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Abstract

Language models are often said to face a sym-
bol grounding problem. While some have ar-
gued the problem can be solved without resort
to other modalities, many have speculated that
grounded learning is more efficient. We ex-
plore this question in Othello, a simplified, rule-
based world that offers a controlled and inter-
pretable testbed for studying world understand-
ing. Building on prior work, we introduce VIS-
OTHELLO, a multi-modal model trained jointly
on move sequences and board images. Using
the Othello rule understanding task, we exam-
ine whether multi-modal learning provides ad-
vantages over text-only approaches. We further
evaluate robustness under semantically irrele-
vant perturbations and analyze the consistency
of cross-modal alignment. Our results suggest
that multi-modal training not only improves
performance and robustness but also promotes
convergence toward shared internal representa-
tions across different model architectures.

1 Introduction

Does a language model truly understand what cat
refers to? Of course, none of us fully know what
a cat is in an absolute sense, but human language
users know enough to use the word appropriately.
We can identify cats in images, infer that the furry,
mouse-loving pet someone just described is likely a
cat, and use the term in context with ease. Whether
mono-modal language models can achieve this
level of grounding remains an open question.

This paper does not aim to engage with the dis-
cussion over whether symbol grounding is in prin-
ciple impossible for mono-modal language models
(Mitchell and Krakauer, 2023; Mollo and Millière,
2023). Instead, we focus on the hypothesis that the
inclusion of multiple modalities can facilitate more
efficient learning. The question is orthogonal, but
entirely consistent with the idea that mono-modal

*Equal contribution.

language models can induce (a form of) referential
semantics (Søgaard, 2023; Huh et al., 2024).

To test this hypothesis, i.e., to what extent multi-
modal language models are more sample-efficient,
we turn to the task of learning to play Othello
with language models, a domain that offers a well-
defined, symbolic environment with clear rules and
a compact action space, making it an ideal testbed
(Li et al., 2023; Hua et al., 2024). Prior work has
used this setup to investigate emergent world rep-
resentations, training models ranging from small-
scale language models (Li et al., 2023) to large lan-
guage models (LLMs) (Yuan and Søgaard, 2025)
to predict the next move from prior moves, with
performance evaluated by next legal move accu-
racy to assess rule learning. A probing classifier
is trained to investigate the representations learned
for intermediate game states (e.g., my move vs.
your move) (Nanda et al., 2023). Evidence sug-
gests that language models can learn to track the
board state, which potentially forms a rudimentary
world model, when trained on large amounts of
sequential data.

While Li et al. (2023) showed that text-only
models can develop emergent world representa-
tions in Othello, our work extends this framework
into the multi-modal regime, by introducing VIS-
OTHELLO, an Othello model trained on sequences
of move histories and their corresponding board im-
ages (see Figure 1). For each sequence of moves,
we generate a corresponding sequence of board
state images, with each image depicting the board
at a specific time step. We then apply masking
strategies to selected move tokens and train the
model to predict the missing steps, using both the
move history and associated visual context.

Our main goal is to investigate whether access to
visual state information enhances sample efficiency
and accelerates learning. We break down the main
research questions into several related aspects:
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Figure 1: Architecture of VISOTHELLO. The model integrates visual and textual inputs by encoding board images
and corresponding move sequences using a Transformer. During pretraining, (i) a ResNet is trained to predict
the next move from the current board image; (ii) the multi-modal Transformer is pretrained with three objectives:
text-image prediction, random token masking, and future token masking.

Main question Is multi-modal (Othello) learning faster?

Sub1 Is multi-modal learning better?
Sub2 Is multi-modal grounding better?

Sub3
Do multi- and mono-modal models learn
aligned representations?

To address Sub1, we compare VISOTHELLO

against several baselines on the task of next move
prediction, where the model predicts the next to-
ken given a partial game sequence. We evaluate
the performance across varying data scales to as-
sess learning efficiency. For Sub2, we perform a
semantically irrelevant perturbation analysis by ro-
tating the board image during inference, assessing
whether the models trained on original images re-
main robust and continue to predict legal moves
accurately. Regarding Sub3, inspired by Lample
et al. (2017); Li et al. (2024b), we apply two fea-
ture alignment techniques to project intermediate
representations from different models into a shared
vector space and evaluate their similarity.

We show that multi-modal training improves
performance and sample efficiency over text-only
training. We also observe that multi-modal models
exhibit greater robustness to board rotations. Fur-
thermore, through a feature alignment analysis, we
find that representational similarity between mod-
els increases with more training data—suggesting
that, despite differences in architecture and modal-
ity, models can converge on shared internal repre-
sentations.

Contributions. We are the first to compare
the learning curves of mono-modal and multi-
modal language models on the task of Othello
move prediction and their internal representation

learning. We evaluate model robustness by test-
ing invariance to semantically irrelevant pertur-
bations (i.e., board rotations). Additionally, we
further study grounding by aligning the internal
representations of different models and modali-
ties using supervised and unsupervised methods.
Our code is available at https://github.com/
shin-ee-chen/multimodal-othello.

2 Related Work

2.1 LLMs for Game Sequence Modeling

Using AI models to play games is not a new con-
cept. Early models, such as AlphaGo, were de-
signed to master gameplay by using predefined
game rules and structured environments (Silver
et al., 2016, 2017; Feng et al., 2023). Recently,
modeling games with LLMs and examining their
understanding of game dynamics has become a pop-
ular research direction in LLM cognitive probing.
Li et al. (2023) train GPT-2 on synthetically gen-
erated Othello games, then use probing techniques
to determine whether the model develops internal
representations of the game state—effectively infer-
ring a world model. Building on this work, Nanda
et al. (2023) demonstrate that game-related knowl-
edge is linearly encoded within the model. Fol-
lowing this line, research has expanded the scope
of world knowledge acquisition in other scenarios
with more advanced probing methods (Hao et al.,
2023; Yun et al., 2023; Vafa et al., 2024). For
instance, works train similar models with other
game datasets, such as chess, maze and check-
ers, finding that the same encoding patterns hold
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in these more complex games (Karvonen, 2024;
Spies et al., 2024; Joshi et al., 2024; Karvonen
et al., 2024). More relevant to our work, Yuan and
Søgaard (2025) extend the study beyond GPT-2,
evaluating state-of-the-art LLMs (e.g., LLaMA-
2 (Touvron et al., 2023), Qwen (Bai et al., 2023))
to assess their capacity for structured game knowl-
edge representation. Hua et al. (2024) explore this
phenomenon in multilingual settings, examining
how language models encode and transfer game-
related knowledge across different languages. Our
work is the first to incorporate visual information
in Othello game understanding, providing deeper
insights into board state representations.

2.2 Multi-modal Alignment

A growing body of research explores cross-modal
alignment as a lens to understand the extent to
which language models can internalize and general-
ize knowledge from text-only inputs (Pereira et al.,
2018; Caucheteux et al., 2022; Li et al., 2024a; Ngo
and Kim, 2024). Notably, Merullo et al. (2023)
demonstrate that visual representations can be ef-
fectively projected into the linguistic embedding
space using simple linear transformations, reveal-
ing a surprising degree of structural compatibility
between visual and textual modalities. Building on
the theme, Li et al. (2024b) and Huh et al. (2024)
argue that as model capacity increases, represen-
tations across modalities tend to converge toward
a shared, modality-agnostic statistical structure of
the world. Unlike prior work focused on aligning
visual and linguistic representations of concrete ob-
jects, we extend this to abstract game mechanics,
enabling deeper insight into how models under-
stand structured environments from text alone.

3 Multi-modal Othello Training

3.1 Training Paradigm

Different from prior works that train Othello
models in an autoregressive manner by predict-
ing moves step-by-step, we adopt a BERT-style
masked language modeling approach for train-
ing VISOTHELLO. This avoids the computational
overhead and complexity of autoregressive genera-
tion, enabling efficient bidirectional reasoning over
static visual-text inputs without framing the task
as video modeling (for a detailed explanation, see
Appendix B). Specifically, we train VISOTHELLO

based on VisualBERT (Li et al., 2019).

3.2 Input Representation
Textual input. Following prior works (Li et al.,
2023; Karvonen et al., 2024), we represent each
game as a sequence of moves, where each move
at time step t is treated as a token, denoted as mt.
Our vocabulary consists of 64 unique tokens, corre-
sponding to the 64 tiles on the board. For example,
C4 and E6 correspond to the 27th and 45th token
in the vocabulary, respectively.

Image input. In addition to the textual input, we
provide the model with a sequence of correspond-
ing board images. As demonstrated in Figure 1,
each image bt represents the board state after moves
m1, m2, . . . , mt−1, and serves as visual context
for predicting the next move mt. To extract vi-
sual features, considering the differences between
Othello board images and object images in Ima-
geNet (Russakovsky et al., 2015), we pretrain an
Othello-specific image encoder using a ResNet-18
backbone (He et al., 2016). We then extract visual
features using this encoder, resulting in a visual
embedding:

vt = ϕ(bt) ∈ Rdv ,

where ϕ denotes the image encoder, and dv is the
dimensionality of the visual representation. The
image embeddings vt are treated as image tokens
to the input of models and are separated from the
text tokens by a special token [SEP].

3.3 VISOTHELLO Training
We train the VISOTHELLO model using two types
of masked language modeling (MLM) strategies
to enhance its ability to learn meaningful represen-
tations of both textual and visual game sequences.
MLM enables the model to develop a deeper un-
derstanding of game dynamics.

Random token masking. Following the training
setup of BERT and VisualBERT, we apply random
masking to the move sequence with an 80% proba-
bility, masking 15% of the move tokens at random,
while keeping the image tokens fully visible. With
the random masking task, the model learns to infer
missing information using both modalities, rein-
forcing cross-modal alignment.

Future token masking. To align with the next-
move prediction setup used in Othello-GPT (Li
et al., 2023), we additionally apply future token
masking to the game sequence with a 20% probabil-
ity. Given a textual move sequence of m1, m2, . . . ,
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ms, we randomly select a step t (1 ≤ t ≤ s) as the
prediction target, and then mask all future tokens
from mt, which are mt, mt+1, . . . , ms. To prevent
information leakage, we also mask all the image
tokens that contains the future move information,
which is vt+1, vt+2, . . . , vs. This task encourages
the model to rely on previous move sequence rather
than future information when predicting the next
move. By masking all future tokens and images
beyond a randomly selected time step, the model
is trained to make predictions in a uni-directional
manner, similar to autoregressive models. This
setup reduces dependence on bidirectional context
and fits better with the next-move prediction setup
in the Othello game.

Text-image prediction. We also adapt the
sentence-image prediction task in original Visu-
alBERT training for the Othello task. For a given
sequence of image tokens, we replace the corre-
sponding move sequence to a random sequence at
a chance of 50%. The model is trained to distin-
guish whether the text and image sequences are
from the same game via binary classification. This
task helps to train the model better learn implicit
alignments between language and vision.

Training objective. The overall training objec-
tive Ltotal is defined as the sum of the masked mod-
eling loss and the text-image prediction loss:

Ltotal = Lmask + Lti,

where the masked modeling loss Lmask combines
two components:

Lmask = α · Lrandom + (1− α) · Lfuture.

Here, Lrandom is the random token masking loss,
Lfuture is the future token masking loss, Lti is the
text-image prediction loss, and α is set to 0.8.

4 Experiments

In this section, we evaluate whether incorporating
visual information improves learning efficiency and
grounding in the Othello game setting.

4.1 Experimental Setups

Compared models. To better assess the impact
of multi-modal learning, we include text-only and
vision-only baselines for direct comparison.

Split Games Images Avg. per Game

Train 20,525 1,247,852 60.8
Validation 1,282 78,141 60.9
Test 3,850 233,975 60.8

Total 25,657 1,559,968 60.8

Table 1: Dataset statistics. The number of games and
images per split. Each game comprises a sequence of
steps, with one image per step.

Text-only models. We evaluate two text-only
models with different architectures. (i) Othello-
GPT, introduced by Li et al. (2023), is based on
GPT-2 and trained autoregressively on Othello
move sequences to predict the next move in a
purely textual setting. (ii) BERT (Devlin et al.,
2019) is trained using the same language learn-
ing objectives as VISOTHELLO, including both
random token masking and future token masking.
As BERT serves as the language backbone of our
multi-modal model, it provides a strong baseline
for isolating the contribution of visual information
in learning Othello strategies.

Vision-only models. As a vision-only baseline,
we train a ResNet-18 model (He et al., 2016) on
board images. Unlike VISOTHELLO, which pro-
cesses a sequence of board images and move to-
kens, the ResNet model is trained to predict the
next move based solely on a single board image
representing the current game state. It does not
observe any move history or future states.

Datasets. We collect a total of 25,657 real game
records from the EOTHELLO website,1 which serve
as the textual sequence inputs for our dataset. For
each recorded step in a game, we generate a cor-
responding image to capture its visual state. As
summarized in Table 1, this process yields approxi-
mately 1.56 million images, averaging around 60.8
images per game across all splits. We split the
dataset into training (80%), validation (5%), and
test (15%) sets, while maintaining a consistent num-
ber of images per game across all splits.

Evaluation metrics. When evaluating VIS-
OTHELLO, we adopt the same setup as the future
token masking objective following Li et al. (2023):
to predict the legal move at step mt, we mask all
future tokens starting from mt, and all image em-
beddings from vt+1 onward, to prevent informa-
tion leakage from future states. This setup assesses
whether a model can learn the underlying rules of

1https://www.eothello.com/
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Train Size 0 1k 3k 5k 10k 20k

Othello-GPT 7.3±0.0 20.8±2.8 62.1±15.1 66.8±18.5 70.1±19.8 79.7±2.6

BERT-S 17.1±2.7 89.5±0.9 90.5±0.5 90.8±0.4 91.8±0.1 92.9±0.1
ResNET-18-S 21.1±12.5 62.4±2.3 70.9±3.3 74.0±1.7 82.4±1.4 87.2±2.7
VISOTHELLO-S 14.4±11.3 91.3±0.5 92.9±0.9 93.6±0.3 93.8±0.3 93.8±0.3

BERT-P 16.7±2.7 88.9±1.0 90.6±0.7 91.4±0.6 91.7±0.3 92.4±0.5
ResNET-18-P 26.3±21.8 73.1±1.6 84.9±0.3 89.2±1.6 91.7±0.9 92.7±0.5
VISOTHELLO-P 25.0±16.0 91.2±0.5 92.3±0.2 93.4±0.5 93.7±0.3 93.9±0.2

Table 2: Legal move accuracy (%) for next move prediction in different models across different data sizes. We report
mean ± std over 3 runs, and highlight the best performing model of each training set size in bold. −P indicates the
model is pretrained, while −S indicates it is trained from scratch.

Train Size 0 1k 3k 5k 10k 20k

Othello-GPT 0.4±0.0 1.9±0.2 16.1±18.3 16.7±19.6 16.8±17.2 27.6±16.6

BERT-S 1.3±0.2 20.5±0.2 26.2±1.1 29.1±1.1 33.8±0.3 39.3±0.3
ResNet-18-S 1.6±0.0 10.9±0.3 14.0±0.3 15.4±0.4 18.9±0.5 21.3±0.2
VISOTHELLO-S 1.0±0.7 27.2±0.3 29.7±0.6 31.6±1.1 33.5±0.7 36.7±0.6

BERT-P 1.3±0.4 26.1±0.2 27.7±0.2 31.3±1.2 34.3±0.0 37.4±2.1
ResNet-18-P 1.5±0.2 12.9±0.5 19.5±0.8 22.1±1.6 24.8±1.7 26.7±0.1
VISOTHELLO-P 1.0±0.4 26.1±0.2 29.3±0.2 30.6±1.2 33.4±0.3 35.8±1.3

Table 3: Exact match accuracy (%) for next move prediction in different models across different data sizes. For
Othello-GPT, BERT, ResNet, and VISOTHELLO we report mean ± std over 3 runs.

Othello game from sequential move data, in con-
trast to AlphaZero (Silver et al., 2017), which focus
on the winning strategy. Accordingly, we use legal
move accuracy as our evaluation metrics. Specifi-
cally, we evaluate whether the predicted move mt,
given the move history m1, m2, . . . , mt−1, is valid
under Othello’s rules, respectively. We also report
exact match accuracy, which measures whether
the predicted move mt exactly matches the ground-
truth move, reflecting the model’s ability to repli-
cate expert gameplay.

Training details. To assess the learning effi-
ciency of mono-modal and multi-modal models,
we train all models on the full dataset (20k sam-
ples) as well as on randomly sampled subsets of
1k, 3k, 5k, and 10k examples. Training and eval-
uation are conducted with three random seeds (5,
12, and 42). For VISOTHELLO, we use the best
performing image encoder, ResNet-18 pretrained
and fine-tuned on the full 20k dataset, for feature
extraction. We also investigate the impact of pre-
training by training each model either from scratch
or from publicly available pretrained weights.2 For
training details, see Appendix C.

2For BERT, we use google-bert/bert-large-uncased;
the pretrained ResNet-18 is from the HuggingFace transform-
ers library; the pretrained VisualBERT weights are from the
Volta framework.

4.2 Experimental Results

Table 2 and 3 report the exact match and next legal
move prediction accuracy of various models across
different dataset sizes. Several key observations
emerge from these results.

Multi-modal learning is more sample efficient.
VISOTHELLO achieves high accuracy (over 91%
in next legal move prediction) with as few as 1k
training examples, while uni-modal models either
require more data or fail to reach the same per-
formance ceiling. This suggests that multi-modal
learning is more sample-efficient—VISOTHELLO

shows stronger performance at smaller scales than
uni-modal baselines. This observation aligns with
previous work from Zhuang et al. (2024).

Pretraining information is not consistently help-
ful. While pretraining improves performance in
some cases, especially in low-data regimes, its
effect is not consistent across modalities. With
ResNet-18, pretraining is very helpful at small
sizes, but its effect decreases as the dataset gets
larger. In contrast, for both BERT and VIS-
OTHELLO, pretraining does not consistently lead
to significant gains across training sizes. This ob-
servation is consistent with prior findings by Yuan
and Søgaard (2025), which suggest that linguistic
pretraining may offer limited benefit for structured,
rule-based environments such as Othello.
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Method Legal Move Accuracy

VISOTHELLO 94.03

Pooling 92.43
Area 91.80
W/O FT ResNet 92.04

W/O FTM 62.03

Table 4: Ablation results for VISOTHELLO, using dif-
ferent image encoders (Pooling, Area, ResNet without
fine-tuning) and without future token masking (W/O
FTM). All results are reported from the best validation
checkpoints with training seed 42.

4.3 Ablation Study

To evaluate the contribution of the modified com-
ponents in VISOTHELLO relative to the original
VisualBERT, we conduct ablation studies focusing
on the image encoder and the future token masking
strategy.

Image encoder. We test whether fine-tuning a
ResNet model is necessary for extracting image
features. For comparison, we consider three al-
ternatives that do not involve task-specific adap-
tation: (a) a simple pooling projection that down-
samples the raw 600× 600× 3 image into a 1200-
dimensional embedding, (b) an Area projection that
partitions the image into patches, averages pixel
values within each patch, and flattens the resized
image into a 1200-dimensional vector, and (c) a
ResNet-18 encoder without fine-tuning on Othello
images.

Future token masking. To test the necessity
of future token masking (FTM), we train VIS-
OTHELLO without this component (denoted as
W/O FTM) and compare performance with the full
model.

Results. As shown in Table 4, both the choice of
image encoder and the use of FTM substantially af-
fect performance. Replacing the fine-tuned ResNet
with simple Pooling or Area projections reduces
legal move accuracy from 94.03% to 92.43% and
91.80%, respectively, while using an unfine-tuned
ResNet yields 92.04%. These results highlight the
benefit of domain-specific adaptation for the visual
encoder. More strikingly, removing FTM causes
performance to collapse to 62.03%, underscoring
its critical role in aligning the training objective
with the causal structure of the game.
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Figure 2: Illustration of probing results for BERT and
VISOTHELLO trained with different dataset set sizes.

4.4 Probing Internal Representations

To assess whether VISOTHELLO learns meaningful
internal representations of the board state, we train
a linear probe to predict the state of each tile—i.e.,
whether it is empty, contains the player’s disc, or
the opponent’s disc—based on hidden activations
after processing a move sequence, following the
approach of Nanda et al. (2023).

Probe training. The linear probe is trained on
5,000 samples from the training set and evaluated
on the same test set used in previous experiments.
Due to architectural differences, we restrict this
analysis to VISOTHELLO and the BERT baseline.
We evaluate both models after training on 0, 5k,
and 20k examples, while keeping the probing setup
fixed across all conditions.

Results. Figure 2 shows F1 scores from linear
probes trained to predict tile-level board states from
selected layers of BERT and VISOTHELLO. When
models are randomly initialized (0 examples), VIS-
OTHELLO already encodes more board-relevant
structure than BERT, achieving substantially higher
probe performance in early layers. This may be
attributed to the use of a ResNet encoder pretrained
on Othello board images, which already encodes
useful spatial structure. As training dataset in-
creases, both models improve, but VISOTHELLO

consistently achieves higher scores—especially in
deeper layers. After training on 20k examples,
VISOTHELLO reaches 77.55 F1 at Layer 18, com-
pared to 62.28 for BERT. This suggests that VIS-
OTHELLO learns more accurate internal representa-
tions of the board state, benefiting from both multi-
modal input and architectural modifications.

5 Semantically Irrelevant Perturbation

To evaluate model robustness and generalization,
we test performance under semantically irrelevant
perturbations—input transformations that alter sur-
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face form without changing game state.

5.1 Board Rotation

We focus on board rotation as a concrete instance,
which each test board is rotated 180 degrees. As
illustrated in Figure 3, this transformation corre-
sponds to a spatial inversion: for image-based mod-
els, this involves rotating the game board in the
input image; for language-based models, it requires
flipping the row and column indices of the move
representation (e.g., D3 becomes E6, resulting in a
different move token ID).

Move: G2

Original (Training)

Rotated (Testing)

Move: Initial

Move: Initial Move: C4

…

…

Move: F5

Move: B7

Figure 3: Illustration of Rotation 180◦. A 180◦ rotation
preserves game dynamics due to the board’s inherent
symmetry and the uniformity of move rules, making
such transformations invariant under play.

We apply the rotation only at test time, evalu-
ating models that were trained on the original (un-
rotated) training data. All models are assessed on
their ability to predict both the next legal move and
the exact next move, as described in Section 4. This
setup allows us to examine whether models rely on
absolute visual or positional cues, or whether they
have learned more abstract, generalizable represen-
tations of the board state.

As shown in Figure 4, BERT remains rela-
tively robust under board rotation, with accuracy
of 90–93% across all settings. This stability is ex-
pected: since BERT operates on symbolic move
sequences, board rotation can be handled through a
deterministic remapping of move tokens (e.g., D3
becomes E6). In contrast, ResNet-18 suffers a sub-
stantial drop in accuracy under rotation, falling
to 28–35% depending on training size and pre-
training. This suggests the model fails to learn
rotation-invariant representations and relies heav-
ily on absolute spatial patterns. Lacking access
to move history or turn information, ResNet de-

pends on ambiguous visual cues that can be easily
disrupted—highlighting a key limitation of purely
visual models in game playing tasks like Othello.

VISOTHELLO, which combines ResNet’s image
features with BERT’s move sequence encoding,
maintains high accuracy after rotation (91–93%).
Compared with ResNet, VISOTHELLO receives ex-
plicit sequence information, including the player
turn and previous moves, which helps disambiguate
the rotated board. The language modality fur-
ther guides the interpretation of visual features,
enabling the model to maintain stable predictions
under spatial transformations. This result illustrates
the strength of multi-modal grounding: by align-
ing perceptual input with symbolic context, VIS-
OTHELLO overcomes the spatial brittleness seen
in purely visual models.

6 Feature Alignment

We perform representation alignment across mod-
els trained on Othello game sequences to assess
whether models trained on different modalities
(i.e., image and text) learn similar representations.
Through this, we investigate whether modality-
specific models encode analogous patterns that are
fundamental to rule-following gameplay.

6.1 Alignment Method
We extract intermediate representations, denoted
as Hi, from different models for alignment, using
the same input sequence, and corresponding board
images for multi-modal models. Specifically, we
use the features extracted from final hidden layer
of both encoder-only models (e.g., BERT, VIS-
OTHELLO) and decoder-only models (e.g., Othello-
GPT). Given the learned representations H1 and
H2 of dimensions d1 and d2, respectively, extracted
from models M1 and M2 based on the same game
sequence input, we first apply PCA to project them
into a shared-space of dimension d = min(d1, d2):

H ′
1 = Pd(H1), H

′
2 = Pd(H2), (1)

where H ′
1, H

′
2 ∈ Rd are projected vectors.

Next, we align these representations into a com-
mon vector space using the MUSE package,3 orig-
inally developed for mapping multilingual word
embeddings into a shared space. The aim is to
learn a linear mapping matrix W , for each pro-
jected representation H ′

1 and H ′
2

W ∗ = argmin
W∈Mi(R)

∥H ′
iW −H ′

j∥, (2)

3https://github.com/facebookresearch/MUSE
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Figure 4: Comparison of models’ performance with and without board rotation across different training dataset
sizes. The results demonstrate that multi-modal models maintain better performance under rotation compared to
purely visual models. −P indicates the model is pretrained, while −S indicates it is trained from scratch.

where i, j ∈ {1, 2} and i ̸= j. This denotes learn-
ing the optimal linear mapping matrix W ∗ that
aligns representation H ′

i to H ′
j .

6.2 Alignment Training
To obtain the optimal mapping matrix, we use both
supervised and unsupervised training methods.

Supervised training. We treat representations
from different models (e.g., Othello-GPT and VIS-
OTHELLO) corresponding to the same game se-
quence as paired training data. For example, given
the Othello move sequence input “F5 F6 E6 F4
C3 D7”, the pairwise training input H ′

1 and H ′
2

correspond to the representations extracted from
Othello-GPT and VISOTHELLO models, respec-
tively, for this exact sequence and the associated
images (when applicable). The mapping matrix W
is learned and optimized with iterative Procrustes
alignment (Gower and Dijksterhuis, 2004), which
alternates between solving for the optimal orthogo-
nal transformation and refining the mapping. This
process minimizes the distance between the trans-
formed source representations and the target repre-
sentations, resulting in better alignment across the
two vector spaces.

Unsupervised training. We also adopt the unsu-
pervised training approach (Conneau et al., 2018;
Lample et al., 2017) with the absence of paired
data or predefined anchors to learn the alignment.

Given a set of game features H ′ from both the
source and target space, the process begins with ad-
versarial training, where a discriminator is trained
to distinguish whether the feature comes from the
source or target representation space. Simultane-
ously, the mapping matrix W is optimized to make
this distinction harder, effectively aligning the dis-
tributions. Once an initial mapping is obtained,
we apply iterative Procrustes refinement, similar to
the supervised setting, to improve the alignment.
Alignment quality is evaluated and improved us-
ing the average cosine similarity between mapped
source and target features on the test set.

6.3 Alignment Training Setups

To construct the alignment training set, we ran-
domly sample one subsequence from each com-
plete game, resulting in 3,849 input sequences,
each paired with the corresponding board state im-
ages. We then divide the data into training and test-
ing sets with an 80%/20% split, resulting in 3,079
and 770 instances. We adopt cosine similarity to
measure the alignment quality between representa-
tions from different models. After projecting the
representations into a shared space, we compute the
average pairwise cosine similarity between aligned
feature vectors. A higher similarity score indicates
better alignment, suggesting that the models, de-
spite being trained on different modalities, capture
similar underlying patterns. We train the alignment
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Source Target 0 1k 3k 5k 10k 20k

BERT ResNet 25.37 27.39 29.48 32.07 33.34 34.25
BERT Othello-GPT 86.01 62.02 56.59 57.14 61.60 63.30
BERT VISOTHELLO 83.92 61.76 54.83 53.96 55.59 57.94
Othello-GPT ResNet 32.16 31.79 29.95 34.33 33.74 36.41
Othello-GPT VISOTHELLO 83.09 77.68 81.62 76.56 82.07 82.35
VISOTHELLO ResNet 11.62 26.03 29.04 33.83 32.49 38.99

Table 5: Supervised alignment similarity between target and source models. Highest in bold.

Source Target 0 1k 3k 5k 10k 20k

BERT ResNet 31.53 37.46 36.96 36.98 38.70 40.25
BERT Othello-GPT 90.38 65.61 62.26 57.68 61.01 63.29
BERT VISOTHELLO 90.52 67.52 62.23 58.97 63.60 63.77
Othello-GPT ResNet 33.94 46.43 44.55 50.15 46.96 47.89
Othello-GPT VISOTHELLO 87.20 80.50 80.53 79.27 85.81 82.46
VISOTHELLO ResNet 23.04 43.44 44.39 45.38 52.64 57.79

Table 6: Unsupervised alignment similarity between target and source models. Highest in bold.

model using a single NVIDIA A100 GPU. All hy-
perparameters follow the default settings provided
by the original MUSE implementation, with no ad-
ditional tuning. All models in this experiment are
trained with a fixed random seed 42.

6.4 Mapping Result
Table 5 and 6 demonstrate the mapping results un-
der supervised and unsupervised training. We find
that the alignment similarity generally improves
as the size of the training data increases. This
trend suggests that with more data, the models learn
richer and shared representations that are easier to
align across modalities. Also, despite the difference
in training strategy (i.e., autoregressive training and
mask language modeling), Othello-GPT and BERT
exhibit strong alignment, reflected in their high sim-
ilarity scores. Surprisingly, Othello-GPT exhibits
a strong alignment score with VISOTHELLO, indi-
cating that despite differences in architecture and
training modalities, the two models learn remark-
ably similar representations. This suggests that
the underlying patterns essential for Othello game-
play are captured consistently across both language-
based and multi-modal models. Such alignment
highlights the potential for cross-modal knowledge
transfer and opens avenues for further exploration
of unified representations in complex tasks.

7 Conclusion

We studied the task of learning to play Othello and
extended it to a multi-modal setting by introducing
VISOTHELLO. Our experiments examined whether
access to visual state information improves sample
efficiency and accelerates learning, comparing VIS-
OTHELLO against text-only and vision-only base-
lines. To further assess the benefits of multi-modal

grounding, we introduce a board rotation pertur-
bation and conduct feature alignment analysis to
evaluate whether the models learn more robust and
aligned representations. Our findings suggest that
grounding language models with visual input leads
to more efficient and stable learning. Beyond Oth-
ello, our framework provides a controlled testbed
for the analysis of grounded representations and
has the potential to extend to other model architec-
tures, tasks, and modalities (see Appendix A for
further discussion).

Limitations

A notable limitation of this work is that we are not
able to compare VISOTHELLO with autoregressive
multi-modal large language models (MLLMs) due
to fundamental differences in training paradigms.
Autoregressive MLLMs treat images as part of a se-
quential token stream, effectively converting static
visual-text inputs into video modeling tasks, which
significantly increases computational complexity
and alters the problem structure. In contrast, our
model uses masked language modeling (MLM) to
enable efficient bidirectional reasoning over static
data, making direct comparison with autoregres-
sive MLLMs infeasible without substantial task
reformulation.

Moreover, we do not include comparisons
with large-scale text-only language models, as
these have been thoroughly investigated in prior
work (Yuan and Søgaard, 2025). Given that pre-
training on language alone does not necessarily
enhance understanding of the structured reason-
ing inherent in Othello, scaling up to such models
and benchmarking against them is not currently a
priority. Instead, our use of lightweight language
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models offers a practical and efficient probe into
how much language pretraining contributes to this
domain.

Ethics Statement
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publicly available and released under appropriate
open-source licenses. No personal information
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ated, and do not depict real individuals or contain
sensitive content.
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A Potential Impacts

Our multi-modal Othello framework demonstrates
how integrating visual and textual modalities can
enhance structured reasoning in environments with
strict rule-based dynamics. Beyond board games,
this approach offers insights into multi-modal learn-
ing for tasks requiring spatial-temporal understand-
ing, such as strategy modeling, robotics, and educa-
tional AI systems. By disentangling perceptual and
symbolic reasoning, it also serves as a testbed for
evaluating how models learn abstract rules from
multi-modal input, potentially informing the de-
sign of more robust, interpretable, and generaliz-
able multi-modal AI systems. Future work may
generalize these insights to more complex domains
and explore the role of other modalities, such as
spatial or tactile input, in supporting the emergence
of grounded representations.

While Othello is a harmless testbed, our methods
for aligning multimodal features could, in principle,
be adapted to sensitive domains. Our findings on
data efficiency may also lower the barrier to train-
ing multimodal agents in low-resource settings. We
emphasize that our work is intended solely for re-
search on interpretability and grounding.

B Model Design Motivation

We use a masked language model (MLM) rather
than an autoregressive multi-modal large language
model (MLLM) for two main reasons detailed be-
low.

Autoregressive training paradigm is not well-
suited for our task setup. Othello involves dy-
namic visual changes, as discs flip after each move
(Figure 1). Understanding the current board state
requires access to the complete move history, as it
cannot be inferred from a single image alone—even
for human players. Thus, the input must consist
of a sequence of move tokens paired with the cor-
responding sequence of board states. This token-
aligned multimodal sequence deviates significantly
from standard MLLM training paradigms, which
are typically designed for single image–text pairs or
interleaved inputs without sequential dependencies.
A more suitable framing is to model the game as a
video sequence, with each board as a frame. How-
ever, feeding full sequences into current MLLMs
introduces the risk of information leakage from
future states and would require specialized causal
multimodal masking, implying non-trivial architec-

tural and training modifications.

Autoregressive training incurs extremely high
resource costs. Even if the technical challenges
above were addressed, autoregressive training
would remain computationally demanding: model-
ing an n-step game requires n forward passes with
progressively longer input sequences, whereas our
MLM objective learns from the entire game in a
single pass with partial masking. Our experiments
were conducted on a single A100 GPU (40GB)
with a dataset of approximately 20k Othello games,
a scale that makes MLLM training infeasible.

Since the goal of this paper is to investigate the
role of images in model understanding, we adopt
an MLM-based approach with VisualBERT rather
than MLLMs. This choice provides a lightweight
framework for probing and analyzing the represen-
tations learned in multimodal Othello training.

C Model Training Details

All models are trained for up to 1000 epochs, with
validation performed every 10 epochs. We ap-
ply early stopping with a patience of 5 validation
steps, and retain the checkpoint with the highest
validation accuracy for final evaluation. Training
is conducted on a single NVIDIA A100-40GB
GPU. BERT and VISOTHELLO are trained with
a batch size of 128 and a learning rate of 1e-4,
while ResNet is trained with a batch size of 512
using the same learning rate.

D Model Sizes And Compute Resources

We report the parameter sizes and compute re-
sources for all models used in our experiments.
VISOTHELLO, based on VisualBERT-base, has
about 112M parameters. BERT (25 layers, hidden
size 768) has about 177M parameters. Othello-
GPT, based on GPT-2 Medium, contains 345M pa-
rameters. ResNet-18 has about 11.7M parameters.
All models were trained on a single NVIDIA A100-
40GB GPU. Training on 20k tasks required approx-
imately 10 hours for VISOTHELLO, 0.5 hours for
ResNet-18, and 3.5 hours for BERT

12609


