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Abstract

We propose a novel speculative decoding
method tailored for multi-sample reasoning sce-
narios, such as self-consistency and Best-of-
N sampling. Our method exploits the intrin-
sic consensus of parallel generation paths to
synthesize high-quality draft tokens without re-
quiring auxiliary models or external databases.
By dynamically analyzing structural patterns
across parallel reasoning paths through a prob-
abilistic aggregation mechanism, it identifies
consensus token sequences that align with the
decoding distribution. Evaluations on mathe-
matical reasoning and code generation bench-
marks demonstrate a substantial improvement
in draft acceptance rates over baselines, while
reducing the latency in draft token construc-
tion. This work establishes a paradigm shift
for efficient multi-sample inference, enabling
seamless integration of speculative decoding
with sampling-based reasoning techniques.

1 Introduction

Nowadays, large language models (LLMs) increas-
ingly rely on multi-sample aggregation strategies,
such as majority voting (self-consistency) (Wei
et al., 2022) and Best-of-N sampling (Cobbe et al.,
2021a), to enhance prediction accuracy in complex
reasoning tasks. By generating and aggregating
multiple candidate outputs, these methods mitigate
individual sampling errors and improve task per-
formance, particularly in mathematical reasoning
(Lu et al., 2023). However, this benefit comes at a
significant computational cost: generating multiple
samples inherently prolongs inference latency, pos-
ing a critical challenge for real-world applications
where efficiency is paramount.

To address latency issues, speculative decoding
(Leviathan et al., 2023; Chen et al., 2023a; Miao
et al., 2023) has emerged as a promising accelera-
tion method. By predicting draft tokens in advance
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and verifying them against the original LLM, this
approach reduces the number of full autoregres-
sive steps. However, existing methods depend on
external draft models (Li et al., 2024d) or retrieval-
augmented databases (He et al., 2024) to gener-
ate drafts, introducing three critical limitations:
First, draft tokens sourced externally struggle to
fully align with the original LLM’s output distri-
bution, which lowers token acceptance rates and
diminishes the potential speedup. Second, query-
ing these external modules or databases inevitably
incurs additional latency. Third, relying on auxil-
iary resources incurs extra costs—training a draft
model or maintaining a database require additional
computational and storage overhead.

A critical observation motivates our work: multi-
sample inference yields a rich reservoir of high-
quality draft tokens. When generating multiple par-
allel reasoning paths (e.g., for majority voting), the
LLM produces outputs that, while varied in expres-
sion, are all drawn from the same underlying dis-
tribution. Frequently, these outputs share common
substeps—such as intermediate equations in math
problems—while differing in ordering or phrasing.
Importantly, because all paths stem from the same
model, their substeps naturally mirror its output
tendencies, unlike externally sourced drafts. This
inherent alignment makes them ideal candidates for
speculative decoding, provided we can effectively
extract and aggregate consensus patterns.

In this paper, we introduce a novel speculative
decoding method explicitly designed for multi-
sample reasoning scenarios. Our approach begins
by leveraging the overlapping token subsequences
generated across parallel reasoning paths to build a
dynamic draft token pool. At each inference step,
the most recent tokens from any path are used as
queries to retrieve matching prefixes from other
paths via suffix-based matching. The tokens imme-
diately following these matches are aggregated as
candidate drafts. These candidates are then orga-
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nized into a weighted directed acyclic graph (DAG),
where the edge weights reflect transition proba-
bilities derived from the LLM’s distribution. A
confidence-weighted search is performed on this
DAG to extract the highest-likelihood token se-
quence—prioritizing paths with strong agreement.
This consensus-driven process yields draft tokens
that closely align with the model’s output distribu-
tion, ultimately accelerating inference by reducing
the number of full autoregressive steps without the
need for external modules or datastores.

We evaluate our method on four benchmarks
using three widely adopted LLMs under multi-
sample inference settings. Our approach achieves
much higher token acceptance rate at identical draft
lengths, demonstrating superior alignment with the
original model’s distribution. Crucially, the draft
construction process incurs lower latency than base-
lines, as it eliminates costly database queries or
auxiliary model inferences.

2 Background

Multi-Sample Inference Aggregation strategies
aim to enhance reasoning reliability by generating
and aggregating multiple candidate outputs. Let
Y = {y1,vy2,...,yn} denote N parallel samples
drawn from a language model py. Two dominant
paradigms include:

* Self-Consistency: Selects the final answer via
majority voting over Y':

where A is the answer space and I(-) is the
indicator function.

* Best-of-N: Scores each sample y; with a re-
ward function G(y;|z) and selects the highest-
ranked candidate:

y = argmax G(y;|z), 2

y = argmax G(yilx) )
where G’ may quantify sequence likelihood,
alignment with domain-specific heuristics, or
external verification signals.

While aggregation techniques enhance accuracy,
generating multiple samples increases latency,
thereby motivating the development of accelera-
tion methods.

Speculative Decoding Speculative decoding re-
duces inference latency by predicting K -step draft
tokens {¢',..., 7%} in advance from draft model
q and verifying them via the original model py.
Traditional approaches rely on an auxiliary draft
model or a retrieval datastore D to propose drafts.
For each step ¢:

» Draft Proposal: Generate §* ~ ¢(-|y**~!) or
retrieve ¢ from D.

e Parallel Verification: Compute pg(-|yt—1)

for all 1.

* Draft verification: Accept the longest prefix
7 < K where po('ly"* 1) 2 (5'ly ).

3 Method

Our method transforms the inherent consensus
of multi-sample reasoning paths into high-quality
draft tokens through three key components: (1) dy-
namic construction of a draft pool via cross-path
suffix searching, (2) fuzzy suffix matching to han-
dle lexical variations and (3) extraction of consen-
sus subsequences using a DAG structure built over
aligned reasoning paths. The entire process oper-
ates during parallel decoding, requiring no external
models or datastores. Please refer to Appendix A
for the algorithm.

Dynamic Draft Pool Construction Dur-
ing parallel generation of N reasoning paths
{y1,y2,...,yn}, we iteratively build a draft pool
by identifying overlapping token subsequences
across paths. For any partial sequence 3" on the
path ¢, we use its k-token suffix yf*kﬂ:t as a query
to search for matching prefixes in other paths
{y;}j=i- Matched prefixes’ subsequent tokens
are aggregated as draft candidates. Formally, the

candidate set C; at step ¢ is:

C = U {y?: | 3t < t,yjl»:t/ ends with yf_kH:t} .
J#i
(3)
Candidates inherently align with py, as all paths
are derived from the same model.

Fuzzy Suffix Matching To handle minor lexical
variations (e.g., "x?" vs. "x"2" in mathematical
steps), we extend exact suffix matching with edit
distance tolerance €. For query suffix s, we retrieve
all s’ where:

o(s,8') <e, “
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Figure 1: The framework of proposed method.

ensuring semantically equivalent tokens contribute
to the draft pool.

Consensus-Driven Draft Extraction with DAG
We organize candidates into a directed acyclic
graph (DAG) G = (V, E), where nodes (V') repre-
sent unique tokens, and identical tokens that appear
within the same layer (i.e., at the same time step)
across different candidates are merged to form the
graph. Edges (E) encode transitions weighted by:

w(u,v) = a-Zpg(vi]ui)+(1—a)-Freq(u — ),
Z 5)

where pg(v;|u;) represents the model’s probability
of generating v from u in the ¢-th instance. We
weight through generation probabilities to prevent
the selection of low-probability tokens, thereby
improving the accept rate. We extract the optimal
draft sequence by greedily selecting the token with
the highest weight (3_,,.(, e w(u,v)) at each
layer. The search terminates upon reaching either
the maximum draft token length L or a leaf node.

There are three advantages of DAG over tree
structure: Compact Structure: Merges shared to-
kens (e.g., common math operators) into single
nodes. Multi-Path Support: Captures divergent
reasoning branches (e.g., "x+1" vs. "x-1") via mul-
tiple edges. Probabilistic Ranking: Edge weights
quantify consensus between paths.

Draft acceptance We follow He et al. (2024),
where draft tokens are validated by comparing them

with tokens sampled from the model’s conditional
distribution at each position. Accepted draft tokens
are those that match the sampled tokens, and any
mismatch leads to rejection of subsequent drafts.
This method ensures that the generated sequences
align with standard autoregressive generation with-
out any loss of accuracy.

4 Experiment

4.1 Experimental Setup

Datasets and Models We evaluate our method
on two widely-used mathematical reasoning bench-
marks: GSM8K (Cobbe et al., 2021b) and MATH
(Hendrycks et al., 2021) and two code generation
benchmarks: MBPP (Austin et al., 2021) and Hu-
manEval (Chen et al., 2021). We test on Qwen2.5-
7B-Instruct, Qwen2.5-14B-Instruct (Yang et al.,
2024) and Llama-3-8B-Instruct (Dubey et al., 2024)
models. For simplicity, edit distance tolerance €
and « is set to 1. The effect of the hyperparameters
is detailed in Appendix C.

Baselines We compare our method with REST
(He et al., 2024) and EAGLE-2 (Li et al., 2024d).
REST retrieves draft tokens from a pre-built data-
store, where we built it with NuminalMath-CoT
(Li et al., 2024a) and BigCode dataset (Kocetkov
et al., 2023). EAGLE-2 leverages both the token
sequence and the hidden state sequence to sequen-
tially predict subsequent draft tokens. When com-
paring performance, we adopt accept length and
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Table 1: Accepted length under different draft lengths (L) for REST, EAGLE-2, and our method on GSMS8K and

MBPP. Please refer to Appendix D for MATH and HumanEval dataset.

Dataset ‘ Qwen2.5-7B-Instruct ‘

Qwen2.5-14B-Instruct |

LLaMA3-8B-Instruct

Model

\ L=6 4 3 2 \ L=6 4 3 2 \ L=6 4 3 2
REST 056 049 041 025|028 024 0.19 020 | 052 046 041 0.26
EAGLE-2 GSMSK | 097 087 0.70 065 | 0.88 0.78 065 0.63 | 1.71 141 132 1.12
Ours 153 146 135 112 | 145 142 131 110 | 217 179 153 1.12
REST 0.19 0.19 0.18 0.18 | 026 023 0.17 0.17 | 031 026 021 0.20
EAGLE-2 MBPP 078 0.78 075 073 | 096 086 0.70 069 | 1.63 1.33 132 1.06
Ours 095 094 093 082|295 215 176 126 | 193 156 133 1.02

latency of draft token construction as evaluation
metrics, since baseline methods do not optimize
inference time for batch size greater than one, mak-
ing them incompatible with multi-sample inference.
However, these two metrics ensure a fair compari-
son, as they are orthogonal to parallel speculative
decoding. Please refer to Appendix B for details.

4.2 Main Results

Draft Tokens Acceptation Table 1 presents the
accept length of our method and the baseline ap-
proaches under different draft lengths, where our
method demonstrates a clear advantage. Datastore-
based method exhibits lower reception lengths, pri-
marily because they rely on the distribution of the
database, which does not align with the model’s
distribution. Draft model based method achieves
better alignment with the original LLM due to dedi-
cated training, but their smaller parameter size lim-
its their ability to fully match the original model.
In comparison, draft tokens from our method are
consistently sourced from the same LLM, ensuring
a perfectly matched distribution, which results in a
higher acceptance rate.

Figure 2: Latency (ms) of draft token construction by
Accept Length on Qwen2.5-7B-Instruct for GSM8K
and MBPP. Our method generally requires less time to
construct draft tokens.

Draft Tokens Construction Latency Figure 2
reports the time consumption of different meth-
ods for constructing draft tokens. Among them,
EAGLE-2 incurs the highest computational cost

due to its reliance on GPU-based inference during
construction. Our method is more efficient than
REST, as our candidate set is significantly smaller
than that of large-scale databases.

4.3 Analysis

Ablation Study

1.4
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Figure 3: Results of ablation study on Qwen2.5-7B-
Instruct for GSM8K. DAG data structure with fuzzy
matching achieved the best performance.

Ablation Study Figure 3 presents the results of
the ablation study, demonstrating the effectiveness
of different components of our method. It can be
observed that, in modeling the data structure of
the draft pool, DAG outperforms the tree, which
in turn outperforms the list. This indicates that
the DAG better captures consensus information
among samples, leading to a higher acceptance
rate. Additionally, we find that even when using
a list, our method still achieves competitive per-
formance, confirming that our approach generates
high-quality draft tokens. Removing fuzzy match-
ing leads to a performance drop, highlighting its
role in enhancing the robustness of the draft pool.

Effect of Temperature We investigate the im-
pact of temperature on accept length. As shown in
Figure 4 (left), accept length exhibits a trend of first
increasing and then decreasing as temperature rises.
This is because, at lower temperatures, the diversity
among samples is low, resulting in an insufficient

12526



Accept Length vs Temperature
- -4 - L.
L=6

8 /
% 5

Accept Length vs Sampling Num
4

Accept Length

//\ 16
E
14

06 0 1o 3 o s
Temperature Sampling Num

Figure 4: The effect of sampling temperature (left) and
size (right) on accept length on Qwen2.5-7B-Instruct
for GSMS8K.

number of candidates in the draft pool. Conversely,
at higher temperatures, the diversity among sam-
ples increases, reducing the success rate of suffix
matching. Therefore, the optimal temperature lies
in the middle range.

Effect of Sampling Number We further exam-
ine the impact of sampling size on accept length
under the same draft length. As shown in Figure 4
(right), accept length increases as the sampling size
grows. This is because a larger parallel sampling
size provides a richer set of candidates in the draft
pool, leading to a higher acceptance rate for the
selected draft tokens.

5 Conclusion

We present a speculative decoding method that
leverages consensus patterns from parallel rea-
soning paths to accelerate multi-sample inference,
eliminating external dependencies. By dynamically
synthesizing draft tokens through probabilistic ag-
gregation and graph-based selection, our approach
achieves higher acceptance rates and lower latency
than baselines. This work bridges speculative de-
coding with sampling-based reasoning, establish-
ing a resource-efficient paradigm for accelerating
LLMs while preserving their output distribution.
This approach could pave the way for the imple-
mentation of efficient multi-sample strategies in
real-world applications.

Limitations

Our method has three key limitations:

* Our method is not combined with specula-
tive decoding methods optimized for batch
processing, so its acceleration effect on time
requires further exploration.

* The probabilistic aggregation mechanism in-
curs non-negligible overhead when processing

a large number of parallel paths, potentially di-
minishing latency gains in extreme-scale sce-
narios.

Ethics Statement

All of the datasets used in this study were publicly
available, and no annotators were employed for our
data collection. We confirm that the datasets we
used did not contain any harmful content and was
consistent with their intended use (research). We
have cited the datasets and relevant works used in
this study.
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A Algorithm

Algorithm 1 Self-Consistency Draft Token Gener-
ation
1: Input: Reasoning paths {y1,y2,...,yn} at
t step, suffix length k£, maximum draft token
length L, tolerance e
Output: Optimal draft token sequence D
Initialization:
Construct the initial draft pool Cy < ()
for each path y; in {y1,y2,...,yn} do
Find the k-token suffix yfkﬂ:t
for each path y; where j # i do
Search for fuzzy matching prefixes in
y; and add subsequent tokens to candidate pool
Ce
9: end for
10: end for
11: Construct Directed Acyclic Graph (DAG) G =
(V. E):
12: for each token pair u, v in the candidate pool
do

13: Compute edge weight w(u,v) <+ « -
po(v|u) + (1 — ) - Freq(u — v)
14: end for

15: Greedily select tokens for optimal sequence:

16:  Initialize current sequence D < ()

17: while current draft token length len(D) < L
and DAG is not empty do

18: Select token v; with the highest weight
> ui(uw)ep W(u, v) at each layer

19: Add token v; to the draft token sequence
D

20: end while

21: return D

B Details about Experimental Settings

The raw evaluation setting for EAGLE-2 and REST
both use a batch size of 1, and the inherently se-
quential execution of LLM leads to low hardware
utilization on modern GPUs under this setting.
Thus, the draft token length can be set quite large
(e.g., 60). Su et al. (2023) find that as the batch size
increases, the optimal draft token length decreases.
We reproduce BASS (Qian et al., 2024) multi-
sample speculative decoding method on EAGLE-2
and find that when the draft token length is fixed to
4, the speedup relative to vanilla decoding gradu-
ally diminishes, and when the batch size is greater
than or equals to 8, it even becomes slower than

vanilla decoding. Detailed results of this experi-
ment is shown in Figure 5. In this work, we fo-
cus on constructing draft tokens with higher ac-
ceptance rates and lower latency of draft token
construction, and accelerating parallel draft token
verification and draft token generation are orthog-
onal tasks. Therefore, how to accelerate parallel
draft token verification is not within the scope of
our study, and different draft token construction
methods can be validated using the same approach.
As a result, we adopt accept length and latency
of draft token construction as the evaluation met-
ric for multi-sampling speculative decoding meth-
ods, rather than speedup. Additionally, we keep
the computational load of a single multi-sample
speculative decoding step constant, i.e., draft token
length * batch size = 24. Furthermore, since draft
token length = draft sequence length * draft se-
quence number for tree decoding in EAGLE-2 and
REST, when the draft token length is fixed, there
are different schemes to generate draft candidates
(e.g., when the draft token length is 4, we can either
generate 2 draft sequences of length 2 or 1 draft
sequence of length 4). In this work, both EAGLE-2
and REST report the results of the best draft candi-
dates generation scheme under the specified draft
token length.

8

Batch Size

Figure 5: Speedup ratio with different batch size.

C Effect of Hyperparameters

We conducted additional experiments to examine
the sensitivity of our method to two important hy-
perparameters: « (the balance between matching
frequency and transition probability) and tolerance
€ (the maximum edit distance in suffix matching).
Figure 6 shows the accept length under varying
values of each parameter:
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Figure 6: Effect of Hyperparameters on « and tolerance
€.

* For a, performance improves as it decreases
from 1.0 to 0.5, then slightly degrades to-
wards 0.0, suggesting that a balanced weight-
ing yields the best results.

* For tolerance ¢, mild fuzziness (e.g., ¢ = 2)
improves match coverage, while overly per-
missive matching (e.g., ¢ = 4) introduces
noise and degrades performance.

D More results

Table 2 shows more results to prove the effective-
ness of proposed method.

E Related Work

Multi-Sample Inference Multi-sample infer-
ence strategies have become pivotal for enhanc-
ing the performance and reliability of LLMs in
complex reasoning tasks. Techniques like self-
consistency (Wang et al., 2023) and Best-of-N sam-
pling (Cobbe et al., 2021a) leverage parallel gener-
ation of multiple candidate outputs to mitigate indi-
vidual errors and improve accuracy in math reason-
ing and many other tasks (Chen et al., 2023b; Wang
et al., 2024b). One line of work aims to improve
the performance of multiple sampling methods, for
example, through weighted voting (Li et al., 2023,

2024b), enhancing the diversity of reasoning chains
(Sathe et al., 2024; Li et al., 2025), or step-wise
guidance (Xie et al., 2023). However, the computa-
tional cost of generating multiple samples remains
a critical bottleneck. Recent work has explored
optimizing multi-sample efficiency on controlling
the sampling size (Li et al., 2024c; Aggarwal et al.,
2023; Wang et al., 2024a; Wan et al., 2024), yet
the fundamental trade-off between accuracy gains
and costs persists. Our method aims to accelerate
multiple sampling, significantly reducing inference
latency while ensuring no performance degrada-
tion.

Speculative Decoding Speculative decoding
(Leviathan et al., 2023; Fu et al., 2024) has emerged
as a key paradigm for accelerating LLM inference
by reducing auto-regressive steps without altering
output quality. However, these methods still strug-
gle to fully align drafts with the original model’s
distribution (Zhang et al., 2024a; Cai et al., 2024)
and require significant cost for training (Li et al.,
2024e,d; Zhou et al., 2024; Zhang et al., 2024b)
or storage (He et al., 2024). Our work diverges by
exploiting the inherent redundancy in multi-sample
outputs, obviating external resources while achiev-
ing superior alignment through consensus-driven
drafts.

12532



Table 2: Accepted length under different draft lengths (L) for REST, EAGLE-2, and our method on MATH and
HumanEval.

Model Dataset |  Qwen2.5-7B-Instruct | Qwen2.5-14B-Instruct |  LLaMA3-8B-Instruct
|L=6 4 3 2 |L=% 4 3 2 |L=6 4 3 2

REST 077 059 044 023|057 021 0.18 0.15 | 057 050 040 024
EAGLE-2 MATH 098 0.87 0.69 068 | 089 079 0.63 0.62 | 1.48 1.18 1.09 094

Ours 1.89 163 147 117 | 178 1.63 142 117 | 295 215 176 1.26
REST 0.18 0.18 0.18 0.17 | 026 021 0.18 0.17 | 036 027 026 021
EAGLE-2 HumanEval | 0.78 0.76 0.78 0.71 | 0.69 0.70 0.69 0.66 | 1.52 1.13 119 1.00
Ours 092 091 088 0.79 | 090 092 091 081 | 159 130 119 093
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