Multi-token Mask-filling and Implicit Discourse Relations

Meinan Liu! Yunfang Dong? Xixian Liao® Bonnie Webber!
'School of Informatics, University of Edinburgh
2School of Engineering, Westlake University
3Barcelona Supercomputing Center

liumeinan99@outlook.com, dongyunfang@westlake.edu.cn,

xixian.liao@bsc.es, bonnie.webber@ed.ac.uk

Abstract

Previous work has shown that simple mask-
filling can provide useful information about the
discourse informativeness of syntactic struc-
tures. Dong et al. (2024) first adopted this ap-
proach to investigating preposing constructions.
The problem with single token mask fillers was
that they were, by and large, ambiguous. We
address the issue by adapting the approach of
Kalinsky et al. (2023) to support the predic-
tion of multi-token connectives in masked po-
sitions. Our first experiment demonstrates that
this multi-token mask-filling approach substan-
tially outperforms the previously considered
single-token approach in recognizing implicit
discourse relations. Our second experiment
corroborates previous findings, providing addi-
tional empirical support for the role of preposed
syntactic constituents in signaling discourse co-
herence. Overall, our study extends existing
mask-filling methods to a new discourse-level
task and reinforces the linguistic hypothesis
concerning the discourse informativeness of
preposed structures.

1 Introduction

Previous work has shown that simple mask-filling
can provide useful information about discourse
relations—in particular, about whether a preposed
syntactic construction (e.g., a prepositional phrase
moved from its canonical post-verbal position to
the sentence-initial position) in one sentence can
help identify its sense relation to its immediately
preceding sentence (Dong et al., 2024).

The discourse relations considered earlier were
those that hold between adjacent English sentences
that lack an explicit discourse connective provid-
ing information about how they are related (we
call them implicit inter-sentential relations here-
after). Since the previous work used BERT (De-
vlin et al., 2019), which is limited to predicting
one token per [MASK], the mask fillers consid-
ered were restricted to single-token explicit dis-

course connectives such as but, so, however, etc.
As shown in Ex. (1), the connective but is a BERT-
predicted mask filler inserted before the preposed
prepositional phrase (PP; shown in bold) and was
not present in the original sentence. In this case,
but can signal a Comparison relation between the
two discourse arguments.

(1) The paper reflected the truth.m [inserted:
but] For the leadershippp, that was too
painful to bear. .z [Wsj_1603, PDTB-3]

A limitation of restricting connectives to such
single-token forms is that it can introduce ambigu-
ity, as a single-token connective may convey vari-
ous discourse relations, also known as senses. For
example, but can convey up to 8 different relations,
according to the Penn Discourse Treebank 3.0 An-
notation Manual (Webber et al., 2019), whereas
multi-token connectives such as in contrast is only
mapped to a single sense (see more in Section 3),
making them much less ambiguous.

To address this limitation, we adapt the
Extended-Matrix decoder approach of Kalinsky
et al. (2023) to enable masked language models
(MLMs) to predict multi-token connectives as mask
fillers. Our contributions are twofold: (1) we
present a system that directly generates multi-token
discourse connectives in masked positions to help
identify the discourse relation between text seg-
ments, and (2) we provide new empirical evidence
supporting the role of preposed syntactic structures
in signaling discourse relations. These results not
only extend prior work but also demonstrate how
language models can be used to evaluate and in-
form linguistic theories.

Specifically, we conduct two experiments. The
first evaluates our multi-token completion approach
against single-token mask filling on all implicit
inter-sentential relations in the Penn Discourse
TreeBank (Webber et al., 2019). Results show that
multi-token completion shows better performance
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in discourse relation recognition. In the second
experiment, we implement our multi-token comple-
tion model on a subset of implicit inter-sentential
relations where the second argument starts with
a preposed syntactic structure. With less ambigu-
ous fillers, our results provide further evidence for
the discourse informativeness of preposed syntactic
constituents.

2 Background

2.1 Discourse relation recognition

Discourse relations specify relationships that hold
between text segments. As shown in Ex. (2), a
discourse relation can be marked with an explicit
connective such as “but”, which can serve as strong
(albeit ambiguous) signals of the senses that hold
between segments (Pitler and Nenkova, 2009). Lin-
guistic resources such as the web-based multilin-
gual Connective-Lex (Stede et al., 2019) and the
Penn Discourse Treebank (PDTB-3) (Prasad et al.,
2019) provide lists of these connectives. However,
in both spoken and written communication, it is
often the case that no connective is explicitly pro-
vided, as in Ex. (3). These are called implicit dis-
course relations, and there can be several possible
relations linking the two segments. Yet listeners or
readers can easily infer the relation between two
segments of text.

(2) John left butexplicit connective BOb stayed.

(3) John left, [but/so/because]impiicit connective
Bob stayed.

Early research on discourse relation classifica-
tion employed basic machine learning strategies
like Naive Bayes, which required hand-crafted fea-
tures (Xiang and Wang, 2023). However, such fea-
ture engineering requires costly, time-consuming
expert knowledge, with the possibility that rele-
vant features might not have been noticed. Re-
cently, research has increasingly turned to neural
networks or deep learning methods for relation
classification. Input to these methods consists of
word embeddings—numerical representations of
the linguistic information of a token and its context.
Using these methods, some studies focus on di-
rectly classifying implicit discourse relations (Qin
et al., 2016), while other studies, recognizing the
significance of discourse connectives in signaling
discourse relations, leverage discourse connectives
for sense classification (Xu et al., 2012; Qin et al.,

2017; Shi and Demberg, 2019; Kishimoto et al.,
2020).

2.2 Syntactic preposing

Das and Taboada (2019) show that discourse re-
lations can be signaled by a variety of cues. One
such cue, discussed in Ward and Birner (2006), is
non-canonical syntactic structures. This hypoth-
esis was validated by Dong et al. (2024), who
found that an MLM more often chooses as mask-
filler, a discourse connective that could express the
manually-annotated sense when the second text
span in the relation (Arg2) starts with a preposed
constituent, compared to when that preposed con-
stituent is moved rightward to its canonical position
within the sentence. Dong et al. (2024) only con-
sidered two types of preposed constituents: prepo-
sitional phrases (PP) and noun phrases (NP), as in
Ex. (4) and Ex. (5), respectively.

(4) The paper reflected the truth.a For the
leadershippp, that was too painful to bear. z¢>
[wsj_1603, PDTB-3]

(5) Just days after the 1987 crash, major broker-
age firms rushed out ads to calm investors. prg1
This time aroundnp, they’re moving even
faster.org2 [Wsj_2201, PDTB-3]

The experiments in Dong et al. (2024) involved
two sets of discourse relations: a preposed set,
where Arg?2 of the relation starts with a non-subject
NP or PP, as in Ex. (4) above, and a canonical
set, where the NP/PP is right-moved to the end of
the first main clause in Arg?2 to create a canonical
sentence structure as shown in Ex. (6) below (Dong
et al., 2024).

(6) The paper reflected the truth. prg1 That was too
painful to bear for the leadership. >

(7) The paper reflected the truth. sy [MASK],
that was too painful to bear for the
leadership. x>

A [MASK] token is inserted at the beginning
of Arg2 during data preprocessing, as shown in
Ex. (7), and the model is tasked with predicting
a single token to fill the mask. Of interest was
when the mask was filled with a single-token dis-
course connective such as “but” or “so”. The re-
sults in Dong et al. (2024) showed that BERT’s
mask-filling was better on the preposed set than
the canonical set, making this study the first to
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empirically validate that preposing can help signal
discourse relations.

2.3 Multi-token mask-filling

In general, it is not enough to allow only single-
token mask-fillers, since so many relevant phrases
involve multiple tokens. To address this, Joshi
et al. (2020) introduced a sequence of contiguous
[MASK] tokens to predict a text span. However,
fixing the number of [MASK] tokens is not really
suitable for predicting discourse connectives, as
it fixes the possible fillers before prediction. An-
other approach (Raffel et al., 2020) treats multi-
word phrases as sequences of single tokens during
preprocessing. However, this approach increases
tokenization time and requires the MLM’s entire
weight matrix be adapted to the new input.

A third approach to enabling an MLM to pre-
dict multi-token fillers is the EMAT (Extended-
Matrix) decoder (Kalinsky et al., 2023), originally
developed for question-answering. An EMAT de-
coder extends an MLM’s output vocabulary to
include multi-token phrases by augmenting the
model’s decoding matrix (the output projection
layer) with new embedding vectors representing
these phrases. Unlike previous methods, this ap-
proach does not require updating the entire pre-
trained model. Rather, it assigns embedding vec-
tors to newly added phrases and trains only the
associated parameters, largely reducing computa-
tional costs. In the following section, we describe
how EMAT was adapted to predicting multi-token
discourse connectives as mask-fillers.

It is worth noting that Liu and Strube (2023) em-
ploys similar approach for generating multi-token
connectives. However, key difference exists in the
motivation of our studies. Specifically, their work
focuses solely on implicit discourse relation clas-
sification, without addressing the distinct roles of
multi- and single-token connectives in conveying
discourse relations, particularly the ambiguity of
connective senses, which is a central concern of
our study.

3 Ambiguity in single- vs. multi-token
connectives

Before presenting our main experiments, we begin
by providing empirical support for the observation
that multi-token connectives tend to be less am-
biguous than single-token ones. To this end, we
extracted all inter-sentential single-token and multi-

Ed
s g

2

3
®

Percentage of Connectives (%)
Percentage of Connectives (%)
s @

2
2

£
2™ .-.
0%— ~ - -

+ - ~ m -

Number of Sense Types Number of Sense Types

(b) Distribution of sense
counts per single-token con-
nective

(a) Distribution of sense
counts per multi-token con-
nective.

Figure 1: Sense distribution: single token connectives
vs. multi-token connectives.

token connectives from the PDTB-3, and for each
of them, we also extracted its sense relations and
the count of each relation. There are 104 types
of single-token connectives and 61 types of multi-
token connectives in the PDTB-3. As shown in Fig-
ure 1, around 60% of multi-token connectives are
unambiguous (i.e., are mapped to only one sense
relation), compared to just 35% of single-token
connectives. Among those associated with multi-
ple senses, over 20% of single-token connectives
are mapped to more than 5 senses, versus less than
10% for multi-token connectives.

While the number of senses associated with a
connective reflects its potential ambiguity, it does
not capture how these senses are distributed. Some
connectives may have multiple possible senses but
are strongly associated with only one or two in
practice. To capture this variability, we compute
the entropy of the sense distribution for each con-
nective based on annotated frequencies in PDTB-3,
where lower values indicate less ambiguity.

To summarize connective-level ambiguity across
the dataset, we report the average entropy. As
shown in Table 1, the average entropy of sense type
distribution for multi-token connectives (0.3374) is
considerably less than that for single-token connec-
tives (0.5661), further supporting that multi-token
connectives are less ambiguous.

Entropy
Multi-token  Single token
0.3374 0.5661

# of sense types

All senses

Table 1: Average entropy of sense type distributions
for multi-token vs. single-token connectives, computed
over all explicit and implicit relations in PDTB-3. Full
details of the calculation are provided in Appendix A.
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4 Multi-token mask-filling model

Sections 4 and 5 provide the experimental setup
for the experiments discussed in Sections 6 and 7.

4.1 Model architecture

Figure 2 shows the EMAT-based architecture of the
model used to predict mask-fillers for each argu-
ment pair.

We first used the MLM encoder from BERT (De-
vlin et al., 2019) to obtain contextual embeddings
for each of our multi-token connectives (see Sec-
tion 4.2.1), which were then fed into the EMAT
decoder. We trained the EMAT decoder on the
entire training dataset, and mapped all word vec-
tors, including the embeddings of new phrases, to
the output prediction matrix. Note that the new
vectors were added only to the prediction matrix,
not the base model vocabulary, so BERT did not
need to be retrained. During inference, each for-
matted input was fed into the model. The MLM en-
coder computed the contextual embedding for the
masked token, and the EMAT decoder generated
predictions along with their probabilities. A pre-
diction corresponding to a multi-token connective
from our pre-defined vocabulary was then mapped
to its associated senses and compared to the gold
sense. For instance, in Figure 2, the sense Com-
parison.Contrast can be signaled by the connective
“In fact” (highlighted in red), indicating a match
with the gold sense.

4.2 Dataset curation

Since EMAT was originally trained to recognize
named entities (Kalinsky et al., 2023), it had to
be adapted for multi-token discourse connectives.
In particular, while a multi-token named entity is
typically located within a single sentence, multi-
token discourse connectives require consideration
of a pair of adjacent sentences.

4.2.1

We collected a total of 69 multi-token connectives
from two sources: (i) Appendices A and C of the
PDTB-3 Annotation Manual (Webber et al., 2019),
and (ii) the English Connective-Lex (Stede et al.,
2019). From this set, we excluded subordinating
conjunctions (e.g., so that), since they express re-
lations between clauses within a single sentence
(intra-sentential), as well as multi-token connec-
tives listed in Connective-Lex (Stede et al., 2019)
that lack a Level 3 sense annotation. For instance,
some connectives under Expansion.Substitution do

Multi-token discourse connectives

not specify whether the substitution occurs in Argl
or Arg2 (e.g., Argl-as-subst vs Arg2-as-subst), and
were thus excluded due to incomplete labeling. The
final list of connectives was added to the model’s
output vocabulary for use in EMAT.

Following Dong et al. (2024), we mapped each
connective to all its associated senses (see Ap-
pendix F) and considered a mask-filler correct if it
can signal the human-annotated sense of a relation.
For example, according to the PDTB-3 Annotation
Manual (Webber et al., 2019), “by contrast” is asso-
ciated with both Comparison.Concession.Arg2-as-
denier and Comparison.Contrast. It will therefore
be treated as a correct mask-filler if the human-
annotated sense is Comparison.Contrast, even if
the connective inserted by the annotator was “by
comparison” or “in contrast.”

4.2.2 Training and development datasets

To train the model on multi-token connectives and
to fill the [MASK] token with them, we extracted
~838K sentence-pairs from the Wikipedia English
dataset (20220301.en) available on Huggingface
(Foundation, 2024).! In these pairs, the second sen-
tence (Arg2)? starts with a multi-token connective.

We replace the multi-token connective in each
Arg2 with a [MASK] token. For instance, “By
contrast, Bob left.” is transformed to “[MASK],
Bob left.” Combined with the first sentence (Argl),
this forms an input tuple: (Argl, masked Arg2),
as illustrated in Figure 2. Special tokens (e.g., the
sentence separator [SEP]) are automatically added
during tokenization.

The dataset is randomly split into training (80%)
and development (20%) sets, with ~671K and
~168K samples respectively.

Although neither training nor development data
are annotated with discourse relations, the test set
uses annotated discourse relations, in order to ex-
amine whether the predicted connectives can signal
the annotated senses (see Sections 6.1 and 7.1).

4.3 Model training

We trained the EMAT decoder for 5 epochs on the
full training dataset. The model has approximately
22.9 million trainable parameters. Training and
inference were conducted on a single NVIDIA L4
GPU (24GB memory).

Thttps://huggingface.co/datasets/
legacy-datasets/wikipedia

ZNote that the arguments collected here are sentences, not
the Argument whose strict definition is that it is a text segment
with at least a predicate.
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Figure 2: Illustration of mask-filling and mapping between predicted fillers and senses

5 Evaluation metrics

Accuracy and precision As mentioned in
Sec 4.1, we consider a predicted connective correct
if our sense-mapping dictionary indicates that it can
signal the human-annotated sense. Following Dong
et al. (2024), we first computed both accuracy and
precision for the model’s top N predictions. The
model’s average accuracy for the top N predictions
in a dataset, denoted as a@N, is calculated using
the equation:

1
a@N = — maxN (ﬂ{sense(x)=g01di}) (D

=1 x€pred;

where the model’s top N predictions for sample i
are represented as predfV . A prediction x for sample
i is considered correct if it can convey the gold
sense gold; as per the sense-mapping dictionary
sense(x).

If any of the top N predictions is correct, the
entire prediction for sample i is deemed correct.
We compute dataset accuracy by averaging over its
k samples.

Precision measures the proportion of correct pre-
dictions relative to the total number of predictions.
p@N refers to the precision within the model’s top
N predictions. For instance, if the top 2 predictions
are correct, p@2 is 100%; if only one of them is
correct, then p @2=50%. Average precision of the
model’s top N predictions is computed as:

:§: LixepreaN U {sense(x)=gold;)
i=1

N

1

P@N = (2)

|

where items are similarly denoted as in Eq.(1), for
a@N. For each sample i we count how many pre-
dictions are correct out of the top N predictions
prele and divide this by N. This calculation is
averaged over all k samples.

Surprisal and entropy In addition to assessing
how correct our model is, we also want to know
how confident it is, to understand whether prepos-
ing influences model uncertainty. To quantify un-
certainty, we use two information-theoretic mea-
sures: surprisal and entropy (Shannon, 1948). Sur-
prisal measures how unexpected the model finds
the human-annotated sense. A low surprisal value
indicates that the model assigns high probabilities
to connectives that convey the gold sense, suggest-
ing confidence in its correct predictions. The aver-
age surprisal is calculated from the model’s prob-
ability distribution over the entire vocabulary and
is defined as the averaged sum of the negative log-
likelihood (NLL) across all samples in the dataset:

k
- 1
NLL = Tk Z Z log pi(x) - Vsense(x)=gotd;}

i=1 xeV

3)
where x denotes a lexical entry within the vocabu-
lary V, and the summation extends over all the &
samples in the dataset.®> A lexical entry x is consid-
ered correct if it is a connective and can convey the

annotated implicit discourse relation.
Entropy measures a model’s certainty over all its
predictions, regardless of their correctness. It re-
3Here, we do not restrict the predictions to top N, but

instead use predictions over the entire vocabulary to compute
surprisal and entropy.
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flects how spread out the probability distribution is
over the entire vocabulary (i.e. all the possible pre-
dictions). A higher entropy value suggests a more
dispersed or even probability distribution, indicat-
ing greater uncertainty. Conversely, a lower en-
tropy value indicates a more concentrated distribu-
tion, where top predictions (not necessarily correct)
have much higher probabilities, implying greater
confidence. The average entropy for a dataset is
calculated as:

k

— 1

H==p > pilogpi(x) @)
i=1 xeV

with parameters defined as in (Eq. 3). The overall

entropy for the dataset is obtained by summing

across all £ samples.

6 Experiment 1: Multi-token vs.
single-token mask filling

To evaluate whether our multi-token mask-filling
model can achieve comparable performance on the
implicit discourse relation recognition task while
reducing ambiguity, we compare it with the single-
token baseline model based on off-the-shelf BERT
(Dong et al., 2024).

6.1 Test data

We use all implicit inter-sentential relations in the
PDTB-3 as our test data. In total, we collected
15,555 argument pairs. Although the PDTB-3 cor-
pus annotates up to two different connectives for
each argument pair (when annotators infer more
than one sense between a pair of spans), we consid-
ered only the sense of the first annotated connective
as the gold label in the test set. *

6.2 Results

Before analyzing these predictions, we assume that
all lexical entries that could serve as connectives
are indeed connectives, even if they might also hold
other syntactic roles.

The evaluation metric used for this experiment
is a@N, as defined in Eq. (1). Table 2 shows
that multi-token mask-filling model achieves sig-
nificantly better performances compared to single-
token model across three levels. We report only
a@] and a @2, as these results already suggest an
exceptional performance.

4Future work could aim at recognizing multiple senses
simultaneously, for example, by considering all predictions
with probabilities above a specified threshold as valid.

We further examined the accuracy of each sense
type at each level of the hierarchy. Results are
reported in Appendix B, Tables 5-7. We find
that predicting single-token connectives outper-
forms predicting multi-token connectives for Com-
parison.Concession and Temporal. Asynchronous,
which is expected because these senses are predom-
inantly conveyed by single-token connectives like
“but”, “however”, “before”, and “after”. Whereas,
the opposite holds for Arg2-as-detail and Arg2-as-
instance. This is largely due to that few multi-token
connectives have either of these senses as com-
pared to Expansion.Level-of-detail Arg2-as-detail
and Expansion.Instantiation.Arg2-as-instance, for
which there are several common multi-token con-
nectives, such as "for example", "for instance",
"in fact", "in particular", and "that is". Both the
sparsity of multi-token instances of Concession
and Asynchronous and the amount of multi-token
instances expressing Arg2-as-detail and Arg2-as-
instance are apparent in Appendix F.

7 Experiment 2: Preposed vs. canonical
syntax

We then use our model to investigate whether multi-
token connective mask-filling also provides evi-
dence that preposed constituents help signal dis-
course coherence. This expands the empirical base
of Dong et al. (2024) from single-token connec-
tives to multi-token connectives, which tend to be
less ambiguous (i.e., associated with fewer senses).

7.1 Test data

As in Dong et al. (2024), our test data consists of
two datasets: a preposed set and its correspond-
ing canonical set. The datasets were derived from
the PDTB-3 (comprising primarily news articles)
and DiscoGeM 1.0 (containing political speeches,
literature, and Wikipedia texts as well).

We first extracted instances with a preposed
structure from the entire set of implicit discourse
relations in PDTB-3 and DiscoGeM 1.0, and then
constructed the corresponding canonical set for
comparison. While the canonical set for PDTB-
3 relations was created by moving the preposed
NP/PP in Arg?2 to the end of the first main clause
of Arg2 (see Sec. 2.2, examples (4) and (6)), a
different method was needed for DiscoGeM 1.0,
which is annotated at the sentence level without
specific boundary markers for arguments (see Ap-
pendix C). Here, we created a canonical counter-
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Model a@N Level 1 Accuracy (%) Level 2 Accuracy (%) Level 3 Accuracy (%)
BERT single-token mask-filling a@1 52.10 44.78 40.58
a@2 70.93 63.93 60.55
Our multi-token mask-filling a@1] 74.48 62.37 58.96
a@2 87.72 80.02 73.77

Table 2: Model accuracy comparison between single-token mask-filling and multi-token mask-filling across three

sense levels in PDTB-3

part to a preposed relation by simply moving the
preposed constituent to the end of the second sen-
tence (see Appendix D for more details). There
are 156 entries in both the preposed and canonical
datasets for DiscoGeM 1.0. For the PDTB-3, we
could take advantage of the preposed and canonical
datasets used in Dong et al. (2024). These are all
implicit inter-sentential relations.

As aresult, each complete preposed and canon-
ical set, combining data from both PDTB-3 and
DiscoGeM 1.0, contains a total of 1,595 samples.

7.2 Results

Accuracy and precision Table 3a compares the
model’s predictions for the preposed and canonical
sets using accuracy (a@N) from Eq.(1), and pre-
cision (p@N) from Eq.(2). As with the results in
Dong et al. (2024) using single-token mask-filling,
the multi-token mask-filling model consistently
achieves higher accuracy on the preposed set across
all N values. This suggests that preposed struc-
tures provide information that enables the model to
more accurately align its predictions with human
annotations. As for precision, the model also con-
sistently performs better on the preposed set than
on the canonical set. In general, as N increases,
the p@N for both preposed and canonical sets de-
creases. This is because of the limited number
of connectives associated with each specific sense.
Therefore, with larger values of N, there are fewer
appropriate connectives left to predict, leading to a
decrease in p@N.

Surprisal and entropy Table 3b presents aver-
age surprisal and entropy for both preposed and
canonical sets, calculated according to Eq.(3) and
Eq.(4).

In line with the accuracy and precision results,
surprisal and entropy are also lower for the pre-
posed set, indicating that the model is both more

SWe had to remove two instances whose gold sense
was Contingency.Cause+SpeechAct.Reason+SpeechAct, as
we lacked a multi-token connective that could convey this
sense.

confident and more accurate in these cases than in
their canonical counterparts.

Sense types Following Dong et al. (2024), we
compare the model’s correct predictions for each
sense type. While Dong et al. (2024) focused on the
top 5 predictions, we consider only the top 1 pre-
diction, as the model achieves very high accuracy
on both sets when considering the top 5 (91.29%
and 89.72%). Chi-square tests were conducted on
the 8 sense types with over 100 instances in the test
set; results are presented in Table 4.

The results in Table 4 show significant differ-
ences between the preposed and canonical sets for
two sense types (Arg2-as-instance and Reason), at
a significance level of 0.05. They are largely con-
sistent with results presented by Dong et al. (2024),
who reported significant differences in predicting
four sense types: the two mentioned above, plus
Conjunction and Arg2-as-detail. A plausible ex-
planation for the absence of significant differences
in Conjunction and Arg2-as-detail in our results is
that training on less ambiguous multi-token connec-
tives has substantially improved the model’s under-
standing of discourse relations. This improvement
appears to hold even when the syntactic structure
is altered—for example, when a preposed phrase is
repositioned to the end of sentence.

Ambiguity of predicted connectives To assess
whether multi-token connectives reduce ambigu-
ity in model predictions, we compare the average
number of discourse senses associated with the
top-1 predicted connectives from our model and
from Dong et al. (2024). Focusing on test items
where both models predicted the correct sense, we
observe that our model’s predictions are associ-
ated with substantially fewer senses, specifically,
4.93 vs. 13.79 in the preposed setting, and 4.76
vs. 13.48 in the canonical setting. This suggests
that our multi-token mask-filling approach yields
significantly less ambiguous predictions than the
single-token baseline. Full details and results are
provided in Appendix E.
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Preposed Set Canonical Set
N a@N p@N a@N p@N
I 6031% 6031% 56.05% 56.05%
2 T7712% 56.43% 73.86% 52.60%
3 8470% 5315% 81.76% 49.55%
4 8934% 49.92% 86.83% 47.26%
5 91.29% 4718% 89.72% 44.97%

(a) Accuracy@N (a@N) and Precision@N (p@N).

Table 3: Preposed set vs. Canonical set: comparing a@N and p@N (left), and average surprisal and entropy (right)

Metric Preposed Set  Canonical Set
Average surprisal 1.108 1.182
Average entropy 1.996 2.154

(b) Average surprisal and entropy

Sense Type N  Preposed Canonical y’ p
Expansion.Conjunction 340 201 211 0.50 048
Expansion.Level-of-detail. Arg2-as-detail 241 218 210 1.02 0.31

Expansion.Instantiation.Arg2-as-instance 191 172 140 16.81 *

Contingency.Cause.Reason 191 119 90 8.28 *
Contingency.Cause.Result 184 86 96 0.88 .35
Comparison.Contrast 139 87 78 095 .33
Temporal.Asynchronous.Precedence 131 12 15 0.17  0.68
Comparison.Concession.Arg2-as-denier 101 52 40 242 12

Table 4: Correct top 1 predictions for senses (with more than 100 samples) in preposed set vs. canonical set: counts,
and y? test results. N is the frequency of each sense type in the dataset.

8 Conclusions and discussion

As noted in Section 3, single-token mask filling
(Dong et al., 2024), despite performing fairly well,
is limited by the high sense ambiguity of single-
token connectives. The current study addresses this
in part, by using the efficient approach to multi-
token mask-filling developed by Kalinsky et al.
(2023) (see Section 2.3). We adapted their ap-
proach to discourse relation recognition by consid-
ering multi-token discourse connectives, which we
show to be significantly less ambiguous than their
single-token counterparts. The results of the first
experiment provide evidence for the effectiveness
of simple mask-filling with multi-token connec-
tives for discourse relation recognition. We then
assessed the effectiveness of our adaptation on the
task of sense recognition of implicit discourse rela-
tions whose Arg?2 starts with a preposed syntactic
structure.

Experimental results for the preposing task show
that our multi-token mask-filling model achieves
higher and more confident performance on recog-
nizing discourse relations on the preposed set than
the canonical set, thereby confirming the previous
results from Dong et al. (2024) and validating that
preposing indeed provides evidence for some (but
not all) discourse relational senses. Specifically,
preposing significantly helps to indicate two sense
types: Expansion.Instantiation.Arg2-as-instance

and Contingency.Cause.Reason. Our results are
largely consistent with Dong et al. (2024). Regard-
ing why preposing helps to signal certain discourse
relations rather than others, we have an initial hy-
pothesis. According to Ward and Birner (2006),
preposing in English is felicitous when the infor-
mation conveyed by the preposed constituent form
an anaphoric link to the prior discourse—that is,
either discourse-old (i.e., explicitly evoked in the
prior discourse) or inferable from the prior dis-
course through partial ordering (e.g., type/subtype,
entity/attribute, part/whole, etc.). We hypothesize
that preposing helps to signal discourse relations
when the linking relation between discourse enti-
ties also supports the coherence between the pre-
posed sentence and the preceding discourse. In
such cases, preposing serves as evidence for a dis-
course relation. Otherwise, it doesn’t. This hypoth-
esis, however, requires further studies to testify.
Our results extend the usefulness of mask-filling,
to assessing the possible discourse relevance of
other non-canonical syntactic structures, such as
post-posing and right extraposition (e.g., “There
was a man outside, wearing a plastic raincoat.”)
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Limitations

The current work is limited in several ways that can
and should be addressed in future work.

First, since the amount of annotated implicit dis-
course relation data is limited, we used explicit
discourse relations to construct the training set and
test our model on implicit discourse relations. We
know from Sporleder and Lascarides (2008) (and
more recently, from Liu et al. 2024) that implicit
discourse relations are not simply explicit discourse
relations that lack an explicit connective. The alter-
native method used in DiscoGeM 1.0 (Scholman
et al., 2022) of crowd-sourcing implicit discourse
relation annotation may provide more useful re-
sources in the future.

Also, our test dataset is limited to ~16K sam-
ples. The Georgetown University Multilayer Cor-
pus (GUM) (Zeldes, 2017), released in 2017, is
another widely used corpus for the implicit dis-
course relation recognition task. However, it is
annotated in the Rhetorical Structure Theory (RST)
style (Mann and Thompson, 1987). It is possible
that converting this annotation to something more
similar to the PDTB will also provide additional
annotated data for inference.

The model for predicting multi-token connec-
tives is trained on a predefined set of connectives
and corresponding training data. In this study, we
chose to use the distribution of connectives occur-
ring in a naturalistic language dataset—specifically,
Wikipedia, rather than artificially balancing their
frequency within the training data. As a result,
some connectives or their senses may be underrep-
resented, while others could be overrepresented,
due to their varying natural occurrence in the data.

Moreover, in choice of the gold label, a single
sense was preferred in our experiments. This means
we did not explore the ambiguity inherent in dis-
course relations, where multiple senses may co-
occur or be equally plausible (Costa and Kosseim,
2024; Yung et al., 2022). However, the PDTB-3
(Prasad et al., 2019) allowed annotators to record
two connectives and senses if they exist in the dis-
course. This could therefore be used in the future
to consider more cases rather than limiting consid-
eration to a single sense.

Ethical Considerations

Our study used two well-established corpora in
NLP research. The Penn TreeBank has been used
for over 30 years, and DiscoGeM 1.0 was made

available in 2022 for general public use. They
should therefore present no ethical concerns.
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Sense Type a@1 (%) a@2 (%)
multi  single multi  single
Expansion 86.64 48.72 9541 67.54
Contingency  72.10 54.63 88.85 74.26
Comparison ~ 52.22 58.68 73.62 76.64
Temporal 3143 5194 49.15 7243

Table 5: Accuracy for sense type at Level 1: analysis
using top 1 and top 2 predictions

Sense Type a@1 (%) a@2 (%)
multi  single multi single
Expansion.Level-of-detail ~ 82.84 44.62 93.18 64.02
Expansion.Conjunction 60.75 4872 85.07 66.23
Expansion.Instantiation 76.66  24.55 87.90 44.94
Contingency.Cause 68.58 53.66 8736 73.79
Comparison.Concession 4293 4572 6447 66.52
Comparison.Contrast 5536 53.89 74.68 70.80
Temporal. Asynchronous 23.16 37.83 3574 64.96

Table 6: Accuracy for sense type at Level 2: analysis
using top 1 and top 2 predictions (relations with more
than 500 occurrences)

A Entropy-based measure of connective
ambiguity

Let C denote the set of discourse connectives. For
each connective ¢ € C, let S = {s1,52,...,5,}
be the set of distinct senses annotated for ¢. Let
f(c, s) denote the frequency with which connective
¢ is annotated with sense s € S,..

We define the empirical probability distribution
over senses for each connective ¢ as:

C fles)
P = o)

The entropy of connective c is then given by:

H(c) == ) Pe(s) -log, Pe(s)

SES,

This entropy H(c¢) measures the degree of am-
biguity of connective ¢ with respect to its senses:
the more concentrated the senses are distributed in
the dataset, the lower the entropy, indicating lower
ambiguity. To obtain an overall measure of connec-
tive ambiguity across the dataset, we compute the
average entropy over all connectives:

B Accuracy at different levels

We present the accuracy at Level 1 in Table 5, Level
2 in Table 6, and Level 3 in Table 7.

a@1 (%) a@2 (%)
multi  single multi single
Expansion.Level-of-detail. Arg2-as-detail ~ 82.51 4375 9272 63.16
Expansion.Instantiation. Arg2-as-instance ~ 76.64  23.60 87.89  43.10

Sense Type

Contingency.Cause.Result 6147 5417 80.38 72.86
Contingency.Cause.Reason 53.81 30.02 72.17 58.77
Comparison.Concession. Arg2-as-denier 43.09 4543 6448 6583
Temporal. Asynchronous.Succession 18.92 27.67 25.68 5220
Temporal. Asynchronous.Precedence 12.50 37.67 20.63 65.39

Table 7: Accuracy for sense type at Level 3: analysis
using top 1 and top 2 predictions (relations with more
than 500 occurrences)

C Extracting Data from DiscoGem 1.0

For the DiscoGeM 1.0 dataset, preposed structures
were identified using the spaCy, NLTK, and con-
stituent treelib libraries (Halvani, 2024) in Python.
We treat each sentence in the corpus as an individ-
ual argument. For instance, as shown in Ex.(8), the
sentence is parsed to generate a constituency tree,
which outlines the syntactic structure of the sen-
tence by organizing it into hierarchical components
such as S (sentence), PP, and etc. The constituency
tree reveals that the phrase “All through that sum-
mer” is a PP located at the beginning of the sen-
tence. Dependency parsing is subsequently applied
to determine if the preposed NP or PP serves as the
grammatical subject of the argument, identified by
labels such as “nsubj,” “nsubjpass,” or “expl.” If the
phrase does not function as the subject (as in this
example), it is classified as a preposed phrase. This
method effectively isolates non-subject phrases that
have been fronted in the sentence, often for empha-
sis or to provide context.

(8) Argument: All through that summer the work
of the farm went like clockwork. [Animal
Farm, DiscoGeM 1.0]

Constituency Tree:

(s
(PP (ADVP (DT All)) (IN through) (NP (DT that) (NN summer)))
(NP (NP (DT the) (NN work)) (PP (IN of) (NP (DT the) (NN farm))))
(VP (VBD went) (PP (IN like) (NP (NN clockwork))))

(CE))
Preposed phrase: (PP All through that summer)

D More details about the preposed and
canonical sets

Similar to the training data, each masked text in
the preposed set was formatted as a tuple, “(Argl,
masked Arg2).” As illustrated in the preposed
Ex.(9), the PP “by the light of the match” is
sentence-initial in Arg2, while in the canonical
Ex.(10), the canonical masked text is constructed
by right-moving the preposed phrase (either NP or
PP) to the end of Arg2. In addition to the masked
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text and the annotated sense, metadata for each sam-
ple was recorded, including corpus, data source,
genre, the inserted connective, and the preposed
phrase.

(9) (‘He heard a slight groan.”, ‘{MASK], by the
light of the matchcposed pp he saw a heavy
shape moving slightly on the floor.” [Animal
Farm, DiscoGeM 1.0]

(10) (‘He heard a slight groan.’, \[MASK], he saw
a heavy shape moving slightly on the floor by
the light of the matchanonica pp-")

E Ambiguity analysis of predicted
connectives

One motivation for extending Dong et al. (2024)’s
work to include multi-token connectives is the hy-
pothesis that multi-token connectives may reduce
sense ambiguity compared to single-token connec-
tives.

To verify this assumption in Section 3, we con-
duct a following analysis of sense ambiguity. We
analyze the average number of sense types that
each predicted connective can be mapped to. Since
both our model and Dong’s model are evaluated
on PDTB-3, we base our comparison on the 1,439
inter-sentential implicit relations in the test set (ex-
cluding DiscoGem 1.0 instances). We further re-
strict the analysis to the intersection of instances
where both models’ top 1 predictions are correct.
This results in 388 instances for the preposed set
and 332 for the canonical set. As shown in Ta-
ble 8, our model achieves correct top-1 predictions
on multi-token connectives that are associated with
significantly fewer sense types than those of Dong’s
model—4.93 vs. 13.79 in the preposed setting,
and 4.76 vs. 13.48 in the canonical setting. This
suggests that multi-token connectives, which are
more prevalent in our model’s predictions (all top
5 predictions are multi-token connectives), are in-
herently less ambiguous, as reflected by their lower
average sense count.

Average Sense Count

TestSet 5 Dong et al. (2024)
Preposed  4.93 13.79
Canonical 4.76 13.48

Table 8: Average number of senses for connectives
where both models’ top 1 predictions are correct.
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F Multi-token connectives and their senses (with counts)

This appendix provides each inter-sentential multi-token connective and its senses with counts in PDTB-3
and Connective-Lex (Stede et al., 2019). The counts show how often each connective-sense pair appears
in PDTB-3 (Webber et al., 2019), including both implicit and explicit relations. "con-lex" means the sense
is listed in Connective-Lex (Stede et al., 2019), but has no frequency data.

Connective Sense (Count)

after all Contingency.Cause+Belief.Reason+Belief (1)
Expansion.Conjunction (con-lex)
Expansion.Level-of-detail. Arg2-as-detail (1)

after that Temporal. Asynchronous.Succession (con-lex)
along with Expansion.Conjunction (2)

and then Expansion.Disjunction (1)

as a consequence | Contingency.Cause.Result (2)

as a result Contingency.Cause+Belief Result+Belief (6)

Contingency.Cause.Result (838)
Expansion.Level-of-detail. Arg2-as-detail (1)

as an alternative | Expansion.Disjunction (2)

as it turns out Contingency.Cause.Result (1)
Expansion.Conjunction (1)

as part of that Expansion.Instantiation. Arg2-as-instance (2)

as such Contingency.Cause+Belief.Result+Belief (2)
Contingency.Cause.Result (5)

as well Comparison.Similarity (6)
Expansion.Conjunction (12)

at that point Temporal.Synchronous (con-lex)

at that time Temporal.Synchronous (3)

at the same time | Expansion.Conjunction (1)
Temporal.Synchronous (98)

at the time Temporal.Synchronous (22)

because of that Contingency.Cause.Result (4)

before that Temporal.Asynchronous.Succession (1)
but then Comparison.Concession.Arg2-as-denier (3)
but then again Comparison.Concession.Arg2-as-denier (1)
by comparison Comparison.Concession.Arg2-as-denier (2)

Comparison.Contrast (198)
Expansion.Conjunction (2)

by contrast Comparison.Concession.Arg2-as-denier (2)
Comparison.Contrast (146)
by doing so Expansion.Manner.Argl-as-manner (1)
by the way Comparison.Contrast (con-lex)
Expansion.Conjunction (con-lex)
by then Temporal. Asynchronous.Succession (6)
Temporal.Asynchronous.SuccessionlContingency.Cause.Reason (1)
despite this Comparison.Concession.Arg2-as-denier (3)
during that time | Temporal.Synchronous (1)
even before Temporal.Asynchronous.PrecedencelComparison.Concession.Arg1-as-denier (14)
even before then | Temporal.Asynchronous.SuccessionlComparison.Concession.Arg2-as-denier (1)
even then Temporal. Asynchronous.PrecedencelComparison.Concession.Arg2-as-denier (2)
for example Contingency.Cause.Reason (1)
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Expansion.Instantiation.Arg2-as-instance (986)
Expansion.Level-of-detail. Arg2-as-detail (73)

for instance Expansion.Conjunction (1)
Expansion.Instantiation. Arg2-as-instance (703)
Expansion.Level-of-detail. Arg2-as-detail (40)

for one Expansion.Instantiation. Arg2-as-instance (1)

for one thing Contingency.Cause.Reason (1)
Expansion.Conjunction (1)
Expansion.Instantiation.Arg2-as-instance (13)
Expansion.Level-of-detail. Arg2-as-detail (8)

for that purpose | Contingency.Purpose.Argl-as-goal (1)

for that reason Contingency.Cause.Result (2)

in addition Expansion.Conjunction (413)
Expansion.Level-of-detail. Arg2-as-detail (1)

in any case Comparison.Concession.Arg2-as-denier (3)

in any event Expansion.Conjunction (con-lex)
Expansion.Level-of-detail. Arg1-as-detail (con-lex)

in comparison Comparison.Contrast (5)

in contrast Comparison.Contrast (209)

in fact Comparison.Concession.Arg2-as-denier (5)

Comparison.Contrast (9)
Contingency.Cause+Belief.Reason+Belief (6)
Contingency.Cause+Belief.Result+Belief (1)
Contingency.Cause.Reason (3)
Contingency.Cause.Result (2)
Expansion.Conjunction (470)
Expansion.Equivalence (5)
Expansion.Instantiation. Arg2-as-instance (20)
Expansion.Level-of-detail. Arg1-as-detail (7)
Expansion.Level-of-detail. Arg2-as-detail (389)

in general Expansion.Level-of-detail. Arg1-as-detail (3)
in more detail Expansion.Level-of-detail. Arg2-as-detail (1)
in other words Comparison.Similarity (1)

Contingency.Cause.Reason (1)
Contingency.Cause.Result (1)
Expansion.Conjunction (3)
Expansion.Equivalence (247)
Expansion.Level-of-detail. Arg1-as-detail (25)
Expansion.Level-of-detail. Arg2-as-detail (16)

in particular Expansion.Conjunction (1)
Expansion.Instantiation. Arg2-as-instance (73)
Expansion.Level-of-detail. Arg2-as-detail (666)

in response Contingency.Cause.Result (2)
Expansion.Conjunction (1)
in short Contingency.Cause+SpeechAct.Result+SpeechAct (1)

Contingency.Cause.Reason (2)
Contingency.Cause.Result (1)
Expansion.Conjunction (6)
Expansion.Equivalence (20)
Expansion.Level-of-detail. Arg1-as-detail (83)
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Expansion.Level-of-detail. Arg2-as-detail (18)

in sum Expansion.Conjunction (6)
Expansion.Equivalence (4)
Expansion.Level-of-detail. Arg1-as-detail (28)
Expansion.Level-of-detail. Arg2-as-detail (1)

in the end Comparison.Concession.Arg2-as-denier (1)

Comparison.Contrast (1)
Contingency.Cause.Result (6)
Expansion.Conjunction (21)
Expansion.Equivalence (1)
Expansion.Level-of-detail. Arg1-as-detail (5)
Expansion.Level-of-detail. Arg2-as-detail (5)
Temporal.Asynchronous.Precedence (8)

in the meantime

Temporal. Asynchronous.Succession (2)
Temporal.Synchronous (12)
Temporal.SynchronouslComparison.Contrast (1)

in the meanwhile

Temporal.Synchronous (1)

in this case

Expansion.Instantiation. Arg2-as-instance (1)

in this way Contingency.Cause.Result (con-lex)
in turn Contingency.Cause.Result (con-lex)
Expansion.Conjunction (con-lex)
Temporal. Asynchronous.Precedence (con-lex)
later on Temporal. Asynchronous.Precedence (2)

more accurately

Expansion.Substitution.Arg2-as-subst (1)

more specifically

Expansion.Level-of-detail. Arg2-as-detail (18)

more to the point

Expansion.Level-of-detail. Arg2-as-detail (1)

no matter

Comparison.Concession.Argl-as-denier (8)

on the contrary

Comparison.Contrast (11)
Expansion.Level-of-detail. Arg2-as-detail (1)

on the other hand

Comparison.Concession.Arg2-as-denier (4)
Comparison.Contrast (62)

on the whole

Expansion.Conjunction (10)
Expansion.Level-of-detail. Arg1-as-detail (19)
Expansion.Level-of-detail. Arg2-as-detail (8)

prior to this

Temporal.Asynchronous.Succession (1)

since then

Temporal. Asynchronous.Precedence (7)

that is

Contingency.Cause.Reason (1)
Contingency.Cause.Result (3)
Expansion.Conjunction (2)
Expansion.Equivalence (30)
Expansion.Level-of-detail. Arg1-as-detail (6)
Expansion.Level-of-detail. Arg2-as-detail (51)

to this end

Contingency.Cause.Result (1)

what’s more

Expansion.Conjunction (1)
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