
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 12638–12655
November 4-9, 2025 ©2025 Association for Computational Linguistics

LoRaDA: Low-Rank Direct Attention Adaptation for Efficient LLM
Fine-tuning

Zhangming Li1,2, Qinghao Hu1,3*, Yiqun Chen1,2, Peisong Wang1,2,3,
Yifan Zhang1,2,4, Jian Cheng1,2,3*,

1The Key Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, Chinese Academy of Sciences,

2School of Artificial Intelligence, University of Chinese Academy of Sciences, 3AiRiA
4University of Chinese Academy of Science, Nanjing

{lizhangming2023,huqinghao2014,chenyiqun2021}@ia.ac.cn, {peisong.wang,yfzhang,jcheng}@nlpr.ia.ac.cn

Abstract

As the parameter size of language models
becomes extremely large, fine-tuning them
with limited resources has become a challeng-
ing task. Latest advancements in parameter-
efficient fine-tuning (PEFT) techniques allow
for adjustments to only a minor fraction of the
parameters of these LLMs. Yet, most of PEFT
methods may suffer from the following limita-
tions: (1) As the rank decreases sharply, PEFT
methods like LoRA and Adapter tuning will
exhibit significant performance degradation in
downstream tasks. (2) An accuracy gap be-
tween these methods and full fine-tuning (Full-
FT) still exists. To tackle these problems, we
propose a Low-Rank Direct Attention Adap-
tation (LoRaDA) method for efficient LLM
fine-tuning. Specifically, we introduce a novel
Low-rank Multi-head Attention Map Module
(LMAM), which can bring negative attention to
self-attention modules and learn low-rank atten-
tion weights directly, capturing the characteris-
tics of downstream tasks. Furthermore, LMAM
can serve as a plug-in to existing methods, such
as LoRA and Adapter, providing state-of-the-
art performance even with extreme low rank set-
ting. Extensive experiments on various down-
stream tasks demonstrate the superior perfor-
mance of our LoRaDA method. Specifically,
LoRaDA even outperforms the full fine-tuning
method by up to 2.1% on GLUE benchmark.
As a plug-in, LMAM boosts the accuracy of
LoRA by up to 27.7% with LLaMA-7B on
Commonsense Reasoning benchmark.

1 Introduction

Most traditional NLP tasks acquire domain knowl-
edge from extensive amounts of text data, a naive
solution is fine-tuning all model parameters. With

*Corresponding authors.

the rapid expansion of model parameters and
data volume, a multitude of large language mod-
els (LLM) have emerged, such as GPT-3 (175B)
(Brown et al., 2020), LLaMA (7B-65B) (Touvron
et al., 2023), and OPT (125M-175B) (Zhang et al.,
2022). The advent of these models has made full
fine-tuning increasingly impractical due to the enor-
mous resource consumption.

To address this challenge, researchers consider
tuning only a small subset of parameters of LLM
while keeping most parameters frozen. For ex-
ample, LoRA (Hu et al., 2021) employs the con-
cept of low-rank approximation by updating only a
subset of the parameters to fine-tuning the model.
Adapter (Houlsby et al., 2019) introduces small,
trainable modules into each layer of a pre-trained
model, allowing for efficient fine-tuning with min-
imal changes to the original model parameters.
All these methods are called parameter-efficient
fine-tuning (PEFT) , which significantly reduce the
trainable parameters and resource consumption.

However, most PEFT methods (Hu et al.,
2021; Houlsby et al., 2019), including their vari-
ants(Biderman et al., 2024; Bershatsky et al., 2024;
Yang et al., 2024), achieve lower performance com-
pared to full fine-tuning. In addition, the perfor-
mance of the latest methods (Liu et al., 2024; Yao
et al., 2024; Li et al., 2024; Zhou et al., 2024; Lin
et al., 2024; Feng et al., 2025) tend to degrade
sharply when the rank is significantly reduced.

We observe that most PEFT methods represent
attention map values as positive numbers between
0 and 1, and such a positive attention mechanism in
LLMs often allocates considerable attention to ir-
relevant contexts, degrading model performance, as
illustrated in (Ye et al., 2024; Liu et al., 2023; Kam-
radt, 2023). To cure this problem, recent works
(Naderi et al., 2024; Laplante et al., 2018; Ye et al.,

12638

2024; Meng et al., 2025) stress that negative at-
tention can cancel noise and boost the model’s
capability. For example, inspired by differential
amplifiers(Laplante et al., 2018) in electrical engi-
neering which output the difference between two
signals to eliminate common-mode noise, DIFF
Transformer(Ye et al., 2024) introduces negative
attention via a differential attention mechanism,
demonstrating the superior performance in long-
context modeling, key information retrieval, hal-
lucination mitigation and in-context learning. Po-
laFormer(Meng et al., 2025) points out that the
non-negative constraints on attention maps result
in significant information loss, leading to less dis-
criminative attention maps. Yet, these methods
aims to study new model architecture with nega-
tive attention, and such a model need to be trained
from scratch. Thus, these methods can not be di-
rectly applied in fine-tuning tasks. Based on this,
A naive approach of introducing negative atten-
tion to PEFT would be adding learnable attention
maps with both negative and non-negative values
to the original attention map. However, too many
learnable parameters in attention maps will cause
overfitting problems, as shown in (Li et al., 2025;
Li and Zhang, 2021).

Therefore we introduce a novel static plug-in
module called the Low-rank Multi-head Attention
Map (LMAM), which learns two low-rank weights
on attention maps, thus bring negative attention
to standard self-attention modules. As shown in
Figure 1 , the color blue indicates negative atten-
tions which suppress less important tokens (e.g.,
"is", "the", "Berling", "acted"), while the color red
represents salient tokens such as "Exquisitely", "su-
perbly", "deeply" and "quit". Thus it can enhance
model performance with a minimal rank and ef-
fectively capture the characteristics of downstream
tasks. As a plug-in, LMAM can enable state-of-
the-art PEFT methods to outperform Full-FT in
downstream tasks. To demonstrate the effective-
ness of our model, we conducted experiments on
multiple benchmarks such as Commonsense Rea-
soning (+1.2% performance), GLUE (+2.1% per-
formance), XSum and MT (+1.24% performance).
Our contributions can be briefly summarized as
follows:

• We propose a Low-Rank Direct Attention
Adaptation (LoRaDA) method for efficient
LLM fine-tuning, which can bring negative
attention to self-attention modules while di-

rectly learning low-rank attention weights.

• LMAM can serve as a static plug-in to ex-
isting methods, such as LoRA and Adapter
series methods, providing state-of-the-art per-
formance even with extreme low rank setting.

• Extensive experimental results on six stan-
dard benchmarks, including Commonsense
Reasoning, Long-sequence, Arithmetic Rea-
soning, GLUE, XSum and MT, demonstrate
that the proposed model performs favorably
against state-of-the-art fine-tuning methods.
Specifically, LoRaDA even outperforms the
full fine-tuning method by up to 2.1% on
GLUE benchmark. As a plug-in, LMAM
boosts the accuracy of LoRA by up to 27.7%
with LLaMA-7B on Commonsense Reason-
ing benchmark.

2 Related Works

As the size of models increases, the limitations of
full-parameter fine-tuning become apparent. The
high economic cost and the issue of catastrophic
forgetting are the two main challenges currently
faced. These issues have prompted researchers and
engineers to seek more efficient and cost-effective
fine-tuning strategies. Parameter Efficient Fine-
tuning (PEFT) involves fine-tuning a small number
of parameters in large models to reduce costs and
avoid catastrophic forgetting. The current PEFT
methods can be classified into four primary cat-
egories: LoRA-based methods (Hu et al., 2022;
Liu et al., 2024; Li et al., 2024; Biderman et al.,
2024; Bershatsky et al., 2024; Lin et al., 2024),
adapter-based methods (Houlsby et al., 2019; He
et al., 2021a; Yang et al., 2024; Li et al., 2024;
Zhou et al., 2024), prefix-based methods (Li and
Liang, 2021; Zhou et al., 2024; Lester et al., 2021;
Hambardzumyan et al., 2021), and others (Chen
et al., 2024; Wang et al., 2024; Yao et al., 2024;
Bhardwaj et al., 2024; Feng et al., 2025). The
core idea of Low-Rank Adaptation (LoRA) (Hu
et al., 2022) is to approximate the weight changes
in the model through low-rank matrix decomposi-
tion. Nevertheless, these methods exhibit consider-
able limitations, as their performance deteriorates
significantly with rank reduction, ultimately failing
to adequately capture the nuances of downstream
tasks. The second methods of PEFT is Adapter
(Houlsby et al., 2019), which adapts to new tasks by
inserting additional small network layers, known

12639

(a) Original Attention: Attn
(Neg Rat: 0.00%)

(b) LMAM Attention: Attns

(Neg Rat: 55.10%)
(c) Fused Attention: ˆAttn

(Neg Rat: 46.56%)
Figure 1: The attention heatmaps are generated using the Bert-base model on the SST2 dataset. They are derived
from attention maps of the first head in the model’s final layer. (a) represents the Original Attention generated from
the multiplication of the Query and Key matrices. (b) indicates the Attention produced by the Low-Rank Multi-head
Attention Map Module (LMAM). (c) represents the Fused Attention, obtained by adding (a) and (b). “Neg Rat"
represents ratio of negative information. Red indicates positive values, while blue indicates negative values.

as Adapter layers, into the architecture of the pre-
trained model, without the need to retrain the entire
model. The third PEFT method is Prefix-tuning (Li
and Liang, 2021), which adds a small, learnable
prefix of parameters at each model layer. These pre-
fixes serve as conditional information, guiding the
model to generate outputs that align with specific
tasks. Finally, we will introduce the other methods.
For instance, QuanTA (Chen et al., 2024) introduce
efficient high-rank fine-tuning to potential failures
of LoRA’s extreme low-rank approach in complex
downstream tasks. Feng et al. (2025) introduce a
variant of MoE that trains experts orthogonally to
encourage diversity.

3 Methodology

In this section, we begin by presenting the prelimi-
naries, including Multi-Head Attention and Differ-
ential Attention. We then give details of our pro-
posed low-rank multi-head attention map module
(LMAM). Finally, we discuss the extra operation
and memory consumption brought by LMAM.

3.1 Preliminaries

Multi-Head Attention The original Attention Map
(Attn) is computed by multiplying the query vector
Q with the transpose of the key vector K. The
specific calculation formula is as follows:

Attn = softmax(
QKT

√
d

), Q = XWQ,K = XWK

(1)
where X ∈ RN×d indicates the input feature, N
represents the input length, d denotes the feature
dimension. WQ,WK ∈ Rd×d are the weights
matrices. Q ∈ Rh×N×(d/h), K ∈ Rh×N×(d/h),
Attn ∈ Rh×N×N . h denotes the number of multi-
heads. After obtaining the Attn, it is multiplied
by the value vector V to produce the intermediate

representation of the token vectors O:

O = Attn · V, V = X ·WV (2)

where V,O ∈ Rh×N×(d/h). The outputs O are
formed as a convex combination of the value vec-
tors V , with coefficients provided by the attention
map Attn, whose values range from 0 to 1.

Differential Attention Differential Attention in
the DIFF Transformer (Ye et al., 2024) is computed
as follows:

Diff = softmax(
Q1K

T
1√

d/2
)−λsoftmax(

Q2K
T
2√

d/2
)

(3)
where [Q1;Q2] = XWQ ∈ RN×d, [K1;K2] =
XWK ∈ RN×d, Q1, Q2,K1,K2 ∈ RN×(d/2).
The value of λ can be obtained as follows:

λ = exp(λq1 · λk1)− exp(λq2 · λk2) + λinit, (4)

where λq1 , λk1 , λq2 , λk2 ∈ Rd/2 are learnable vec-
tors, and λinit ∈ (0, 1) is a constant.

3.2 Low-rank Multi-head Attention Map
Module

As highlighted in previous works (Ye et al., 2024;
Liu et al., 2023; Kamradt, 2023), despite the
widespread adoption of Transformers in large lan-
guage models, the conventional softmax-based at-
tention mechanism often allocates considerable
attention to irrelevant contexts, degrading model
performance. Moreover, PolaFormer(Meng et al.,
2025) points out that enforcing non-negative con-
straints on feature maps results in significant infor-
mation loss, leading to less discriminative attention
maps. To overcome these limitations, the DIFF
Transformer utilizes a differential attention mecha-
nism, as defined in Equations 3 and 4, introducing
negative attention to effectively suppress noise and

12640

Figure 2: The overall architecture of the proposed Low-Rank Direct Attention Adaptation (LoRaDA) for Efficient
LLM Fine-tuning. The Low-Rank Multi-head Attention Map Module, serving as the core structure of this framework,
introduces low-rank factors to construct static multi-head self-attention weights, bringing negative information to
the attention map. On the left, we apply LoRA solely to the linear transformation WQ for simplicity.

significantly enhance the model’s capability. How-
ever, this approach cannot be directly applied to
fine-tuning tasks because it alters the model ar-
chitecture by splitting the query (Q) and key (K)
matrices. A naive approach to address this issue
is to replace the term −λsoftmax(

Q2KT
2√

d/2
) with a

trainable parameter matrix W ∈ Rh×N×N , as they
share the same representation range. Consequently,
Equation 3 becomes:

Attndiff = softmax(
QKT

√
d

) +W (5)

Previous work(Li et al., 2025; Li and Zhang, 2021)
has shown that allocating too many fine-tunable
parameters can lead models to overfit and, conse-
quently, undermine their robustness. Inspired by
LoRA, we propose replacing W with two low-rank
matrices, Wa and Wb, significantly reducing the
number of trainable parameters. The resulting for-
mulation is expressed as:

Attndiff = softmax(
QKT

√
d

) +WaWb (6)

where Wa ∈ Rhs×n×r and Wb ∈ Rhs×r×n. The
variable r represents the low-rank value, while n
denotes a fixed token length that is independent of
the input. Overall, we propose the Low-rank Multi-
head Attention Map Module (LMAM), which can
bring negative attention to self-attention modules,
as illustrated in Figure 2.

To capture the token ordering, we add positional
embeddings to Wa and Wb following (Gehring
et al., 2017).

PEpos = 1/100002pos/n (7)

Wa[:, pos, :] = Wa[:, pos, :] + PEpos (8)

Wb[:, :, pos] = Wb[:, :, pos] + PEpos (9)

where pos is the position. We just add PEpos to
the second dimension of Wa, and third dimension
of Wb. During actual training, the main parameters
of the network are kept frozen, while Wa and Wb

remain trainable parameters. Parameters Wa and
Wb are multiplied through matrix multiplication to
generate an hs × n× n attention map:

Attns = (Wa ·Wb) · s (10)

where the s is a fixed hyperparameter, which con-
trols the magnitude of the Attns. Due to the multi-
plication of Wa and Wb, the resulting cumulative
product can numerically far exceed the original At-
tention Map. To achieve numerical consistency,
we introduce a scaling factor s. For decoder-only
architectures like LLaMA (Touvron et al., 2023),
Attns inherently applies a causal mask:

Attns = Attns ⊙Mcausal (11)

where ⊙ represents the dot product of the corre-
sponding positions. Mcausal is a lower triangular
matrix composed exclusively of the elements 0 and
1, used to mask the features of subsequent positions.
For other model architectures, the causal mask is
not applied. Then, the result is further added to the
original Attention Map:

ˆAttn = Attn+Attns (12)

where the + is an in-place operation. See the Sup-
plementary Materials for the exact insertion points
of Attns in the attention map across tasks, and for
the theoretical justification of our method.

Finally, this attention map is multiplied with the
value vector V in an inner product operation to
generate the final output:

O = ˆAttn · V (13)

12641

Table 1: Comparison of differences between LoRA and LMAM across various aspects.

Methods
Attention Map
(indirect/direct)

Surpass Full FT
(yes/no)

Negative Attention
(yes/no)

KV Cache
(yes/no)

LoRA indirect no no yes
LMAM direct yes yes yes

Table 2: Comparison of the distinct additional opera-
tions between LoRA and LMAM during inference.

Methods Extra Multi. Extra Add.
LoRA 0 0
LMAM 0 h {min(n,N)}2 → 0

Table 3: Comparison of additional memory consump-
tion between LMAM and Full-rank Multi-head Atten-
tion Map Module (FMAM) in a single LLM layer, where
r = 2.

Methods Training Inference

LMAM 2hn(12r + n) 2hnn
FMAM 12hnn 2hnn

LLaMA-7B (LMAM) 1.19MB 1MB
LLaMA-7B (FMAM) 6MB 1MB

LLaMA2-70B (LMAM) 2.38MB 2MB
LLaMA2-70B (FMAM) 12MB 2MB

As demonstrated in the Table 1, we further clar-
ify the differences between LoRA and LMAM
across several specific aspects. Compared to LoRA,
our method LMAM utilizes two low-rank matrices
to directly fine-tune the attention map. Addition-
ally, as shown in the Figure 1, our method intro-
duces negative information, which can address the
limitation: as the rank decreases sharply, PEFT
methods like LoRA tuning will exhibit significant
performance degradation in downstream tasks. At
last, our method can outperform full fine-tuning,
whereas LoRA cannot.

3.3 Operation and Memory Consumption

As shown in Table 2, we compare the addi-
tional computation operations between LoRA and
LMAM during inference. There are no additional
computations for the multiplication operations in
either LoRA or LMAM. In terms of addition op-
erations, LMAM incurs an additional computa-
tional cost of h {min(n,N)}2 addition operations,
which amounts to approximately 1.97 × 10−5 ×
(ta/tm) of the original LLM’s FLOPS. This over-
head becomes negligible in LLaMA-7B, where
N = 512, d = 4096, n = 128, and h = 32.
ta and tm represent the time cost of a single ad-
dition and multiplication operation, respectively.
Generally spearking, ta ≪ tm. Using ten runs on
a single NVIDIA A100 GPU for the OBQA bench-
mark(Mihaylov et al., 2018), the merged-LoRA

approach completed inference in 624.38 seconds,
while our method required 627.26 seconds—about
0.46 % slower. Furthermore, we also show the addi-
tional memory consumption in LMAM, as shown
in Table 3. We assume that the weights and ac-
tivations are stored in a 16-bit floating point for-
mat, meaning each element requires 2 bytes of stor-
age. During training, the additional memory con-
sumption includes weights parameters Wa and Wb

(4hnr), gradients (4hnr), Adam (16hnr), and activa-
tions (2hnn), resulting in a total of 2hn(12r + n),
which amounts to approximately 1.19MB in a sin-
gle LLaMA-7B layer. During the inference phase,
the offline weight Attns is directly added to the
Attn, which requires only an additional 1MB of
memory consumption in a single LLaMA-7B layer.
Even when the size of the large language model in-
creases to 70 billion parameters (LLaMA2-70B), it
requires only 2.38 MB for training and 2 MB for in-
ference. These indicates that LMAM requires only
minimal additional memory during both training
and inference.

4 Experiments

4.1 Experimental Setups

4.1.1 Datasets.

Following previous works (He et al., 2021a; Chen
et al., 2023, 2024; Liu et al., 2024; Zhou et al.,
2024), we conduct our experiments on six different
benchmark datasets. (1) GLUE benchmark (Wang
et al., 2018). It comprises eight subtasks: CoLA,
SST-2, MRPC, STS-B, QQP, MNLI, QNLI, and
RTE. (2) XSum benchmark (Narayan et al., 2018).
This is a natural language generation task primarily
focused on generating summaries for English news
articles. (3) MT benchmark (Bojar et al., 2016).
We just conduct on English to Romanian transla-
tion task. (4) Commonsense Reasoning benchmark.
It includes eight different reasoning tasks: Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov
et al., 2018), SIQA (Sap et al., 2019), WinoGrande
(Sakaguchi et al., 2020), BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), ARC-c and ARC-e (Clark
et al., 2018). (5) Long-sequence benchmark. We

12642

train on RedPajama (Weber et al., 2024) and evalu-
ate perplexity using the cleaned Arxiv Math proof-
pile dataset (Azerbayev et al., 2022), with sequence
lengths ranging from 2048 to 8192. (6) Arith-
metic Reasoning benchmark. Following QuanTA,
we use the MATH10K dataset (Hu et al., 2023)
for tuning, and evaluate testing performance on
AQuA(Ling et al., 2017), GSM8K(Cobbe et al.,
2021), MAWPS(Koncel-Kedziorski et al., 2016),
and SVAMP(Patel et al., 2021).

4.1.2 Evaluation Protocol.
The accuracy score is utilized to evaluate the per-
formance of various methods on the GLUE bench-
mark, the Commonsense Reasoning benchmark
and the Arithmetic Reasoning benchmark. The
XSUM benchmark utilizes ROUGE-1, ROUGE-2,
and ROUGE-L scores (Lin, 2004) for evaluation.
BLEU scores (Papineni et al., 2002) are applied to
the MT dataset. The Long-sequence benchmark
employs perplexity as its evaluation metric.

4.1.3 Setup.
Following the MAM Adapter (He et al., 2021a)
and SoRA (Ding et al., 2023), RoBERTaBASE(Liu
et al., 2019) and DeBERTaV3base(He et al., 2021b)
are utilized as the underlying pretrained model for
the GLUE tasks, while BARTLARGE (Lewis et al.,
2019) and mBARTLARGE(Liu, 2020) are employed
for the XSUM and MT tasks, respectively. In the
experiments, the number of attention heads varies
from one to the maximum number of heads, and the
adapter bottleneck sizes are selected from the set
{1, 2, 4, 8, 10, 16, 18, 24, 64}. We select LLaMA-
7B, LLaMA-13B, LLaMA2-7B, LLaMA2-70B,
and LLaMA3-8B to conduct large language model
fine-tuning experiments on the Commonsense Rea-
soning benchmark. For the multi-head attention
configuration, we choose the number of heads from
the set {1, 2, 4, 8, 16, 32, 64}, with corresponding
ranks chosen from the set {1, 2, 4, 8}. For the Long-
sequence benchmark, the LMAM’s rank and length
are set to 2 and 128, respectively. For the Arith-
metic Reasoning benchmark, our rank and length
are set to 2 and 256, respectively. More details can
be found in supplementary materials.

4.2 Experimental Results

4.2.1 Comparison of Performance on
Medium-size LMs.

We start by conducting experiments on a set
of medium-size LMs, including RoBERTaBASE,

BARTLARGE, and mBARTLARGE. In this setting,
our method LMAM incorporates Adapter-FFN (He
et al., 2021a) for tuning FFN modules, resulting
in a new variant called LoRaDA-A. As shown
in Table 5, LoRaDA-A (0.5%) significantly out-
performs all other fine-tuning methods while us-
ing the same proportion of trainable parameters,
achieving a 2.1% accuracy gain over Full-FT. More-
over, LMAM serves as an effective plug-in en-
hancement, boosting the accuracy of Adapter-FFN
by 3.1%. To evaluate LoRaDA-A’s effectiveness
under extreme low-rank conditions (rank ⩽ 2),
we compared LoRaDA-A (0.06%) with Adapter-
FFN (0.06%). The results show that LoRaDA-A
(0.06%) improves model performance by 6.1%,
demonstrating LMAM’s robustness even with se-
vere rank constraints. Similar experimental results
are also observed on the XSum and MT bench-
marks; the GLUE benchmark is also evaluated us-
ing DeBERTaV3base, with detailed results provided
in the supplementary materials.

4.2.2 Experiment Results on LLMs.
Our method LMAM integrates LoRA and Adapter-
FFN (He et al., 2021a) for fine-tuning the FFN
modules, resulting in a new variant called LoRaDA-
LA. Additionally, incorporating LMAM into the
QuanTA (Chen et al., 2024) method produces a
variant named LoRaDA-Q. As shown in Table 6,
LoRA achieves an average accuracy of 39.5% with
0.10% trained parameter. However, integrating the
LMAM method results in a 27.7% increase in ac-
curacy. In addition, adding LMAM to the Parallel
method (He et al., 2021a) achieves a 5.9% improve-
ment in accuracy. For the state-of-the-art method
QuanTA, incorporating LMAM further improves
model performance by 1.2%. To further demon-
strate our method’s effectiveness on more challeng-
ing tasks, we conducted experiments as shown
in Table 7. With LMAM’s length fixed at 256,
LongLoRA+LMAM consistently achieves lower
perplexity scores compared to LongLoRA alone
across a wide range of context lengths (2048–8192
tokens) in the Proof-Pile dataset. These results
highlight LMAM’s capability to handle tasks in-
volving significant variations in text length. Fur-
thermore, on Arithmetic Reasoning benchmark,
as shown in Table 8, LoRaDA-Q achieves accu-
racy improvements of 1% and 1.9% compared to
QuanTA and LoRA, respectively, reinforcing the ef-
fectiveness of LMAM as a plug-in approach. Over-
all, these experimental results strongly confirm that

12643

Table 4: Accuracy comparison of existing methods on eight Commonsense Reasoning datasets. The results for the
PEFT methods (Prefix, Series, Parallel, LoRA), ChatGPT, and DoRA are sourced from ((Liu et al., 2024)), while
others are sourced from their paper. The scores with underline denote the suboptimal results.

Model Methods # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA-7B

Prefix 0.11 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 0.99 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Parallel 3.54 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA 0.83 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
LoRA 0.10 2.3 46.1 18.3 19.7 55.2 65.4 51.9 57 39.5
IST - 68.7 81.7 77.3 82.7 78.7 80.6 62.4 80.0 76.5

SHiRA-SNIP 1.0 68.3 80.6 79.1 82.1 80.0 81.5 67.9 79.6 77.4
DoRA 0.11 51.3 42.2 77.8 25.4 78.8 78.7 62.5 78.6 61.9
DoRA 0.43 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
DoRA 0.84 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4

QuanTA 0.041 71.6 83.0 79.7 91.8 81.8 84.0 68.3 82.1 80.3
LoRaDA-LA 0.09 71.3 84.4 80.9 88.5 83.2 83.5 68.8 79.4 80.0
LoRaDA-Q 0.044 72.9 84.2 80.9 92.0 83.2 86.0 70.8 81.9 81.5

LLaMA2-7B

LoRA 0.83 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
OwLore-Full - 85.1 80.3 34.5 59.8 80.5 80.1 51.5 39.2 63.9

OwLore - 85.4 80.7 34.2 60.3 82.2 80.6 51.0 39.1 64.2
LaMDA++ 0.08 71.8 80.6 79.5 84.0 82.7 81.5 66.0 80.6 78.3

SHiRA-SNIP 1.0 70.42 81.71 79.01 89.78 80.51 83.25 68.6 81.0 79.3
OMoE-DoRA 0.73 73.1 83.3 79.0 93.0 68.4 80.1 55.3 80.0 76.5

DoRA 0.43 72.0 83.1 79.9 89.1 83.0 84.5 71.0 81.2 80.5
DoRA 0.84 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7

QuanTA 0.041 72.4 83.8 79.7 92.5 83.9 85.3 72.5 82.6 81.6
LoRaDA-LA 0.08 73.2 85.2 82.5 90.3 84.6 85.5 71.8 83.8 82.1
LoRaDA-Q 0.044 74.3 85.1 81.9 93.9 83.7 85.7 71.6 85.2 82.7

LLaMA3-8B

LoRA 0.70 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
OwLore-Full - 86.8 81.6 34.2 62.9 84.1 81.9 53.3 40.2 65.6

OwLore - 86.6 82.3 33.8 63.0 83.5 83.2 55.3 38.6 65.8
IST - 72.7 88.3 80.5 94.7 84.4 89.8 79.9 86.6 84.6

OMoE-DoRA 0.75 74.7 87.8 79.9 95.0 85.2 89.0 76.7 86.4 84.3
DoRA 0.35 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0
DoRA 0.71 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2

QuanTA 0.035 74.3 88.1 81.8 95.1 87.3 91.1 81.7 87.2 85.8
LoRaDA-LA 0.05 73.6 89.9 81.2 95.3 86.5 90.5 79.9 87.2 85.5
LoRaDA-Q 0.037 74.8 90.4 82.3 96.4 88.3 92.1 81.6 88.2 86.8

LLaMA-13B

Prefix 0.03 65.3 75.4 72.1 55.2 68.6 79.5 62.9 68.0 68.4
Series 0.80 71.8 83 79.2 88.1 82.4 82.5 67.3 81.8 79.5

Parallel 2.89 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.4
LoRA 0.67 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
DoRA 0.35 72.5 85.3 79.9 90.1 82.9 82.7 69.7 83.6 80.8

QuanTA 0.029 73.2 85.4 82.1 93.4 85.1 87.8 73.3 84.4 83.1
LoRaDA-LA 0.05 73.7 86.6 82.9 93.9 86.5 86.3 72.6 84.8 83.4
LoRaDA-Q 0.029 72.9 87.4 84.2 94.2 87.3 86.5 74.2 84.7 83.9

LLaMA2-70B LoRaDA-LA 0.029 79.2 93.0 84.9 97.2 92.7 95.2 85.0 93.0 90.0

LMAM, as a plug-in method, can substantially en-
hance model performance.

As presented in Table 4, LoRaDA-Q achieves
an accuracy improvement of 1.2% over state-of-
the-art method QuanTA on LLaMA-7B, 0.8% on
LLaMA-13B, 1.1% on LLaMA2-7B, and 1% on
LLaMA3-8B. Furthermore, LoRaDA-LA outper-
forms state-of-the-art method QuanTA by 0.3% on
LLaMA-13B and 0.5% on LLaMA2-7B in terms
of accuracy. We also conduct experiments on the
billion-parameter LLaMA2-70B model, achieving
an average accuracy of 90.0%. Finally, we evalu-
ated the stability of LoRaDA-LA, with the results
presented in the supplementary materials.

For LLaMA-7B, PEFT methods like LoRA, as
the number of parameters decreases (from 0.83%
with rank = 32 to 0.10% with rank = 4), the model
accuracy significantly drops from 74.7% to 39.5%.
For the LoRA variant method DoRA, there is also
a noticeable decline in model performance when

the rank is extremely low. Specifically, as the
parameters decrease from 0.84% to 0.11%, the
model accuracy drops from 78.4% to 61.9%. How-
ever, our method LoRaDA-LA (0.09% with rank
= 2) achieves 80.0% performance, which is 40.5%
higher than LoRA (0.10%) and 18.1% higher than
DoRA (0.11%). This indicates that while PEFT
methods and their variants with extremely low-rank
settings tend to fail, our approach LoRaDA-LA can
still maintain high model performance even with a
very low rank.

For LLaMA2-7B, we compare our method
LoRaDA-LA with additional state-of-the-art
methods, i.e., OwLore-Full(Li et al., 2024),
OwLore(Li et al., 2024), LaMDA++(Azizi
et al., 2024),SHIiRA-SNIP(Bhardwaj et al., 2024),
DoRA and OMoE-DoRA(Feng et al., 2025) in
our experiments. Under the same fine-tuning pa-
rameters ratio of 0.08%, our method still outper-
forms LaMDA++ with an average accuracy im-

12644

Table 5: Accuracy of the base model RoBERTaBASE on the dev set of GLUE. The results (Full fine-tuning, Bitfit,
Prefix, LoRA, Adapter, Adapter-FFN, MAM Adapter) for MNLI and SST2 are sourced from (He et al., 2021a). We
have made our best effort to conduct experiments on the remaining GLUE sub-tasks following the methodology of
(He et al., 2021a).

Method (# params) MNLI SST2 QQP QNLI STS-B MRPC RTE CoLA mean

Full fine-tuning (100%) 87.6±.4 94.6±.4 91.9±.1 92.8±.5 91.2±.3 90.2±.3 78.7±.4 63.6±.6 86.3

Bitfit (0.1 %)(Zaken et al., 2021) 84.7 93.7 87.3 91.0 89.5 88.1 69.8 54.0 82.2
Prefix (0.5%) 86.3±.4 94.0±.1 89.3±.1 90.8±.2 88.8±.1 85.9±.3 70.9±.4 59.9±.6 83.2
LoRA (0.5%) 87.2±.4 94.2±.2 90.3±.2 92.7±.4 90.5±.1 88.6±.3 75.4±.2 60.1±.5 84.8
Adapter (0.5%) 87.2±.2 94.2±.1 90.1±.4 92.2±.2 89.3±.1 88.2±.4 75.5±.6 60.2±.2 84.6
Adapter-FFN (0.5%) 87.5±.1 94.1±.4 90.9±.2 92.2±.1 90.7±.4 88.9±.3 76.4±.1 61.7±.6 85.3
MAM Adapter (0.5%) 87.4±.3 94.2±.3 90.7±.2 91.5±.3 89.7±.2 87.8±.6 72.8±.3 61.4±.6 84.4
AUTOPEFT (0.5%) (Zhou et al., 2024) 85.5±.2 93.2±.3 90.3±.1 91.2±.4 89.9±.2 87.1±.5 73.1±.3 62.5±.2 84.1
LoRaDA-A (0.5%) 88.2±.5 95.9±.4 92.8±.6 93.9±.3 91.0±.2 92.0±.5 83.1±.3 69.9±.3 88.4

Adapter-FFN (0.06%) 80.4±.6 92.0±.9 85.8±.5 87.9±.6 86.2±.6 84.9±.4 68.4±.5 52.6±.5 79.8
LoRaDA-A (0.06%) 86.3±.5 94.4±.5 88.9±.7 91.7±.8 91.8±.9 90.7±.3 78.5±.7 65.2±.7 85.9

Table 6: Accuracy comparison of LLaMA-7B using existing methods versus using LMAM as a plugin in these
methods.

Model Methods # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA-7B

Parallel 3.54 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
Parallel+LMAM 3.54 69.6 82.1 79.4 86.7 82.5 81.5 65.6 77.4 78.1 (+5.9)

LoRA 0.10 2.3 46.1 18.3 19.7 55.2 65.4 51.9 57 39.5
LoRA+LMAM 0.10 50.3 78.1 77.6 56.1 56.3 79.8 62.9 76.4 67.2 (+27.7)

QuanTA 0.041 71.6 83.0 79.7 91.8 81.8 84.0 68.3 82.1 80.3
QuanTA+LMAM 0.044 72.9 84.2 80.9 92.0 83.2 86.0 70.8 81.9 81.5 (+1.2)

provement of 3.8%. Besides, our method outper-
forms OwLore-Full and OwLore by 18.2% and
17.9% in average accuracy, respectively. Except
for QuanTA, DoRA achieved the highest perfor-
mance among other methods with 80.5% accuracy,
but it still falls 1.6% short of our method, despite
having 5.4 times more trainable parameters.

For LLaMA3-8B, our method LoRaDA-LA out-
performs the models LORA, DoRA, OwLore-Full,
OwLore, IST(Yao et al., 2024) and OMoE-DoRA
by 4.7%, 0.3%, 19.9%, 19.7%, 0.9% and 1.2% in
accuracy, respectively, when using only 0.05% of
tunable parameters. The comparison between the
fine-tuning methods of LLaMA-7B and LLaMA-
8B reveals that as the parameters of the larger
model increase, the parameter amount required for
fine-tuning decreases. Specifically, LoRA’s trained
parameter amount dropped from 0.83% to 0.70%,
DoRA’s from 0.84% to 0.71%, and our method’s
from 0.09% to 0.05%. Our method exhibits a more
significant reduction in the trained parameter ratio.

4.3 Ablation Study.

The proposed LoRaDA-LA contains multiple key
components (i.e., Negative information, Low-rank
attention maps, and the Position embedding). In
this section, we perform an ablation study on the
Commonsense Reasoning benchmark, and com-

pare variants of LoRaDA-LA with respect to the
following aspects to demonstrate the effectiveness
of LoRaDA-LA:

• LoRaDA-LA¬N : Attns is incorporated into
Eq.1 as Attn = softmax(QKT

√
d

+Attns)

• LoRaDA-LA¬S: Characterized by Attn =

softmax(QKT
√
d
) + softmax(Attns)

• LoRaDA-LA¬L: A variant of LoRaDA-LA,
in which Wa and Wb in LMAM are removed
and the full-rank Attns ∈ Rh×n×n is directly
fine-tuned, is referred to as FMAM.

• LoRaDA-LA¬P : A variant of LoRaDA-LA
with the Position embedding being removed.

As shown in Table 9, the removal of negative
information results in LoRaDA-LA¬N achiev-
ing 4.8% lower accuracy compared to LoRaDA-
LA. It indicates that negative information plays
a crucial role in downstream tasks, which is also
demonstrated by the performance comparison be-
tween LoRaDA-LA¬S (37.1%) and LoRaDA-
LA (80.0%). LoRaDA-LA¬L falls 7.8% behind
LoRaDA-LA in accuracy, requiring 3.6 times more
parameters. In addition, we compare the additional
memory consumption between LMAM and FMAM
within a single LLaMA-7B layer, as shown in Table

12645

Table 7: Perplexity evaluation on proof-pile(Rae et al., 2019) test split. The result of LongLoRA is sourced from
(Chen et al., 2023).

Model Methods # Params (%) Eval Context Length
(2048,PPL ↓)

Eval Context Length
(4096,PPL ↓)

Eval Context Length
(8192,PPL ↓)

LLaMA2-7B
LongLoRA 2.1% 3.20 2.91 2.72
LongLoRA+LMAM 2.1% 3.15 2.88 2.70

Table 8: Performance Comparison on Arithmetic Reasoning benchmark.The results for the LoRA and QuantTA
methods are adopted from (Chen et al., 2024).

Model Methods # Params (%) AQuA GSM8K MAWPS SVAMP Avg. w/o AQuA

LLaMA2-7B
LoRA 0.83% 17.5 65.7 91.2 80.8 79.6
QuantTA 0.19% 16.7 67.0 94.3 80.3 80.5
LoRaDA-Q (ours) 0.19% 16.8 67.3 94.6 82.5 81.5

Table 9: Ablation study of LoRaDA-LA on the LLaMA-
7B model, focusing on its performance on the Common-
sense Reasoning benchmark. Detailed experimental
results can be found in supplementary materials

Methods Negative Low-rank Position Avg. Acc

LoRaDA-LA (0.09%) ✓ ✓ ✓ 80.0
LoRaDA-LA¬N (0.09%) × ✓ ✓ 75.2
LoRaDA-LA¬S (0.09%) × ✓ ✓ 37.1
LoRaDA-LA¬L (0.32%) ✓ × ✓ 72.2
LoRaDA-LA ¬P (0.09%) ✓ ✓ × 77.1

3. During training, FMAM incurs 5.04 times the
memory cost of LMAM. This indicates that directly
tuning full-rank static attention map Attns not only
results in significant memory consumption but also
leads to a decline in model performance. Com-
pared to LoRaDA-LA¬P , LoRaDA-LA achieves
an additional gain of 2.9%. This indicates that posi-
tion embeddings enable the model to capture token
position information, thereby enhancing model per-
formance. Overall, negative information, low-rank
attention maps, and positional embeddings all play
a significant role in enhancing model performance.

5 Conclusion

In this work, we propose a Low-Rank Direct At-
tention Adaptation (LoRaDA) method for efficient
LLM fine-tuning. To address the issue of low-rank
limitations, we introduce a novel Low-rank Multi-
head Attention Map Module (LMAM), which can
bring negative attention to self-attention modules
and learn low-rank attention weights directly, cap-
turing the characteristics of downstream tasks. To
bridge the gap between full fine-tuning and existing
methods, LMAM can serve as a plug-in method
to existing methods, providing higher performance
than full fine-tuning. Extensive experimental re-
sults on six standard benchmarks demonstrate that
our model outperforms state-of-the-art approaches.

Limitations

Our research primarily focuses on applying lan-
guage models to downstream tasks; we plan to
extend this work to visual and multimodal models.

Acknowledgments

This work was supported in part by National Key
R&D Program of China (No. 2025ZD0122000),
Beijing Natural Science Foundation (L244046), the
Science and Technology Major Special Program
of Jiangsu (No.BG2024028), Jiangsu Key R&D
Program for Industry Prospect and Core Techno-
logical Innovations Project (No. BE2023016), and
Natural Science Foundation of Jiangsu Province
under Grant BK20243051.

References
Zhangir Azerbayev, Edward Ayers, and Bartosz Pi-

otrowski. 2022. Proof-pile, 2022. URL https://github.
com/zhangir-azerbayev/proof-pile.

Seyedarmin Azizi, Souvik Kundu, and Massoud Pe-
dram. 2024. Lamda: Large model fine-tuning via
spectrally decomposed low-dimensional adaptation.
arXiv preprint arXiv:2406.12832.

Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev,
Aleksandr Mikhalev, and Ivan Oseledets. 2024. Lotr:
Low tensor rank weight adaptation. arXiv preprint
arXiv:2402.01376.

Kartikeya Bhardwaj, Nilesh Prasad Pandey, Sweta
Priyadarshi, Viswanath Ganapathy, Rafael Esteves,
Shreya Kadambi, Shubhankar Borse, Paul What-
mough, Risheek Garrepalli, Mart Van Baalen, et al.
2024. Rapid switching and multi-adapter fusion
via sparse high rank adapters. arXiv preprint
arXiv:2407.16712.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan

12646

Frankle, et al. 2024. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
page 7432–7439.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, et al. 2016. Findings of
the 2016 conference on machine translation (wmt16).
In First conference on machine translation, pages
131–198. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. arXiv preprint arXiv:2309.12307.

Zhuo Chen, Rumen Dangovski, Charlotte Loh,
Owen Dugan, Di Luo, and Marin Soljačić. 2024.
Quanta: Efficient high-rank fine-tuning of llms with
quantum-informed tensor adaptation. arXiv preprint
arXiv:2406.00132.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.
Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696.

Jinyuan Feng, Zhiqiang Pu, Tianyi Hu, Dongmin Li,
Xiaolin Ai, and Huimu Wang. 2025. Omoe: Diversi-
fying mixture of low-rank adaptation by orthogonal
finetuning. arXiv preprint arXiv:2501.10062.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional se-
quence to sequence learning. In International confer-
ence on machine learning, pages 1243–1252. PMLR.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021a. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021b.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:
An adapter family for parameter-efficient fine-
tuning of large language models. arXiv preprint
arXiv:2304.01933.

Greg Kamradt. 2023. Needle in a haystack - pressure
testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack/tree/main.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 conference of the north american chapter of
the association for computational linguistics: human
language technologies, pages 1152–1157.

Philip A Laplante, Robin Cravey, Lawrence P Dun-
leavy, James L Antonakos, Rodney LeRoy, Jack East,
Nicholas E Buris, Christopher J Conant, Lawrence
Fryda, Robert William Boyd, et al. 2018. Compre-
hensive dictionary of electrical engineering. CRC
Press.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural

12647

https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.18653/v1/n19-1300
https://doi.org/10.18653/v1/n19-1300
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main

language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Dongyue Li and Hongyang Zhang. 2021. Improved reg-
ularization and robustness for fine-tuning in neural
networks. Advances in Neural Information Process-
ing Systems, 34:27249–27262.

Kunyang Li, Jean-Charles Noirot Ferrand, Ryan Sheat-
sley, Blaine Hoak, Yohan Beugin, Eric Pauley, and
Patrick McDaniel. 2025. On the robustness tradeoff
in fine-tuning. arXiv preprint arXiv:2503.14836.

Pengxiang Li, Lu Yin, Xiaowei Gao, and Shiwei Liu.
2024. Owlore: Outlier-weighed layerwise sampled
low-rank projection for memory-efficient llm fine-
tuning. arXiv preprint arXiv:2405.18380.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Cheng Lin, Lujun Li, Dezhi Li, Jie Zou, Wenhan Luo,
Wei Xue, and Yike Guo. 2024. Nora: Nested low-
rank adaptation for efficient fine-tuning large models.
arXiv preprint arXiv:2408.10280.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Y Liu. 2020. Multilingual denoising pre-training
for neural machine translation. arXiv preprint
arXiv:2001.08210.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Weikang Meng, Yadan Luo, Xin Li, Dongmei Jiang, and
Zheng Zhang. 2025. Polaformer: Polarity-aware lin-
ear attention for vision transformers. arXiv preprint
arXiv:2501.15061.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing.

Alireza Naderi, Thiziri Nait Saada, and Jared Tanner.
2024. Mind the gap: a spectral analysis of rank col-
lapse and signal propagation in transformers. arXiv
preprint arXiv:2410.07799.

Shashi Narayan, Shay B Cohen, and Mirella Lap-
ata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. arXiv preprint
arXiv:1808.08745.

Samet Oymak and Mahdi Soltanolkotabi. 2019. Over-
parameterized nonlinear learning: Gradient descent
takes the shortest path? In International Conference
on Machine Learning, pages 4951–4960. PMLR.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adversar-
ial winograd schema challenge at scale. Proceedings
of the AAAI Conference on Artificial Intelligence,
page 8732–8740.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Common-
sense reasoning about social interactions. Cornell
University - arXiv,Cornell University - arXiv.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Qibin Wang, Xiaolin Hu, Weikai Xu, Wei Liu, Jian
Luan, and Bin Wang. 2024. Pmss: Pretrained ma-
trices skeleton selection for llm fine-tuning. arXiv
preprint arXiv:2409.16722.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan
Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams,
et al. 2024. Redpajama: an open dataset for training
large language models. Advances in neural informa-
tion processing systems, 37:116462–116492.

12648

https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399

Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang.
2024. Loretta: Low-rank economic tensor-train adap-
tation for ultra-low-parameter fine-tuning of large
language models. arXiv preprint arXiv:2402.11417.

Kai Yao, Penlei Gao, Lichun Li, Yuan Zhao, Xiaofeng
Wang, Wei Wang, and Jianke Zhu. 2024. Layer-wise
importance matters: Less memory for better perfor-
mance in parameter-efficient fine-tuning of large lan-
guage models. arXiv preprint arXiv:2410.11772.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu,
Gao Huang, and Furu Wei. 2024. Differential trans-
former. arXiv preprint arXiv:2410.05258.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Ko-
rhonen. 2024. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. Transac-
tions of the Association for Computational Linguis-
tics, 12:525–542.

12649

https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

A Appendix

This supplementary material provides additional
details and results to complement the main paper.
It is organized as follows: Appendix A.1 provides
additional implementation details for LMAM. In
Appendix A.2, we present an in-depth analysis of
the experimental results, including a detailed com-
parison of performance on medium-sized language
models (LMs), evaluations of training stability, ex-
tensive ablation studies and hyperparameters anal-
ysis for LoRaDA. Appendix A.3 outlines the core
implementation details, ensuring reproducibility of
our method. Appendix A.4 showcases representa-
tive generation examples that further illustrate the
efficacy of our approach. Appendix A.5 specifies
the environment and configurations used to conduct
all experiments, facilitating a clear understanding
of the setup. Finally, Appendix A.6 presents Theo-
retical Analysis of LMAM.

A.1 More Details in LMAM
In the above discussion of LMAM, the result of
Attns is further added to the original Attention
Map, which will be categorized into the following
two cases, when n ⩽ N :

ˆAttn[:, : n, : n] = Attn[:, : n, : n] +Attns (14)

when n > N :

ˆAttn = Attn+Attns[:, : N, : N] (15)

where the + is an in-place operation and N repre-
sents the input length. For long-sequence bench-
marks—i.e., when n ≪ N—we add Attns to
the model’s attention scores for the final n tokens,
specifically as:

ˆAttn[:, N − n :, N − n :] = Attn[:, N − n :, N − n :]

+Attns .
(16)

From the viewpoint of attention computation, each
later-generated token already encapsulates all the
information from the tokens that came before it.
In our method we therefore keep the trailing to-
kens when clipping, so the model can still learn the
relevant expressions they carry. Moreover, in token-
pruning or prompt-pruning studies, many papers de-
termine attention importance precisely by inspect-
ing the last tokens in a sequence—underscoring
just how critical the final n tokens are.

Furthermore, to reduce the number of trainable
parameters, the number of heads in LMAM is often

set to be fewer than the number of heads in the
attention map. In this scenario, calculations can
proceed as follows:

ˆAttn = Attn+ repeat(Attns, [c :, 1, 1]), c =
h

hs
(17)

where repeat represents the repeat operation in
Pytorch. hs and h indicate the number of heads
in the LMAM and the original Attention Map, re-
spectively. In general, hs is divisible by h. For
instance, if h = 32, then the hs can be chosen from
1, 2, 4, 8, 16, 32.

A.2 Experiments

Table 10: Comparison of various parameter-efficient
tuning methods on XSum and MT benchmark. “†” are
results copied from MAM Adapter.

Method # params XSum (R-1/2/L) MT (BLEU)

Full fine-tuning† 100% 44.81/21.94/36.83 37.3

Pfeiffer adapter, r=600† 7.2% 44.03/20.89/35.89±.13/.10/.08 36.9±.1

LoRA (ffn), r=102† 7.2% 44.53/21.29/36.28±.14/.07/.10 36.8±.3

PA (attn, r=30) + PA (ffn, r=512)† 6.7% 44.29/21.06/36.12±.31/.19/.18 37.2±.1

Prefix tuning (attn, l=30) + LoRA (ffn, r=102)† 6.7% 44.84/21.71/36.77±.07/.05/.03 37.0±.1

MAM Adapter (l=30, r=512)† 6.7% 45.06/21.90/36.87±.08/.01/.04 37.5±.1
AUTOPEFT 6.7% 44.97/21.78/36.92±.11/.06/.08 36.9±.2

LoRaDA-A 6.7% 46.08/22.57/38.11±.09/.05/.08 38.0±.2

A.2.1 Comparison of Performance on
Medium-size LMs.

In order to assess the efficacy of our method
LoRaDA-A on other NLP tasks, we conduct exper-
iments on XSum and MT benchmarks, as shown in
Table 10. Compared to full fine-tuning, LoRaDA-
A achieves improvements of 1.27, 0.63, and 1.28
in R-1, R-2, and R-L scores, respectively, on
the XSum dataset, as well as a 0.7 increase in
BLEU score on the MT dataset. This indicates
that LoRaDA-A can outperform full fine-tuning
while using 14.9 times fewer trainable parame-
ters. For the state-of-the-art MAM Adapter method,
LoRaDA-A achieves 1.02, 0.67, and 1.24 higher R-
1, R-2, and R-L scores, respectively, on the XSum
benchmark, and a 0.5 increase in BLEU score on
the MT benchmark.

To assess the effectiveness of LoRaDA-A on
another backbone, we applied it (with LMAM’s
rank and length set to 2 and 128, respectively) to
the DeBERTaV3-base model (He et al., 2021b). As
shown in Table 11, our method outperforms SoRA
(Ding et al., 2023) and AdaLoRA (Zhang et al.,
2023) on the GLUE benchmark while using fewer
trainable parameters.

12650

Table 11: Performance Comparison on the GLUE Benchmark using DeBERTaV3-base. The results for the SoRA
and AdaLoRA are sourced from (Ding et al., 2023).

Method # Params CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.

AdaLoRA 1.27M 70.86 95.95 90.22 92.13/88.41 91.39 90.27/90.30 94.28 87.36 88.83
SoRA 0.91M 71.48 95.64 91.98 92.39/89.87 92.22 90.35/90.38 94.28 87.77 89.36
LoRaDA-A (r=2) 0.29M 78.56 96.74 93.29 93.91/91.24 92.98 90.12/90.16 94.96 86.58 90.89

Table 12: Training Stability of LoRaDA-LA on Com-
monsense Reasoning datasets (mean ± std over 3 seeds
following (He et al., 2021a)).

Model # Params (%) Avg. (%)

LLaMA-7B 0.009 80.0± 0.1
LLaMA2-7B 0.008 82.1± 0.2
LLaMA3-8B 0.05 85.5± 0.1
LLaMA-13B 0.029 83.4± 0.1

A.2.2 More Experiment Results of LMAM as
Plug-in.

As shown in Table 18, the Adapter approach
achieves an average accuracy of 46.5% with only
0.008% of trainable parameters (rank=2). How-
ever, incorporating the LMAM method into this
method yields a 21.1% improvement in accuracy.
Similarly, LoRA, utilizing 0.10% of trainable pa-
rameters (rank=4), achieves only 39.5% accuracy
in downstream tasks, indicating significant perfor-
mance degradation. By integrating LMAM with
LoRA, the accuracy improves by 27.7%, highlight-
ing the efficacy of LMAM in enhancing task per-
formance. Furthermore, DoRA, with 0.11% of
trainable parameters (rank=4), attains 61.9% ac-
curacy, while the addition of LMAM leads to a
15.8% accuracy gain. These experimental results
significant demonstrate that LMAM, as a versatile
plug-in module, can significantly enhance model
performance with extreme low rank setting.

A.2.3 Training stability.

In order to verify the training stability of LoRaDA-
A under the same low-rank setting used in Table
4, we ran the method with three different random
seeds following (He et al., 2021a) on Common-
sense Reasoning datasets. As shown in Table 12,
across four backbone sizes (LLaMA-7B, LLaMA2-
7B, LLaMA3-8B, and LLaMA-13B), LoRaDA-A
achieves consistently high performance with very
low variance (e.g.,85.5±0.1 on LLaMA3-8B), con-

(a) Layer 0, Neg Rat: 55% (b) Layer 4, Neg Rat: 51%

(c)Layer 7,Neg Rat: 53% (d)Layer 10,Neg Rat: 51%
Figure 3: Visualization of the feature information Neg-
ative Ratio across different layers of the Attention
Map in Ours (0.06%) on the SST2 test dataset using
RoBERTaBASE, with both the number of heads and rank
set to 1.

firming that our approach not only boosts accuracy
but also yields stable training behavior.

A.2.4 More Experiment Results of LoRaDA
in Ablation Studies

As shown in Table 14, we provide the detailed ab-
lation study results in Table 9 of the main paper.
Adhering to the experimental settings outlined in
Table 9 of the main paper, we conducted additional
ablation studies on the GLUE benchmark, which
are presented in Table 13. We also present a vi-
sualization of the Attention Map in LMAM, as
shown in Figure 3. Negative information predom-
inantly occupies more than half of the Attention
Map across various layers. It indicates that nega-
tive information plays a crucial role in downstream
tasks The results of these experiments can also help
validate the efficacy of key components within the
LoRaDA-A approach, including: Negative infor-
mation, Low-rank attention maps, and the Position
embedding.

A.2.5 Hyperparameters Analysis.
In this section, we conduct an independent study
on the hyperparameters within LMAM, including

12651

Table 13: Detailed experimental results of the ablation study on LoRaDA-A using RoBERTaBASE for evaluating
efficient fine-tuning performance on the GLUE benchmark.

Method (# params) MNLI SST2 QQP QNLI STS-B MRPC RTE CoLA mean

LoRaDA-A (0.5%) 88.2±.5 95.9±.4 92.8±.6 93.9±.3 91.0±.2 92.0±.5 83.1±.3 69.9±.3 88.4
LoRaDA-A¬N (0.5%) 86.5±.4 94.9±.2 90.3±.4 92.4±.3 90.2±.6 89.9±.3 78.3±.5 62.1±.7 85.6
LoRaDA-A¬S (0.5%) 63.8±.4 86.6±.7 83.6±.2 80.9±.6 45.2±.9 72.7±.3 58.9±.3 64.1±.3 69.5
LoRaDA-A¬L (23.5%) 85.0±.5 85.5±.5 87.0±.7 87.3±.8 79.8±.9 82.1±.3 53.2±.7 61.2±.7 77.6
LoRaDA-A¬P (0.5%) 87.9±.1 95.5±.2 91.1±.2 92.8±.3 91.1±.2 91.1±.5 80.4±.3 69.1±.3 87.3

Table 14: Additional ablation studies on the LLaMA-7B model, focusing on its performance on the Commonsense
Reasoning benchmark.

Model Methods # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA-7B

LoRaDA-LA 0.09 71.3 84.4 80.9 88.5 83.2 83.5 68.8 79.4 80.0
LoRaDA-LA¬N 0.09 67.0 81.1 77.4 78.4 80.0 79.2 60.2 78.4 75.2
LoRaDA-LA¬S 0.09 58.2 49.9 33.1 25.7 50.7 26.3 27.3 25.6 37.1
LoRaDA-LA¬L 0.32 68.4 80.1 77.4 53.3 78.1 80.9 64.3 75.2 72.2
LoRaDA-LA¬P 0.09 68.3 81.1 78.0 84.3 81.4 80.9 65.5 77.0 77.1

Figure 4: Results on SST2 using RoBERTaBASE across
varying attention heads and ranks within the LMAM
framework.

the number of heads and the ranks. As shown
in Figure 4, when the number of heads is consis-
tent, particularly when the number of heads is 1,
6, or 12, increasing the rank does not enhance the
model’s performance significantly. Yet, when the
rank number is fixed, increasing the number of at-
tention heads can boost the model’s performance
to over 90%, even when rank=1. This indicates
that the number of heads has a significant impact
on the model’s performance. Moreover, as the rank
increases, fewer additional heads are required to
enhance the model’s performance to over 90%.

A.3 Core Code
We represent the core code of LMAM as follows:

class Negtaive_attention(nn.Module):

Table 15: Hyperparameter configurations of LoRADA-
A for fine-tuning BARTLARGE and mBARTLARGE with
XSum and MT benchmarks. In LMAM, r, n, hs and
s represent the low-rank dimension, fixed token length,
number of heads, and scale, respectively. The underline
indicates the optimal choices.

Hyper
Datasets

XSum MT

LMAM hs 1,4,16 1,4,16
LMAM r 22,24 32,64
LMAM n 128,256,512 128,256,512
LMAM s 1 1

Adapter Rank r 512,600 800,820
Adapter Scale 4 4

Optimizer Adam Adam
Batch size 64 sents 16384 tokens

LR 3e-5,5e-5 5e-5,6e-5
weight decay 0.1 0.01

warmup updates 0 0
label smoothing 0.1 0.1

max source length 512 150
max target length 128 150

weight decay 0.01 0.01
train steps 100K 50K

max grad norm 0.1 1
Where/Adapter FFN FFN
Where/LMAM Encoder Encoder

def __init__():
super().__init__()
self.Wa = nn.Parameter(attention_heads,

num_tokens, attention_rank,
requires_grad=True)

self.Wb = nn.Parameter(attention_heads,
attention_rank,
num_tokens,requires_grad=True)
pos = torch.arange(num_tokens)
omega = torch.arange(num_tokens)
omega = omega / (num_tokens / 2)
omega = 1. / 10000**omega
self.pos_a= omega.unsqueeze(0).unsqueeze

(2)
self.pos_b= omega.unsqueeze(0).unsqueeze

12652

(0)
def forward(self, Attn):

self.wa = self.wa + self.pos_a
self.wb = self.wb + self.pos_b
Attn_s = torch.matmul(self.wa, self.wb)*

scale
Attn = Attn + Attn_s
return Attn

A.4 Generation Examples

The following showcases our proposed method,
LoRaDA-LA, based on LLaMA-7B, generating
examples for the BoolQ and OBQA datasets within
the Commonsense Reasoning benchmark.

Instruction (BoolQ)

Below is an instruction that describes a task. Write
a response that appropriately completes the request.
Instruction: Please answer the following question
with true or false, question: can a fly lay eggs in your
skin? format: true/false Please answer the following
question with true or false, question: can a fly lay
eggs in your skin? Answer format: true/false

Response

Model Response
LLaMA-7B the correct answer is true

Instruction (OBQA)

Below is an instruction that describes a task. Write a
response that appropriately completes the request.
Instruction: Please choose the correct answer to
the question: Some animals use a liquid coming
from their skin to adjust to Answer1: cold An-
swer2: water Answer3: heat Answer4: humidity
Answer format: answer1/answer2/answer3/answer4
Please choose the correct answer to the question:
Some animals use a liquid coming from their skin
to adjust to Answer1: cold Answer2: water An-
swer3: heat Answer4: humidity Answer format: an-
swer1/answer2/answer3/answer4

Response

Model Response
LLaMA-7B the correct answer is answer3

A.5 Environment and Settings

Our method is fine-tuned and evaluated across six
benchmarks: GLUE, XSum, MT, Arithmetic Rea-
soning, Long-sequence and Commonsense Rea-
soning. These benchmarks span a diverse spec-
trum of tasks, ranging from straightforward to
highly complex, and include classification, gen-
eration, translation, and reasoning challenges. Con-
ducting experiments on these tasks allows us to
comprehensively demonstrate the effectiveness of

our approach. We provide a detailed overview of
the experimental configurations for our method
through the following tables. Specifically, Table 16
lists the hyperparameters of LoRaDA-A with the
RoBERTaBASE model on the GLUE benchmark;
when using the DeBERTaV3base model, the only
modification is setting the rank to 2. Huggingface
transformers library is employed in our method.
Table 15 presents the hyperparameter values for
fine-tuning BARTLARGE and mBARTLARGE on the
XSum and MT benchmarks. For the Commonsense
Reasoning benchmark, the experimental settings
for LoRaDA-LA and LoRaDA-Q are given in Ta-
bles 19 and 17, respectively. Table 17 also reports
the configurations used in the Arithmetic Reason-
ing benchmark, while Table 19 likewise applies
to the Long-Sequence benchmark (with sequence
length set to 256). For these tasks, we conducted
experiments with medium-sized language models
(LMs) on NVIDIA RTX 3090 GPUs and large lan-
guage models (LLMs) on NVIDIA A100 GPUs.

A.6 Theoretical Analysis of LMAM
We propose the following theoretical framework to
demonstrate the effectiveness of the LMAM mod-
ule by analyzing gradient propagation paths. As
demonstrated in (Oymak and Soltanolkotabi, 2019),
a shorter gradient propagation path results in more
effective model optimization. In Proposition 1, we
prove that LMAM has shorter gradient propagation
path.

Proposition 1 For the original attention ma-
trix Attn and the low-rank attention matrix
Attns, the model propagation depth satisfies:
Depth(WQ/WK) ⩾ Depth(Wa/Wb)

Proof: It is evident that the gradient with respect
to ∇WQ

L = ∇AttnL · ∇QAttn · ∇WQ
Q follows a

longer propagation path compared to the gradient
with respect to ∇WaL = ∇AttnsL · ∇Wa(Attns)·.

12653

Table 16: Hyperparameter configurations for LoRaDA-A fine-tuning of RoBERTaBASE on the GLUE benchmark.
In LMAM, r, n, hs and s represent the low-rank dimension, fixed token length, number of heads, and scale,
respectively.

Hyper
Datasets

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

LMAM hs 3 3 3 3 3 3 3 3
LMAM r 3 3 3 3 3 3 3 3
LMAM n 512 512 256 512 256 256 512 256

LMAM 1/s 255 255 255 255 255 255 255 255
Adapter Rank r 16 16 16 16 16 16 16 16
Adapter Scale 2 2 2 2 2 2 2 2

Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Batch size 32 32 32 32 32 32 32 32

LR 3e-4 3e-4 3e-4 5e-4 1e-4 1e-4 7e-4 5e-4
weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

warmup updates 0 0 0 0 0 0 0 0
warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

label smoothing 0 0 0 0 0 0 0 0
maximum sequence length 512 512 512 512 512 512 512 512

weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Epochs 20,40 20,40 20,40 20,40 20,40 20,40 20,40 20,40

Where/Adapter FFN FFN FFN FFN FFN FFN FFN FFN

Table 17: Hyperparameter configurations for LoRaDA-Q on the Commonsense Reasoning benchmark and Arith-
metic Reasoning benchmark. In LMAM, r, n, hs and s represent the low-rank dimension, fixed token length,
number of heads, and scale, respectively. The underline indicates the optimal choices. “†” are configurations copied
from QuanTA.

Experiment Hyperparameters Values

LoRaDA-Q

Batch Size 8
Optimizer † AdamW
Scheduler † Linear Scheduler

Learning Rate† {5e-5, 1e-4}
Weight Decay † 0

Dropout† 0
LMAM r 1,2,4,8
LMAM n 128
LMAM hs 32,40

N † 4
d1-d2-· · · -dN † [16-8-8-4, 16-8-8-5]

Modules {(q_proj v_proj), (o_proj up_proj),
(o_proj down_proj)}

Table 18: Accuracy comparison of LLaMA-7B using the Adapter, LoRA, and DoRA methods, compared to
incorporating LMAM as a plugin in these methods.

Model Methods # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA-7B

Adapter (rank = 2) 0.008 62.2 51.7 55.2 33.2 68.2 34.1 31.2 36.0 46.5
Adapter+LMAM 0.008 37.8 78.9 76.1 65.5 71.7 79.2 59.6 71.6 67.6 (+21.1)

LoRA (rank = 4) 0.10 2.3 46.1 18.3 19.7 55.2 65.4 51.9 57 39.5
LoRA+LMAM 0.10 50.3 78.1 77.6 56.1 56.3 79.8 62.9 76.4 67.2 (+27.7)

DoRA (rank = 4) 0.11 51.3 42.2 77.8 25.4 78.8 78.7 62.5 78.6 61.9
DoRA+LMAM 0.11 69.6 82.1 79.7 85.6 82.7 79.9 62.8 79.9 77.7(+15.8)

12654

Table 19: Hyperparameter configurations for LoRaDA-LA applied to LLaMA-7B, LLaMA2-7B, LLaMA3-8B,
LLaMA-13B, and LLaMA2-70B models in Commonsense Reasoning benchmark. In LMAM, r, n, hs and s
represent the low-rank dimension, fixed token length, number of heads, and scale, respectively. The underline
indicates the optimal choices.

Hyperparameters (LoRaDA) LLaMA-7B LLaMA2-7B LLaMA3-8B LLaMA-13B LLaMA2-70B

LMAM hs 32 32 32 40 64
LMAM r 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4
LMAM n 128 128 128 128 128

LMAM 1/s 4096*600 4096*600 4096*1200,4096*1500 5120*600 8192*1600, 8192*1200
LoRA Rank r 1,2 1,2 1,2 1,2 1

LoRA α 2,4 2,4 2,4 2,4 2,4
Adapter Rank r 10,14,16,18,20 10,14,15,17,20 2,4,8,12 4,12,14,18,20 2,4,7,10
Adapter Scale 4 4 4 4 4

Dropout 0.05 0.05 0.05 0.05 0.05
Optimizer AdamW AdamW AdamW AdamW AdamW

LR 1e-4,2e-4 1e-4,2e-4 1e-4,2e-4 1e-4,2e-4 1e-4 ,2e-4
Batch size 4 4 4 3 2

Warmup Steps 100 100 100 100 100
Epochs 3 3 3 3 3

Where/LoRA O,Down O,Down O,Down O,Down O,Down
O,Up,Down O,Up,Down O,Up,Down O,Up,Down O,Up,Down

Where/Adapter FFN FFN FFN FFN FFN

12655

