that answers are comprehen-
sive, interpretable, and anchored in reliable medical
knowledge. The complete algorithm for the AMG-
RAG inference procedure is presented in Algorithm
1.

3.3 Dynamic Generation of the Medical
Knowledge Graph

The MKG represents a core innovation in our
AMG-RAG framework, enabling structured rea-
soning through dynamically evolving knowledge
representations. Unlike static knowledge bases, our
approach constructs and continuously updates the
graph based on incoming queries and newly discov-
ered evidence, with confidence scores quantifying
the reliability of each relationship.

Two-Phase Construction. Our MKG operates
through complementary offline and online phases:

1. Offline Foundation Building: Prior to query
processing, LLM agents construct a compre-
hensive base MKG from authoritative sources
including PubMed articles and medical text-
books. This phase extracts medical entities
with descriptions, identifies relationships with
confidence scores, and stores the structured
knowledge in Neo4j.

2. Online Query-Driven Expansion: During
query processing, the system dynamically ex-
tends the MKG when gaps exist. It parses
queries for medical terms, searches the ex-
isting graph, triggers real-time expansion for
missing coverage, and integrates new knowl-
edge while preserving graph structure.

An LLM agent identifies domain-specific terms
from queries as defined in Equation 1. For each en-
tity ni, specialized search tools retrieve contextual
information:

d(ni) = MedicalSearch(ni;S)

where S represents medical knowledge sources.
These descriptions provide semantic definitions,
clinical context, and recent research findings. Then,
for entity pairs (ni,nj), another LLM agent de-
termines relationship type and assigns confidence
scores:

(rij , sij) = LLMrelation(d(ni),d(nj), E)

where E represents supporting evidence and sij ∈
[0, 1] reflects evidence strength. Relationship types

include short descriptions of the relation between
entity nj and ni. During graph traversal, confi-
dence scores accumulate multiplicatively as de-
fined in Equation 2.

This models uncertainty accumulation in multi-
hop reasoning. Paths with spath < τ are pruned to
maintain reasoning quality.

Graph Maintenance. The MKG maintains con-
sistency through incremental updates without full
reconstruction. The final structure comprises nodes
(medical entities with attributes), edges (typed rela-
tionships with confidence and provenance), and
metadata (citations, timestamps, quality indica-
tors).

This architecture enables the MKG to serve as
both a persistent knowledge repository and a com-
putational substrate for confidence-weighted rea-
soning, remaining current with evolving medical
knowledge while maintaining interpretability and
efficiency.

4 Experiments

The MEDQA dataset is a free-form, multiple-
choice open-domain QA dataset specifically de-
signed for medical QA. Derived from professional
medical board exams, this dataset presents a sig-
nificant challenge as it requires both the retrieval
of relevant evidence and sophisticated reasoning
to answer questions accurately. Each question is
accompanied by multiple-choice answers that de-
mand a deep understanding of medical concepts
and logical inference, often relying on evidence
found in medical textbooks. For this study, the
test partition of the MEDQA dataset, comprising
approximately 1,200 samples, was used (Jin et al.,
2021).

The MedMCQA dataset is another multiple-
choice question-answering dataset tailored for med-
ical QA. Unlike MEDQA, which is derived from
board exam questions, MedMCQA offers a broader
variety of question types, encompassing both foun-
dational and clinical knowledge across diverse med-
ical specialties. In this study, the MedMCQA devel-
opment set, containing approximately 4,000 ques-
tions, was used to benchmark against other models
(Pal et al., 2022a).

This study employed the MEDQA and MedM-
CQA datasets to benchmark and evaluate medical
QA systems. These datasets serve as challenging
testbeds for open-domain QA tasks due to their de-
mands for multi-hop reasoning and the integration
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of domain-specific knowledge. The relevance of
MEDQA in the real world, together with the di-
verse question styles and extensive development
set of MedMCQA make them ideal for advancing
the development of robust QA models capable of
addressing medical inquiries. We utilize GPT-4o-
mini as the backbone of the implementation for
both MKG and AMG-RAG, leveraging its capabil-
ities with approximately ∼ 8B parameters. This
model serves as the core component, enabling ad-
vanced reasoning, RAG, and structured knowledge
integration.

4.1 Medical Knowledge Graph

To address the challenges of inaccurate knowledge
updating—such as those stemming from noisy re-
trieval results or LLM hallucinations—our AMG-
RAG introduces a robust and dynamic approach to
MKG construction. This is particularly critical in
healthcare applications, where the absence of error
detection and correction mechanisms in automated
KG generation can compromise system reliability.

The dynamic update mechanism encompasses
strategies resilient to errors, defined by the con-
fidence level of the medical information retained
within the MKG and among nodes i and j, denoted
as sij . This approach facilitates monitoring and
reduces the spread of erroneous information dur-
ing the refinement or reasoning stages. These pro-
tective measures allow the system to identify and
rectify inconsistencies that may arise from external
retrieved information.

The MKG is dynamically constructed for each
question by integrating search items, contextual
information, and relationships extracted from
medical textbooks and search tools, including
Wikipedia (Wiki-MKG) and PubMed (PubMed-
MKG) queries. The ablation in Table 3 demon-
strates that the created MKG based on PubMed
(PubMed-MKG) is more effective in enhancing the
performance of the AMG-RAG. This data is pro-
cessed and structured within a Neo4j database. Key
innovations in the knowledge graph include:

1. Dynamic Node and Relationship Creation:
Nodes are instantiated based on retrieved enti-
ties and search terms, while relationships are
constructed using predefined semantic tem-
plates aligned with medical ontologies.

2. Bidirectional Relationships: The graph in-
cludes both forward and reverse relationships

between nodes to allow flexible traversal and
comprehensive context understanding.

3. Confidence-Based Relevance Scoring: Each
relationship is enriched with textual anno-
tations and a quantitative confidence score
that measures the reliability of the connec-
tion. This confidence score enables the system
to down-rank or filter out uncertain associa-
tions, thereby mitigating the effects of noisy
retrievals.

4. Summarization with Reliability Indicators:
Each search item is paired with a concise sum-
mary derived from contextual sources. These
summaries are accompanied by confidence
scores that indicate their trustworthiness, al-
lowing nuanced uncertainty modeling.

5. Thresholding for Quality Control: In our
experiments, we applied a confidence thresh-
old of 8 (on a 10-point scale) to retain only
high-reliability nodes and edges. This value
was empirically found to yield the best results
in benchmark performance.

6. Integration with Neo4j: The complete graph
is stored in a Neo4j database, leveraging its
powerful graph query engine for efficient re-
trieval and analysis during inference.

A partial visualization of the MKG structure is
shown in Figure 2.B. Additional complete exam-
ples with retrieved papers are provided in Table 12.
This MKG forms the core knowledge source for
the AMG-RAG inference pipeline.

As discussed in Appendix B, extensive valida-
tion was conducted through both human and ma-
chine evaluators. Clinical experts verified the cor-
rectness of the knowledge graph, and expert LLMs
such as GPT-4 achieved high accuracy (e.g., 9/10)
in validating the extracted knowledge. These re-
sults underscore the MKG’s ability to support re-
liable and explainable medical reasoning within
AMG-RAG.

The knowledge graph creation process in AMG-
RAG operates independently from the QA process,
allowing for continuous background updates of
the MKG via search tools such as PubMedSearch
or WikiSearch. This approach significantly re-
duces latency during question answering since the
system frequently retrieves information from the
pre-populated MKG rather than performing new
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searches. By maintaining an updated MKG, AMG-
RAG achieves a balanced minimum dependency
on computational resources and search tools during
the test phase.

Despite having only 8B parameters, it delivers
competitive results compared to much larger mod-
els like Med-Gemini (1800B) and GPT-4 (1760B).
Even in worst-case scenarios where relevant in-
formation is absent from the MKG, the additional
search cost is still significantly lower than the re-
source requirements of much larger models.

4.2 Performance Comparison
Table 1 presents a comprehensive comparison of
state-of-the-art language models on the MEDQA
benchmark. The results highlight the critical role of
advanced reasoning strategies in achieving higher
performance, such as CoT reasoning and the inte-
gration of search tools. While larger models like
Med-Gemini and GPT-4 achieve the highest ac-
curacy and F1 scores, their performance comes
at the cost of significantly larger parameter sizes.
These models exemplify the power of scaling com-
bined with sophisticated reasoning and retrieval
techniques.

Significantly, AMG-RAG, despite having just 8
billion parameters, attains an F1 score of 74.1%
on the MEDQA benchmark, surpassing models
like Meditron, which possess 70 billion parame-
ters without needing any fine tuning. This high-
lights AMG-RAG’s exceptional efficiency and pro-
ficiency in utilizing CoT reasoning and external
evidence retrieval. The model leverages tools such
as PubMedSearch and WikiSearch to dynamically
integrate domain-specific knowledge dynamically,
thereby improving its ability to address medical
questions. Examples of QA interactions, including
detailed search items and reasoning for question
samples, are provided in Appendix C. These exam-
ples are organized in Tables 8, 9, 10, and 11, drawn
from the MEDQA benchmark.

On the MedMCQA benchmark, as shown in Ta-
ble 2, AMG-RAG achieves an accuracy of 66.34%,
even outperforming larger models like Meditron-
70B and better than Codex 5-shot CoT. This result
underscores AMG-RAG’s adaptability and robust-
ness, demonstrating that it can deliver competitive
performance even against significantly larger mod-
els. Its ability to maintain high accuracy on diverse
datasets further highlights the effectiveness of its
design, which combines CoT reasoning with struc-
tured knowledge graph integration and retrieval

mechanisms.
Overall, AMG-RAG’s results on MEDQA and

MedMCQA benchmarks solidify its position as a
highly efficient and effective model for medical
QA. By leveraging reasoning, dynamically gener-
ated MKG, and external knowledge sources, AMG-
RAG not only closes the gap with much larger mod-
els but also sets a new standard for performance
among smaller-sized models.

Impact of Search Tools on MKG creation and
CoT Reasoning on AMG-RAG Performance.
Figure 3 and Table 3 demonstrate the effect of
integrating different search tools for creating the
MKG on the performance of the AMG-RAG sys-
tem applied to the MEDQA benchmark. Incorpo-
rating these external retrieval capabilities signifi-
cantly enhances both accuracy and F1 scores, as
they allow the model to access relevant and up-
to-date evidence critical for answering complex
medical questions. Among the two search tools
for creating the MKG, PubMed-MKG consistently
outperforms Wiki-MKG, likely due to its focused,
domain-specific content that aligns closely with the
specialized nature of medical QA tasks.

In addition to the integration of the dynamical
MKG, the reasoning module plays a pivotal role
in performance. As highlighted in Figure 3, ab-
lating either CoT or MKG integration causes a
considerable degradation in accuracy and F1 score.
This demonstrates that structured multi-hop reason-
ing and medical knowledge grounding through the
MKG are indispensable for the system’s ability to
deliver accurate and evidence-based answers."

Comparison Against Traditional RAG Models.
Table 3 presents a comprehensive comparison of
various RAG models evaluated on the MEDQA
benchmark. This includes models with different
retrieval mechanisms and model sizes, enabling a
head-to-head evaluation of AMG-RAG with other
state-of-the-art baselines such as Self-RAG (Asai
et al., 2023), HyDE (Gao et al., 2022), GraphRAG
(Edge et al., 2024), and MedRAG (Zhao et al.,
2025). The results clearly show that AMG-RAG
configured with the PubMed-MKG and an 8B LLM
backbone achieves the highest accuracy of 73.92%,
surpassing all competing models. Notably, ablation
results indicate that removing search functionality
or CoT reasoning significantly degrades accuracy
(dropping to 67.16% and 66.69%, respectively),
confirming the essential role of structured retrieval
and reasoning components in complex question
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Model Model Size Acc. (%) F1 (%) Fine-Tuned Uses CoT Uses Search

Med-Gemini (Saab et al., 2024) ∼1800B 91.1 89.5 ✓ ✓ ✓
GPT-4 (Nori et al., 2023) ∼1760B 90.2 88.7 ✓ ✓ ✓
Med-PaLM 2 (Singhal et al., 2025) ∼340B 85.4 82.1 ✓ ✓ ✗
Med-PaLM 2 (5-shot) ∼340B 79.7 75.3 ✗ ✓ ✗
AMG-RAG ∼8B 73.9 74.1 ✗ ✓ ✓
Meerkat(Kim et al., 2024) 7B 74.3 70.4 ✓ ✓ ✗
Meditron (Chen et al., 2023) 70B 70.2 68.3 ✓ ✓ ✓
Flan-PaLM (Singhal et al., 2023) 540B 67.6 65.0 ✓ ✓ ✗
LLAMA-2 (Chen et al., 2023) 70B 61.5 60.2 ✓ ✓ ✗
Shakti-LLM (Shakhadri et al., 2024) 2.5B 60.3 58.9 ✓ ✗ ✗
Codex 5-shot CoT (Liévin et al., 2024) – 60.2 57.7 ✗ ✓ ✓
BioMedGPT (Luo et al., 2023) 10B 50.4 48.7 ✓ ✗ ✗
BioLinkBERT (base) (Singhal et al., 2023) – 40.0 38.4 ✓ ✗ ✗

Table 1: Comparison of LLM models on the MEDQA Benchmark. Additional comparison with RAGs are provided
in Table B

Model Model Size Acc. (%)

AMG-RAG ∼8B 66.34
Meditron (Chen et al., 2023) 70B 66.0
Codex 5-shot (Liévin et al., 2024) – 59.7
VOD (Liévin et al., 2023) – 58.3
Flan-PaLM (Singhal et al., 2022) 540B 57.6
PaLM 540B 54.5
GAL 120B 52.9
PubmedBERT (Gu et al., 2021) – 40.0
SciBERT (Pal et al., 2022b) – 39.0
BioBERT (Lee et al., 2020) – 38.0
BERT (Devlin, 2018) – 35.0

Table 2: Comparison of Models on the MedMCQA.

answering. Other baseline models such as Gemini-
pro and PMC-LLaMA demonstrate weaker perfor-
mance, further validating the efficacy of domain-
aware retrieval and reasoning modules proposed
in AMG-RAG. Importantly, the domain specificity
and freshness of PubMedSearch provide a signif-
icant advantage in retrieving relevant knowledge
that general-purpose search modules often fail to
deliver.

Model Size Accuracy (%)
AMG-RAG PubMed-MKG-8B 73.92

Wiki-MKG-8B 70.62
No-MK-8B 67.16

No-MKG & CoT-8B 66.69
Self-RAG 8B 67.32

HyDE-8B 68.32
RAG Gemini-pro 64.5

70B 56.2
8B 64.3

GraphRAG Gemini-pro 65.1
70B 55.1
8B 64.8

MedRag 70B 49.57
13B 42.58

PMC-LLaMA 13B 44.38

Table 3: Comparison of MEDQA accuracy across vari-
ous RAG models and retrieval strategies.

Figure 3: Confusion matrix for AMG-RAG with and with-
out CoT and Knowledge Graph integration on the MEDQA
dataset.

Comparison Against LLM Backbones. In ad-
dition to evaluating different retrieval strategies,
we assess how the choice of LLM backbone in-
fluences performance in Table 4. This compari-
son highlights that AMG-RAG built on GPT4o-
mini with PubMed-MKG achieves the best perfor-
mance (73.92%). In contrast, performance declines
when switching to LLaMA 3.1 or Mixtral, even
when using the same retrieval pipeline. These re-
sults reinforce the importance of synergy between
the language model and the retrieval mechanism.
Larger models do not necessarily guarantee higher
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Figure 4: Performance comparison across different question
domains in the Neurology and Genetics fields.

accuracy—domain alignment and reasoning ability,
such as that of GPT4o-mini, are crucial for success
on high-stakes tasks like medical QA.

Model Config-Size Accuracy (%)
GPT4o-mini PubMed-MKG-8B 73.92

No-MKG & CoT-8B 66.69
LLaMA 3.1 PubMed-MKG-8B 66.5

No-MKG-8B 62.6
Mixtral PubMed-MKG-8×7B 61.4

No-MKG-8×7B 53.2
GPT 3.5 PubMed-MKG 65.2

No-MKG 58.4

Table 4: AMG-RAG performance across different LLM
backbones on the MEDQA benchmark.

Improving QA in Rapidly Changing Medical Do-
mains with AMG-RAG. Figure 4 shows AMG-
RAG’s superior performance in rapidly evolving
subfields like Neurology and Genetics. This ad-
vantage stems from real-time PubMed integration
during inference, combined with structured rea-
soning and knowledge graph grounding, enabling
precise answers to complex medical questions with
enhanced interpretability and trustworthiness.

4.3 Latency Analysis and Deployment
Considerations

To quantify the performance characteristics of
AMG-RAG under realistic deployment conditions,
we conducted comprehensive latency benchmarks
using 100 randomly selected queries from the
MEDQA dataset. Our analysis in Table 5 reveals
that the offline mode is the optimal deployment
scenario for clinical environments requiring pre-
dictable response times, while the 1.2s end-to-end
performance falls well within acceptable bounds
for interactive clinical decision support systems.

Dynamic search mode exhibits substantially

Scenario MKG Lookup End-to-End QA

Offline Mode ∼35 ms ∼1.2 s o
Dynamic Search ∼1.9 s ∼4.6–6.5 s
Hybrid ∼200–500 ms ∼3.1–4.8 s

Table 5: Latency Analysis Under Different Operating
Modes

higher latency due to real-time PubMed queries and
on-the-fly entity extraction. However, this mode
provides the most current medical knowledge by ac-
cessing recent publications and emerging research
findings.

The hybrid mode offers a balanced compromise,
with MKG lookup times ranging from 200–500ms
depending on the extent of dynamic augmenta-
tion required. The variable performance range
(3.1–4.8s end-to-end) reflects the adaptive nature of
the system, where lookup complexity scales with
the specificity and recency of medical terms.

4.4 Domain Generalizability and Future
Applications

While our focus is medical QA, the AMG-RAG
framework’s principles are fundamentally domain-
agnostic. The AMG-RAG framework can extend
to legal research (Zhong et al., 2020), scientific
literature analysis (Lo et al., 2019), and other do-
mains requiring dynamic knowledge integration
and multi-hop reasoning capabilities (Yang et al.,
2018).

Financial Domain Example: Consider the
query: "How do Federal Reserve interest rate hikes
affect Apple’s stock price?"

Knowledge Graph Structure: Fed Funds Rate
→ Consumer Borrowing Cost → Apple Product
Demand → Apple Stock Price

Reasoning: Higher Fed rates increase consumer
borrowing costs, reducing discretionary spending
on Apple products, which pressures stock perfor-
mance. Additional examples are provided in Ap-
pendix G.

5 Conclusion

We introduce AMG-RAG, an advanced QA system
that dynamically constructs MKG while integrating
sophisticated structured reasoning for medical QA.
The system demonstrates significant improvements
in accuracy and reasoning capabilities, particularly
for medical question-answering tasks, outperform-
ing other approaches of similar model size or 10 to
100 times larger.
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6 Limitations

Despite AMG-RAG’s advancements, our approach
has certain limitations. Firstly, it relies on exter-
nal search tools which introduce latency during the
creation of the MKG. However, this occurs only
once, when the MKG is built from scratch for the
first time. Additionally, while the system performs
exceptionally well in medical domains, its applica-
bility to non-medical tasks remains unexplored.

Another limitation is the need for structured, au-
thoritative sources of medical knowledge. Cur-
rently, AMG-RAG retrieves information from di-
verse sources, including research articles and medi-
cal textbooks. However, as emphasized in clinical
decision-making, treatment guidelines serve as es-
sential references for standardized diagnosis and
treatment protocols (Hager et al., 2024). Future
work on AMG-RAG should focus on integrating
structured access to these sources to ensure compli-
ance with evidence-based medicine.

7 Ethics Statement

The development of LLMs for medical QA requires
careful ethical consideration due to risks of inac-
curacy and bias. To some degree, our AMG-RAG
framework tackles these concerns using a variety
of mechanisms:

Reliability and Uncertainty. We implement con-
fidence scoring for both entities and relationships
in our MKG to validate information quality and
quantify uncertainty in medical evidence.

Bias Mitigation Limitations. We acknowledge
that bias mitigation remains challenging in med-
ical QA systems. Current public benchmarks
(MEDQA, MedMCQA) lack demographic anno-
tations, limiting systematic bias evaluation. Our
focus has been on demonstrating factual reliabil-
ity and multi-hop reasoning capabilities. Future
work will incorporate diversity-aware retrieval tech-
niques using structured metadata (MeSH tags, de-
mographic stratification) and graph-regularization
mechanisms to ensure equitable knowledge repre-
sentation.

Environmental Impact. Our 8B-parameter sys-
tem offers significant environmental advantages
over larger models (340B–1800B parameters),
achieving ∼0.36 gCO2e per query—a 10˘20×
reduction compared to models like GPT-4 (4–7
gCO2e per query). This efficiency stems from

knowledge graph-guided retrieval that avoids ex-
tensive fine-tuning and full-document generation.

Clinical Deployment. While clinical deploy-
ment is beyond this paper’s scope, AMG-RAG’s
confidence scoring and transparent reasoning pro-
vide foundations for clinical auditability. The sys-
tem can be deployed on HIPAA-compliant infras-
tructure for future clinical applications. Our evalua-
tion uses publicly available benchmarks to demon-
strate research utility while avoiding clinical data
experimentation complexities.

This work establishes AMG-RAG’s technical va-
lidity through standardized evaluations, with clini-
cal deployment and broader ethical considerations
as important future directions.
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A Confidence Scoring for the
Relationships in the MKG

A confidence score, sij , is assigned to each inferred
relationship, reflecting its strength and relevance.
The scoring criteria are as follows:

• 10: The target is directly and strongly re-
lated to the item, with clear, unambiguous
relevance.

• 7-9: The target is moderately to highly rele-
vant to the item but may have some ambiguity
or indirect association.

• 4-6: The target has some relevance to the item
but is weak or only tangentially related.

• 1-3: The target has minimal or no meaningful
connection to the item.

B Evaluating the Accuracy and
Robustness of the Medical Knowledge
Graph

The quality and reliability of the dynamically gen-
erated MKG are critical for its effectiveness in
enhancing medical QA systems. To validate the
accuracy, robustness, and usability of the MKG,
a structured evaluation involving expert LLMs in
the medical domain, such as GPT medical model,
was conducted. This section outlines the method-
ology used to evaluate the MKG, emphasizing in-
terpretability, clinical relevance, and robustness in
real-world applications. Additionally, the role of
medical experts in verifying the accuracy and ap-
plicability of the MKG is discussed, underscoring
the necessity of human expertise in validating AI-
driven medical knowledge representations.

To assess accuracy and robustness, a two-phase
evaluation process was employed. In the first phase,
a group of expert LLMs specialists in medical do-
mains reviewed a subset of the MKG, including
dynamically generated nodes, relationships, confi-
dence scores, and summaries for various medical
queries. They evaluated the accuracy of medical
terms and concepts, the relevance of relationships
between nodes, the reliability of node summaries,
and the alignment of confidence scores with the per-
ceived strength and reliability of the connections.
Each LLM independently rated the graph compo-
nents on a scale of 1 to 10. The results showed
an average accuracy score of 8.9/10 for node iden-
tification, 8.8/10 for relationship relevance, and

8.5/10 for the clarity and precision of node sum-
maries. Confidence scores generally aligned well
with the LLMs’s assessments, as illustrated in Ta-
bles 6 and 7, which highlight strong relationships
across domains such as ophthalmology, cardiovas-
cular treatments, and dermatology.

In the second phase, blind testing was conducted
to evaluate usability and human-readability. Expert
LLMs were tasked with answering complex med-
ical queries requiring multi-hop reasoning, such
as managing comorbidities or determining multi-
drug treatment protocols. As shown in Table 6,
relationships such as the co-usage of Ketotifen and
Fluorometholone for allergic conjunctivitis or La-
betalol and Nitroglycerin for acute hypertension
demonstrated the MKG’s ability to model clini-
cally relevant associations effectively. The LLMs
achieved a 89% accuracy rate in these test scenar-
ios. Additionally, the LLMs rated the MKG 9.4/10
for interpretability and usability, underscoring its
strength in visually and contextually representing
complex medical relationships.

To further ensure the clinical relevance and prac-
tical applicability of the MKG, medical experts,
including practicing physicians and clinical re-
searchers, were involved in evaluating the gener-
ated relationships and summaries. Unlike LLMs,
medical experts provided qualitative assessments,
identifying potential discrepancies, overlooked nu-
ances, and contextual dependencies that automated
models might miss. The medical experts particu-
larly assessed:

1. The correctness and completeness of medical
relationships, ensuring they align with estab-
lished clinical knowledge and best practices.

2. The validity of multi-hop reasoning paths, ver-
ifying whether inferred relationships reflected
logical clinical decision-making processes.

3. The utility of the MKG in real-world medical
applications, particularly in aiding diagnostic
and treatment decision-making.

The feedback from medical experts was instru-
mental in refining the graph, addressing inconsis-
tencies, and enhancing the confidence scores to bet-
ter reflect real-world medical reliability. Notably,
medical expert ratings aligned well with LLM eval-
uations but provided deeper insights into the con-
textual limitations of the graph. For example, while
LLMs accurately linked Diltiazem and Nitroglyc-
erin in cardiovascular treatment, medical experts
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highlighted additional considerations such as con-
traindications in specific patient populations, which
were subsequently incorporated into the MKG.

The detailed evaluations in Tables 6 and 7 pro-
vide further insights into the graph’s performance
across diverse medical domains. For instance, the
accurate representation of relationships between
beta-blockers like Labetalol and Propranolol or
the integration of treatments such as Diltiazem
and Nitroglycerin for cardiovascular care highlight
the MKG’s capacity to support intricate clinical
decision-making.

These results confirm that the MKG is both
human-readable and usable by advanced LLMs,
making it an invaluable tool for medical QA and
decision-making. The graph’s structured format,
enriched with confidence scores and summaries,
ensures a clear and interpretable representation of
medical knowledge while enhancing the efficiency
and accuracy of QA systems in addressing real-
world medical scenarios. Moreover, the involve-
ment of medical experts in the evaluation process
enhances the credibility of the MKG, ensuring that
AI-driven insights align with clinical expertise and
practical healthcare applications.

C QA Samples with reasoning from
MEDQA benchmark

This section presents a set of QA samples demon-
strating the reasoning paths generated by our pro-
posed AMG-RAG model when applied to the
MEDQA dataset. These examples highlight how
the model retrieves relevant content, structures key
information, and formulates reasoning to guide an-
swer selection.

Table 8 provides an example of how the model
processes a clinical case question related to the
management of acute coronary syndrome (ACS).
The search items retrieved for possible answer
choices (e.g., Nifedipine, Enoxaparin, Clopidogrel,
Spironolactone, Propranolol) are accompanied by
key content excerpts relevant to their roles in ACS
treatment. Additionally, the reasoning pathways il-
lustrate how the model synthesizes evidence-based
knowledge to justify the selection of the correct
answer (Clopidogrel), while also explaining why
the alternative options are not suitable. Additional
examples are also provided in Tables 9, 10, and
11

D Implementation Details for Dataset
Ingestion and Vector Database

This section outlines the pipeline for dataset in-
gestion and vector database creation for efficient
medical question-answering. The process involves
document chunking, embedding generation, and
storage in a vector database to facilitate semantic
retrieval.

D.1 Dataset Processing and Chunking

The dataset, sourced from medical textbooks in
the MEDQA benchmark, is provided in plain text
format. Each document is segmented into smaller
chunks with a maximum size of 512 tokens and a
100-token overlap. This overlap ensures context
preservation across chunk boundaries, supporting
multi-hop reasoning for long documents.

D.2 Embedding Model and Vector Storage

The system utilizes the SentenceTransformer
model, specifically all-mpnet-base-v2, for gen-
erating dense vector representations of text chunks
and queries. To optimize storage and retrieval,
the embeddings are indexed in the Chroma vector
database. Metadata, such as document filenames
and chunk IDs, is also stored to maintain document
traceability.

D.3 Batch Processing and Vector Database
Population

To manage memory efficiently during ingestion,
document chunks are processed in batches of up to
10,000. This ensures a smooth ingestion pipeline
while preventing memory overflow. Each pro-
cessed file is logged to avoid redundant computa-
tions, and error handling mechanisms are in place
to manage failed processing attempts.

D.4 Query Answering Workflow

For retrieval, user queries (e.g., "What are the symp-
toms of drug-induced diabetes?") are embedded
using the all-mpnet-base-v2 model. The top-
ranked relevant chunks are retrieved based on their
semantic similarity to the query using Chroma’s
similarity search mechanism. The system retrieves
the top k relevant passages, which can be further
processed in downstream QA models.

D.5 Key Configuration Details

The system is configured with the following param-
eters:

12695



Source Node Relationship Type Target Node LLM Expert Analysis Blind Analysis Medical Expert Analy-
sis

Botulism Directly related as it is
the target concept.

Myasthenia
gravis

Rated 9.2/10 for rel-
evance and clinical
importance, considered
highly accurate.

Demonstrated effective
multi-hop reasoning
with a 92% accuracy
in identifying related
conditions.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Levodopa Levodopa is a primary
treatment for Parkin-
son’s disease.

Parkinson’s dis-
ease

Evaluated as highly re-
liable (9.6/10) for sum-
marizing medical treat-
ments and relationships.

Increases accuracy
by 24% in answering
queries about Parkin-
son’s treatments and
comorbidities.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Zidovudine Zidovudine is an antivi-
ral drug used for HIV
treatment.

HIV/AIDS Experts rated it 9.4/10
for interpretability, high-
lighting the clear repre-
sentation of the relation-
ship.

Provided contextually
accurate responses re-
garding drug interac-
tions and side effects in
queries.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Inhibition of
thymidine
synthesis

Cross-linking of DNA
is directly related to
thymidine synthesis as
both involve nucleic
acid metabolism.

Cross-linking
of DNA

Rated 9.2/10 for rele-
vance to nucleic acid
metabolism and DNA
replication.

Demonstrated high ac-
curacy in answering
multi-hop queries re-
lated to DNA synthesis
pathways.

Rated 9/10 for relevance
and accuracy, consid-
ered accurate.

Hyperstabilization
of microtubules

Cross-linking of DNA
can be related to the
stabilization of micro-
tubules.

Cross-linking
of DNA

Rated 9.0/10 for high-
lighting structural modi-
fications affecting cellu-
lar functions.

Increases the accuracy
by 20% in scenarios in-
volving cellular struc-
ture interactions.

Rated 8/10 for moder-
ated relevance.

Generation of
free radicals

Free radicals can lead
to oxidative damage, af-
fecting DNA integrity
and function.

Cross-linking
of DNA

Rated 8.5/10 for its rele-
vance to oxidative stress
and DNA damage mech-
anisms.

Accurate in providing
causal explanations for
oxidative stress and
DNA cross-linking.

Rated 7.5/10 for rele-
vance.

Renal papillary
necrosis

Allergic interstitial
nephritis can lead to
renal damage.

Allergic intersti-
tial nephritis

Rated 9.0/10 for ex-
plaining the clinical pro-
gression of renal com-
plications.

Effective in multi-hop
reasoning for renal
damage-related queries,
achieving 91% accu-
racy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Table 6: Examples from the Medical Knowledge Graph (MKG) with Expert and Blind Analysis (Part 1)

• Embedding Model: all-mpnet-base-v2
from SentenceTransformer.

• Vector Database: Chroma, stored persis-
tently on disk for reusability.

• Chunk Size: 512 tokens per chunk, with a
100-token overlap for contextual consistency.

• Batch Size: Up to 10,000 chunks per batch to
optimize ingestion efficiency.

D.6 Implementation and System Execution
The ingestion and query process is implemented us-
ing Python, leveraging sentence-transformers
for embeddings and Chroma for vector storage. The
ingestion pipeline reads and processes text files,
splits them into chunks, generates embeddings, and
stores them efficiently in the vector database. The
querying process retrieves the top k most relevant
text chunks to respond to user queries.

E Components Definition

E.1 Neo4j
As data complexity increases, traditional rela-
tional databases struggle with highly intercon-
nected datasets where relationships are crucial.

Graph databases, like Neo4j, address this challenge
by efficiently modeling and processing complex,
evolving data structures using nodes, relationships,
and properties (Besta et al., 2023).

Neo4j, an open-source NoSQL graph database,
enables constant-time traversals by explicitly stor-
ing relationships, making it ideal for large-scale
applications such as social networks, recommen-
dation systems, and biomedical research. Unlike
relational models, Neo4j avoids costly table joins
and optimizes deep relationship queries, enhancing
scalability and performance (Besta et al., 2023).

Neo4j’s architecture is centered around the prop-
erty graph model, which includes(Huang and Dong,
2013):

• Nodes: Entities representing data points.

• Relationships: Directed, named connections
between nodes that define how entities are
related.

• Properties: Key-value pairs associated with
both nodes and relationships, providing addi-
tional metadata.

This model allows for intuitive representation
of complex data structures and supports efficient
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Source Node Relationship Type Target Node LLM Expert Analysis Blind Analysis Medical Expert Analy-
sis

Ketotifen eye
drops

Ketotifen eye drops
are antihistamines
used for allergic con-
junctivitis, which may
be used alongside
Fluorometholone for
managing eye allergies.

Fluorometholone
eye drops

Rated 9.2/10 for rele-
vance in managing aller-
gic conjunctivitis.

Demonstrated 93% ac-
curacy in multi-hop rea-
soning for ophthalmo-
logical conditions.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Ketotifen eye
drops

Latanoprost eye drops
are used to lower in-
traocular pressure in
glaucoma, while Keto-
tifen treats allergic con-
junctivitis.

Latanoprost eye
drops

Rated 9.0/10 for dis-
tinct yet complementary
roles in ophthalmology.

Effective in identifying
separate ophthalmic ap-
plications with 92% ac-
curacy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Diltiazem Nitroglycerin is relevant
in discussions of car-
diovascular treatments
alongside Diltiazem.

Nitroglycerin Rated 8.8/10 for contex-
tual relevance to cardio-
vascular management.

Increases the accuracy
for treatment-based
queries by 20%.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Labetalol Labetalol is closely re-
lated to Propranolol,
both managing hyper-
tension.

Propranolol Rated 9.5/10 for direct
relevance in cardiovas-
cular treatment proto-
cols.

Highly interpretable re-
sponses for hyperten-
sion management, with
95% accuracy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Nitroglycerin Nitroglycerin and La-
betalol are often used
in conjunction for man-
aging hypertension and
heart conditions.

Labetalol Rated 8.7/10 for strong
relevance in acute hyper-
tension protocols.

Supported effective
multi-drug therapy
reasoning with 90%
accuracy.

Rated 9/10 for relevance
and accuracy, consid-
ered highly accurate.

Nitroglycerin Nitroglycerin is often
used with Propranolol
in managing cardiovas-
cular conditions like hy-
pertension and angina.

Propranolol Rated 9.0/10 for its im-
portance in cardiovascu-
lar multi-drug therapy.

Demonstrated robust
performance in connect-
ing treatment protocols,
with 93% query accu-
racy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Fluorometholone
eye drops

Fluorometholone
eye drops are corti-
costeroids that treat
inflammation, comple-
menting Ketotifen for
allergic conjunctivitis.

Ketotifen eye
drops

Rated 8.8/10 for their
combined application in
managing inflammation
and allergies.

Improved query rele-
vance for multi-drug
therapy in eye care by
19%.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Lanolin Lanolin is used for
skin care, particularly
for sore nipples during
breastfeeding.

Fluorometholone
eye drops

Rated 8.5/10 for
highlighting non-
overlapping yet clini-
cally useful contexts.

Demonstrated effective
differentiation of clini-
cal uses with high inter-
pretability.

Rated 9/10 for relevance
and accuracy, consid-
ered highly accurate.

Table 7: Examples from the Medical Knowledge Graph (MKG) with Expert and Blind Analysis (Part 2)

querying and analysis. The system’s internal mech-
anisms facilitate rapid traversal of relationships, en-
abling swift query responses even in large datasets
(Huang and Dong, 2013).

Does Neo4j-Based Storage scale well? Neo4j’s
scalability for our medical knowledge graph stor-
age is strategically robust, offering several key
advantages for large-scale, relationship-intensive
medical data. Its graph-based architecture is
particularly well-suited for handling highly in-
terconnected medical knowledge networks, sup-
porting horizontal scaling that enables efficient
performance even as the knowledge base grows.
The cloud-based accessibility further enhances the
framework’s flexibility, allowing seamless knowl-
edge sharing and distributed access without local
storage constraints.

How large were the knowledge graphs? Our au-
tomatically constructed medical knowledge graphs
demonstrate significant complexity and depth, com-

prising approximately 76,681 nodes and 354,299
edges. These nodes encompass a comprehensive
range of medical entities including diseases, symp-
toms, treatments, drugs, anatomical structures, and
clinical findings, all interconnected through seman-
tically meaningful, typed relationships. This sub-
stantial scale not only reflects the intricate nature
of medical knowledge but also enables more nu-
anced, multi-hop reasoning capabilities across di-
verse medical queries. The graph’s architecture al-
lows for dynamic expansion and refinement, ensur-
ing that the knowledge representation remains both
comprehensive and adaptable to emerging medical
research and understanding.
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Nifedipine Not typically used for
acute coronary syndrome
(ACS). Associated with re-
flex tachycardia.

Nifedipine is a calcium
channel blocker effective
for hypertension but does
not address the antiplatelet
needs of ACS patients.

Enoxaparin Used for anticoagulation
in ACS but mainly during
hospitalization.

Enoxaparin is not contin-
ued after discharge when
aspirin and another an-
tiplatelet drug are pre-
scribed.

Clopidogrel Standard for dual an-
tiplatelet therapy (DAPT)
in ACS, especially post-
percutaneous coronary in-
tervention (PCI).

Clopidogrel complements
aspirin in preventing
thrombotic events post-
angioplasty. Its use is
supported by evidence-
based guidelines.

Spironolactone Useful in heart failure or
reduced ejection fraction
but not indicated for ACS
management when EF is
normal.

This patient’s EF is 58%,
so spironolactone is not
necessary. Focus should
be on antiplatelet therapy.

Propranolol Effective for reducing my-
ocardial oxygen demand
but not part of standard
DAPT.

While beneficial for stress-
related heart issues, it
does not address throm-
botic risks in ACS man-
agement.

Table 8: Examples of Summary of search items for the question "A 65-year-old man is brought to the emergency
department 30 minutes after the onset of acute chest pain. He has hypertension and asthma. Current medications
include atorvastatin, lisinopril, and an albuterol inhaler. He appears pale and diaphoretic. His pulse is 114/min, and
blood pressure is 130/88 mm Hg. An ECG shows ST-segment depressions in leads II, III, and aVF. Laboratory
studies show an increased serum troponin T concentration. The patient is treated for acute coronary syndrome and
undergoes percutaneous transluminal coronary angioplasty. At the time of discharge, echocardiography shows a left
ventricular ejection fraction of 58%. In addition to aspirin, which of the following drugs should be added to this
patient’s medication regimen?" and Their Influence on the Correct Answer (Clopidogrel) and the reasoning paths

F Additional Results

G Across Domain Examples

Q1: How do Federal Reserve interest rate hikes
affect Apple’s stock price, and why?

Knowledge Graph: Fed Funds Rate raises−−−→ Con-
sumer Borrowing Cost reduces−−−−→ Apple Product De-
mand lowers−−−→ Apple Stock Price

Reasoning: When the Fed raises interest rates,
borrowing costs for consumers increase. This tends
to reduce spending on discretionary items like
Apple products. Lower sales then translate into
weaker stock performance for Apple.

Answer: Yes—higher Fed rates increase con-
sumer costs, reducing demand for Apple products
and pressuring its stock price.

Q2: How does quantitative easing influence
stock market returns, and through what
mechanism?

Knowledge Graph: Quantitative Easing boosts−−−→
Liquidity

suppresses−−−−−→ Interest Rates enhances−−−−−→ Stock
Returns

Reasoning: When central banks implement QE,
they increase liquidity in the financial system. This
drives down interest rates, making equities more
attractive compared to fixed income. As a result,
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

A history of stroke
or venous throm-
boembolism

Contraindicated for hor-
monal contraceptives due
to increased risk of throm-
bosis.

Copper IUDs do not carry
the same thrombotic risk,
making this option irrele-
vant for contraindication
in IUD placement.

Current tobacco
use

Increases cardiovascular
risk with hormonal contra-
ceptives but not with cop-
per IUDs.

Tobacco use does not
contraindicate IUD place-
ment, though it may influ-
ence other contraceptive
choices.

Active or re-
current pelvic
inflammatory
disease (PID)

Direct contraindication for
IUD placement due to the
risk of exacerbating infec-
tion and complications.

Insertion of an IUD can
worsen active PID, lead-
ing to infertility or other
severe complications.

Past medical his-
tory of breast can-
cer

Contraindicates hormonal
contraceptives, but copper
IUDs are considered safe.

This option does not con-
traindicate copper IUD
placement, as it is non-
hormonal and unrelated to
breast cancer.

Known liver neo-
plasm

Contraindicates hormonal
contraceptives but not cop-
per IUDs.

Copper IUDs are safe for
patients with liver neo-
plasms as they are free of
systemic hormones.

Table 9: Examples of Summary of Search Items for the Question "A 37-year-old-woman presents to her primary
care physician requesting a new form of birth control. She has been utilizing oral contraceptive pills (OCPs) for
the past 8 years, but asks to switch to an intrauterine device (IUD). Her vital signs are: blood pressure 118/78
mm Hg, pulse 73/min and respiratory rate 16/min. She is afebrile. Physical examination is within normal limits.
Which of the following past medical history statements would make copper IUD placement contraindicated in this
patient?" and Their Influence on the Correct Answer (Active or recurrent pelvic inflammatory disease (PID)) and
the Reasoning Paths

overall stock returns tend to rise while volatility
decreases.

Answer: Yes—QE injects liquidity that lowers
rates, boosting equity returns and reducing market
volatility.

Q3: Will a Fed rate cut in Q3 2025 significantly
boost the “Magnificent 7” tech stocks?

Knowledge Graph: Fed Rate Cut reduces−−−−→ Dis-
count Rate increases−−−−−→ PV of Future Earnings raises−−−→
“Magnificent 7” Stock Prices

Reasoning: As of Q3 2025, a Federal Reserve
rate cut would reduce the discount rate used in
financial models, thereby increasing the present
value of long-term earnings. The “Magnificent 7”
tech companies—known for their strong growth
trajectories—typically benefit the most from such
revaluations. However, recent data indicates that

this effect may be moderating due to already ele-
vated valuations and shifting investor focus toward
profitability and macro risks.

Answer: Yes—as of Q3 2025, a Fed rate cut
is expected to support the ‘Magnificent 7’ tech
stocks by boosting the present value of their future
earnings, though the effect may be less pronounced
compared to previous cycles.
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Dementia Typically presents as a
gradual decline in cogni-
tive function.

The sudden onset of symp-
toms after surgery and
acute confusion makes de-
mentia less likely.

Alcohol with-
drawal

Requires significant and
sustained alcohol use to
cause withdrawal symp-
toms.

The patient’s weekly con-
sumption of one to two
glasses of wine is insuffi-
cient to support this diag-
nosis.

Opioid intoxica-
tion

Oxycodone can cause se-
dation and confusion, but
stable vital signs and lack
of severe respiratory de-
pression are inconsistent.

While oxycodone use is
relevant, the observed fluc-
tuating agitation and im-
pulsivity are more consis-
tent with delirium.

Delirium Characterized by acute
changes in attention and
cognition with fluctuating
levels of consciousness.

The patient’s recent
surgery, medication use,
and fluctuating symptoms
align strongly with a
diagnosis of delirium.

Urinary tract in-
fection (UTI)

Confusion in elderly pa-
tients can result from
UTIs, but a normal urine
dipstick test does not sup-
port this.

The absence of urinary
findings on examination
makes UTI less likely as
the cause of symptoms.

Table 10: Examples of Search Items for the Question: "Six days after undergoing surgical repair of a hip fracture, a
79-year-old woman presents with agitation and confusion. Which of the following is the most likely cause of her
current condition?" and Their Influence on the Correct Answer (Delirium) and the Reasoning Paths.
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Primary sperma-
tocyte

Nondisjunction events dur-
ing meiosis I often occur
at this stage, leading to
chromosomal abnormali-
ties.

Klinefelter syndrome
(47,XXY) is typically due
to nondisjunction during
meiosis, specifically at
this stage.

Secondary sper-
matocyte

Meiosis II occurs here, di-
viding chromosomes into
haploid cells, but errors at
this stage are less likely to
lead to 47,XXY.

The chromosomal abnor-
mality associated with
Klinefelter syndrome usu-
ally arises before this
stage.

Spermatid Spermatids are post-
meiotic cells where
genetic material is already
finalized.

Errors at this stage would
not result in a cytogenetic
abnormality like 47,XXY.

Spermatogonium Errors here affect the
germline but are less likely
to cause specific meiotic
nondisjunction errors.

While germline mutations
can occur, meiotic nondis-
junction leading to Kline-
felter syndrome occurs
later.

Spermatozoon These are fully mature
sperm cells that inherit
abnormalities from earlier
stages.

By this stage, chromoso-
mal errors have already
been established.

Table 11: Examples of Search Items for the Question: "A 29-year-old man with infertility, tall stature, gynecomastia,
small testes, and an elevated estradiol:testosterone ratio is evaluated. Genetic studies reveal a cytogenetic abnormality
inherited from the father. At which stage of spermatogenesis did this error most likely occur?" and Their Influence
on the Correct Answer (Primary spermatocyte) and the Reasoning Paths.

Example 1 Question: A 29-year-old man presents with infertility. He has been trying to conceive for over 2 years. His
wife has no fertility issues. Exam shows tall stature, long limbs, sparse body hair, gynecomastia, and small
testes. Labs reveal elevated FSH and a high estradiol:testosterone ratio. Cytogenetic analysis indicates a
chromosomal abnormality. If inherited from the father, during which stage of spermatogenesis did this error
most likely occur?
Choices: A: Primary spermatocyte, B: Secondary spermatocyte, C: Spermatid, D: Spermatogonium, E:
Spermatozoon
Answer: A (Primary spermatocyte)
Reasoning: This corresponds to an error in meiosis I during the father’s spermatogenesis, consistent with
Klinefelter syndrome due to paternal nondisjunction.
Retrieved Papers: 1) Black et al., *The Genetic Landscape of Male Factor Infertility*, Uro, 2025. 2) Niyaz
et al., *Chromosome Disorders in Sperm Anomalies*, 2025. 3) Leslie et al., *MNS1 variant and Male
Infertility*, EJHG, 2020.

Example 2 Question: A 23-year-old woman is referred for genetic counseling after her brother is diagnosed with
hereditary hemochromatosis. She is asymptomatic and her labs are normal. Which gene mutation is most
consistent with hereditary hemochromatosis?
Choices: A: BCR-ABL, B: BRCA, C: FA, D: HFE, E: WAS
Answer: D (HFE gene)
Reasoning: Most hereditary hemochromatosis cases in Northern European populations are caused by HFE
mutations (C282Y, H63D). Even asymptomatic individuals with normal iron studies should be screened if
they have an affected first-degree relative.
Retrieved Papers: 1) Delatycki & Allen, *Population Screening for HH*, Genes, 2024. 2) Lou et al., *Utility
of Iron Indices in HH Genotyping*, Clin. Biochem., 2025. 3) Lucas et al., *HFE Genotypes and Outcomes*,
BMJ Open, 2024.

Table 12: Examples of AMG-RAG-generated answers with structured reasoning and citation-based grounding for
clinical QA.
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