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Abstract

Knowledge graphs are dynamic structures that
continuously evolve as new entities emerge,
often accompanied by only a handful of asso-
ciated triples. Current knowledge graph rea-
soning methods struggle in these few-shot sce-
narios due to their reliance on extensive struc-
tural information. To address this limitation,
we introduce ENGRAM, a novel approach
that enables inductive reasoning on few-shot
KGs by innovatively enriching the semantics
from both textual and structural perspectives.
Our key innovation lies in designing a task-
aware language model that activates the lan-
guage model’s in-context learning ability for
structured KG tasks, effectively bridging the
gap between unstructured natural language and
structured tasks. Unlike prior methods that in-
efficiently employ classification over exhaus-
tive candidate sets, we recast knowledge graph
reasoning from a generative perspective, allow-
ing for direct computation of inference results
without iterative enumeration. Additionally,
we propose a distant neighborhood awareness
strategy to enrich the sparse structural features
of few-shot entities. Our experimental findings
indicate that our method not only achieves state-
of-the-art performance in few-shot scenarios.
The tunable parameters of our model are ap-
proximately 1% of those in previous language
model-based methods, and the inference time
has been reduced to 1/10 of that required by
previous methods.

1 Introduction

In the real world, knowledge is constantly evolv-
ing, leading to the iterative development of knowl-
edge graphs (KGs) as structured representations of
real-world knowledge. Over time, these KGs accu-
mulate a vast amount of new knowledge, resulting
in a long-tail phenomenon (Kandpal et al., 2023).
This segment is characterized by the emergence of
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numerous new entities, each associated with only a
limited number of triples (Yan et al., 2025). Given
this context, enriching the associative information
of these low-resource entities becomes crucial, es-
pecially considering the challenges posed by scarce
data resources which intensify the complexity of
reasoning tasks. Therefore, the efficient utilization
of limited data to perform inductive reasoning on
the associative information of such entities is an
urgent issue (Qi et al., 2023a).

Current mainstream methods for knowledge
graph reasoning (KGR), such as those based on
knowledge graph embeddings (KGE), effectively
capture the associative structures of triples (Cao
et al., 2024). However, KGE is fundamentally a
transductive approach and struggles to represent en-
tities that were not present during training, limiting
its capability for inductive reasoning. As a result,
graph neural network (GNN)-based methods have
been developed. These methods inductively repre-
sent emerging entities by aggregating features from
their neighboring entities (Ding et al., 2025; Geng
et al., 2023). Nevertheless, in low-resource settings,
these GNNs often produce ambiguous structural
features due to the limited associated data, as de-
picted in Figure 1(a). Furthermore, the recent rise
in the use of language models (LMs) has led to
the development of KGR approaches that leverage
LMs (Chen et al., 2023; Zhao et al., 2025). These
methods extract features from natural language de-
scriptions of triples. However, the accuracy of lan-
guage model-based methods has not significantly
exceeded those based on GNN, and these models
also suffer from low training efficiency (Wang et al.,
2022; Ao et al., 2025).

We believe the suboptimal performance of lan-
guage models in few-shot scenarios can primarily
be attributed to: (1) Heterogeneity between struc-
tured tasks and natural language: Language
models typically process unstructured natural lan-
guage, which significantly differs from the struc-
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Natural Language Query: The profession of Jiang Wen is [ENTITY].
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…
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Figure 1: (a) In few-shot settings, GNN-based methods
often struggle with structural feature similarity due to
the sparse nature of the graph structure; (b) when pro-
cessing triple queries, language models typically rely on
manually crafted templates and need to iterate through
all candidate triples.

tured knowledge in KGs. Consequently, language
models face difficulties in directly comprehend-
ing structured triples when applied to KGR tasks.
Some methods employ manually designed prompt
templates to transform triple queries into natural
language queries (Lv et al., 2022), Figure 1(b.1)
illustrates the activation of relevant knowledge in
the language model by means of knowledge prob-
ing (Petroni et al., 2019). (2) Inefficiency of
classification-based inference pattern: Current
methods are primarily implemented through triple
classification (Wang et al., 2021), such as the link
prediction task in Figure 1(b.2). This process re-
quires iterating through all candidate triples, each
assessed by the language model to determine the
probability of the triple’s accuracy. Additionally,
this approach incurs significant computational re-
dundancy since the variation only occurs in the
candidate entities, resulting in inefficient use of
computational resources.

To bridge the gap between structured tasks
and language models, and to enhance inference
efficiency, we propose an inductivE reasoNinG
method for few-shot KGs using a task-awaRe
languAge Model (ENGRAM). First, we introduce
a task-guided prompting method that provides the
language model with task-specific examples drawn
from the few associated triples of few-shot entities.

By doing so, we activate the language model’s in-
context learning abilities (Akyürek et al., 2023),
enabling it to understand and perform structured
KG tasks without the need for manual template
design. Second, moving away from the traditional
classification paradigm, we reconceptualize link
prediction as a generative task. This shift allows
the language model to produce candidate entities
directly, significantly reducing computational over-
head by eliminating the need to iterate over all
possible candidates. We leverage a pre-built con-
textual representation pool that stores the textual
features of observed entities, facilitating simultane-
ous scoring of all candidate entities. Additionally,
we propose a strategy that incorporates informa-
tion from distant but semantically related entities
within the KG. By doing so, we construct a more
informative context for each entity, which improves
feature differentiation and, consequently, reasoning
performance. Finally, Our method integrates both
textual and structural information by computing
context scores and triple scores, which are then
used to jointly train the language model and the
GNN components.

We compared our method with current state-of-
the-art approaches based on language models and
graph structural features on benchmark datasets.
Our model demonstrates superior computational
efficiency, featuring significantly fewer tunable pa-
rameters and reducing the computational complex-
ity during the inference phase. Further experiments
focus on visual analyses of the in-context learning
ability of language models and explore the effects
of language models (BERT, RoBERTa, T5, Llama)
with different parameter scales. In summary, our
contributions are as follows:

• We propose ENGRAM to address few-shot en-
tities in KGs from the combined perspectives of
graph structure and textual information, enabling
LMs to handle structured tasks and fully utilize
the limited associated data.

• We propose a task-aware language model that
leverages the in-context learning capabilities of
LMs to complete structured link prediction tasks,
transforming link prediction into a generative
task, which allows for direct computation of can-
didate entities without iterative classification.

• Extensive experiments on benchmark datasets
demonstrate that ENGRAM achieves SOTA per-
formance. Specifically, ENGRAM uses approx-
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imately 1% of the tunable parameters required
by previous language model-based methods and
reduces inference time by an order of magnitude.

2 Related Work

Inductive reasoning Inductive reasoning in KGs
primarily addresses the emergence of new enti-
ties or relations within the graph, utilizing asso-
ciative information to represent these entities or re-
lations and establishing connections with the exist-
ing KG. MEAN (Hamaguchi et al., 2017) initially
focused on the out-of-knowledge-base entity prob-
lem, highlighting that KGE methods are transduc-
tive and cannot cope with more realistic inductive
settings. Building on MEAN, LAN (Wang et al.,
2019) introduced an attention-based feature aggre-
gation method. GraIL (Teru et al., 2020) and CoM-
PILE (Mai et al., 2021) extract subgraphs formed
around target nodes and then encode these sub-
graphs to perform reasoning on local subgraphs.
RMPI (Geng et al., 2023) and INGRAM (Lee et al.,
2023) take into account the new entities and rela-
tions appearing in the KG, constructing a relation-
view graph and obtaining representations of new
relations and entities from both relation-level and
entity-level perspectives.

Few-shot reasoning To make more efficient use
of few-shot data, a series of meta-learning-based
methods have been proposed for modeling few-
shot relations and entities. GMatching (Xiong
et al., 2018) was the first to focus on one-shot
relations in KGs. MetaR (Chen et al., 2019),
FSRL (Zhang et al., 2020), GANA (Niu et al.,
2021), and MetaP (Jiang et al., 2021) utilize in-
tricately designed GNNs to learn meta-knowledge
with generalization capabilities. GEN (Baek et al.,
2020) was the first to consider few-shot entities
within KGs. BayesKGR (Zhao et al., 2023a) esti-
mated the uncertainty in few-shot KGs and used
Bayesian neural networks to model the uncertainty
in the inference process. RawNP (Zhao et al.,
2023b) utilized neural processes to model the dis-
tribution of limited data.

Language models for reasoning In recent years,
with the rise of language models (Hu et al., 2022;
Liu et al., 2021; Zhao et al., 2024), research has be-
gun to focus on the textual information in KGs (Qi
et al., 2023b; Jiang et al., 2023). For example,
KG-BERT (Yao et al., 2019) was the first to use
the BERT model to achieve link prediction tasks

through triple classification. StAR (Wang et al.,
2021) introduced a Siamese-style textual encoder
that uses a shared-parameter model to encode both
query and candidate entities separately, enhanc-
ing inference efficiency. SimKGC (Wang et al.,
2022) proposed a contrastive learning framework,
which improved the quality and efficiency of neg-
ative sampling. CSProm-KG (Chen et al., 2023)
introduced a method based on soft prompts, embed-
ding learnable soft prompts into the triplet inputs
to reduce the training overhead of language models.
TAGREAL (Jiang et al., 2023) implemented an au-
tomated template construction method, achieving
better knowledge probing results and enhancing
the method’s scalability.

3 Preliminary

Definition 1 (Knowledge Graph with Text). A
knowledge graph can be defined as G = (E ,R, T ),
where: E is the set of entities, R is the set of rela-
tions, T ⊆ E ×R× E is the set of triples. At the
textual level, each entity and relation is not only
identified by its graph structure but also enriched
with textual descriptions that provide additional
semantic information. Formally, this can be de-
fined as: XE is an extended set of entities, where
each entity e ∈ E is associated with a descriptive
text xE

e , XE = {(e,xE
e )|e ∈ E}; XR is an ex-

tended set of relations, where each relation r ∈ R
is associated with a descriptive text xR

r , XR =
{(r,xR

r )|r ∈ R}; XT is an extended set of triples,
where each triple (e1, r, e2) not only represents the
relation between entities but also includes the de-
scriptions of these entities and relations, XT =
{((e1,xE

e1), (r,x
R
r ), (e2,x

E
e2))|(e1, r, e2)) ∈ T }.

Definition 2 (Few-shot link prediction). Emerg-
ing entities refer to entities that do not appear in the
original set of entities, denoted as e′ ∈ E ′, where
E ′∩E = ∅. These emerging entities typically have
only a few associated triples and are also known as
few-shot entities. Each few-shot entity is associated
with K triples: |{(ei, ri, e′) or (e′, ri, ei)}Ki=1| =
K, where ei ∈ E and K is a small number, such
as 1 or 3. Few-shot KGR involves completing link
prediction tasks related to few-shot entities, such
as (e′, r, ?) and (?, r, e′).

4 Method

4.1 Task-Guided Prompt
Previous approaches that employed language mod-
els for link prediction tasks often reformulated
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Figure 2: Overview of the proposed ENGRAM framework.

these tasks into cloze tasks. (Lv et al., 2022; Jiang
et al., 2023). For instance, a query like (Barack
Obama, with degree, ?) would require the construc-
tion of a prompt template such as "with degree" →
"[X] can grant a [Y]", transforming the original
query into "Barack Obama can grant a [MASK]".
This process activates related knowledge in the lan-
guage model through knowledge probing (Petroni
et al., 2019). However, the conversion of triples
to natural language can be resource-intensive, and
evaluating the efficacy of template-based knowl-
edge probing presents significant challenges.

To address these issues, we propose a task-
guided prompting method that utilizes triples di-
rectly as in-context prompts. This innovative ap-
proach provides a more intuitive and seamless con-
nection between structured knowledge and natural
language. Specifically, for each triple (e1, r, e2),
we construct formalized query-answer pairs, such
as (e1, r, ?) → e2. This reformulation transforms
the original triple into a link prediction query-
answer pair, which enables the model to more ef-
fectively understand and process structured knowl-
edge graph link prediction tasks. For an emerg-
ing entity e′, the observed associated triples are
{(ei, ri, e′) or (e′, ri, ei)}Ki=1. Thus, we can con-
struct query text xi = (xE

e′ ,x
R
ri , ?) and answer

text yi = xE
ei , with the in-context prompts for

emerging entity e′ formalized as the string C =
[x1; y1;x2; y2; ...;xK ; yK ].

4.2 Generative Strategy for Inductive
Reasoning

Current language model-based KGR methods
were mainly implemented through triple classifica-

tion (Yao et al., 2019; Wang et al., 2021). Conse-
quently, link prediction tasks are often transformed
into triple classification tasks, where all entities are
considered as candidate entities in the query, and
the classification results for all triples are computed.
The logits produced by the language model act as
scores, indicating the likelihood of each triple’s
correctness. As a result, such methods are compu-
tationally intensive and exhibit considerable redun-
dancy since only the candidate entities vary while
the query remains unchanged.

To address this, we propose a generative strategy
for inductive reasoning. Our first step involves con-
structing a Contextual Representation Pool (CRP)
to store the textual representations of observed en-
tities. This paper primarily addresses establishing
connections between emerging entities and existing
entities in the KG, where entities in the existing KG
are pre-observed. Therefore, we can pre-input all
the observed entities into the language model LM
to obtain their textual features to form the feature
matrix: P = [embe0 ; embe1 ; ...; embeN ], where
embei = LM(xE

ei) represents the embedding vec-
tor of entity ei.

Then, we concatenate the query triple x′ =
(xE

e′ ,x
R
ri , ?) and in-context prompts C =

[x1; y1;x2; y2; ...;xK ; yK ] as input to the language
model. The output features of the language model
LM represent the predicted results:

embepred = LM(
[
C;x′]). (1)

These generated feature embeddings are then mul-
tiplied by the CRP entity feature matrix and nor-
malized to compute the score for each candidate
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entity:

Context Score = softmax(P · embT
epred). (2)

By establishing the contextual representation
pool in advance, we circumvent the high compu-
tational expense associated with iterating through
all candidate triples, reducing the number of for-
ward passes through the language model from lin-
ear O(|E|) to constant O(1).

4.3 Knowledge Distribution Alignment

Language models are generally trained on large-
scale corpora, often referred to as open-world
knowledge (Song et al., 2023). In contrast, KGs
are typically constructed within specific domains,
known as closed-world knowledge. This funda-
mental difference leads to issues of inconsistent
knowledge distribution when applying language
models to KGR tasks. To address the knowledge
distribution bias, we propose an efficient knowl-
edge alignment strategy. This strategy involves
concatenating each layer of the language model
with k trainable vectors. During the training pro-
cess, we fine-tune only the prefix vectors for each
layer, while keeping the original model parameters
frozen (Liu et al., 2021).

Assuming the language model comprises L lay-
ers, each layer θl is characterized by parameters θl.
For each layer, we introduce an additional prefix
parameter Pl ∈ Rk×d, where d is the dimension
of the word vector associated with the language
model. At each layer l, the original input xl is mod-
ified by concatenating it with the prefix parameters
Pl:

x′
l = Concatenate(Pl, xl), (3)

where x′l is the modified input. With the modified
input x′l, the output yl of each layer is calculated as
follows:

yl = Fl(x
′
l; θl), (4)

where Fl is the transformation function of layer
l, and θl are the layer’s fixed parameters. The fi-
nal output of Eq. (1) is obtained by sequentially
processing the modified inputs through all layers:

LM(
[
C;x′]) = FL(...F2(F1(x

′
1; θ1); θ2)...; θL). (5)

During training, only the prefix parameters Pl are
tunable, while the core parameters of the layer θl
remain fixed.

4.4 Distant Neighborhood Awareness
To address the structural sparsity issue, we propose
a distant neighborhood awareness method to en-
hance the structural features of few-shot entities.
We classify the neighbors of few-shot entities into
two categories: direct neighbors (those directly con-
nected) and distant neighbors (second-order neigh-
bors). For a few-shot entity e′, the features of their
direct and distant neighbors are processed by two
distinct GNNs (Direct Neighbors Network and Dis-
tant Neighbors Network), respectively. The feature
extraction processes are formulated as follows:

hdirect = ReLU(
∑

ei∈N (e′)

1

|N (e′)|Wdirect · ei), (6)

hdistant = ReLU(
∑

ei∈N2(e′)

1

|N (e′)|Wdistant · ei), (7)

where N (e′) and N2(e
′) represent the sets of direct

and second-order neighbor entities of e′, respec-
tively, and Wg and bg are the network weights. To
integrate these two types of features effectively, we
have designed a gating mechanism that adaptively
adjusts the fusion weights based on the significance
of the distant neighbor features:

e′ = g(hdistant)·hdirect+(1−g(hdistant))·hdistant, (8)

g(hdistant) = σ(Wghdistant + bg), (9)

where σ is the activation function, Wg and bg are
the network weights and bias parameters, ei is the
final structural feature of entity e′.

4.5 Joint Training
During the training phase, given a query (e′, rq, ?)
where the target entity is et, the feature of the an-
swer entity is initially predicted as embepred using
the language model, as defined by Eq. (1). Sub-
sequently, the structural feature of e′ is calculated
as e′ based on the distant neighborhood awareness.
The final scoring function for the candidate triple
is therefore composed of two components:

Score(e′, rq, et) = σ cos(embepred , embet)

+ αf(e′, rq, et),
(10)

where α is a hyperparameter that modulates the
balance between the textual and structural contri-
butions to the score, and f(e′, rq, et) = −∥e′ +
rq − et∥ is the score function of KGE methods,
commonly used to assess the correctness of triples.
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In calculating the loss function, each few-shot
entity e′ possesses a query set Qi encompassing re-
lated queries. The entire model is optimized using
a hinge loss function:

L(Qi) =
∑

(e′,rq,et)∈Qi

max(γ − Score(e′, rq, et)

+ Score(e′, rq, e
−
t )),

(11)

where e−t is the corrupted entity, and γ is the mar-
gin hyperparameter used to distinguish between
positive and negative samples.

5 Experiment

5.1 Experiment Setup
Datasets. Aligned with prior research (Baek et al.,
2020), we evaluated the performance of few-shot
link prediction on the FB15K-237 and NELL-995
datasets. NELL-995 includes 3,000 emerging enti-
ties with 31,873 associated triples, while FB15K-
237 contains 5,000 emerging entities with 88,178
associated triples. In terms of textual descriptions,
we utilized the text descriptions of entities and re-
lations collected by KG-BERT (Yao et al., 2019).
Baselines. We have classified the baselines into
two categories: (1) GNN-based: MEAN (Ham-
aguchi et al., 2017) and LAN (Wang et al., 2019)
can aggregate associated triplet features of emerg-
ing entities; FSRL (Zhang et al., 2020), and
GANA (Niu et al., 2021) focus on few-shot relation-
ships within KGs and utilize a meta-learning frame-
work to model these relations, GEN (Baek et al.,
2020) and RawNP (Zhao et al., 2023b) also employ
a meta-learning framework to model few-shot en-
tities within KGs. (2) LM-based: KG-BERT (Yao
et al., 2019), StAR (Wang et al., 2021), PKGC (Lv
et al., 2022), and SimKGC (Wang et al., 2022) are
based on language models. KICGPT (Wei et al.,
2023), DIFT(Liu et al., 2024), and KoPA (Zhang
et al., 2024) are based on LLMs.
Implementation Details. We used RoBERTa-
base (Liu et al., 2019) as the initial language
model to encode textual knowledge and employed
TransE (Bordes et al., 2013) to initialize the em-
beddings for entities and relations, setting the em-
bedding dimension at 200. AdamW was chosen
as the optimizer, configured with a learning rate of
5× 10−5 and a weight decay of 0.05. The balance
between textual and structural features, denoted
by α, was maintained at 1. For each triple in the
training process, the size of negative sampling is
8. The number of prefix parameters introduced per

layer k is set to 4. The datasets are sourced from
GEN (Baek et al., 2020) and KG-BERT (Yao et al.,
2019). The experimental environment is on Ubuntu
20 with RTX 3090 * 4.
Evaluation Protocol and Metrics. During the
inference phase, for a correct triplet involving an
emerging entity, we replace the non-emerging en-
tity in the triple with other remaining entities to
form multiple corrupted triples. Both the correct
triplet and the corrupted triples are scored and
ranked to determine the rank of the correct triple.
We use Hits@n and MRR as evaluation metrics,
where Hits@n is the proportion of correct triples
within the top-n during testing, and MRR is the
average reciprocal rank of all test triples.

5.2 Main Results
Table ?? illustrates the performance of all meth-
ods under 1-shot and 3-shot scenarios, demonstrat-
ing that our method significantly outperforms cur-
rent GNN-based and LM-based methods. Among
the baselines, GNN-based methods like MEAN
and LAN perform poorly in few-shot scenarios,
whereas in the meta-learning category, methods
such as MetaR, FSRL, and GANA, although fo-
cused on modeling few-shot relations, do not ad-
equately address few-shot entities. We noted that
methods employing graph structural features, such
as GEN and RawNP, deliver performance compara-
ble to those based on language models. These ap-
proaches represent two distinct strategies for tack-
ling few-shot challenges—via graph structure and
textual analysis, respectively. GEN and RawNP
efficiently utilize limited training data to model
few-shot entities through meta-learning. In con-
trast, LM-based methods enhance few-shot infor-
mation leveraging knowledge accumulated during
the pre-training process. Our method outstrips both
categories, rectifying the shortcomings prevalent
in current language model-based approaches.

In Table ??, we evaluate the effectiveness of
our proposed method across a range of back-
bone LMs, including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020),
and Llama3-8B (Dubey et al., 2024). Given that
our method has demonstrated superior performance
compared to certain LLM-based approaches (as in-
dicated in Table ??), the objective of this experi-
ment is to further investigate its performance con-
sistency across varying scales of language models.

The results presented clearly show a general
trend where LMs with greater parameter counts
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Method
NELL-995 FB15K-237

1-shot 3-shot 1-shot 3-shot
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

MEAN 0.158 0.107 0.173 0.263 0.180 0.124 0.189 0.296 0.105 0.052 0.109 0.207 0.114 0.058 0.119 0.217
LAN 0.163 0.109 0.179 0.274 0.185 0.127 0.195 0.307 0.113 0.061 0.121 0.223 0.119 0.064 0.125 0.231
FSRL 0.067 0.054 0.068 0.091 0.085 0.064 0.095 0.126 0.097 0.065 0.104 0.156 0.090 0.054 0.096 0.150
GANA 0.090 0.057 0.101 0.147 0.093 0.060 0.104 0.158 0.103 0.048 0.109 0.184 0.110 0.061 0.112 0.201
GEN 0.282 0.206 0.320 0.421 0.291 0.217 0.333 0.433 0.367 0.282 0.410 0.530 0.382 0.289 0.430 0.565

RawNP 0.283 0.210 0.316 0.419 0.314 0.243 0.352 0.452 0.371 0.289 0.411 0.532 0.409 0.323 0.453 0.575
KG-BERT 0.154 0.101 0.168 0.267 0.157 0.103 0.171 0.261 0.115 0.061 0.124 0.237 0.121 0.065 0.129 0.238

StAR 0.217 0.150 0.233 0.330 0.236 0.151 0.255 0.399 0.328 0.243 0.332 0.478 0.344 0.250 0.351 0.507
PKGC 0.210 0.147 0.244 0.345 0.231 0.148 0.249 0.387 0.321 0.239 0.322 0.462 0.339 0.248 0.343 0.493

SimKGC 0.231 0.163 0.257 0.381 0.245 0.159 0.268 0.419 0.336 0.245 0.343 0.501 0.352 0.253 0.361 0.534
KICGPT 0.287 0.192 0.323 0.434 0.290 0.194 0.336 0.441 0.374 0.277 0.421 0.542 0.378 0.278 0.439 0.578

KoPA 0.225 0.158 0.249 0.355 0.239 0.158 0.261 0.388 0.330 0.241 0.339 0.503 0.348 0.249 0.355 0.523
DIFT 0.242 0.169 0.261 0.394 0.258 0.183 0.284 0.421 0.356 0.260 0.387 0.539 0.367 0.272 0.381 0.552

ENGRAM 0.323 0.238 0.355 0.453 0.357 0.275 0.391 0.519 0.401 0.357 0.443 0.576 0.409 0.324 0.456 0.589
ENGRAM(std) ± 0.007 ± 0.013 ± 0.015 ± 0.018 ± 0.014 ± 0.010 ± 0.012 ± 0.015 ± 0.013 ± 0.007 ± 0.009 ± 0.014 ± 0.012 ± 0.011 ± 0.012 ± 0.016

Table 1: 1-shot (1-S) and 3-shot (3-S) results on benchmark datasets.

Backbone NELL-995 FB15K-237
MRR Hits@10 MRR Hits@10

BERT-Base 0.341 0.492 0.397 0.572
BERT-Large 0.350 0.501 0.408 0.586
RoBERTa-Base 0.357 0.519 0.409 0.589
RoBERTa-Large 0.361 0.526 0.413 0.596
T5-Base 0.353 0.515 0.407 0.584
T5-Large 0.358 0.523 0.413 0.596
Llama3-8B 0.351 0.509 0.402 0.581

Table 2: Results on different LMs as backbone.

tend to exhibit enhanced performance. Nonethe-
less, an intriguing deviation is observed with the
Llama3-8B model, which underperforms relative
to smaller models. Figure 3 provides additional
insights into the effects of employing Llama3.
We propose two main explanations for this phe-
nomenon: (1) Knowledge Distribution Gap: a no-
table discrepancy exists between the knowledge dis-
tribution of Llama3 and the target KG; (2) Model
Complexity and Fine-Tuning Constraints: larger-
scale models such as Llama3 may face greater dif-
ficulty fitting limited few-shot data under standard
fine-tuning constraints.

Method NELL-995
MRR Hits@1 Hits@10

-Prompt 0.294 0.219 0.451
-Tuning 0.110 0.073 0.161
-Distant 0.341 0.267 0.499
ENGRAM 0.357 0.275 0.519

Table 3: Results of ablation models.

5.3 Ablation Study
To validate the effectiveness of each component
in our model, we conducted a series of ablation
experiments: (1) We simplified the Task-Guided

Method Tunable Parameters Complexity Inference Time

KG-BERT 125M O(|E|) 7h
StAR 125M O(|E|) 12min
SimKGC 218.9M O(|E|) 15min
ENGRAM 1.9M O(1) 55s

Table 4: Comparison of computational efficiency.

Prompt to merely inputting the query directly into
the language model (-Prompt); (2) To assess the
impact of Knowledge Distribution Alignment, we
did not fine-tune the model parameters (-Tuning);
(3) Finally, to evaluate the impact of Distant Neigh-
borhood Awareness, we represented few-shot en-
tities using only features from direct neighbors (-
Distant). The results, as shown in Table ??, in-
dicate that "-Tuning" has the most substantial im-
pact on the model, highlighting the critical role
of knowledge distribution alignment. Moreover,
task-guided prompting significantly contributes to
the model’s performance, demonstrating that in-
context prompts can effectively guide the LM in
completing link prediction tasks. Structurally, dis-
tant neighborhood awareness offers distinct advan-
tages over solely using direct neighbor features.

5.4 Efficiency Analysis

Table ?? displays the size of tunable parameters,
the computational complexity, and the inference
time required to process the same test set across dif-
ferent language model-based approaches. Notably,
the number of tunable parameters in our model is
approximately 1% of that in SimKGC and our in-
ference time is 1/10 of its. KG-BERT and StAR
are both based on the BERT-base model and in-
volve full parameter fine-tuning, resulting in sub-
stantial training overhead. During the inference
phase, inference is achieved through triple classifi-
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Prompt: (Barack Obama, graduates,?) → Columbia University
(Barack Obama, with degree,?) → Bachelor of Arts

(Barack Obama, star in,?) → The Dictator

Query Triple: (Barack Obama, lives in, ?)
Target: Chicago

Llama2 (7B):                        1. New York(0.17), 2. Washington (0.12), 3. Chicago (0.09), 4. Hawaii (0.09), 5. Indonesia (0.04) …

RoBERTa-Large (355M):     1. Chicago (0.16), 2. Homeland (0.03), 3. Oslo (0.02), 4. Brooklyn (0.02), 5. Chelsea (0.02) …

RoBERTa-Base (125M):      1. Harvard (0.06), 2. University (0.02), 3. UCLA (0.02), 4. Yale (0.01), 5. History (0.01) …

DeBERTaV3 (86M):            1. College (0.04), 2. Health (0.03), 3. History (0.01), 4. Opportunity (0.01), 5. Unicef (0.01) …

Figure 3: Results of language models with different parameter scales.

Entity Distribution
Query Triple: (Barack Obama, lives in, ?) 

Target: Chicago

(Barack Obama, graduates,?) → Columbia University
(Barack Obama, with degree,?) → Bachelor of Arts

(Barack Obama, star in,?) → The Dictator
(Barack Obama, has spouse, ?) → Michelle Obama

(Barack Obama, collaborate with, ?) → Mccain

(Barack Obama, graduates,?) → Columbia University
(Barack Obama, with degree,?) → Bachelor of Arts

(Barack Obama, star in,?) → The Dictator
(Barack Obama, has spouse, ?) → Michelle Obama

(Barack Obama, graduates,?) → Columbia University
(Barack Obama, with degree,?) → Bachelor of Arts

(Barack Obama, star in,?) → The Dictator

(Barack Obama, graduates,?) → Columbia University
(Barack Obama, with degree,?) → Bachelor of Arts

(Barack Obama, graduates,?) → Columbia University
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Figure 4: The distribution of entities output by the lan-
guage model.

cation, which has a high computational complexity
proportional to the number of entities, i.e., O(|E|).
SimKGC employs two BERT-base models and re-
lies heavily on a large number of negative samples,
which extends the training duration. In contrast,
our model introduces only a minimal number of ad-
ditional tunable parameters. Unlike SimKGC, our
contextual representation pool stores the textual
features of entities, enabling the language model to
perform a single forward computation during the
inference stage. This strategic modification sub-
stantially reduces the number of forward passes
from O(|E|) to a single pass, after which candi-
date scoring can be performed efficiently through
lightweight similarity calculations. Although the
overall complexity is not strictly constant, this de-
sign greatly streamlines the inference process and
leads to significant practical efficiency gains.

5.5 Case Study

The case study provides examples of the use of in-
context prompts for language models at different
scales. Figure 3 presents relevant queries and in-
context prompts, showcasing the predicted entities
and corresponding scores from different models.
Among the models (RoBERTa-Large, RoBERTa-
Base, and DeBERTaV3 (He et al., 2023), with se-
quentially decreasing parameter sizes), it is evident
that RoBERTa-Large produces the most accurate
predictions, while DeBERTaV3 demonstrates the
weakest performance. Notably, RoBERTa-Large
assigns the highest scores to correct answers, unlike
RoBERTa-Base and DeBERTaV3, which attribute
lower scores to their predictions. This pattern sug-
gests that models with larger parameters possess
superior in-context learning capabilities.

To further validate this observation, we per-
formed tests with the large language model Llama3,
which did not yield the most optimal prediction
outcomes. Analysis of Llama’s predictions indi-
cates that its responses are correct under the open-
world knowledge assumption, as demonstrated by
Barack Obama’s historical residencies in New York
City before his presidency and in Washington D.C.
during his tenure. This case underscores the is-
sue of knowledge distribution bias discussed in
Section 4.3 and confirms the need for the knowl-
edge distribution alignment we propose, addressing
discrepancies between historical data and current
model understanding.

Figure 4 provides the distribution of the model’s
predicted entities given 0 to 4 in-context demon-
strations. We can observe that when given 0 or 1
demonstration, the model struggles to output accu-
rate entities, and the scores for each entity are very
low. Starting from 2 demonstrations, the model
is able to output the correct entities with higher
scores. Moreover, as the number of demonstrations
increases, the scores for the correct entities also
increase and tend to stabilize.
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6 Conclusion

This paper tackles the issue of inductive reasoning
within KGs under few-shot scenarios. To tackle
this, we introduce an efficient reasoning method
that employs a task-aware language model, acti-
vating the in-context learning capabilities of the
LM and reducing the data discrepancies between
structured tasks and LMs. Additionally, we have
reconsidered the problem of inductive reasoning in
KGs from a generative perspective. Structurally,
we have enabled few-shot entities to perceive dis-
tant entities, considerably broadening their percep-
tual domain. Experimental results demonstrate sig-
nificant improvements in both the accuracy and
efficiency of inference.

Limitations

The main limitation of this work lies in the substan-
tial GPU memory consumption caused by the pre-
constructed Contextual Representation Pool during
inference, especially when testing on large-scale
knowledge graphs or using larger language models.
Therefore, it is necessary to design a more flexi-
ble and scalable feature scheduling mechanism to
reduce memory usage during the inference process.

Acknowledgements

This work was supported in part by the Na-
tional Key R&D Program of China under Grant
2023YFF0905503, National Natural Science Foun-
dation of China under Grants No.62472188.

References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas,

Tengyu Ma, and Denny Zhou. 2023. What learn-
ing algorithm is in-context learning? investigations
with linear models. In Proceedings of The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023.

Tu Ao, Yanhua Yu, Yuling Wang, Yang Deng, Zirui
Guo, Liang Pang, Pinghui Wang, Tat-Seng Chua,
Xiao Zhang, and Zhen Cai. 2025. Lightprof: A
lightweight reasoning framework for large language
model on knowledge graph. In AAAI-25, Sponsored
by the Association for the Advancement of Artificial
Intelligence, February 25 - March 4, 2025, Philadel-
phia, PA, USA, pages 23424–23432. AAAI Press.

Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang.
2020. Learning to extrapolate knowledge: Trans-
ductive few-shot out-of-graph link prediction. In
Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013, pages
2787–2795.

Jiahang Cao, Jinyuan Fang, Zaiqiao Meng, and Shang-
song Liang. 2024. Knowledge graph embedding: A
survey from the perspective of representation spaces.
ACM Comput. Surv., 56(6):159:1–159:42.

Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-
Yan Lam. 2023. Dipping plms sauce: Bridging struc-
ture and text for effective knowledge graph comple-
tion via conditional soft prompting. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 11489–11503.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen,
and Huajun Chen. 2019. Meta relational learning
for few-shot link prediction in knowledge graphs.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, pages
4216–4225.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, pages 4171–4186.

Ling Ding, Lei Huang, Zhizhi Yu, Di Jin, and Dongxiao
He. 2025. Towards global-topology relation graph
for inductive knowledge graph completion. In AAAI-
25, Sponsored by the Association for the Advance-
ment of Artificial Intelligence, February 25 - March
4, 2025, Philadelphia, PA, USA, pages 11581–11589.
AAAI Press.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
and et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang
Chen, Song Jiang, Wen Zhang, and Huajun Chen.
2023. Relational message passing for fully inductive
knowledge graph completion. In Proceedings of 39th
IEEE International Conference on Data Engineering,
ICDE 2023, pages 1221–1233.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo,
and Yuji Matsumoto. 2017. Knowledge transfer for
out-of-knowledge-base entities: A graph neural net-
work approach. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, page 1802–1808.

12664

https://doi.org/10.1609/AAAI.V39I22.34510
https://doi.org/10.1609/AAAI.V39I22.34510
https://doi.org/10.1609/AAAI.V39I22.34510
https://doi.org/10.1609/AAAI.V39I11.33260
https://doi.org/10.1609/AAAI.V39I11.33260
https://doi.org/10.48550/ARXIV.2407.21783


Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. In The Eleventh International Conference on
Learning Representations, ICLR 2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022. Lora: Low-rank adapta-
tion of large language models. In The Tenth Inter-
national Conference on Learning Representations,
ICLR 2022.

Pengcheng Jiang, Shivam Agarwal, Bowen Jin, Xuan
Wang, Jimeng Sun, and Jiawei Han. 2023. Text aug-
mented open knowledge graph completion via pre-
trained language models. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
11161–11180.

Zhiyi Jiang, Jianliang Gao, and Xinqi Lv. 2021. Metap:
Meta pattern learning for one-shot knowledge graph
completion. In Proceedings of The 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2021, pages
2232–2236.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge. In
Proceedings of International Conference on Machine
Learning, ICML 2023, volume 202, pages 15696–
15707.

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung
Whang. 2023. Ingram: Inductive knowledge graph
embedding via relation graphs. In Proceedings of In-
ternational Conference on Machine Learning, ICML
2023, volume 202, pages 18796–18809.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Yang Liu, Xiaobin Tian, Zequn Sun, and Wei Hu. 2024.
Finetuning generative large language models with
discrimination instructions for knowledge graph com-
pletion. In The Semantic Web - ISWC 2024 - 23rd
International Semantic Web Conference, Baltimore,
MD, USA, November 11-15, 2024, Proceedings, Part
I, volume 15231 of Lecture Notes in Computer Sci-
ence, pages 199–217. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li,
Zhiyuan Liu, Peng Li, and Jie Zhou. 2022. Do pre-
trained models benefit knowledge graph completion?
A reliable evaluation and a reasonable approach. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 3570–3581.

Sijie Mai, Shuangjia Zheng, Yuedong Yang, and
Haifeng Hu. 2021. Communicative message pass-
ing for inductive relation reasoning. In Proceedings
of Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, pages 4294–4302.

Guanglin Niu, Yang Li, Chengguang Tang, Ruiying
Geng, Jian Dai, Qiao Liu, Hao Wang, Jian Sun, Fei
Huang, and Luo Si. 2021. Relational learning with
gated and attentive neighbor aggregator for few-shot
knowledge graph completion. In Proceedings of The
44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR 2021, pages 213–222.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, pages 2463–2473.

Kunxun Qi, Jianfeng Du, and Hai Wan. 2023a. Learn-
ing from both structural and textual knowledge for
inductive knowledge graph completion. In Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023.

Kunxun Qi, Jianfeng Du, and Hai Wan. 2023b. Learn-
ing from both structural and textual knowledge for
inductive knowledge graph completion. In Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Xiaoshuai Song, Keqing He, and Pei Wang. 2023. Large
language models meet open-world intent discovery
and recognition: An evaluation of chatgpt. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2023,
pages 10291–10304.

Komal K. Teru, Etienne G. Denis, and William L. Hamil-
ton. 2020. Inductive relation prediction by subgraph
reasoning. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, vol-
ume 119, pages 9448–9457.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of The Web Con-
ference 2021, WWW 2021, pages 1737–1748.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022. Simkgc: Simple contrastive knowledge
graph completion with pre-trained language models.

12665

https://doi.org/10.1007/978-3-031-77844-5_11
https://doi.org/10.1007/978-3-031-77844-5_11
https://doi.org/10.1007/978-3-031-77844-5_11
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/544242770e8333875325d013328b2079-Abstract-Conference.html


In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, pages 4281–4294.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong
Pan. 2019. Logic attention based neighborhood ag-
gregation for inductive knowledge graph embedding.
In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, pages 7152–
7159.

Yanbin Wei, Qiushi Huang, Yu Zhang, and James T.
Kwok. 2023. KICGPT: large language model with
knowledge in context for knowledge graph comple-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 8667–8683. Association for
Computational Linguistics.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2018. One-shot relational
learning for knowledge graphs. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2018, pages 1980–
1990.

Cheng Yan, Feng Zhao, Xiaohui Tao, and Xiaofeng Zhu.
2025. Multi-view few-shot reasoning for emerging
entities in knowledge graphs. IEEE Trans. Big Data,
11(3):1321–1333.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for knowledge graph completion.
CoRR, abs/1909.03193.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang,
Zhenhui Li, and Nitesh V. Chawla. 2020. Few-shot
knowledge graph completion. In Proceedings of The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, pages 3041–3048.

Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu,
Wen Zhang, and Huajun Chen. 2024. Making large
language models perform better in knowledge graph
completion. In Proceedings of the 32nd ACM Inter-
national Conference on Multimedia, MM 2024, Mel-
bourne, VIC, Australia, 28 October 2024 - 1 Novem-
ber 2024, pages 233–242. ACM.

Feng Zhao, Cheng Yan, Hai Jin, and Lifang He. 2023a.
Bayeskgr: Bayesian few-shot learning for knowledge
graph reasoning. ACM Trans. Asian Low Resour.
Lang. Inf. Process., 22(6):160:1–160:21.

Ruilin Zhao, Feng Zhao, Liang Hu, and Guandong Xu.
2024. Graph reasoning transformers for knowledge-
aware question answering. In Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024,
Vancouver, Canada, pages 19652–19660. AAAI
Press.

Ruilin Zhao, Feng Zhao, and Hong Zhang. 2025. Cor-
recting on graph: Faithful semantic parsing over
knowledge graphs with large language models. In
Findings of the Association for Computational Lin-
guistics, ACL 2025, Vienna, Austria, July 27 - August

1, 2025, pages 5364–5376. Association for Computa-
tional Linguistics.

Zicheng Zhao, Linhao Luo, Shirui Pan, Quoc Viet Hung
Nguyen, and Chen Gong. 2023b. Towards few-shot
inductive link prediction on knowledge graphs: A
relational anonymous walk-guided neural process
approach. In Proceedings of Machine Learning and
Knowledge Discovery in Databases: Research Track
- European Conference, ECML PKDD 2023, volume
14171, pages 515–532.

12666

https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.580
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.580
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.580
https://doi.org/10.1109/TBDATA.2024.3453749
https://doi.org/10.1109/TBDATA.2024.3453749
http://arxiv.org/abs/1909.03193
https://doi.org/10.1145/3664647.3681327
https://doi.org/10.1145/3664647.3681327
https://doi.org/10.1145/3664647.3681327
https://doi.org/10.1609/AAAI.V38I17.29938
https://doi.org/10.1609/AAAI.V38I17.29938
https://aclanthology.org/2025.findings-acl.280/
https://aclanthology.org/2025.findings-acl.280/
https://aclanthology.org/2025.findings-acl.280/

