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Abstract

Open-ended event forecasting (OEEF) seeks
to predict future events from a given context
without being restricted to a predefined scope
or format. It plays a crucial role in domains
such as risk management and financial decision
making. Although large language models show
potential for OEEF, existing approaches and
datasets often overlook the complex relation-
ships among events, and current research lacks
comprehensive evaluation methods. To address
these limitations, we propose ForestCast, a pre-
diction pipeline that extracts forecast-relevant
events from news data, organizes them into a
story tree, and predicts subsequent events along
each path. The pipeline comprises four steps:
(1) clustering news into event nodes, (2) con-
structing a news story tree, (3) mining the se-
mantic structure of the tree, and (4) predicting
the next event node and evaluating prediction
quality. To support this pipeline, we construct
NewsForest, a dataset of 12,406 event chains,
each representing a chronologically and logi-
cally linked sequence of news events. In addi-
tion, we introduce a comprehensive evaluation
framework that measures both the accuracy and
the quality of prediction. Experimental results
demonstrate that ForestCast improves the abil-
ity of LLMs to forecast events in news data.

1 Introduction

Event prediction, the task of forecasting future
events based on past and current information, has
great potential in applications including policy
making, risk management, and financial decision-
making (Zhao, 2022). Accurate predictions can
help decision makers anticipate challenges and
seize opportunities (Zhao, 2022).

Conventional forecasting approaches include
script event prediction (Chambers and Jurafsky,

2008) and temporal knowledge graph completion
(TKGC) (Leblay and Chekol, 2018). These meth-
ods are restricted to predicting specific attributes
and selecting answers from a finite range (Lin
et al., 2022; Ma et al., 2024; Shi et al., 2023; Xu
et al., 2023). However, real-world developments
are rarely limited to such specific scopes, and crit-
ical information is not always captured by prede-
fined attributes.

The text generation capabilities and open predic-
tion space of large language models (LLMs) make
them promising for open-ended event forecasting
(OEEF). Thus, previous work has used LLMs for
such forecasting tasks (Wang et al., 2025). How-
ever, OEEF presents two challenges. First, existing
prediction methods and datasets typically handle
massive forecast-related data by simply grouping
and summarizing (Guan et al., 2024; Ma et al.,
2024; Wang et al., 2025), overlooking the complex
relationships between events in forecast-related
data. Second, due to the open-ended characteristic
of OEEF, existing evaluation methods (Ye et al.,
2024; Wang et al., 2025) cannot reasonably evalu-
ate prediction results.

To address these challenges, we introduce Forest-
Cast, a method for the OEEF task that leverages
LLMs and captures evolutionary structures within
event data to forecast multiple potential evolution-
ary trajectories. ForestCast is built on the NewsFor-
est dataset, which highlights key drivers of event
progression and uncovers the logical relationships
between them. To evaluate the performance of
ForestCast, we propose an evaluation framework
that measures both the accuracy and the quality of
the predictions. Experimental results demonstrate
improvements in both accuracy and quality after
fine-tuning with the NewsForest dataset, including
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a maximum pass@1 improvement of 6.00% and a
0.18 increase (on a five-point scale) in average qual-
ity metrics. The dataset and the code are available
at https://github.com/bitvis2021/ForestCast.

The contributions of this work are as follows:

• We develop ForestCast, a method for open-
ended event forecasting. This method organizes
large-scale news into a news story tree and uses
a fine-tuned model to predict the future evolution
of the story tree.

• We construct NewsForest, a dataset for open-
ended event forecasting that can be used to fine-
tune LLMs. The dataset contains 12,406 pre-
diction chains across four major domains: eco-
nomics, politics, military, and social events.

• We introduce an evaluation framework for event
prediction results. It evaluates both the guidance
value of predictions and whether the predicted
events occurred.

2 Related Work

This section reviews the literature on news story
tree construction and event prediction.

2.1 News Story Tree Construction
The topic detection and tracking task (Allan et al.,
1998) extracts key information from large-scale
news corpora by thematically grouping and contin-
uously tracking news events. However, this task ig-
nores potential dependency relationships between
events. To address this issue, researchers have pro-
posed methods to capture the structural features of
event evolution. Nallapati et al. (2004) quantify the
dependency between two events based on temporal
relationships and the TF-IDF vector distance. Yang
et al. (2009) introduce the concept of event graphs
to describe the relationship between events.

However, these studies only focus on pairwise
event relationships and cannot fully represent the
overall evolutionary structures of events. Sha-
haf et al. (2012) propose “metro maps” to de-
scribe evolutionary structures of events. Liu et al.
(2018, 2020) introduce the news story tree, a struc-
ture more aligned with patterns of event devel-
opment and user cognition, where dependencies
between events are constructed through keyword-
based maps. However, these methods remain lim-
ited to pruning operations on the graph structure
and fail to effectively capture the internal cohe-
sion within the same branch and the distinctiveness
between different branches.

Moreover, existing methods for capturing evolu-
tionary events rely mainly on low-level text feature
analysis, such as keyword graphs (Liu et al., 2020),
keyword reoccurrence rate (Shahaf et al., 2012),
and TF-IDF vectors (Nallapati et al., 2004). In con-
trast, the method proposed in this paper leverages
LLMs and pre-trained sentence encoders, enabling
higher-level semantic analysis.

2.2 Event Prediction
Script event prediction (Chambers and Jurafsky,
2008) requires selecting the most likely subse-
quent event from a candidate list given an event
context. Several studies have predicted event out-
comes by building event chains (Wang et al., 2017,
2024; Radinsky and Horvitz, 2013), event evolu-
tion graphs (Ding et al., 2019; Li et al., 2018; Du
et al., 2022), or deformation structures of event
graphs (Zhou et al., 2021; Ma et al., 2023; Granroth-
Wilding and Clark, 2016) as the evolutionary struc-
tures of the events. On the other hand, TKGC (Xia
et al., 2024; Deng et al., 2020; Rong et al., 2025;
Zhang et al., 2024a,b) addresses incomplete tempo-
ral knowledge graphs by learning representations
of entities, relations, and timestamps to predict
missing information.

Both script event prediction and TKGC are lim-
ited to predicting specific attributes and can only
generate results within predefined scopes. When
predicting real-world events, these methods offer
insufficient guidance. To overcome these limita-
tions, Guan et al. (2024) first proposes the OEEF
task, which is characterized by

• diverse predictive questions covering different
stages of event development and viewpoints, pro-
moting comprehensive analysis;

• flexible prediction outputs with no restrictions
on scope, format, or length, thus allowing se-
mantically rich responses.

However, existing OEEF approaches also face
challenges. Guan et al. (2024) propose a pre-
diction method with a manually constructed test
dataset, but it only clusters and summarizes
forecast-related news, ignoring dependencies be-
tween events. Wang et al. (2025) propose a large
OEEF dataset, but found that model performance
decreases after fine-tuning on it. We hypothesize
that this is because the dataset organizes topics by
listing decades of history for a place or person,
making it difficult to capture the hidden factors and
underlying logic driving event development.
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Figure 1: ForestCast pipeline: The first part of the pipeline constructs the story tree by grouping news into event
nodes (step 1) and building a story tree (step 2). The second part predicts the next node along a branch by mining
the semantic structure of the story tree (step 3) and predicting events while evaluating prediction quality (step 4).

Overall, existing work on forecast-related data
processing remains focused on extracting event at-
tributes and linking events through such attributes,
while overlooking the developmental logic of in-
formation. In contrast, ForestCast mines this de-
velopmental logic and makes predictions based on
it. We construct an OEEF dataset grounded in the
developmental logic of events and employ a more
comprehensive evaluation framework to examine
the effectiveness of our method.

3 The ForestCast Method

We propose the ForestCast method, which forecasts
events based on the organization of evolutionary
structures. Our method requires users to provide
topic-related keywords along with the start and end
dates of the news collection period. For example,
if a user wants to generate forests for the follow-up
events of Trump’s election campaign in February
2025, the user would specify the keyword (Trump,
Election) and duration (20250201 to 20250228).
Appendix A.1.4 describes the time complexity of
the method and its time cost on a specific hardware
setup.

We develop an interactive system (see Appendix
Figure 5) for the user to provide such specification.
The system automatically collects and analyzes
relevant news, constructs the story tree, and pro-
duces predictions. We detail additional functions
of the interactive system in Appendix A.1.1. As
Figure 1 shows, the ForestCast method consists of

four steps:

• Step 1: Cluster news into event nodes.
• Step 2: Build the news story tree.
• Step 3: Mine the semantic structure of the story

tree.
• Step 4: Predict the next node and evaluate the

prediction quality.

3.1 Cluster News into Event Nodes

Our data is sourced from the GDELT (Leetaru and
Schrodt, 2013) database1 to ensure comprehensive
coverage and credibility. From GDELT, we obtain
news headlines, links, publication times, and media
sources. We then retrieve the full text of the news
based on the links. We use keyword searches for
news articles, deduplicate them, and cluster the ar-
ticles describing the same event. The clusters serve
as event nodes in the news story tree. For speed and
accuracy considerations, we use semantic-based
USTORY (Yoon et al., 2023) for event node clus-
tering.

3.2 Construct the News Story Tree

In prior work on the topic detection and tracking
task, the story trees have proven effective as vi-
sual representations that align with users’ cognitive
habits and the evolutionary structure of events. For

1The GDELT (Global Database of Events, Language
and Tone) database is a real-time open database that mon-
itors media coverage worldwide. URL: https://www.
gdeltproject.org/
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visual representations informative to human, its cor-
responding data structure may also be informative
to LLM. Following this rationale, we build story
trees to organize relevant news.

3.2.1 Calculate Dependency Scores
Inspired by Yang et al. (2009), we assume that the
hidden dependency between events is determined
by their participants, locations, objects, and me-
dia sources. Therefore, we use the text processing
model en_core_web_sm of spaCy library (Honni-
bal and Montani, 2017) to extract features from
news articles, deduplicate them, and disambiguate
them, resulting in four sets of terms: setparticipant,
setlocation, setobject, setsource. Since the importance
of these features varies, we compute their frequen-
cies and assign weights accordingly. After reorder-
ing features by weight, we obtain four weighted
lists: listparticipant, listlocation, listobject, listsource.
We further assume that each feature type con-
tributes differently to the dependency relationship,
and therefore set four weights: αparticipant, αlocation,
αobject, αsource.

To ensure that the construction is based on
semantic relation, we use the pre-trained word
encoder GloVe (Pennington et al., 2014) to en-
code the terms, producing weighted vector lists:
vecparticipant, veclocation, vecobject, vecsource. The de-
pendency score between two nodes (denoted i and
j) is then computed as the weighted sum of their
cosine similarities:

DepScorei,j =
∑

k∈{part,loc,obj,src}
αk · sim(vk,i, vk,j)

Details of the hyperparameter settings (α, to-
gether with µ and λ introduced in the next section),
are provided in Appendix A.1.3.

3.2.2 Calculate Attachment Scores
To ensure that event evolution forms a cohesive
structure, our method enhances the distinction be-
tween different branches of the tree while reinforc-
ing cohesion within the same branches.

When attaching a candidate node v to a potential
attachment node u in the tree, we consider the de-
pendency score dep(v, u) between them, as well as
the dependency scores between v and the nodes
in u’s parent branch (Pu) and sibling branches
(Su). The dependency score of the potential at-
tachment node accounts for a proportion µ. The
parent branch are defined as the trace back to the

first ancestor node with multiple children of the
potential attachment node. The sibling branch are
defined as the other branches (not including the par-
ent branch) of the first ancestor node with multiple
children of the potential attachment node.

Within the parent branch, the weights (wp) of
the nodes decay as the path length to the poten-
tial attachment node increases. Within the sibling
branches, all nodes are assigned the same weight.
In addition, we introduce a penalty coefficient λ
for sibling branches.

AttachScorev,u = µdep(v, u)

+ (1− µ)
∑

p∈Pu

wpdep(v, p)

− (1− µ)λ
1

|Su|
∑

s∈Su

dep(v, s)

where:

• Pu: The set of ancestor nodes from u up to, but
not including, the first ancestor node with mul-
tiple children. wp = exp(−β · d(p, u)), where
d(p, u) denotes the distance and β > 0.

• Su: The set of u’s siblings that share the same
parent as u. |Su| is the number of siblings.

3.2.3 Connect Story Tree Nodes

With the attachment scores defined, we construct
the story tree from the event nodes. We define the
time of an event node as the average publication
time of its associated news articles. The nodes are
rearranged chronologically to form a sequence.

To prevent nodes that are temporally earlier but
significantly offset from the entire story tree from
disrupting its construction, we introduce a phase
to remove such nodes. To remove these nodes,
we select the first five nodes and connect the five
nodes to a small tree. Then, we discard the nodes
that have attachment scores lower than an adaptive
threshold. The remaining of the first five nodes are
added the node to the formal build sequence.

Then, we sequentially take each node from the
formal build sequence as a candidate and evaluate
its attachment scores to all nodes already in the tree.
A candidate is attached to the node with the highest
score. If the highest score falls below a threshold,
the node is discarded.
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3.3 Mine the Semantic Structure of the News
Story Tree

Existing methods (Liu et al., 2020; Shahaf et al.,
2012; Nallapati et al., 2004) typically attach nodes
according to low-level textual features while ne-
glecting semantics. We instead use LLMs to mine
the semantic structure of the story tree after con-
struction, which better captures the evolutionary
structure of hidden events. In particular, we exe-
cute the following steps:

1. Use an LLM to generate event node summaries,
branching rationale and branch summaries (Sec-
tion 3.3.1).

2. Adjust the branches based on their summary
distances (Section 3.3.2).

All prompts are provided in Appendix A.1.2.

3.3.1 Obtain Summary and Branching
Rationale Using LLMs

LLMs are limited in handling long texts and tree
structures. Therefore, we use a bottom-up data pro-
cessing method to obtain the branching rationale
using an LLM. First, we pass all news headlines in
an event node to the LLM to generate a node sum-
mary. After obtaining the summary for each node,
we perform a post-order traversal of the entire tree.
Starting from the leaf nodes, we generate branch
summaries and branching rationales (when applica-
ble) for each node. Specifically, when the traversal
reaches a node, one of the following processing is
applied:

• Option 1 - for a node v with zero or one child:
If v has no siblings or no children, no branch
summary or branching rationale is stored at v.
Otherwise, if node v has siblings and exactly
one child, its branch summary is computed as
follows. We first identify the chain of nodes
from v to its closest descendant node w that has
multiple children (both v and w are included in
the chain). We then pass the branch summary (or
the node summary, when the node has no branch
summary) of each node in the chain to the LLM.
The LLM is instructed to output branch summary
of the chain, which is stored to node v.

• Option 2 - for a node v with multiple children:
We pass the branch summary (or the node sum-
mary, when the node has no branch summary) of
each child node along with v’s node summary to
the LLM. The LLM is instructed to output both
the branching rationale and a branch summary.

The branching rationale and branch summary
are stored at v.

This process aggregates information layer by
layer, ultimately yielding the branching rationale,
branch summaries for each branch. At the root
node, we obtain a summary of the entire tree.

3.3.2 Adjust Tree With Summary Distance
We encode node summaries using the pre-trained
sentence encoder all-MiniLM-L6-v2 (Wang et al.,
2021). We compute Euclidean distances between
each node’s node summary vector and its parent’s.
If the distance is above a threshold, we then exam-
ine the distance between the nodes’ node summary
vector and that of the root node. If the distance is
below the threshold, this node and its correspond-
ing branch is attached to the root node.

3.4 Predict Next Event and Evaluate
Prediction Quality

After obtaining the story tree’s semantic structure,
we use an LLM to predict the next event based on
the semantic structure. Each path from a leaf to the
root is treated as a news development chain. The
root node’s branch summary is used as background
context. We pass a news development chain and
the background to the LLM, requiring it to predict
the next node.

The predictions are attached to the end of the
news story tree. Each prediction’s quality is evalu-
ated on five quality metrics in Table 1. The metrics
evaluate different scopes:

• Specificity evaluates the node itself.
• Validity and relevance assess the relationship

between the current node and its preceding
nodes.

• Chain consistency and causal insight evaluate
the entire chain.

• Branch rationality assesses the whole tree.

We instruct LLM to rate each of the six attributes
on a 1 - 5 score by giving scoring examples.

Metric Description

Specificity Is the event description specific?
Validity Does the event provide new information?
Relevance Are the main participants consistent consecutively?
Chain Consistency Is logic consistent throughout the chain?
Causal Insight Are hidden relationships captured?
Branch Rationality Are branches distinct/non-mergeable?

Table 1: Quality metrics for news story trees.
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For prediction, we use Qwen2.5-7B fine-tuned
on the NewsForest dataset (see Section 4). Sec-
tion 6 shows that fine-tuning effectively improves
the prediction accuracy and quality.

4 The NewsForest Dataset

The NewsForest dataset contains 12,406 news story
chains. By masking the event chains, the dataset
can be used to fine-tune LLMs to improve their pre-
dictive capabilities. An example of masked event
chain is shown in Table 2.

4.1 Select and Clean News Data of Story Trees
We select four important domains to include in our
dataset: economics, politics, military, and social
events. The first three domains cover both long-
term and short-term developments, whereas social
events tend to be short-term. Table 3 shows exam-
ple topics in the four domains.

Among the four domains, we manually select
popular topics. We select keyword groups for pop-
ular topics from December 2024 to April 2025. Ap-
pendix A.2.1 describes the selection process. Our
data is sourced from GDELT. Given keywords and
time periods, we query all articles with matching
keywords in titles.

To ensure topic coherence, we encode article
headlines using all-MiniLM-L6-v2 (Wang et al.,
2021). Then we use HDBSCAN (Rahman et al.,
2016) to cluster the articles based on embedding of
headlines and retain only the largest cluster as the
final data source. For each topic, to cover both long-
term and short-term prediction tasks (Wang et al.,
2025), we set news article search windows of 20,
30, 40, 60, and 80 days. Within each time window,
the start and end of the story tree are randomly
determined. If insufficient articles are found, the
window is shifted forward or backward by one-
quarter of the span until the requirement is met.

4.2 Build Event Chains
After determining keywords and time periods, we
construct event chains with three steps: cluster
news into event nodes, construct the news story tree,
and mine the semantic structure of the news story
tree. This process is described in Section 3.1, 3.2,
and 3.3.

4.3 Mask Event Chains
After constructing the news story tree, we treat
the path from a leaf node to the root as a news
development chain. The branch summary of the

root node serves as contextual background. To
enable LLMs to learn the evolutionary structure of
hidden events, we mask nodes in each chain:

• For chains longer than six nodes, we mask the
last one third of nodes.

• For chains of six nodes or fewer, we mask only
the final node.

Masked nodes serve as the correct answers for
the chain prediction. Long chains can generate
two or more prediction chains. We connect the un-
masked chain and one of the masked nodes as a pre-
dicted chain. Therefore, if n nodes in a story chain
are masked, the story chain will generate n pre-
diction chains. We use the DPO method (Rafailov
et al., 2023) to fine-tune the model.

Prior work shows that the effectiveness of DPO
depends primarily on the chosen answer (Pan et al.,
2025). Thus, we only test two rejection schemes:

• DPO-irrelevant: Select the node with the low-
est attachment score (i.e., the most irrelevant
node) within the story tree as the reject entry.

• DPO-fake: Invoke an LLM to generate a ficti-
tious node as the reject entry.

Both rejection schemes are tested in the Sec-
tion 6. An example data point of the DPO-
irrelevant scheme is shown in Table 2.

The final dataset for each rejection scheme con-
tains 12,406 prediction chains, covering global
news over six months. Table 4 shows the chain
length distribution. Table 5 shows data volume
across domains.

4.4 Evaluate the Dataset Quality
Following the evaluation method in Guan et al.
(2024), we propose six quality metrics to evalu-
ate the evolutionary structures of events (see Ta-
ble 1). The evaluation results (Figure 2) show av-
erage scores from 2.57 to 3.74. Chain consistency
and branch rationality scores 3.66 and 3.70, indi-
cating good structural integrity.

5 Evaluation framework

Evaluating OEEF results is tricky because general
predictions that do not specify event details are
more likely to be true by chance. To address this
issue, we evaluate predictions based on both accu-
racy and quality metrics.

Accuracy: To measure accuracy, we deter-
mine whether an event has occurred with online
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Header Content

Instruction Task: Please predict the next node in the chain based on the background.

Input Background: In New York, a federal judge kept a lawsuit against Trump alive, while Trump’s legal team pushed
for dismissals. Judges delayed or recused from Trump-related cases. Democrats confirmed judges
pre-inauguration, and Republicans tried to stall Trump trials.
Chain: 1. A federal judge denied throwing out a baseless lawsuit filed against Trump, maintaining its validity in
court proceedings.
2. In Colorado, Republican judges dismissed Trump’s election interference and secret documents cases, potentially
setting Aileen Cannon as a future AG; these rulings could sway the outcome of Trump supporter candidate
selection in court appointments.
3. Judges continue to cancel Trump’s 2020 election case court deadlines post-presidential win, with a judge
shutting down GOP challenge months after Trump’s victory.
4. The judge paused Trump-related January 6 cases, citing special counsel’s request and concerns about timing
after Trump’s election win and before his inauguration.

Chosen After Joe Biden’s victory in the US presidential election, a judge paused Donald Trump’s legal challenges to the
2020 election results. This decision came shortly after the formal certification of the election outcome. Judge Jack
Smith put the federal election interference case against Trump on hold.

Reject Rioters sought charges dismissal unless Trump was also convicted, but lost in court, and are sentenced to prison
following the Capitol riot.

Table 2: Example of masked DPO-irrelevant data: The background in the input summarizes of the entire story
tree. The chain in the input is a masked story path, which is from a root node to a leaf node. The chosen entry is the
masked node. The reject entry can be the least relevant node in the story tree or a fake node generated by an LLM.

Domain Example Topics

Economics (tariff, China), (stock, market)
Politics (elect, republican), (trump, China)
Military (NATO, Ukraine), (America, Iran)
Social Events (Florida, hurricane), (police, racism)

Table 3: Example topics from different domains in
the NewsForest dataset: Each topic consists of two
or three keywords. Keyword groups are used in the
stage of constructing in the dataset to search for news
containing those keywords.

Attribute Story Chain Prediction Chain

Average Length 4.39 2.95
Max Length 14 9
Min Length 2 1

Table 4: Chain lengths before and after masking. Pre-
diction chain is the result of masking story chain.

searches (Ye et al., 2024). The prediction results
are first extracted from the forecasting model. We
then search on-line for latest related news and pro-
vide this information on to an LLM for evaluation.
The LLM decides whether the prediction has actu-
ally occurred. If so, the prediction is scored on the
following quality metrics.

Quality metrics: To evaluate the informational
value of predictions, we employ LLMs to assess
prediction quality. Following Guan et al. (2024),
we design five metrics (see the metrics in Table 1,
with branch rationality excluded) and correspond-

Domain # Trees # Story Chain # Prediction chain

Economics 157 1726 2396
Politics 284 3613 5326
Military 217 2801 3942
Social Events 36 461 742

Total 694 8601 12406

Table 5: Data volume per domain: Number of trees,
story chains, and prediction chains in each domain.

ing scoring criteria and examples to prompt LLMs
to evaluate the quality of predictions. These five
metrics are also used in the evaluation of dataset
quality (see Section 4.4). Note that we use only
five of the six metrics. We exclude branch ratio-
nality because it is specifically designed for tree
structures and reflects the quality of a story tree
rather than the quality of predictions.

6 Experiments

We evaluate the effectiveness of the ForestCast
method through experiments conducted across mul-
tiple LLMs. Our goal is to examine whether the
ForestCast method effectively captures hidden rela-
tionships that LLMs can learn.

We created a test dataset for the experiments,
which includes both recent hot topics from April 13
to 20, 2025, and long-term popular topics from the
past six months, such as the US tariff policy. For
these topics, we constructed news story trees with
time spans of 20, 30, 40, 60, and 80 days, similar
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Score Scoring Criteria Example

1 (vague) Mentions general idea only; lacks specifics (ac-
tions, people, results). Uses general words (e.g.,
“attention”).

Chang’e 6 attracted widespread international
attention.

2 (somewhat specific) Little specific info, mostly vague. You may
mention the event type/reaction, not the specific
participants/actions/results.

After Chang’e 6 completed its important mis-
sion, it received some international feedback.

3 (moderately specific) Some key details (core content), giving a gen-
eral idea; may lack specifics (participants, re-
sults, background).

Chang’e 6 successfully collected and returned
samples... attracting international attention.

4 (more specific) Most key info (event, people/institutions, spe-
cific results/reactions). Core elements are rela-
tively clear.

Chang’e 6 successfully brought back samples...
space agencies from many countries expressed
congratulations.

5 (very specific) Clearly describes main events, identifies key
participants, specific actions, results/reactions.
Provides verifiable details.

Chang’e 6 successfully brought back samples...
NASA Administrator Bill Nelson sent congrat-
ulations to China, expressing pleasure at the
mission’s achievement.

Table 6: Scoring criteria and example for the specificity metric introduced in Table 1. The scoring criteria are
included in the prompt given to the LLM.

Prediction Quality Metrics Prediction Accuracy

Model Spec. Rel. Valid. Causal. Consist. Avg. pass@1 pass@3 pass@5

Qwen2.5-7B 2.91 2.55 2.50 2.83 3.14 2.79 16.22% 40.89% 56.22%
Qwen2.5-7B-DPO-irrelevant 3.02 2.63 2.56 2.89 3.21 2.86 18.27% 46.00% 62.22%
Qwen2.5-7B-DPO-fake 2.93 2.62 2.72 2.88 3.27 2.88 17.34% 42.44% 59.56%

LLaMA3.1-8B 2.90 2.53 2.49 2.77 3.10 2.76 18.00% 40.44% 55.33%
LLaMA3.1-8B-DPO-irrelevant 2.93 2.57 2.52 2.78 3.13 2.79 18.67% 46.89% 61.33%
LLaMA3.1-8B-DPO-fake 2.97 2.51 2.56 2.86 3.09 2.80 24.00% 47.78% 64.66%

Gemma2-9B 2.88 2.42 2.35 2.70 3.03 2.68 20.46% 43.56% 58.67%
Gemma2-9B-DPO-irrelevant 3.00 2.58 2.41 2.77 3.10 2.77 22.00% 49.56% 66.00%
Gemma2-9B-DPO-fake 3.02 2.60 2.44 2.87 3.15 2.82 22.22% 49.33% 65.11%

Table 7: Model performance before and after fine-tuning with NewsForest: Both the DPO-fake and DPO-
irrelevant datasets are processed based on NewsForest. We use the same temperature and top_k for same LLM in
the experiment. The quality metrics are described in Table 1 and are averaged for accurate predictions.

to the configuration of the NewsForest dataset, all
concluding on April 20, 2025. Specifically, we
reserved a 30-day period to ensure that all true
predictions could unfold.

To examine whether the NewsForest dataset
captures implicit real-world associations learn-
able by LLMs, we fine-tuned Qwen2.5-7B (Qwen
Team, 2024), LLaMA3.1-8B (Meta AI, 2024), and
Gemma2-9B (Gemma Team, 2024), using DPO-
fake and DPO-irrelevant datasets. Appendix A.4
describes fine-tuning details. Table 7 shows that:

• After fine-tuning with datasets constructed using
different rejection schemes, both the accuracy
and quality of the predictions are improved.

• As mentioned in the existing studty (Pan et al.,
2025), the fine-tuning efficiency of the DPO
dataset depends on the answers chosen. The
experimental results indicate that there is no sig-
nificant difference in performance between the

two DPO datasets.
• Among all quality metrics, validity shows the

greatest improvement after fine-tuning.

We analyze the prediction accuracy and quality
of the model at different time lengths before and
after fine-tuning. Specific results are shown in Fig-
ure 3. We observe that LLMs exhibit a marked
upward trend in predictive accuracy as the time
span increases. Quality metrics show a slight de-
cline with increasing time length. For near-term
events, LLMs tend towards bold yet effective pre-
dictions, whereas for long-term events, LLMs lean
towards stable yet unremarkable predictions.

7 Conclusion

This paper proposes ForestCast, a pipeline for open-
ended event foresting that organizes large-scale
news into story trees, mines semantic structures,
and predicts future developments. We also intro-
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Figure 2: The mean and median scores of the News-
Forest dataset across multiple metrics. The assessment
is conducted by an LLM, with results categorized into
five grades. Grade 5 denotes success, while Grade 1
indicates failure.

Figure 3: Pass@1 accuracy and average quality metrics
comparison across prediction tasks of varying durations
before and after model fine-tuning. The irregular group
represents the average accuracy of LLaMA, Qwen, and
Gemma fine-tuned on the DPO-irregular dataset. The
same applies to the fake group.

duce NewsForest, a dataset of 12,406 event chains,
and proposed an evaluation framework. Experi-
ments on multiple LLMs show that ForestCast im-
proves prediction accuracy and quality. This work
provides a practical foundation for building more
effective event forecasting systems. Our results
imply that data structures corresponding to visual-
izations useful to humans are also useful to LLMs.

Limitations

First, our dataset is limited to news articles. Other
data sources, such as social media, are also critical
sources of information about event developments in
contemporary society. Second, the automatic eval-
uation based on LLMs may not fully align with hu-

man evaluation, and future work will aim to bridge
this gap. Third, due to concerns about knowledge
leakage, our dataset covers only six months of data,
which prevents us from evaluating the ability of
LLMs to predict events beyond this period.

Ethics Statement

In this study, the ForestCast system was devel-
oped using open-source projects and the publicly
available GDELT database. These resources have
been widely used in prior studies, ensuring that no
ethical standards are compromised. The GDELT
data is available for unlimited and unrestricted use
for academic, commercial, or governmental use of
any kind without expense. Our derivative dataset,
NewsForest, is used solely within this context and
fully complies with GDELT’s terms of use.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. This work was supported by NSFC
(Grant No. 62302038) and Young Elite Scien-
tists Sponsorship Program by CAST (Grant No.
2023QNRC001). Guozheng Li is the correspond-
ing author.

References
James Allan, Ron Papka, and Victor Lavrenko. 1998.

On-line new event detection and tracking. In pro-
ceedings of the Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 37–45. ACM.

Nathanael Chambers and Daniel Jurafsky. 2008. Un-
supervised learning of narrative event chains. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics, pages 789–797.
Association for Computational Linguistics.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning.
2020. Dynamic knowledge graph based multi-event
forecasting. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, pages 1585–1595. ACM.

Xiao Ding, Zhongyang Li, Ting Liu, and Kuo Liao.
2019. ELG: an event logic graph. CoRR,
abs/1907.08015.

Li Du, Xiao Ding, Yue Zhang, Ting Liu, and Bing Qin.
2022. A graph enhanced BERT model for event
prediction.

Gemma Team. 2024. Gemma 2: Improving open
language models at a practical size. CoRR,
abs/2408.00118.

12675

https://doi.org/10.1145/290941.290954
https://aclanthology.org/P08-1090/
https://aclanthology.org/P08-1090/
https://doi.org/10.1145/3394486.3403209
https://doi.org/10.1145/3394486.3403209
http://arxiv.org/abs/1907.08015
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.206
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.206
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118


Mark Granroth-Wilding and Stephen Clark. 2016. What
happens next? event prediction using a compositional
neural network model. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 2727–
2733. AAAI Press.

Yong Guan, Hao Peng, Xiaozhi Wang, Lei Hou, and
Juanzi Li. 2024. Openep: Open-ended future event
prediction. CoRR, abs/2408.06578.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In Com-
panion Proceedings of the The Web Conference,
pages 1771–1776. International World Wide Web
Conferences Steering Committee.

Kalev Leetaru and Philip A. Schrodt. 2013. GDELT:
Global data on events, location, and tone. ISA Annual
Convention.

Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Con-
structing narrative event evolutionary graph for script
event prediction. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages
4201–4207. AAAI Press.

Li Lin, Yixin Cao, Lifu Huang, Shu’ang Li, Xuming Hu,
Lijie Wen, and Jianmin Wang. 2022. What makes
the story forward?: Inferring commonsense explana-
tions as prompts for future event generation. In The
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1098–1109. ACM.

Bang Liu, Fred X. Han, Di Niu, Linglong Kong, Kun-
feng Lai, and Yu Xu. 2020. Story forest: Extracting
events and telling stories from breaking news. Pro-
ceedings of the ACM on Conference on Information
and Knowledge Management, 14(3):31:1–31:28.

Bang Liu, Di Niu, Kunfeng Lai, Linglong Kong, and
Yu Xu. 2018. Growing story forest online from mas-
sive breaking news. CoRR, abs/1803.00189.

Yunshan Ma, Chenchen Ye, Zijian Wu, Xiang Wang,
Yixin Cao, and Tat-Seng Chua. 2023. Context-aware
event forecasting via graph disentanglement. In Pro-
ceedings of the ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 1643–1652.
ACM.

Yunshan Ma, Chenchen Ye, Zijian Wu, Xiang Wang,
Yixin Cao, Liang Pang, and Tat-Seng Chua. 2024.
SCTc-TE: A comprehensive formulation and bench-
mark for temporal event forecasting.

Meta AI. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Ramesh Nallapati, Ao Feng, Fuchun Peng, and James
Allan. 2004. Event threading within news topics. In
Proceedings of the ACM CIKM International Confer-
ence on Information and Knowledge Management,
pages 446–453. ACM.

Yu Pan, Zhongze Cai, Guanting Chen, Huaiyang Zhong,
and Chonghuan Wang. 2025. What matters in data
for dpo?

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 1532–1543. Association for Computational
Linguistics.

Qwen Team. 2024. Qwen2.5 technical report. CoRR,
abs/2412.15115.

Kira Radinsky and Eric Horvitz. 2013. Mining the web
to predict future events. In Proceedings of the ACM
international conference on Web search and data
mining, pages 255–264. ACM.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Proceedings of
the International Conference on Neural Information
Processing Systems. Curran Associates Inc.

Md Farhadur Rahman, Weimo Liu, Saad Bin Suhaim,
Saravanan Thirumuruganathan, Nan Zhang, and Gau-
tam Das. 2016. HDBSCAN: density based clustering
over location based services. CoRR, abs/1602.03730.

Huan Rong, Zhongfeng Chen, Zhenyu Lu, Xiao-ke Xu,
Kai Huang, and Victor S. Sheng. 2025. Pred-id: Fu-
ture event prediction based on event type schema
mining by graph induction and deduction. Informa-
tion Fusion, 117:102819.

Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. 2012.
Trains of thought: generating information maps. In
Proceedings of the World Wide Web Conference,
pages 899–908. ACM.

Xiaoming Shi, Siqiao Xue, Kangrui Wang, Fan Zhou,
James Y. Zhang, Jun Zhou, Chenhao Tan, and
Hongyuan Mei. 2023. Language models can im-
prove event prediction by few-shot abductive reason-
ing. In Proceedings of the International Conference
on Neural Information Processing Systems. Curran
Associates Inc.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics, pages 2140–2151. As-
sociation for Computational Linguistics.

Zhen Wang, Xi Zhou, Yating Yang, Bo Ma, Lei Wang,
Rui Dong, and Azmat Anwar. 2025. Openforecast:
A large-scale open-ended event forecasting dataset.

12676

https://doi.org/10.1609/AAAI.V30I1.10344
https://doi.org/10.1609/AAAI.V30I1.10344
https://doi.org/10.1609/AAAI.V30I1.10344
https://doi.org/10.48550/ARXIV.2408.06578
https://doi.org/10.48550/ARXIV.2408.06578
https://doi.org/10.1145/3184558.3191639
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.686.6605
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.686.6605
https://doi.org/10.24963/IJCAI.2018/584
https://doi.org/10.24963/IJCAI.2018/584
https://doi.org/10.24963/IJCAI.2018/584
https://doi.org/10.1145/3477495.3532080
https://doi.org/10.1145/3477495.3532080
https://doi.org/10.1145/3477495.3532080
https://doi.org/10.1145/3377939
https://doi.org/10.1145/3377939
http://arxiv.org/abs/1803.00189
http://arxiv.org/abs/1803.00189
https://doi.org/10.1145/3580305.3599285
https://doi.org/10.1145/3580305.3599285
http://arxiv.org/abs/2312.01052v2
http://arxiv.org/abs/2312.01052v2
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.1145/1031171.1031258
http://arxiv.org/abs/2508.18312
http://arxiv.org/abs/2508.18312
https://doi.org/10.3115/V1/D14-1162
https://doi.org/10.3115/V1/D14-1162
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.1145/2433396.2433431
https://doi.org/10.1145/2433396.2433431
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://arxiv.org/abs/1602.03730
http://arxiv.org/abs/1602.03730
https://doi.org/10.1016/J.INFFUS.2024.102819
https://doi.org/10.1016/J.INFFUS.2024.102819
https://doi.org/10.1016/J.INFFUS.2024.102819
https://doi.org/10.1145/2187836.2187957
http://papers.nips.cc/paper_files/paper/2023/hash/5e5fd18f863cbe6d8ae392a93fd271c9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5e5fd18f863cbe6d8ae392a93fd271c9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5e5fd18f863cbe6d8ae392a93fd271c9-Abstract-Conference.html
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.188
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.188
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.188
https://aclanthology.org/2025.coling-main.353/
https://aclanthology.org/2025.coling-main.353/


In Proceedings of the International Conference on
Computational Linguistics, pages 5273–5294. Asso-
ciation for Computational Linguistics.

Zhongqing Wang, Yue Zhang, and Ching-Yun Chang.
2017. Integrating order information and event re-
lation for script event prediction. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 57–67. Association for
Computational Linguistics.

Zikang Wang, Linjing Li, and Daniel Zeng. 2024. Inte-
grating relational knowledge with text sequences for
script event prediction. IEEE Transactions on Neural
Networks and Learning Systems, 35(7):9443–9454.

Yuwei Xia, Ding Wang, Qiang Liu, Liang Wang, Shu
Wu, and Xiaoyu Zhang. 2024. Chain-of-history rea-
soning for temporal knowledge graph forecasting. In
Findings of the Association for Computational Lin-
guistics, pages 16144–16159. Association for Com-
putational Linguistics.

Wenjie Xu, Ben Liu, Miao Peng, Xu Jia, and Min Peng.
2023. Pre-trained language model with prompts for
temporal knowledge graph completion. In Findings
of the Association for Computational Linguistics,
pages 7790–7803. Association for Computational
Linguistics.

Christopher C. Yang, Xiaodong Shi, and Chih-Ping
Wei. 2009. Discovering event evolution graphs from
news corpora. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans,
39(4):850–863.

Chenchen Ye, Ziniu Hu, Yihe Deng, Zijie Huang,
Mingyu Derek Ma, Yanqiao Zhu, and Wei Wang.
2024. MIRAI: evaluating LLM agents for event fore-
casting. CoRR, abs/2407.01231.

Susik Yoon, Dongha Lee, Yunyi Zhang, and Jiawei Han.
2023. Unsupervised story discovery from continuous
news streams via scalable thematic embedding. In
Proceedings of the International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 802–811. ACM.

Jinchuan Zhang, Bei Hui, Chong Mu, Ming Sun, and
Ling Tian. 2024a. Historically relevant event structur-
ing for temporal knowledge graph reasoning. CoRR,
abs/2405.10621.

Jinchuan Zhang, Ming Sun, Qian Huang, and Ling Tian.
2024b. PLEASING: exploring the historical and
potential events for temporal knowledge graph rea-
soning. Neural networks, 179:106516.

Liang Zhao. 2022. Event prediction in the big data
era: A systematic survey. ACM Computing Surveys,
54(5):94:1–94:37.

Yucheng Zhou, Xiubo Geng, Tao Shen, Jian Pei, Wen-
qiang Zhang, and Daxin Jiang. 2021. Modeling
event-pair relations in external knowledge graphs for
script reasoning. In Findings of the Association for
Computational Linguistics, pages 4586–4596. Asso-
ciation for Computational Linguistics.

A Appendix

A.1 ForestCast Method
Figure 5 shows the main interface. This section
describes the additional functions, implementation
details, and time complexity analysis.

A.1.1 Function Demonstration
Keyword Extraction. To help users quickly
grasp the development structure of the story tree,
we extract keywords for each node. Keyword ex-
traction prioritizes terms with high recurrence rates
within the same branch and low recurrence rates
across branches. Keywords are derived from a
deduplicated list of key entities associated with
each node. An example is shown in Figure 4.

Tree Folding and Unfolding. When the number
of news articles is large, the story tree may contain
too many nodes to display clearly. To address this
issue, we implement folding and unfolding func-
tions, allowing users to focus on specific branches
while maintaining an overview of the entire tree
(Figure 6).

News Data Analysis. To give users both a global
and detailed views of topic-related news, we ana-
lyze the raw news data. In the sidebar, we display
the publication patterns of news outlets over time.
Node colors represent different media sources.
Clicking a node reveals the publication distribution
of linked news articles in the sidebar (Figure 5).

Branch and Node Information Display. We
present extracted semantic information to help
users understand the event evolutionary structure.
Hovering over a branch displays the branching ra-
tionale. Hovering over a node shows a node sum-
mary. Clicking a node reveals the original informa-
tion and the article titles appear in the bottom-left
panel. Clicking a title displays the full news article
in the bottom-right panel. An example is shown in
Figure 6.

A.1.2 Prompts
The system uses the following prompts. For Sec-
tion 3.3.1, we use the prompt template “Node Sum-
mary” to generate node summary from news head-
lines. For Section 3.3.1 option 1, we use the prompt
template “Non-Fork Branch Summary” to generate
branch summaries. For Section 3.3.1 option 2, we
use the prompt template “Branch Summary and
Branching Rationale” to generate branch summary
and branching rationale.
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Figure 4: Node summary and display of keywords for event nodes in the user interface.

Node Summary

Suppose you are a journalist and you need
to help a stranger sort out the development
of an event and write a coherent summary of
the event. In that case, your task is to read
the following news headline(s) and summa-
rize the events described in the news in a
concise sentence of 80 words or fewer.
1. Pay special attention to the changes and
development of the core entity. Strictly
cover all header elements to ensure that the
logical chain is complete, the dynamic pro-
cess is clear, and the data is not lost.
2. The summary should include the cause,
process, result, time, place, and people as
much as possible.
News headlines are as follows: {News head-
lines}

Non-Fork Branch Summary

If you are a journalist and you are given a
chain of multiple news stories, please give
this news chain a 100-word summary in
English. There can only be a summary in
the answer, and no extra words are allowed.
News chain is as follows: {News chain}

Branch Summary and Branching Rationale

If you’re a journalism person, I’m going to
give you multiple follow-up stories and a
central story, and the follow-up news de-
scribes different aspects of the central news.
Your two tasks are:
1. Please give all follow-up news a differ-
entiating 2-8 word English phrase to sum-
marise the dependency relationship between
follow-up news and central news, focusing
on discovering the difference in their depen-
dency relationship and the main subject in
the news.
2. Please make a coherent English summary
of the follow-up news and the central news
in 80 words. The summary should include
time, place, person, cause, process, and re-
sult as much as possible.
The answer template is as follows (the num-
ber varies according to the actual number):
The Relationship between Follow-up News
1 and Central News: Specifics
The Relationship between Follow-up News
2 and Central News: Specifics
Summary: Summary in 80 words
Follow-up news is as follows: {Follow-up
news}
Central News is as follows: {Central News}

A.1.3 Hyperparameter Settings

We tuned hyperparameters manually through small-
scale experiments. Users do not need to adjust hy-
perparameters in practice. The tuning was based on
indicators such as number of branches, tree depth,
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Figure 5: System Interface: The left and right parts show descriptions of each panel of the interface.

Figure 6: Demonstration of event node collapsing functionality and branch branching rationale in the user interface.

tree construction time, and user comprehension
time. The following are the parameter settings:

• αparticipants = 0.6
• αlocation = 0.2
• αobject = 0.1
• αsource = 0.1
• λ = 0.2
• µ = 0.9

A.1.4 Time Complexity of Story Tree
Construction

Let m be the number of event nodes that are ob-
tained from clustering news articles, and d be the
dimension of the vector representations used for
similarity computations. The following are the
computational costs of key steps.

Computing Dependency Degrees. For each pair
of event nodes vi and vj , a dependency score
dep(i, j) is calculated based on the similarities of

lists of terms extracted from them. This involves
computing vector similarities in the d-dimensional
space. Since there are four lists, each similarity
computation takes O(d) time. Therefore, the total
time complexity for this step is:

O(d)

Attaching Nodes to the Story Tree. The nodes
are attached to the story tree sequentially. When
attaching a node v to the story tree, an attachment
score (AttachScore) is calculated. We assume that
there are m nodes in the sibling branch and the
parent branch. Since there are up to m potential
attachment positions for each of the m nodes, the
time complexity for this step is:

O(m2d)

Overall Time Complexity. The overall time
complexity of the story tree construction is:

O(m2d)
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Figure 7: Change of metric values with regard to the number of nodes.

where m is the number of event nodes and d is the
dimension of the term vectors.

Practical Efficiency. Our method is deployed
on two A6000 servers. The entire process takes
approximately 5 minutes for 800 articles, 3 minutes
for 500 articles, and 1 minute for 100 articles.

A.2 NewsForest Dataset
A.2.1 Popular Topic Selection
The extraction of “popular topics” involves the fol-
lowing steps. First, the algorithm extracts high-
frequency political entities (e.g., “United States”)
and event nouns (e.g., “election”) from news ar-
ticles from October 2024 to April 2025. Then,
these terms are manually grouped into relevant
topic phrases (e.g., “US election”). Finally, all
generated topics are manually searched for relevant
news and reviewed to ensure that they form a story
tree with predictive significance.

A.3 Evaluation Method
In the experiment, we use the Tavily search API2

to search for recent news. Specifically, the API is
set to search for the ten most relevant news items
within 10 days. We then pass the result to the
Qwen2.5-7B to determine whether the prediction
occurred. For the quality evaluation, we reuse the
first five story tree quality metrics in Table 1.

2https://www.tavily.com/

A.4 Fine-Tuning Parameters
The fine-tuning library used in this work is LLama-
Factory. The fine-tuning process is conducted on
four A6000 servers with the following parameters:

Method Parameters
• stage: DPO
• do_train: true
• finetuning_type: lora
• lora_rank: 32
• lora_target: all
• pref_beta: 0.1
• pref_loss: sigmoid

Training Parameters
• per_device_train_batch_size: 1
• gradient_accumulation_steps: 16
• learning_rate: 5.0e-6
• num_train_epochs: 6.0
• lr_scheduler_type: cosine
• warmup_ratio: 0.15
• bf16: true
• ddp_timeout: 180000000
• resume_from_checkpoint: null

Dataset Parameters
• dataset: data
• template: qwen/llama/gemmma
• overwrite_cache: true
• preprocessing_num_workers: 16
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Figure 8: Change of metric values with regard to the average chain length.

• dataloader_num_workers: 4

Evaluation Parameters
• val_size: 0.1
• per_device_eval_batch_size: 1
• eval_strategy: steps
• eval_steps: 100
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