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Abstract

Latent-recurrent language models solve tasks
by iteratively refining hidden states rather than
emitting chain-of-thought tokens, yet the opac-
ity of those hidden trajectories hinders credit as-
signment and limits mathematical reasoning ac-
curacy. We propose Latent-State Supervised
Reinforcement Learning (LSRL), a process-
supervised variant of Guided Reward Policy
Optimization (GRPO) that delivers dense re-
wards at every latent step. We decode each
recurrent depth of a 3.5-billion-parameter Hug-
inn model and score the partial solutions with
a GPT-4.1-nano grader aligned to final-answer
correctness. Using LoRA adapters, we up-
date the policy on a single NVIDIA L40S
GPU with only 500 GSM-8K training prob-
lems. Relative to the depth-8 supervised Hug-
inn baseline, LSRL improves absolute accuracy
by +4.27 points on GSM-8K and +2.06 points
on MathQA. These results demonstrate that re-
warding latent steps provides an efficient route
to stronger mathematical reasoning in latent-
recurrent language models.

1 Introduction

Latent-recurrent language models (LR-LMs) re-
fine internal states through recurrent processing
rather than generating explicit chain-of-thought to-
kens. The recent Huginn model (Geiping et al.,
2025) demonstrates that increasing the recurrent
depth from r=8 to r=32 improves accuracy on
logical-reasoning tasks while maintaining the same
parameter count, effectively trading parameters for
compute. However, the same 3.5-billion-parameter
model achieves only 13.5% on the GSM-8K math
benchmark at r=8, far below its logical perfor-
mance, and the deeper r=32 variant requires four
times the test-time compute for a still-modest
24.9%.

Why does increased depth yield such limited
gains? We argue that the bottleneck is sparse
credit assignment: Huginn’s supervised finetuning

pipelines apply a single reward to the final
answer, ignoring the quality of intermediate latent
states. By contrast, process supervision, which
rewards every step of a token-level derivation,
has recently improved mathematical reasoning in
chain-of-thought models (Lightman et al., 2024;
DeepSeek-Al et al., 2025). To date, however,
process rewards have never been applied to latent
states, as decoding and grading all » hidden
snapshots appears prohibitively expensive.

Our Approach. To address this limitation, we in-
troduce Latent-State Supervised Reinforcement
Learning (LSRL), a critic-free GRPO variant that
attaches dense rewards to every latent depth of Hug-
inn. A lightweight GPT-4.1-nano grader scores
each partial derivation, and LoRA adapters (Hu
et al., 2022) update the policy efficiently.

Contributions.

* Algorithmic. We extend GRPO with per-
depth process rewards, creating the first
process-supervised RL framework for latent
states.

 Efficient Training. We introduce a one-
pass hidden-state cache that decodes all la-
tent depths, including complete sentences and
paragraphs rather than token snippets, dur-
ing a single forward/backward pass. This
eliminates the naive r-fold re-execution and
reduces training compute by approximately
50%.

* Memory-Efficient Adaptation. We apply
LoRA adapters to latent-recurrent RL for the
first time, reducing trainable parameters by
99% and enabling single-GPU finetuning.

* Empirical Results. Using only 500 GSM-
8K tasks, LSRL improves Huginn-r=8 by
+4.27 points on GSM-8K and +2.06 points
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on MathQA, approaching the r=32 model’s
performance while requiring one-quarter of
its test-time compute.

The remainder of this paper is organized as
follows. Section 2 reviews latent-recurrent LMs,
math-oriented RL, and process supervision. Sec-
tion 3 details the LSRL framework. Sections 4-5
present experimental setup, results, and analysis.
Section 6 discusses limitations and future work.

2 Related Work

Latent recurrence and other compute-accuracy
trade-offs. Geiping et al. (2025) introduce Hug-
inn, whose recurrent Core deepens the network
without adding parameters; pushing the depth to
r=32 lifts commonsense accuracy but quadruples
inference FLOPs. Orthogonal strategies reduce
computation in different ways, including sparse
Mixture-of-Experts routing (Fedus et al., 2021),
RL-learned early-exit policies (Dai et al., 2025),
and, most recently, continuous latent policies (Hao
et al., 2025). In contrast, our method delivers a
shaped reward at every latent step, eliminating the
sparse-gradient bottleneck these approaches leave
unresolved.

Reinforcement learning for language models.
Outcome-only RLHF commonly relies on PPO
(Ouyang et al., 2022; Schulman et al., 2017), while
DPO removes the critic through a KL-regularized
log-ratio objective (Rafailov et al., 2023). More
recent work tackles reward composition and stabil-
ity (Li et al., 2024) and makes RLHF parameter-
efficient via LoRA (Hu et al., 2022), block-wise
8-bit optimizers (Dettmers et al., 2022), QLoRA
(Dettmers et al., 2023), PERLHF (Sidahmed et al.,
2024), self-rewarding losses (Yuan et al., 2024),
and reward distillation (Zhang et al., 2025b). In-
stead, we adopt the critic-free GRPO baseline
(DeepSeek-Al et al., 2025) and couple it with la-
tent process rewards, while keeping single-GPU
viability through rank-8 LoRA.

Process-supervised reinforcement learning.
Dense, token-visible process rewards have proven
effective through verifier guidance (Cobbe et al.,
2021), automatic step-grading (Lightman et al.,
2024), and GRPO curricula (DeepSeek-Al et al.,
2025). Math-focused systems extend this approach,
including WizardMath (Luo et al., 2023), Improve-
Math (Luo et al., 2025), GRPO-LEAD (Zhang and
Zuo, 2025), and Efficient-RFT (Shi et al., 2025),

alongside applications to question decomposition
(Chen et al., 2024) and code generation (Ye et al.,
2025). Latent-state supervision so far is limited
to self-verification probes (Zhang et al., 2025a)
or unsupervised latent policies (Hao et al., 2025).
Unlike these approaches, we decode and grade
intermediate latent states during training to provide
process supervision, yet eliminate chain-of-thought
generation entirely at inference time.

Positioning of our work. Latent-State RL
(LSRL) uniquely combines (i) dense process re-
wards, (ii) hidden-state supervision, (iii) recurrent
depth, and (iv) parameter-efficient LORA/QLoRA
training, bridging the credit-assignment gap out-
lined above and delivering improved math reason-
ing at constant inference cost.

3 Methodology

3.1 Huginn Recap and Notation

Our latent-recurrent language model (LR-LM) fol-
lows the PRELUDE—CORE—-CODA split of Geiping
et al. (2025). During inference the CORE stack Ry
is looped for r iterations while the parameters re-
main fixed:

sit1 = Ro(less]), k=0,...,r—1. (D)

The final hidden state s, is mapped to a token dis-
tribution by the shared LM head W,,,

po(y | x) = softmax(W,s,). )

Full-depth decoding. For process supervision,
each intermediate latent state sy is autoregres-
sively decoded into a textual snapshot ¢ using
the model’s Coda and LM head W,,:

Ur = AutoregressiveDecode(sy ),k =1,...,r,

3)
exposing r textual snapshots. These are obtained
by processing each cached intermediate state s
(see Sec. 3.3.1).

3.2 Latent-State Supervised RL (LSRL)
3.2.1 Reward design

Our reward design evaluates both intermediate rea-
soning quality and final answer correctness. A
lightweight GPT 4.1-nano grader (Section 3.2.2,
Appendix B) returns an internal-quality score (IQS)
and a math-progress score (PS) for each decoded
snapshot of the latent state s;. These scores are
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min—-max normalized within each GRPO group to
Cjk and ﬁk
The step-wise reward for snapshot k is

Ry = wiQsqk + wpspr, “4)

with wigs = wps = 0.5 as recommended by Yuan
et al. (2024).

The process reward aggregates step rewards
through a discounted sum:

Rpoe = > 7" 'Ry, 5)
k=1

where we set v = 0.99 following the stable dis-
count used in recent multi-objective RLHF studies
(Li et al., 2024).

Finally, we combine the discounted process re-
ward with a binary outcome bonus:

R = wfué[gﬁnal = y*] + wp Rproc, (6)

where -] equals 1 when the predicted answer gfip,
matches the ground truth y* and O otherwise. We
fix (wg,wp) = (0.7,0.3), an outcome-dominant
split shown effective for mathematical reasoning
in Shao et al. (2024) and further supported by the
fair-reward study of Li et al. (2024).

3.2.2 Generation workflow and prompt design

To enable process supervision, each relevant inter-
mediate latent state s;, (for kK = 1,...,r, where
r is the maximum depth for supervision) from a
latent trajectory is decoded into a textual snapshot.
This decoding is an autoregressive process specific
to our LR-LM, leveraging its CODA components
and the shared LM head to generate a segment of
text reflecting the model’s reasoning at depth k.

For every problem, the policy model then gen-
erates G = 8 complete solution trajectories (fi-
nal answers). A group of eight offers a good
bias—variance trade-off while keeping GPU mem-
ory modest, and lies within the 6-8 range adopted
in earlier GRPO studies (Shao et al., 2024).

Each of the G trajectories, comprising its r in-
termediate textual snapshots and its final complete
solution text (Yana1), is then evaluated. This eval-
uation uses GPT-4.1-nano guided by two distinct
system prompts (full templates are provided in Ap-
pendix B):

1. Process Grader: invoked rwice per trajectory
(averaging two independent calls to reduce

grader variance). Guided by a unified prompt,
the grader assesses each of the r intermediate
textual snapshots derived from sy, ...,s,. It
assigns scores for:

e Internal Quality (IQS): Rates the logi-
cal consistency, clarity, and standalone
quality of the reasoning in the snapshot.

* Mathematical Progress (PS): Checks if
the snapshot meaningfully advances to-
wards solving the problem (e.g., by re-
ducing unknowns, correctly applying an
operation, or simplifying the problem
state).

The IQS and PS scores from the two invoca-
tions are averaged for each snapshot s.

2. Final Answer Checker: This grader eval-
uates the policy model’s final generated so-
lution text, ¢gnal, for correctness against the
ground truth y*, returning ¥ [Jina = y*]-

3.2.3 GRPO objective

Given GG sampled trajectories, we first compute the
group-relative advantage

Q|

G
_ _ 1
Ai=R;—R, R==>R;,
j=1

where R is the mini-batch mean reward. We then
minimize the clipped loss used by Group-Relative
Policy Optimization (GRPO):

Lcrro =
—Z min(piAi, clip(pi, 1 —e,1+ 5)Ai)
ieB
+ B Dxi(mg || Tret), ®)

where p; = o (yi | 2:) /7oy, (yi | i) is the impor-
tance ratio.

We adopt € = 0.2 following the PPO study of
Schulman et al. (2017) and the GRPO replication
by Shao et al. (2024); this range (0.1 —0.3) is
standard for stable clipped objectives. The KL-
penalty coefficient 3 is controlled by the adaptive
KL scheduler (initial 5 = 0.1), adjusted each step
to keep Dk ~0.1. This setting limits policy drift
yet matches the LoRA capacity used in our runs.

Equation (8) is algebraically identical to PPO’s
surrogate loss; GRPO simply replaces the learned
value head with the group mean R, eliminating the
need for a critic network.
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3.3 Efficiency Techniques

3.3.1 Efficient Intermediate State Caching for
Process Supervision

Our methodology requires evaluating intermediate
reasoning steps. The Huginn architecture’s recur-
rent CORE block naturally produces a sequence of
latent states {sj};._; (Eq. (1)). These r states are
collected and cached in a single forward unrolling
of the CORE block. This one-pass generation is
highly efficient for obtaining the full set of interme-
diate states, drastically reducing FLOPs compared
to a naive re-execution that would recompute states
from sq for each depth k. We then perform the
decoding process (detailed in Sec. 3.2.2) on each
cached state s; using the model’s CODA compo-
nents and LM head to generate the textual snap-
shots required by our PSM graders. The primary
FLOP saving highlighted here pertains to the effi-
cient collection of the {sy} states themselves.

3.3.2 Parameter-Efficient Tuning with LoRA

To fine-tune the Huginn model using our Latent-
State Supervised RL (LSRL) approach with man-
ageable computational resources, we employ Low-
Rank Adaptation (LoRA) (Hu et al., 2022). Fol-
lowing common practice for effective adapta-
tion (Sidahmed et al., 2024), we inject rank-8
LoRA adapters, with a scaling factor a = 16, into
specific projection matrices within Huginn’s recur-
rent CORE block. Specifically, adapters are applied
to the query/key/value and output projections of the
attention mechanism, as well as the up-projection
and down-projection layers of the MLP. This strat-
egy resulting in only 0.17% trainable parameters.

3.4 Training Loop Overview

Algorithm below condenses one GRPO update in
our Latent-State RL (LSRL) pipeline. For the inter-
ested reader, Appendix A presents detailed pseudo-
code implementation and Appendix B provides the
GPT-4.1-nano grading configuration.

1. Sample roll-outs. For each prompt in the
mini-batch, nucleus-sample G trajectories.

2. Generate intermediate textual snap-
shots. For each of the G trajectories, from its
efficiently cached intermediate latent states
{sk} (Sec. 3.3.1), generate a textual snapshot
for each relevant depth k via autoregressive
decoding (detailed in Sec. 3.2.2).

3. Grade snapshots. Send each depth-£ string
to the GPT-4.1-nano graders (Sec. 3.2.2) and

collect scores {IQS;Q ), PS,(cg .

4. Compute rewards and advantages. Fuse
snapshot and final scores into a total reward
Rt(é’t) for each trajectory (g) via Egs. (4)—(6),
then form group-relative advantages with
Eq. (7).

5. Optimize. Minimize the GRPO loss (Eq. (8))
using the AdamW optimizer.

6. Update parameters. Apply rank-8 LoRA
deltas to the 16 CORE projection matrices only
(Sec. 3.3.2); all other base model weights stay
frozen.

4 Experiment Design and Setup
4.1 Tasks and Datasets

We assess mathematical reasoning on three open
benchmarks:

* GSM-8K grade-school word problems
(Cobbe et al., 2021),

* MATH (“Minerva-MATH”) theorem-style
proofs (Lewkowycz et al., 2022),

* MathQA multi-step arithmetic questions
(Amini et al., 2019).

For each dataset we use its official test split for
evaluation and do not include any test items in
training. The reinforcement-learning phase fine-
tunes on a random subset of 500 problems from
the GSM-8K training split; no synthetic data or
curriculum-generated examples are added.

4.2 Model Variants
We evaluate four systems, summarized in Table 1:

* Huginn-SFT-r8: supervised baseline, recur-
rent depth r=8.

* RL-Outcome: depth-8 model fine-tuned with
GRPO using a single final-answer reward.

* LSRL (ours): depth-8 model trained with
both final and process (PSM) rewards.

* Huginn-SFT-r32: deeper supervised baseline,
r=32.

All variants start from the public Huginn-3.5B
checkpoint and are updated with rank-8 LoRA
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Name Params r Trainable %' Reward
SFT-18 35B 8 0 -
RL-Outcome 3.5B 8 0.17 Final
LSRL 35B 8 0.17 Final+PSM
SFT-r32 35B 32 0 -

Table 1: Variants compared in this study.

Parameter Value
Optimizer AdamW
Learning rate 2x107° (constant)
Trajectories G 8
Discount y 0.99

Clipe 0.2

KL target 8 0.1 (adaptive)
LoRA rank / o 8/16
Quantisation int8 (QLoRA)

Table 2: Core hyper-parameters.

adapters; thus fewer than 0.2 % of parameters are
trainable in the RL runs.

4.3 Training and Evaluation Procedure

We optimize with AdamW at a constant learning
rate of 2 x 1076, To process 32 unique prompts be-
fore each weight update, gradients are accumulated
over four sequential micro-batches; each micro-
batch handles trajectories generated from 8 unique
prompts. For every unique prompt, G=8 distinct
trajectories are produced by the policy model. In
our LSRL model, which incorporates process re-
wards, the intermediate reasoning steps within
these trajectories are evaluated for process supervi-
sion by GPT 4.1-nano, and the resulting step-wise
rewards are discounted by s, =0.99.

At test time we decode greedily (17'=0) and re-
port the pass@1 metric across GSM-8K, MATH
and MathQA benchmarks. All runs fit on a sin-
gle NVIDIA L40S-class GPU in int8 mode using
QLoRA (Dettmers et al., 2023).

5 Results and Discussion

5.1 Accuracy and Efficiency

Overall gains. Relative to the supervised depth-8
baseline (SFT-r8), our latent-state supervised RL
model (LSRL) raises accuracy by +4.27 points
on GSM-8K, +1.33 points on MATH, and +2.06
points on MathQA. These improvements indicate
that process-level rewards substantially strengthen
Huginn’s mathematical reasoning.

The improvement on MATH is modest com-
pared with grade-school datasets for several rea-

"Percentage of total model parameters updated during fine-
tuning (LoRA adapters only).

sons. First, the problems are intrinsically harder:
proofs often span hundreds of tokens, require sym-
bolic manipulation, or invoke high-level tactics
such as case splits and geometric constructions that
are absent from GSM-8K and MathQA. Second,
the RL phase fine-tunes on just 500 GSM-8K items;
the heuristics learned there, mainly short arithmetic
chains, transfer only partially to Olympiad nota-
tion and LaTeX-formatted derivations. Third, our
reward model scores local algebraic progress, so
higher-order reasoning steps that are essential for
MATH remain largely invisible to the shaping sig-
nal.

One natural remedy is difficulty-aware curricu-
lum learning. Adaptive schedulers such as AdaRFT
(Shi et al., 2025) sample problems whose esti-
mated difficulty sits just beyond the model’s current
competence, accelerating PPO-style fine-tuning on
mathematical reasoning. GRPO-LEAD (Zhang and
Zuo, 2025) shows that re-weighting the advantage
term by problem difficulty further sharpens GRPO
updates. Interleaving easier GSM items with pro-
gressively harder MATH subsets, or replacing the
generic grader with a proof-validity scorer, should
expose Huginn to richer reasoning traces while pre-
serving the dense feedback that proved effective on
grade-school tasks.

Source of the improvement. Outcome—only RL
lifts GSM-8K by only +1.05 pp. The +3.22 pp
additional gain realized after adding process su-
pervision therefore contributes roughly 75 % of
the total lift. Two quantitative diagnostics corrobo-
rate that dense stepwise rewards, not merely extra
policy-gradient updates, drive this gap.

That said, the outcome-only baseline is not com-
pletely ineffective. Following the “posterior sharp-
ening” explanation in DeepSeek-R1 (DeepSeek-Al
et al., 2025), even a binary reward moves proba-
bility mass away from trajectories that end with
off-by-one arithmetic slips, yielding the modest
+1 pp boost we observe. Nonetheless, because the
reward is observed only after all eight latent itera-
tions, credit assignment remains long-horizon, and
improvement quickly saturates.

Compute—depth trade-off. Having established
where the accuracy gain comes from, we next in-
vestigate how much compute it saves. Although
depth-32 inference still achieves the highest raw
accuracy, LSRL-r8 recovers approximately 75 %
of the GSM-8K score while consuming only 25 %
of the recurrent compute (1.0 x vs. 4.0 x FLOPs).
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Model T GSM (%) MATH (%) MathQA (%) FLOPs/tok!
SFT-r8 8 13.49 5.61 24.07 1.0x
RL-Outcome 8 14.54 6.32 24.62 1.0x
LSRL (ours) 8 17.76 6.94 26.13 1.0x
SFT-r32 32 24.87 11.24 27.97 4.0x

Table 3: Accuracy and compute.'FLOPs per token grow

1.0x.

Looking forward, repeating the LSRL recipe
at larger depths (r=16 or 32) appears especially
promising. A deeper Huginn exposes up to four
times as many latent snapshots, and each addi-
tional snapshot supplies an independent reward sig-
nal. Moreover, the depth-32 supervised baseline
already achieves the best raw accuracy, suggesting
that process-supervised RL at > 16 could close
much of the remaining MATH gap while retaining
strong accuracy-per-FLOP profile demonstrated at
r=8.

5.2 Qualitative Trajectory Analysis

Figure 1 decodes the latent states s, (k=1...8)
for a representative GSM-8K problem under the
baseline SF7-r8 and our LSRL. The baseline drifts
off-topic as early as depth 1, showing hallucinat-
ing boilerplate phrases and incoherent arithmetic,
while LSRL produces a correct plank count at depth
1, refines it consistently, and arrives at the gold an-
swer ($12000) by depth 8. This contrast illustrates
how process supervision rewards guide the policy
toward higher-quality trajectories long before the
final step.

Trajectory selection. Because the reward is ob-
served at every depth, the policy quickly abandons
low-reward paths, such as those producing nonsen-
sical tokens, so probability mass concentrates on
trajectories whose early states look algebraically
plausible.

Human-legible reasoning. The reward model
is a GPT-4.1-nano grader trained on human-style
Chain-of-Thought data; latent states therefore
evolve toward fluent, step-by-step explanations that
are easy for humans (and automatic verifiers) to fol-
low.

Noise suppression. Process supervision sharply
reduces “garbled-symbol” segments. A related ob-
servation was made by Luo et al. (2025), who
show that automated process supervision elimi-
nates meaningless or redundant tokens while boost-
ing math accuracy; our results mirror this effect

linearly with recurrent depth; depth—8 is normalized to

inside Huginn’s latent loop.

Residual issues analysis. While LSRL removes
most garbled tokens, three problems persist:

1. Prompt-echo noise at depth 1 (“first 300 sec-
onds is not enough ...”"), showing the model
still copies stray prompt fragments before it set-
tles on algebra.

2. Qualitative fluff at depth 2 (“astronomically
large number”), a logically irrelevant phrase.

3. Unit/type mix-ups at depth 3: revenue is com-
puted on planks rather than tables, yielding an
off-by-factor answer ($222 000).

These errors persist for two potential reasons. First
a granularity mismatch: the reward scores the en-
tire paragraph at each depth, so brief fluff can
be averaged out. Second, a capacity limit: the
lightweight GPT-4.1-nano judge occasionally over-
estimates unit-mismatched arithmetic, allowing the
policy to “game” the reward early in the trajectory.

Further improvement paths. (a) Fine-tune the
existing GPT-4.1-nano reward model. Itera-
tively re-labeling fresh trajectories and distilling
both responses and rewards has been shown to let
~1 B-parameter judges outperform larger teach-
ers (Zhang et al., 2025b). Applying the same
“reward-distillation” loop every few RL epochs
should tighten early depth supervision at negligible
compute cost.

(b) Train a specialized process reward model
(PRM). Chen et al. (2024) demonstrate that an auto-
generated, symbol-aware PRM which verifies each
sub-question yields larger math gains than text-only
graders. Plugging such a PRM in place of GPT-
nano would directly penalize the unit/type errors
still visible at depths 2—3 and can be combined via a
two-stage curriculum: first clean syntax with nano,
then enforce symbolic correctness with PRM.

5.3 Shallow-Recurrence Ablation

We reran the entire training recipe with the la-
tent loop shortened to four iterations and evalu-
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Q: John chops down 30 trees. From each tree, he can make 25 planks. A table takes 15 planks to make and sells for $300. He
paid $3000 for all the labor. How much profit did he make?

Answer: $12,000

Baseline SFT-r8

Depth-1: First, let’s start with some basic concepts
and some basic concepts. ****Please follow the
step-click®##** ****Time-time-time™*=* %%
Depth-2: John chops 15 trees to make $3000 a total
of $300,000. He pays $3000 for each tree, $300 for a
total of $3000. Each tree is $300. How much money
does he make?

Depth-3: John made 30 planks from each tree and
25 planks from the remaining 25 trees. So, he made
30 %30 = 150 planks in total. John made 25 x 15 =
30 planks from the first 25 trees and 25 x 15 = 45
planks from the remaining 25 trees. John’s total
profit is 300 x 30 = 900 x 15 = $3000000.

. intermediate depths omitted . ..

Depth-8 (final): To solve this problem, we need to
calculate the total number of planks John has and
then determine the profit he made from the sales of
the planks.

Step 1: Calculate the total number of planks John has.
John has 30 trees and each tree produces 25 planks.
So, the total number of planks John has is: 30 trees *
25 planks / tree = 750 planks

Step 2: Calculate the total number of tables John sold.
John sold tables for $300 per table, and he sold 750
tables. So, the total number of tables John sold is:
750 tables

Step 3: Calculate the profit John made from the sales
of the planks. John paid $3000 for all the labor and
each table takes 15 planks to make. So, the total
number of planks John used for the tables is: 750
tables * 15 planks/table = 11250 planks

Step 4: The profit John made from the sales of the
planks is: Profit = (Profit per table * Number of
tables) * Number of planks used for tables = ($300 *
750) * 11250 = $2.

Legend: Hallucinations/Off-topic  Calculation Errors

Correct Calculations

LSRL (PSM RL)

Depth-1: John chops down 30 trees. From those
trees he makes 750 planks. A table takes 15 planks.
Each plan cuts the tree down to planks, then repeat
iteratively. The answer: first 300 seconds is not
enough to compute the total.

Depth-2: To calculate the profit, John needs to cal-
culate the labor cost ($3,000) and the selling price
of each table. The total cost of the trees is an astro-
nomically large number.

Depth-3: He can make 25 planks. A table takes 15
planks to make and sells for $300. He paid $3000 for
all the labor. How much profit did he make? Huginn

John can make 25 planks from each tree, so he can
make 30 x 25 = 750 planks. He sold each plank
for $300, so revenue is 750 x 300 = $225,000. He
paid $3000 for all the labor. John’s profit is $225,000
-$3,000 = $222,000.

. intermediate depths omitted . ..

Depth-8 (final): He can make 25 planks. A table
takes 15 planks to make and sells for $300. He paid
$3000 for all the labor. How much profit did he
make? Huginn

1. Calculate the total number of planks John made:
from the 30 trees, he made 30 x 25 = 750 planks.

2. Calculate the total number of tables sold: 750 -+
15 = 50 tables.

3. Calculate the total revenue from the planks: Each
table sold for 300, so the total revenue from tables is
50 x $300 = $15,000.

4. Calculate the profit: To find the profit, subtract the
cost from the revenue: $15,000 - $3,000 = $12,000.

Residual Issues

Figure 1: Decoded latent-state snapshots for baseline SFT-r8 vs. LSRL on a GSM-8K example. Early depths from
LSRL already contain correct computations, whereas the baseline exhibits off-topic drift and calculation errors.

Model GSM MathQA
SFT-r4 8.36 22.93
RL-Outcome-r4  8.01 22.47
LSRL-r4 8.59 23.14

Table 4: Shallow-loop ablation (depth r=4). MATH
is omitted because all variants score < 1%, rendering
the task trivial at this depth.

ated on GSM-8K and MathQA. Table 4 reveals a
flat plateau: every variant clusters around 8% on
GSM-8K and 23% on MathQA. This stark con-
trast with our r==8 findings suggests a minimum
threshold of recurrent depth is necessary before
process supervision can take effect. At r=4, the

intermediate latent states likely contain insufficient
meaningful reasoning steps to provide an effective
grading signal, resembling attempts to grade un-
derdeveloped work. These results highlight that re-
currence depth plays a critical role not only in raw
model performance but also in enabling effective
reinforcement learning. The stark contrast between
ineffective reinforcement at r=4 and substantial
gains at =8 suggests a threshold of required com-
putational depth for LSRL, though further work is
needed to precisely characterize this boundary.
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6 Conclusion and Future Work

We introduced Latent-State Supervised Reinforce-
ment Learning (LSRL), a process-supervised vari-
ant of GRPO that delivers dense rewards at each
latent iteration of recurrent language models. Our
approach addresses a key limitation of latent-
recurrent models: while they can achieve impres-
sive reasoning capabilities with fewer parameters,
their opaque hidden trajectories hinder effective
credit assignment, especially for mathematical rea-
soning tasks.

Our work makes several contributions to latent
reasoning in language models. First, we developed
a novel framework for process-supervised RL that
operates on latent states rather than explicit tokens,
creating the first process-supervised approach for
latent recurrence. Second, we introduced techni-
cal innovations that make this approach practical:
a one-pass hidden-state cache that fully decodes
every latent depth in a single forward/backward
pass, and LoRA adapters for efficient fine-tuning of
latent-recurrent RL. Finally, using only 500 GSM-
8K training problems and a single GPU, we demon-
strated substantial improvements of +4.27 points on
GSM-8K and +2.06 points on MathQA, approach-
ing the performance of models with 4x the compute
requirements.

Our results demonstrate that latent-recurrent ar-
chitectures offer a promising alternative path to
scaling reasoning capabilities in language models.
While most approaches focus on either increasing
parameter count or extending inference through
chain-of-thought tokens, LSRL enables models to
scale through test-time computation in the latent
space. This provides several advantages: (1) re-
duced memory requirements during training and
inference, and (2) no need for specialized training
data containing intermediate reasoning steps.

Future directions. There are several promising
directions for extending this work:

1. Scaling to larger recurrent depths: Apply-
ing LSRL to deeper models (r=16 or r=32)
should yield additional gains, as these models
expose more latent states for supervision while
maintaining the parameter efficiency advantage.

2. Specialized reward models: Developing math-
ematical process reward models that are symbol-
aware and can verify intermediate algebraic
steps would address the unit/type confusion is-

sues we observed and potentially close more of
the gap on the MATH benchmark.

3. Curriculum learning: Implementing difficulty-
aware curricula like AdaRFT or GRPO-LEAD
could accelerate learning and improve transfer
to more complex domains by progressively ex-
posing the model to harder reasoning problems.

4. Cross-domain transfer: Extending LSRL be-
yond mathematics to domains such as logical
reasoning, coding, and causal inference could
reveal whether the process-supervision benefits
generalize across different reasoning types.

We believe that LSRL represents an important
step toward more efficient mathematical reason-
ing in language models. By aligning the opti-
mization process with the recursive structure of
latent-recurrent models, we achieve performance
that would typically require significantly more pa-
rameters or deeper recurrence depth. This suggests
that process-level supervision in the latent space is
a promising direction for developing more capable
yet efficient reasoning systems.

Limitations

While LSRL demonstrates promising results in im-
proving mathematical reasoning in latent-recurrent
language models, our approach has several limita-
tions that should be addressed in future work.

Training data limitations. Our reinforcement
learning phase relies on only 500 GSM-8K training
problems, which represents a small fraction of the
available mathematical content. This limited train-
ing set may restrict the diversity of problem-solving
strategies that the model learns. Additionally, we
did not implement curriculum learning or gener-
ate synthetic training data, which could potentially
improve performance on harder problems. Our
approach also lacks exposure to complex mathe-
matical domains like multi-step proofs, geometric
reasoning, or higher-level algebra, which may ex-
plain the more modest improvements on the MATH
benchmark compared to grade-school datasets.

Reward model limitations. The GPT-4.1-nano
grader we use as a reward model has inherent limi-
tations in its mathematical understanding. Unlike
specialized symbolic verifiers, it may struggle to
detect subtle errors in calculations or logical steps,
particularly for complex mathematical operations.
This could lead to reward misalignment where the
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model is reinforced for mathematically incorrect
but plausible-sounding reasoning.

There is also potential for reward hacking in
our approach. The model might learn to optimize
for superficial features that correlate with higher
rewards without truly improving its reasoning ca-
pabilities. For example, it might learn to use partic-
ular phrasing or formatting that the grader tends to
score highly, rather than developing deeper mathe-
matical understanding.

Quality and consistency issues. As discussed in
Section 5.2, several quality issues persist in LSRL’s
outputs:

1. Prompt-echo phenomena: The model still ex-
hibits a tendency to copy portions of the input
prompt at early depths, suggesting incomplete
decoupling of input processing and reasoning
initialization.

2. Superfluous content: The presence of quali-
tative "fluff" and logically irrelevant phrases at
intermediate depths indicates that the model has
not fully learned to focus on mathematically
relevant reasoning steps.

3. Semantic confusion: Unit/type mix-ups in nu-
merical reasoning (e.g., conflating planks with
tables or misapplying operations to incorrect
entities) shows remaining weaknesses in the
model’s conceptual understanding of applied
mathematics.

These issues suggest that while process supervi-
sion improves overall performance, it does not com-
pletely solve the underlying challenges in mathe-
matical reasoning.

Generalization limitation. Our approach shows
stronger improvements on grade-school arithmetic
(GSM-8K, MathQA) than on competition-level
mathematics (MATH). This indicates challenges in
generalizing from simpler computational patterns
to more advanced mathematical reasoning. The
transfer learning path from GSM-8K’s word prob-
lems to MATH’s formal notation appears to be lim-
ited, suggesting that separate training on symbolic
mathematics might be necessary.

Additionally, we have only evaluated LSRL on
a narrow set of mathematical reasoning tasks. Its
effectiveness for other reasoning domains, such as
programming, causal reasoning, or planning prob-
lems, remains unexplored. This scope limitation

makes it difficult to assess whether the improve-
ments we observe are specific to arithmetic rea-
soning or represent a more general enhancement
to latent-recurrent models’ reasoning capabilities
across domains.
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Implementation notes.

* Hidden-state cache: we store the sequence sj.,
during the forward pass and reuse it for all snap-
shot decodings, avoiding r additional core exe-
cutions.
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Algorithm 1: GRPO with process-
supervised (PSM) rewards at every latent
step. The one-pass hidden-state cache
avoids re-executing the recurrent core
during DecodeSnapshot.

B

Input: Mini-batch of prompts {x(V}£_; and gold
answers {y} 2,
Output: Updated Huginn parameters 6 < ¢’

1 Hyper-params: recurrent depth r=8; # trajectories
per prompt (; reward weights Afna, Aigs, Aps;
discount .

1. Policy rollout

fori < 1to Bdo // vectorised across BxG
trajectories

w N

4 for g < 1to G do

5 {s!"9} « HuginnForward (x*), 9)

6 ("9 « DecodeFinal(s\"*))

7 for k < 1tor do

8 i{"9 « DecodeSnapshot(s."?)

// cached for reward

9 end
10 end
11 end
12 2. External grading (batched API calls to GPT-4.1

nano)
13 foreach trajectory (i, g) do

14| {g®, ai®},_, « GradeSeq({f;"”'}-1)
15 ¢™*' «+ GradeAnswer(j"9), yV)
16 R®9)  Agpa ¢ + AiasSh_y ,kalqllcQS +
Aesd i Y g
17 end
18 3. GRPO update (critic-free PPO)
1 NG i (i
19 Vol ~ 2o S [ w00 %) = 70, (57|
0,9
X(“)] Clip(R(i’g) — R, —¢, -I—e)
GRPO ratio clip
20 0« 0 —nVeJ

// standard

// AdamW

* LoRA updates: only the recurrent CORE pro-
jection matrices receive rank-8 LoRA adapters;
Prelude/Coda blocks remain frozen.

* Parallel grading: calls to GPT-4.1 nano for
IQS/PS and final correctness are issued asyn-
chronously to maximise throughput.

B GPT-4.1 Nano PSM-Grader
Configuration

To generate dense, machine-parseable rewards we
invoke two gpt-4.1-nano instances:

* Graders A/B — called twice per trajectory and
averaged, they assess Intrinsic Quality and
Progress of every intermediate snapshot.

¢ Grader C — checks the numerical correctness
of the final answer.

B.1 Generation hyper-parameters

Parameter Graders A/B  Grader C
Model ID gpt-4.1-nano
Temperature 0.0 0.0

Top-p 1.0 1.0

Max tokens 3000 200

Response format {type: “json_object”}

Table 5: API settings used for all PSM grading calls.

B.2 System prompt — Process-quality
Graders (A/B)

You are a meticulous and objective AI assistant specializing
in evaluating mathematical reasoning. You will be given
a math problem, its ground truth numerical final answer,
and a series of up to “max_depth_generated™ solutions (
Output_1 to Output_-max_depth_generated™) generated by a
student AI at increasing "reasoning depths”.

Your task is to evaluate EACH of the outputs individually and
relative to the previous one. For each Output_k (where k
is from 1 to “max_depth_generated™), assign scores on a
0.0 to 2.0 scale as described below:

1. *xExtract Final Numerical Answer (EFA_K):** From Output_k,
extract the final numerical answer. If no clear
numerical answer is present, state "None”.

2. *xAssess Correctness (AC_k):x* Compare EFA_k with the
Ground Truth Final Answer. State if it's "Correct” or
Incorrect”.

"

3. xxIntrinsic Quality Score (IQS_k):** Assign a score from
0.0 to 2.0 based on the standalone quality of Output_k.

* *x%0.0 to 0.3:*x Severely flawed.

* *x%Q.4 to @.7:xx Significantly flawed.

* *x0.8 to 1.2:%* Mixed quality / Neutral.
* *x1.3 to 1.6:%x Fair quality.

* *x1.7 to 1.9:%x Good quality.

* *x%2.0:%x Excellent quality.

4. *xProgress Score (PS_k):** Assign a score from 0.0 to 2.0
based on the change from Output_{k-1} to Output_k. (
IQS_k below refers to the new 0.0-2.0 scale).

* *xFor Qutput_1 (k=1):%x%
* If AC_1 is "Correct”: PS_1 = (0.5 + ((IQS_1 - 1.0) /
2.0)) + 1.0
*x If AC_1 is "Incorrect”: PS_1 = IQS_1
* x%For Output_k (k > 1):%x
* If AC_k is "Correct” AND AC_{k-13} was "Incorrect”: PS_k

= [1.7 to 2.0].

* If AC_k is "Correct” AND AC_{k-1} was "Correct”: PS_k =
[1.1 to 1.3].

* If AC_k is "Incorrect” AND AC_{k-1} was "Correct”: PS_k
= [0.0 to 0.3].

* If AC_k is "Incorrect” AND AC_{k-1} was "Incorrect”:
PS_k = [0.7 to 1.2].

You MUST output your evaluation as a JSON list, with one
object per depth. Each object must contain: "depth_index
", "extracted_final_answer”, "answer_correctness”, "IQS",
and "PS”. Do not include any other text outside the
JSON list. If the response is a JSON object containing a
key like "evaluations” which holds the list, please
ensure the final output is just the list itself.

B.3 System prompt — Final-answer Grader C

You are an objective AI assistant. You will be given a math
problem, its ground truth numerical final answer, and a
single proposed final solution text. Your task is to
extract the final numerical answer from the proposed
solution and determine if it matches the ground truth.
Output a JSON object containing only the key "
final_correctness_score” with a value of 1.0 if the
extracted answer matches the ground truth, and 0.0
otherwise (including if no answer can be reliably
extracted or if the solution is nonsensical).
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Usage. During training we call Graders A and
B in parallel for every latent depth, average the
returned IQS/PS values, then invoke Grader C on
the depth-r snapshot to produce the binary correct-
ness reward described in Section 3.2.2 of the main

paper.
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