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Abstract

The biases exhibited by text-to-image (TTI)
models are often treated as independent, though
in reality, they may be deeply interrelated. Ad-
dressing bias along one dimension—such as
ethnicity or age—can inadvertently affect an-
other, like gender, either mitigating or exacer-
bating existing disparities. Understanding these
interdependencies is crucial for designing fairer
generative models, yet measuring such effects
quantitatively remains a challenge. To address
this, we introduce BiasConnect , a novel tool
for analyzing and quantifying bias interactions
in TTI models. BiasConnect uses counterfac-
tual interventions along different bias axes to
reveal the underlying structure of these inter-
actions and estimates the effect of mitigating
one bias axis on another. These estimates show
strong correlation (+0.65) with observed post-
mitigation outcomes.

Building on BiasConnect , we propose
InterMit , an intersectional bias mitigation
algorithm guided by user-defined target
distributions and priority weights. InterMit
achieves lower bias (0.33 vs. 0.52) with
fewer mitigation steps (2.38 vs. 3.15 average
steps), and yields superior image quality
compared to traditional techniques. Although
our implementation is training-free, InterMit
is modular and can be integrated with many
existing debiasing approaches for TTI models,
making it a flexible and extensible solution.

1 Introduction

Text-to-Image (TTI) models such as DALL-E
(Ramesh et al., 2021), Imagen (Saharia et al., 2022),
and Stable Diffusion (Rombach et al., 2022) have
become widely used for generating visual content
from textual prompts. Despite their impressive ca-
pabilities, these models often inherit and amplify
biases present in their training data (Wang et al.,
2022b; Chinchure et al., 2024; Cho et al., 2023).
These biases manifest across multiple social and

Figure 1: An example for which BiasConnect estimates
a negative impact of bias mitigation along one axis on
another axis. For this query, increasing the gender diver-
sity (Gen) skews age distribution (Age) for images of
musicians generated by Flux-dev.

non-social dimensions – including gender, race,
clothing, and age – leading to skewed or inaccu-
rate representations. As a result, TTI models may
reinforce harmful stereotypes and societal norms
(Bender et al., 2021; Birhane and Prabhu, 2021).
While significant efforts have been made to eval-
uate and mitigate societal biases in TTI models
(Wang et al., 2023a; Cho et al., 2023; Ghosh and
Caliskan, 2023; Esposito et al., 2023; Bianchi et al.,
2023; Chinchure et al., 2024), these approaches of-
ten assume that biases along different dimensions
(e.g., gender and race) are independent of each
other. Consequently, they do not account for rela-
tionships between these dimensions. For instance,
as illustrated in Figure 1, mitigating gender (male,
female) may effectively diversify the gender distri-
bution in a set of generated images, but this miti-
gation step may negatively impact the diversity of
another bias dimension, such as age. This relation-
ship between two bias dimensions highlights the
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intersectional nature of these biases.
The concept of intersectionality, first introduced

by Crenshaw (Crenshaw, 1989), motivates the need
to understand how overlapping social identities
such as race, gender, and class contribute to sys-
temic inequalities. In TTI models, these intersec-
tions can have a significant impact. As a motivat-
ing study, we independently mitigated eight bias
dimensions over 26 occupational prompts on Sta-
ble Diffusion 1.4, using a popular bias mitigation
strategy, ITI-GEN (Zhang et al., 2023) (see A.5).
We found that while the targeted biases were re-
duced in most cases, biases along other axes were
negatively affected in over 29% of the cases. This
suggests that for an effective bias mitigation strat-
egy, it is crucial to understand which biases are
intersectional. Additionally, it is important to strive
towards building a more holistic bias mitigation
algorithm that can either mitigate multiple biases
simultaneously or predict what biases cannot be
mitigated together.

To understand how biases in TTI models in-
fluence one another, we propose BiasConnect,
the first analysis tool that evaluates biases while
explicitly modeling their intersectional relation-
ships. Unlike prior methods that treat biases in
isolation, BiasConnect identifies how mitigating
one bias can positively or negatively affect others.
Specifically, BiasConnect uses a novel metric, the
Intersectional Sensitivity (IS ), to quantify how
mitigation along one axis affects others. These IS
scores show a strong correlation (+0.65) with ob-
served intersectional outcomes post-mitigation. We
validate our approach through robustness studies
and qualitative analyses, demonstrating its utility
for auditing open-source TTI models.

Furthermore, we extend BiasConnect with a
holistic intersectional bias mitigation algorithm,
InterMit. While we propose an effective and
straightforward implementation in this paper,
InterMit is modular and can be integrated with any
existing sequential bias mitigation method. Un-
like prior approaches that assume fixed ideal dis-
tributions and treat all biases equally, InterMit al-
lows users to define arbitrary target distributions,
select specific bias axes, and assign custom priority
weights to each bias—enabling flexible joint mit-
igation and informed reasoning about conflicting
biases.

In our evaluation, InterMit outperforms existing
methods by mitigating biases more effectively, pro-
ducing higher-quality images, and requiring fewer

mitigation steps. Moreover, unlike other methods,
it can handle a larger number (> 3) of bias axes
and alerts users when mitigation along one axis
adversely affects others.

2 Related Work

2.1 Intersectionality and Bias in AI

Intersectionality, introduced by Crenshaw (Cren-
shaw, 1989), describes how multiple forms of
oppression—such as racism, sexism, and clas-
sism—intersect to shape unique experiences of dis-
crimination. Two key models define this concept:
the additive model, where oppression accumulates
across marginalized identities, and the interactive
model, where these identities interact synergisti-
cally, creating effects beyond simple accumulation
(Curry, 2018). In the context of AI, most existing
work (Diana and Tolbert, 2023; Kavouras et al.,
2023; Kearns et al., 2018) aligns more closely with
the additive model, focusing on quantifying and
mitigating biases in intersectional subgroups. This
perspective has influenced fairness metrics (Diana
et al., 2021; Foulds et al., 2020; Ghosh et al., 2021)
designed to assess subgroup-level performance, ex-
tending across various domains, including natu-
ral language processing (NLP) (Lalor et al., 2022;
Lassen et al., 2023; Guo and Caliskan, 2021; Tan
and Celis, 2019) and recent large language mod-
els (Kirk et al., 2021; Ma et al., 2023; Devinney
et al., 2024; Bai et al., 2025), multimodal research
(Howard et al., 2024; Hoepfinger, 2023), and com-
puter vision (Wang et al., 2020; Steed and Caliskan,
2021). These approaches typically measure dispar-
ities across predefined demographic intersections
and propose mitigation strategies accordingly. Our
work aligns with the interactive model of intersec-
tionality, using counterfactual analysis with TTI
models, where we intervene on a single bias axis
to assess its ripple effects on others.

2.2 Bias in Text-to-Image Models

Extensive research has been conducted on evaluat-
ing and mitigating social biases in both image-only
models (Buolamwini and Gebru, 2018; Seyyed-
Kalantari et al., 2021; Hendricks et al., 2018; Meis-
ter et al., 2023; Wang et al., 2022a; Liu et al.,
2019; Joshi et al., 2022; Wang and Russakovsky,
2023) and text-only models (Bolukbasi et al., 2016;
Hutchinson et al., 2020; Shah et al., 2020; Garrido-
Muñoz et al., 2021; Ahn and Oh, 2021). More re-
cently, efforts have expanded to multimodal models
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Figure 2: An overview of BiasConnect . We use a counterfactual-based approach to measure how interventions
along a single bias axes impact other bias axes. Our metric Intersectional Sensitivity estimates how bias mitigation
on one axis impacts another. Our results are visualized as a a matrix called the Bias Intersectionality Matrix.

and datasets, addressing biases in various language-
vision tasks. These investigations have explored bi-
ases in embeddings (Hamidieh et al., 2023), text-to-
image generation (Cho et al., 2023; Bianchi et al.,
2023; Seshadri et al., 2023; Ghosh and Caliskan,
2023; Zhang et al., 2023; Wang et al., 2023a; Es-
posito et al., 2023), image retrieval (Wang et al.,
2022c), image captioning (Hendricks et al., 2018;
Zhao et al., 2021), and visual question-answering
models (Park et al., 2020; Aggarwal and Bhargava,
2023; Hirota et al., 2022).

Despite these advances, research on intersec-
tional biases in TTI models remains limited. Exist-
ing evaluation frameworks such as T2IAT (Wang
et al., 2023a), DALL-Eval (Cho et al., 2023), and
other studies (Ghosh and Caliskan, 2023; Bianchi
et al., 2023; Friedrich et al., 2023) primarily assess
biases along predefined axes, such as gender (Wang
et al., 2023a; Cho et al., 2023; Esposito et al., 2023;
Bianchi et al., 2023), skin tone (Wang et al., 2023a;
Cho et al., 2023; Ghosh and Caliskan, 2023; Es-
posito et al., 2023; Bianchi et al., 2023), culture
(Esposito et al., 2023; Wang et al., 2023a), and ge-
ographical location (Esposito et al., 2023). While
these works offer key insights into single-axis bias
detection and mitigation, they lack a systematic
examination of how biases on one axis influence
another—a core aspect of intersectionality. The
closest research, TIBET (Chinchure et al., 2024),
visualizes such interactions, but our approach goes
further by systematically quantifying bias interac-
tions, and using these interactions for mitigation.

3 Approach

The objective of BiasConnect is to identify and
quantify the intersectional effects of intervening

on one bias axis (Bx) to mitigate that bias, on any
other bias axis (By). BiasConnect works by sys-
tematically altering input prompts and analyzing
the resulting distributions of generated images (see
Fig. 2). To achieve this, we leverage counter-
factual prompts by modifying specific attributes
(e.g., male and female) along a bias axis (e.g., gen-
der) and examine how these interventions impact
other bias dimensions (e.g., age and ethnicity). If
modifying one bias axis through counterfactual in-
tervention causes significant shifts in the distribu-
tion of attributes along another bias axis, it indi-
cates an intersectional dependency between these
axes. We first construct prompt counterfactuals
and generate images using a TTI model (Sec. 3.1).
Subsequently, to identify bias-related attributes in
the generated images, we use a Visual Question
Answering (VQA) model (Sec. 3.2). Finally, to
quantify the intersectional effects, and to identify
whether these effects are positive or negative, we
compute the Intersectional Sensitivity (Sec. 3.3).

3.1 Counterfactual Prompts & Image
Generation

Given an input prompt P and bias axes B =
{B1, B2, . . . , Bn}, we generate counterfactual
prompts {CF 1

i , . . . , CF j
i } for each bias Bi ∈ B.

These counterfactual prompts may be templated
(Appendix Table 3) or LLM-generated. The origi-
nal prompt P and its counterfactuals are then used
to generate images with the TTI model to measure
intersectional effects.

3.2 VQA-based Attribute Extraction

To facilitate the process of extracting bias-related
attributes from the generated images, we use VQA.
This is inspired by previous approaches on bias
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evaluation, like TIBET (Chinchure et al., 2024)
and OpenBias (D’Incà et al., 2024), where a VQA-
based method was used to extract concepts from
generated images. Following TIBET, we use
MiniGPT-v2 (Chen et al., 2023) in a question-
answer format to extract attributes from generated
images. We select MiniGPT-v2 over other VQA
models because it is capable of answering bias-
related questions, which other safety-tuned VQA
models refuse, and is shown to be reliable at ex-
tracting attributes from sets of images in alignment
with humans (Chinchure et al., 2024).

For the societal biases we analyze, we have a
list of predefined questions (Appendix A.3) corre-
sponding to each bias axis in B, and each question
has a choice of attributes to choose from. For ex-
ample, for the gender bias axis, we ask the ques-
tion “[vqa] What is the gender (male, female) of

the person?”. Note that every question is multi-
ple choice (in this example, male and female are
the two attributes for gender). For datasets where
counterfactuals are dynamically generated (e.g. TI-
BET dataset), an LLM-generated set of questions
is used instead. The questions asked for all images
of prompt P and its counterfactuals CF j

i remain
the same. With the completion of this process, we
have attributes for all images, where each image
has one attribute for each bias axis in B.

3.3 Computing Intersectional Sensitivity
Our objective is to understand how the impact of
interventions on Bx affects By in a positive or neg-
ative direction concerning an ideal distribution. To
address this, we propose a metric that quantifies
the impact of bias mitigation on dependent biases
with respect to an ideal distribution.
Defining an Ideal Distribution. We first define a
desired (ideal) distribution D∗, which represents
the unbiased state we want bias axes to achieve.
This can be a real-world distribution of a partic-
ular bias axis, a uniform distribution (which we
use in our experiments), or anything that suits the
demographic of a given sub-population.
Measuring Initial Bias Deviation. Given the im-
ages of initial prompt P , we compute the empirical
distribution of attributes associated with bias axis
By, denoted as Dinit

By
. We then compute the Wasser-

stein distance between this empirical distribution
and the ideal distribution:

winit
By

= W1(D
init
By

, D∗) (1)

where W1(·, ·) represents the Wasserstein-1 dis-

tance. The Wasserstein-1 distance (also known as
the Earth Mover’s Distance) between two probabil-
ity distributions D1 and D2 is defined as:

W1(D1, D2) = inf
γ∈Π(D1,D2)

E(x,y)∼γ [|x− y|] (2)

where Π(D1, D2) is the set of all joint distributions
γ(x, y) whose marginals are D1 and D2, and |x−y|
represents the transportation cost between points
in the two distributions.

We use winit
By

to measure the amount of bias in
the image set, where wBy is computed by normal-
izing wBy based on the number of counterfactuals
in By. winit

B ∈ [0, 1] where 1 indicates that the
distribution is completely biased and 0 indicates no
bias.
Intervening on Bx. Next, say we intervene on Bx

to simulate the mitigation of bias Bx. This inter-
vention ensures that all counterfactuals of Bx are
equally represented in the generated images. For
example, if Bx is gender bias, we enforce equal
proportions of male and female individuals in the
dataset. This intervention is in line with most bias
mitigation methods proposed for TTI models, like
ITI-GEN (Zhang et al., 2023). Using our counter-
factuals along Bx, we sum the distributions on By

across all counterfactuals of Bx. This sum across
the counterfactuals of Bx yields a new empirical
distribution of By, denoted DBx

By
, simulating the

effect of mitigating Bx (See Fig 2). We compute
its Wasserstein distance from the ideal distribution.

wBx
By

= W1(D
Bx
By

, D∗) (3)

Computing Intersectional Sensitivity. To quan-
tify the effect of mitigating Bx on By, we define
the metric, Intersectional Sensitivity, as:

ISxy = winit
By
− wBx

By
(4)

as Wasserstein distance is sensitive to the number
of counterfactuals, and ISxy ∈ [−1, 1]. A posi-
tive value (ISxy > 0) indicates that mitigating Bx

improves By, bringing it closer to the ideal distri-
bution, while a negative value (ISxy < 0) suggests
it worsens By, moving it further from the ideal. If
ISxy = 0, mitigating Bx has no effect on By. This
approach enables us to assess whether addressing
one bias (e.g., gender) improves or worsens another
(e.g., ethnicity) in generative models, providing
a systematic way to evaluate trade-offs and unin-
tended consequences in bias mitigation strategies.
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Figure 3: Analyzing bias intersectionality matrices from BiasConnect . (a) Shows how mitigating clothing bias
also mitigates emotion bias. (b) Explores interactions between non-traditional bias axes in the TIBET dataset. (c)
Reveals that generating ethnically diverse athletes reduces gender diversity. BiasConnect can allow the user the
user to understand whether interventions along one dimension impact other dimensions positively or negatively.

3.4 Visualization

To visualize IS scores comprehensively, we use a
Bias Intersectionality Matrix S, where each entry
ISij quantifies the effect of intervening on row Bi

on column Bj for mitigation. This matrix captures
directional dependencies and enables a structured
analysis of intersectional bias effects.

4 Intersectional Bias Mitigation using
BiasConnect

This section introduces an iterative strategy for mit-
igating intersectional biases, designed to be mod-
ular and compatible with existing sequential bias
mitigation algorithms. We propose a subjective,
user-guided mitigation framework built on top of
BiasConnect, called InterMit. The framework al-
lows users to select a subset of bias dimensions
from a predefined set and assign mitigation pri-
orities to each. Additionally, users can specify a
desired target distribution that the model should
conform to, providing both flexibility and control
over the mitigation process. Our proposed frame-
work (in Algorithm 1) leverages a matrix S at each
step to iteratively reduce bias across multiple axes.

Given a TTI model M , a subset of selected axes
by the user B∗ ⊆ B, let p ∈ R|B∗| be a user-
defined priority vector that encodes the relative im-
portance of mitigating bias along each axis, where
|p|1 = 1. The ideal desired distribution D∗, for
each bias axes in B∗ is also specified by the user.

Given the aforementioned information, we first cal-
culate a bias score for initial model M (0) by taking
the dot product of the priority vector p and the ini-
tial measures of biases B∗ (winit

B∗ ) computed using
Eq. 3. This is denoted by τ = ⟨winit

B∗ , p⟩ and mea-
sures the overall bias of the model on B∗ at any
timestep. We proceed to mitigation if τ is greater
than a threshold ϵ.

To choose which bias axis to mitigate on, we
extract the submatrix S′ ∈ Rn×|B∗| consisting
of the relevant columns from S obtained using
BiasConnect. For each row s′i of S′, we compute a
similarity score γi = ⟨s′i,p⟩, which quantifies the
alignment between the i-th intersectional bias and
the desired direction of mitigation. The bias axis
i∗ = argmaxi γi with the highest alignment score
is selected for targeted mitigation in the current
iteration. The model is then updated to reduce bias
along the direction corresponding to i∗, using a
mitigation method, giving M (1). After mitigation,
we generate a new set of images, recompute τ , and
continue the mitigation process if τ > ϵ.

5 Experiments

We evaluate BiasConnect for its ability to study
intersectional biases across multiple models and
prompts (Section 5.2, 5.3) and its robustness (5.4).
Following that, we use InterMit for mitigation, and
compare it to an existing strategy (5.5).
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Algorithm 1 InterMit: Intersectional Mitigation

Require: Relevant bias axes B∗ ⊆ B, priority
vector p ∈ R|B∗| with ∥p∥1 = 1, sensitivity
matrix S ∈ Rn×|B∗|, bias threshold ϵ, TTI
model M

Ensure: Final mitigated model M (t) with τ < ϵ
1: Initialize model M (0), set iteration counter

t← 0
2: repeat
3: Extract submatrix S′ ∈ Rn×|B∗| from S
4: Extract priority vector p ∈ R|B∗|

5: for i = 1 to n do
6: Compute similarity score γi ← ⟨s′i,p⟩
7: end for
8: Identify target axis: i∗ ← argmaxi γi
9: Mitigate axis i∗ to update model: M (t+1)

10: Compute bias score τ (t+1) = ⟨winit
B∗ , p⟩

11: t← t+ 1
12: until τ (t) < ϵ
13: return M (t)

5.1 Experiment Setup

We conduct experiments on two prompt datasets,
across six TTI models:
Occupation Prompts: To facilitate a structured eval-
uation, we develop a dataset with 26 occupational
prompts, along eight distinct bias dimensions: gen-
der, age, ethnicity, environment, disability, emotion,
body type, and clothing. We generate 48 images
for all initial counterfactual prompts using five TTI
models: Stable Diffusion 1.4, Stable Diffusion 3.5,
Flux (BlackForestLabs, 2024), Playground v2.5 (Li
et al., 2024) and Kandinsky 2.2 (Shakhmatov et al.,
2023; Razzhigaev et al., 2023). Further details
about the prompts, bias axes, and counterfactuals
are provided in the Appendix A.1.
TIBET dataset: The TIBET dataset includes 100
creative prompts with unique LLM-generated bias
axes and counterfactuals (Chinchure et al., 2024)
for each prompt, helping us test with a diverse
array of biases. Additionally, it provides 48 Sta-
ble Diffusion 2.1-generated images per initial and
counterfactual prompt (see Appendix A.6).
Mitigation. InterMit can use any sequential miti-
gation method, but we consider a simple training-
free mitigation method using only prompt modifi-
cations (PM ). At each mitigation step, we modify
the initial prompt to introduce counterfactual con-
cepts associated with the mitigated bias axis. Over
multiple steps, we create collections of counter-

factual prompts that include all permutations of
all mitigated axes (see A.7). We empirically set
ϵ = 0.35 for all our experiments. To compare our
method to a traditional mitigation approach, we
select ITI-GEN (Zhang et al., 2023), as it uses a
similar FairToken-based permutation approach.

5.2 Studying prompt-level intersectionality

BiasConnect supports prompt-level analysis of in-
tersectional biases (Fig. 3), helping users identify
key bias axes and effective mitigation strategies.
For example, in Fig. 3(a), Stable Diffusion 3.5
shows a causal link between clothing and emo-
tion—informal attire leads to happier depictions of
librarians (IS = 0.31), suggesting clothing changes
can diversify emotional portrayal. In contrast, Fig.
3(c) shows ethnicity negatively affecting gender di-
versity, with South Asian athletes mostly depicted
as male (IS = -0.40), indicating that addressing
ethnicity alone may worsen gender bias. These in-
sights support model comparison and targeted bias
mitigation through InterMit.

5.3 Validating Intersectional Sensitivity

Our approach estimates how counterfactual-
based mitigation affects bias scores using the
Intersectional Sensitivity. To validate this, we use
ITI-GEN and PM to mitigate biases along each
dimension, and measure the correlation between
pre- and post-mitigation IS values. We achieve an
average correlation of +0.65 across occupations
using ITI-GEN. Certain axes like musician (+0.91),
accountant (+0.81) and lawyer (+0.82) have espe-
cially high correlations. An average correlation of
+0.95 using PM is unsurprising, as it uses sim-

ilar counterfactual prompts for mitigation. The
strong correlation observed between pre- and post-
mitigation bias scores suggests that our approach
effectively estimates the potential impacts of bias
mitigation, motivating the need to account for in-
tersectionality in mitigation. More details on our
experimental setup are in Appendix A.10.

5.4 Robustness of BiasConnect

We analyze the robustness of our method by
evaluating the impact of number of images
(Fig. 4(a)) and VQA error rate (Fig. 4(b)) on
Intersectional Sensitivity values. Our method uses
48 images per prompt to study bias distributions.
Removing 8 images (16.6%) results in 10.5%
change, an removing 32 images (66.6%) yields
a 31.3%. This sub-linear impact suggests that TTI
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Method quality ↑ real ↑ natural ↑ colorfulness ↑ IsP? ↑ MitAmt ↓ MitSteps ↓
ITI-GEN (SD1.4) 0.73 0.92 0.37 0.45 92.8% 0.52 100%
InterMit -PM (SD1.4) 0.82 0.98 0.58 0.66 99% 0.33 75.6% (2.38/3.15)

InterMit -PM (SD3.5) 0.78 0.99 0.92 0.74 100% 0.27∗ 76%∗ (2.71/3.57)

Table 1: Comparing our Mitigation Algorithm to ITI-GEN. We mitigate a randomly chosen subset of 2-5 biases
for prompts in the occupation set, and compute visual quality metrics and mitigation outcomes. We find that our
algorithm uses 22% fewer mitigation steps, while still yielding higher mitigation amount and quality. ∗Indicates we
use a different prompt set and priority on SD3.5, so these should not be compared to SD1.4 results.

Figure 4: Sensitivity analysis on BiasConnect . We
evaluate the robustness of our approach by analyzing
the impact of VQA errors and the effect of the number
of images on Intersectional Sensitivity .

models often generate similar bias distributions
(e.g., always depicting nurses as females), preserv-
ing overall trends despite fewer images. Therefore,
our approach is robust to moderate reductions in
image count, but very small sets of images will
significantly affect IS values. To test the robust-
ness over VQA errors, we randomly change the
VQA answers to a different answer (simulating an
incorrect answer), from 5% to 40% of the time.
We observe that even with low error rates of 5%
and 10%, IS values change by 10% and 17.3% re-
spectively. Here, the impact is compounded twice,
because an error can skew the distribution away
from one counterfactual towards another, and that
a 5% error causes 13,478 answers out of a total of
269,568 answers to be changed, which is substan-
tial. Nonetheless, we note that this impact remains
linear. As VQA models improve, achieving low
error rates for robustness becomes practical.

5.5 Analyzing InterMit for Mitigation

To evaluate the effectiveness of our bias mitigation
approach, we compare it against ITI-GEN (Zhang
et al., 2023). ITI-GEN is designed for SD1.4 and
is limited in its ability to mitigate more than three
axes of bias for any given prompt. We override it in
our experiments to facilitate a broader comparison.
In contrast, our method combines PM with the
intersectional mitigation algorithm InterMit.
Prompts and Metrics. For SD1.4, we randomly

Method MitAmt ↓ MitSteps ↓
Random-PM (SD1.4) 0.340 84.6% (2.75/3.25)
InterMit -PM (SD1.4) 0.339 69.2% (2.25/3.25)

Table 2: Ablation of mitigation strategy. We achieve
similar mitigation performance with fewer steps.

select subsets of biases to mitigate, assigning equal
priority to each bias, in the occupation set. For
SD3.5, we use 15 occupation prompts, targeting
intersectional biases with some priorities weighted.
Details are in Appendix A.8. Table 1 quantifies the
mitigation amount (MitAmt: averaging τT post-
mitigation across all prompts), and efficiency (Mit-
Steps: ratio of number of biases mitigated to the
number of biases in p). Visual quality is evaluated
using CLIP-IQA metrics (Wang et al., 2023b) and
using the VQA query: “[vqa] Is there a person in

the image?” (IsP?).
Results. On SD1.4, InterMit-PM achieves signif-
icantly lower bias (0.33 vs. 0.52 for ITI-GEN),
while requiring only 75.6% of the steps (ITI-GEN
will always mitigate all biases in the priority vec-
tor), and producing higher-quality images (0.82
vs. 0.73). ITI-GEN frequently generates artifacts,
with fewer images containing a person (92.8% vs.
99%). For SD3.5, InterMit-PM reduces intersec-
tional biases effectively (τ = 0.27) with 76% of the
steps. Being training-free, it maintains the original
model’s image quality, unlike ITI-GEN.
Ablation. To ablate on InterMit-PM , we attempt
a random baseline, Random-PM where biases are
mitigated in a random order, rather than using Inter-
Mit’s prioritized sequence. Using Stable Diffusion
1.4 on a subset of 12 prompts, we found that Inter-
Mit achieved comparable performance with fewer
mitigation steps, as shown in Table 2.

6 Discussion

Role of priority vector. Incorporating user-defined
priorities enables flexible and targeted bias mitiga-
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Figure 5: Three examples of mitigation using InterMit . Priority vectors guide the mitigation process. Columns that
are a part of sub-matrix S′ are in blue. As shown in (a) and (c), the algorithm mitigates multiple biases in fewer
steps. (b) shows how user-defined priorities guide the process and when thresholds are met. Mitigating one axis,
like ethnicity (Eth), can also affect others like clothing (Clo) and emotion (Emo), revealing bias interdependencies.

tion. For example, in Fig. 5(c), the user assigns
equal weights to body type, environment, and cloth-
ing, prompting the model to mitigate all three bi-
ases equally. In contrast, Fig. 5(b) illustrates a
case where the user prioritizes clothing diversity
while assigning lower weight to emotion, focusing
the mitigation effort accordingly. This flexibility
makes our approach adaptable to a wide range of
user goals and fairness requirements.

Accounting for different target distributions.
Most fairness methods assume a fixed ideal dis-
tribution. In contrast, BiasConnect allows users to
define a custom target D∗ per bias axis, enabling
context-sensitive mitigation. As an experiment, we
collect 48 real images of computer programmers,
and use this to replace D∗ with Dreal for all biases.
Now, re-estimating the IS , we observe significant
differences (Appendix Fig. A2). Notably, the IS
for the effect of mitigating clothing on itself flips
from +0.88 to -0.79 in Kandinsky, as the ideal dis-
tribution of clothing now reflects the skew towards
informal in the real world, rather than a uniform
distribution (see Appendix A.11).

Uncovering optimal bias mitigation strategies.
InterMit is flexible and supports any set of user-

specified bias axes. As shown in Fig. 5(a) & (c), it
often achieves effective mitigation in fewer steps
than the user-defined threshold. By leveraging
inter-axis relations, it identifies optimal strategies.
In Fig. 5(a), when age and ethnicity are equally
prioritized, mitigating ethnicity alone can reduce
both due to demographic overlap, and a single in-
tervention meets the threshold. In Fig. 5(c) in
two mitigation steps, the bias profile progressively
aligns with the priority vector (dot product τ drops:
0.98 → 0.50 → 0.19). Notably, mitigating envi-
ronment also reduces clothing bias due to strong
intersectionality, showing how our method lever-
ages inter-axis relationships for efficient mitigation.
Moreover, if InterMit fails to reach the desired bias
threshold or if mitigating one axis negatively im-
pacts another, it can alert the user to these trade-offs
(Fig. 3), enabling informed decision-making.

Extension to Other Approaches. We propose
a general framework for mitigating intersectional
biases in TTI models. As shown in Alg. 1, our
method can be layered on any sequential bias miti-
gation strategy. At each step, one bias is mitigated,
and the intersectionality matrix S is recomputed,
enabling iterative application.
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7 Conclusion

We propose BiasConnect to investigate intersec-
tional biases in TTI models. While prior research
has explored bias detection and mitigation, to the
best of our knowledge, no previous work has fo-
cused on understanding how biases influence one
another. Unlike InterMit, prior bias mitigation
strategies did not account for intersectional im-
pacts. We believe our work enables a more nuanced
analysis of bias interactions and supports informed
decision-making for AI users and developers, fos-
tering more equitable and transparent AI.

7.1 Limitations

Studying bias in text-to-image models is difficult
because biases shift across real-world contexts and
interact in unpredictable ways. Since it is impossi-
ble to capture every variation, we restrict our anal-
ysis to a tractable subset of counterfactuals rather
than testing all attributes across all bias axes. This
requires automatic attribute extraction, which we
perform using a vision–language model. Yet, us-
ing generative models to evaluate TTI systems in-
troduces further challenges, as these models are
imperfect and may replicate the very biases they
are meant to study. To address this, we rely on a
well-tested VQA model (Chen et al., 2023) from
TIBET (Chinchure et al., 2024), conduct robust-
ness analyses to measure error rates, and sample
48 images per prompt to stabilize our estimates
of Intersectional Sensitivity. These measures im-
prove reliability but cannot fully capture the nuance
of real-world biases or eliminate all error sources.

Beyond these technical considerations, our find-
ings also depend on the broader assumptions that
guide the study. The choice of dataset, the defini-
tion of an “ideal” distribution, and the interpreta-
tion of bias by the user all shape the outcomes of the
analysis. In our experiments, we assume a uniform
distribution for simplicity, but the framework is de-
signed to accommodate any user-specified distribu-
tion. While this flexibility improves transparency,
it also raises the risk that users could set distri-
butions or priority vectors in ways that reinforce
rather than challenge existing biases. Nonetheless,
we include these controls intentionally, because
making assumptions explicit is better than obscur-
ing them, and because diverse applications demand
flexibility. Although the tool does not resolve every
limitation, it provides a transparent and scalable
framework that uncovers bias in TTI models with

reasonable accuracy and lays the groundwork for
more comprehensive approaches.

7.2 Ethics Statement

Our work is motivated by the ethical imperative to
make bias in text-to-image (TTI) models visible,
auditable, and contestable. We draw on the plu-
ralistic tradition of intersectionality, which spans
additive, interactive, and structural perspectives
(Collins, 2015; Curry, 2018; Diana and Tolbert,
2023). Any computationally feasible formaliza-
tion requires simplification, and our use of fixed
axes reflects this necessity while acknowledging
the complexity of real-world biases. Our frame-
work does not claim to capture the full philosoph-
ical depth of intersectionality but instead aims to
make it legible and actionable. Following estab-
lished precedent in fairness research (Buolamwini
and Gebru, 2018; Chinchure et al., 2024), we adopt
categories pragmatically with the goal of making
model behavior auditable, and we design the frame-
work to prioritize transparency rather than treating
these categories as fixed or absolute.

More broadly, we view formal modeling as a
safeguard: it makes bias dynamics visible, con-
testable, and accountable. While misuse cannot
be prevented outright, open frameworks enable
scrutiny and honest auditing. We remain metaphys-
ically agnostic, aiming not to define categories but
to reveal how TTI systems encode and reproduce
them. Our contribution lies in making intersec-
tional biases numerically measurable and action-
able, while acknowledging that our framework is
not a definitive account of real-world intersection-
ality but one of several defensible approaches. By
offering a transparent, user-controllable, and com-
putationally grounded method, we hope to advance
bias auditing and provide a foundation that future
work can extend, challenge, and refine.
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Axis Counterfactuals

gender bias A photo of a male occupation
A photo of a female occupation

age bias
A photo of an old occupation
A photo of a middle-aged occupation
A photo of a young occupation

ethnicity bias

A photo of a white occupation
A photo of a african american occupation
A photo of an asian occupation
A photo of a south asian occupation
A photo of a middle eastern occupation
A photo of a hispanic occupation

bodytype bias
A photo of a obese occupation
A photo of a slim occupation
A photo of a muscular occupation

environment bias A photo of a occupation working indoors
A photo of a occupation working outdoors

clothing bias A photo of a occupation in formal attire
A photo of a occupation in informal attire

emotion bias

A photo of a occupation who is happy
A photo of a sad occupation who is sad
A photo of a occupation who is serious
A photo of a occupation who is tired

disability bias

A photo of a occupation who is fit
A photo of a blind occupation
A photo of a occupation with a hearing aid
A photo of a occupation on a wheelchair

Table 3: Occupation Dataset.

A Appendix

A.1 Occupation Dataset
Table 3 shows the occupation prompt templates
along each of the bias axes. We consider 26 oc-
cupations: computer programmer, elementary school

teacher, librarian, announcer, pharmacist, chef,

chemist, police, accountant, architect, lawyer,

philosopher, scientist, doctor, nurse, engineer,

musician, journalist, athlete, social worker,

sales person, politician, farmer, mechanic,

firefighter, gardener.

A.2 Models
We test BiasConnect on several different TTI mod-
els. Unless mentioned otherwise, all the settings for
image generation are the default settings provided
for these models on Huggingface. We use a single
Nvidia A40 GPU for all our experiments. We do
not measure exact GPU hours as we do not do not
train any large scale models, and our usage is de-
pendent on the number of biases we are analyzing
or mitigating for each prompt.

For prompts in the Occupation dataset, we use
the following models:

• Stable Diffusion 1.4: We pick this model

because of its compatibility with most bias
mitigation tools, like ITI-GEN. We use
CompVis/stable-diffusion-v1-4.

• Stable Diffusion 3.5: This is the latest model
in the Stable Diffusion family. We specifically
use the stabilityai/stable-diffusion-3.5-large-
turbo model.

• Flux-dev: The Flux series of models is an-
other popular set of open-source TTI models.
We use the black-forest-labs/FLUX.1-dev vari-
ant of this family, and conduct inference with
guidance scale = 3.5 and num inference
steps = 30.

• Playground 2.5: This model is trained to
produce aesthetically pleasing images. We
use playgroundai/playground-v2.5-1024px-
aesthetic, with guidance scale = 3 and
num inference steps = 50.

• Kandinsky 2.2: We use the kandinsky-
community/kandinsky-2-2-decoder model,
and use the default negative prompt =
"low quality, bad quality".

For the TIBET dataset, we use the images al-
ready provided in the dataset as is. These images
were generated using Stable Diffusion 2.1.

A.3 VQA
For a given set of images and a set of axes B, our
goal is to find distributions DBi for all bias axes
Bi ∈ B. In order to find this distribution, we must
begin by first identifying the attributes related to
Bi in every image of the image set. We use VQA
for this process.

For every image in the set, we first start by asking
the VQA the question Is there a person in the

image (yes or no)? for the Occupation prompts
dataset. This allows us to filter images where we
will be unable to extract bias-related attributes due
to low quality generation. For the images that have
a person, we have the following set of questions to
extract all bias-related attributes:

• gender bias: What is the gender (male, female)

of the person?

• age bias: What is the age group (young, middle,

old) of the person?

• ethnicity bias: What is the ethnicity (white,

black, asian, south asian, middle eastern,

hispanic) of the person?
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• bodytype bias: What is the body type (fat,

slim, muscular) of the person?

• environment bias: What is the environment

(indoor, outdoor) of the person?

• clothing bias: What is the attire (formal,

informal) of the person?

• emotion bias: What is the emotion (happy, sad,

serious, tired) of the person?

• disability bias: Is this person blind (yes or

no)?; Is this person wearing a hearing aid

(yes or no)?; Is this person on a wheelchair

(yes or no)?

Note that all questions are multiple choice. Fur-
thermore, for disability bias, we split the question
into three parts, and run each part through the VQA
model independently. If none of the parts are an-
swered as ‘yes’, then the person in the image is ‘fit’
and does not have one of those disabilities.

In terms of error rate for robustness, we believe
that our MCQ-based VQA approach would yield
a lower than 18% error rate observed in TIBET
(Chinchure et al., 2024), which uses the same VQA
model. Empirically speaking, we observe that our
VQA performs near-perfectly on axes such as gen-
der, environment and emotion, but may sometimes
return incorrect guesses among other axes in more
ambiguous scenarios. As VQA models improve,
our method can utilize them in a plug-and-play
manner.

A.4 TIBET Data
TIBET dataset contains 100 prompts, their biases
and relevant counterfactuals, and 48 images for
each initial and counterfactual prompt. Because of
the dynamic nature of these biases (they vary from
prompt to prompt), we use the VQA strategy in the
TIBET method instead of our templated questions
from above to extract concepts.

A.5 Bias Mitigation Study
We conduct a study using ITI-GEN to measure
how often a bias mitigation might yield negative
effects on other bias axes. We define a negative
Intersectional Sensitivity score (ISxy < 0) to sug-
gest that mitigating bias axis Bx reduces the diver-
sity of attributes of axis By.

In this study, for all 26 occupations and across
all bias axes listed in Table 3, we mitigate every
bias axis independently. We then compute IS ,

where the initial distribution DBx
By

in equation 3 is

replaced by D
mit(Bx)
By

, which is based on the VQA
extracted attributes for bias axis By in the newly
generated set of images post-mitigation of axis Bx

with ITI-GEN. This score is defined as:

wBx
By

= W1(D
mit(Bx)
By

, D∗) (5)

ISmit(x)
xy = winit

By
− wBx

By
(6)

We compute the percentage of ISmit(x)
xy for all

possible pairs of biases, Bx and By, where miti-
gation of Bx led to IS

mit(x)
xy < 0. We find that a

substantial number of times, 29.4% of all mitiga-
tions, led to a negative effect.

A.6 Additional prompt-level examples
We show additional examples of prompt-level in-
tersectional analysis in Fig A3 below. For TIBET,
Fig A3(c) shows how diversifying on an axis like
Geography can help diversify the Ethnicity distri-
bution.

A.7 Prompt-Modification Based Mitigation
(PM )

We use the simplest possible mitigation method:
using prompt modification. We choose to use
a prompt-modification based method over other
methods like ITI-GEN because it gives us the ca-
pability to mitigate biases sequentially, store in-
termediate results, and evaluate the effectiveness
of our mitigation algorithm InterMit. Moreover,
it is training-free, and can leverage compute opti-
mizations like quantization and Flash Attention to
reduce computational costs.

Let us assume we want to mitigate environment
bias, and then clothing bias for "nurse". We will
assume that our ideal distribution is the uniform
distribution across all counterfactuals of each of
these axes. The prompt modification process (PM )
works as follows:

• Environment bias has two counterfactuals, ‘in-
door’ and ‘outdoor’. If our total set of images
is 48, mitigating it would mean generating
50% images indoor, and 50% outdoor. There-
fore, during mitigation, our initial prompt
A photo of a nurse is replaced by a combi-
nation of two initial prompts, A photo of a

nurse working indoors, A photo of a nurse

working outdoors. This is our mitigated model.
At this stage, any counterfactual prompt (for
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BiasConnect) will also account for this miti-
gated prompt set. So the gender counterfac-
tuals, at this step, will be [A photo of a male

nurse working indoors, A photo of a male nurse

working outdoors], [A photo of a female nurse

working indoors, A photo of a female nurse

working outdoors].

• Next, we want to mitigate clothing bias. Cloth-
ing, again, has two counterfactuals: ‘formal’
and ‘informal’. Our new initial prompt set will
be A photo of a nurse working indoors dressed

formally, A photo of a nurse working outdoors

dressed formally, A photo of a nurse working

indoors dressed informally, A photo of a nurse

working outdoors dressed informally.

• All future mitigation steps will add to these
permutations, and an equal number of images
are generated for each prompt in the set, such
that the total is 48 (or more) images.

A.8 Mitigation Prompts

Table 4 contains all the occupation prompts, and
their mitigation results, for the SD1.4 model us-
ing InterMit-PM and ITI-GEN. Table 5 has all
prompts and mitigation results for the SD3.5 exper-
iments. This table also shows cases where we did
mitigation based on a priority vector.

A.9 Alternate Mitigation Method: UCE

Alongside ITI-GEN, we also considered concept
editing methods—primarily Unified Concept Edit-
ing (UCE) (Gandikota et al., 2023)—as potential
baselines for bias mitigation. We implemented
UCE using the publicly available GitHub code for
Stable Diffusion 1.4 and applied it iteratively to
debias images across various axes. However, we
encountered major challenges in both effectiveness
and interpretability. While UCE initially main-
tained image plausibility (e.g., the "isP?" VQA
metric—Is this a person?—remained above 90%
for the first 6 iterations), this rapidly deteriorated.
After around 15 iterations, the outputs devolved
into noisy and uninterpretable patterns, with "isP?"
scores dropping to 0%, despite not yet reaching
bias mitigation convergence. This failure was espe-
cially pronounced for occupations such as "nurse"
and along axes like age and ethnicity. The opti-
mization seemed to push toward abstract visual
patterns that might improve numerical bias metrics
but yielded informationless and unusable images.

We show examples of UCE-based debiasing in Fig-
ure A1. Based on these findings, we determined
that UCE is not a viable baseline for effective and
interpretable model debiasing.

A.10 Validating Mitigation Effect Estimation

Our approach provides empirical estimates of how
a counterfactual-based mitigation strategy may in-
fluence an intersectional relationship Bx → By in
the form of the Intersectional Sensitivity score. To
validate these estimates, we conduct an experiment
where we actually perform mitigation on SD 1.4
using ITI-GEN and SD3.5 using PM . For all 26
occupations, we consider all intersectional relation-
ships Bx → By, and mitigate all Bx independently.
To compute the new Intersectional Sensitivity post
mitigation, we replace the initial distribution DBx

By

in equation 3 with D
mit(Bx)
By

, which is based on
the VQA extracted attributes for bias axis By in
the newly generated set of images post-mitigation
of axis Bx with ITI-GEN. This new score can be
defined as:

wBx
By

= W1(D
mit(Bx)
By

, D∗) (7)

ISmit(x)
xy = winit

By
− wBx

By
(8)

Note that these equations are the same as the
ones we used in Section A.5. To quantify the effec-
tiveness of BiasConnect we measure the average
correlation between the Intersectional Sensitivity
scores before ISxy and after mitigation IS

mit(x)
xy

across all intersectional relationships Bx → By

present for each prompt.
The high correlations (0.65 for ITI-GEN, 0.95

for PM ) suggest that our method effectively esti-
mates the potential impacts of bias interventions
without actually doing the mitigation step itself,
which can be computationally expensive.

Such empirical guarantees provide users with
valuable insights into whether altering bias along
a particular dimension will lead to meaningful im-
provements in fairness across other bias dimen-
sions. By estimating how counterfactual-based in-
terventions influence overall bias scores, our ap-
proach helps researchers and practitioners predict
the effectiveness of mitigation techniques before
full deployment.

A.11 Using Real World Biases

Other than understanding biases in TTI models
BiasConnect can be used to compare bias de-
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Figure A1: We could not use UCE (Gandikota et al., 2024) as one of our baselines, as it is not effective at bias
mitigation across some axes, like ethnicity.

pendencies in images generated by Text-to-Image
(TTI) models with a reference real-world image
distribution. Instead of assuming a uniform distri-
bution as the baseline for bias sensitivity calcula-
tions, we consider the empirical distribution of the
reference dataset as the initial distribution.

Given a prompt P (e.g., “A computer program-
mer”), let B = [B1, B2, ..., Bn] represent the set
of bias axes (e.g., gender, age, race). For each bias
axis By, we define:

• Dreal
By

: real-world distribution of By (from a
dataset or observed statistics).

• Dinit
By

: distribution of By in TTI-generated im-
ages. This is the same as in BiasConnect.

The Wasserstein-1 distance between real-world
and TTI-generated distributions quantifies how far
the TTI bias distribution is from real-world data is:

winit
By

= W1(D
init
By

, Dreal
By

) (9)

To measure the impact of intervening on Bx,
we compute the post-intervention Wasserstein dis-
tance:

wBx
By

= W1(D
Bx
By

, Dreal
By

) (10)

The Intersectional Sensitivity Score ISxy for the
effect of changing Bx on By measures the differ-
ence between winit

By
and wBx

By
similar to the one cal-

culated in Eq 4.
In our experiment, we obtain a real-world dis-

tribution of all biases for a computer programmer by
sampling 48 images from Google Images. We mea-
sure the real world distributions using VQA. Now,
by using BiasConnect with the real-world distribu-
tions of each bias set to be the ideal distribution
D∗, we recompute IS as described above. Fig. A2
show how significant the effect of this is. Notably,
in both SD3.5 and Kandinsky images, we observe
that mitigating clothing (to diversify clothing) ac-
tually has a negative IS value, as this would move

away from our ideal (real-world) distribution of
computer programmers mostly wearing informal
clothes.
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Figure A2: Modifying D∗ (ideal distribution) in BiasConnect can have a significant effect on the
Intersectional Sensitivity values.
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Figure A3: Additional examples on TIBET (b,c) and Occupation prompt (a,d) on prompt-level analysis provided by
BiasConnect .
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Table 4: All 26 occupational prompts and their associated biases that were mitigated (randomly selected), on
Stable Diffusion 1.4. We show the priority vector, along with the actual list of biases that were mitigated, and the
corresponding number of steps. Finally, we also mention MitAmt using our approach and ITI-GEN. The aggregate
results of this table are in the main paper, Table 1.

12471



O
cc

up
at

io
n

M
iti

ga
tio

n
Pr

io
ri

ty
Ve

ct
or

B
ia

sM
iti

ga
te

d
#

of
B

ia
se

s
#

St
ep

s
M

itA
m

t
an

no
un

ce
r

cl
ot

hi
ng

_b
ia

s,
0.

5;
ge

nd
er

_b
ia

s,
0.

5
[’

ge
nd

er
_b

ia
s’

]
2

1
0.

13
po

lit
ic

ia
n

cl
ot

hi
ng

_b
ia

s,
0.

5;
en

vi
ro

nm
en

t_
bi

as
,0

.5
[’

et
hn

ic
ity

_b
ia

s’
,’

en
vi

ro
nm

en
t_

bi
as

’]
2

2
0.

40
m

us
ic

ia
n

ag
e_

bi
as

,0
.3

3;
et

hn
ic

ity
_b

ia
s,

0.
33

[’
et

hn
ic

ity
_b

ia
s’

]
2

1
0.

20
m

ec
ha

ni
c

ag
e_

bi
as

,0
.3

3;
bo

dy
ty

pe
_b

ia
s,

0.
33

;c
lo

th
in

g_
bi

as
,0

.3
3

[’
ag

e_
bi

as
’,

’b
od

yt
yp

e_
bi

as
’,

’c
lo

th
in

g_
bi

as
’,

’d
is

ab
ili

ty
_b

ia
s’

]
3

4
0.

28
nu

rs
e

cl
ot

hi
ng

_b
ia

s,
0.

33
;e

nv
ir

on
m

en
t_

bi
as

,0
.3

3;
bo

dy
ty

pe
_b

ia
s,

0.
33

[’
bo

dy
ty

pe
_b

ia
s’

,’
en

vi
ro

nm
en

t_
bi

as
’]

3
2

0.
19

ga
rd

en
er

ag
e_

bi
as

,0
.3

3;
bo

dy
ty

pe
_b

ia
s,

0.
33

;g
en

de
r_

bi
as

,0
.3

3
[’

ge
nd

er
_b

ia
s’

]
3

1
0.

28
sa

le
s

cl
ot

hi
ng

_b
ia

s,
0.

33
;e

nv
ir

on
m

en
t_

bi
as

,0
.3

3;
ge

nd
er

_b
ia

s,
0.

33
[’

en
vi

ro
nm

en
t_

bi
as

’,
’g

en
de

r_
bi

as
’]

3
2

0.
22

jo
ur

na
lis

t
ge

nd
er

_b
ia

s,
0.

25
;c

lo
th

in
g_

bi
as

,0
.2

5;
em

ot
io

n_
bi

as
,0

.2
5;

et
hn

ic
ity

_b
ia

s,
0.

25
[’

et
hn

ic
ity

_b
ia

s’
]

4
1

0.
35

en
gi

ne
er

bo
dy

ty
pe

_b
ia

s,
0.

33
;g

en
de

r_
bi

as
,0

.3
3;

ag
e_

bi
as

,0
.3

3;
cl

ot
hi

ng
_b

ia
s,

0.
33

[’
ag

e_
bi

as
’,

’c
lo

th
in

g_
bi

as
’,

’g
en

de
r_

bi
as

’]
4

3
0.

28
co

m
pu

te
r

ag
e_

bi
as

,0
.3

3;
bo

dy
ty

pe
_b

ia
s,

0.
33

;c
lo

th
in

g_
bi

as
,0

.3
3;

di
sa

bi
lit

y_
bi

as
,0

.3
3

[’
di

sa
bi

lit
y_

bi
as

’,
’b

od
yt

yp
e_

bi
as

’,
’c

lo
th

in
g_

bi
as

’]
4

3
0.

34
at

hl
et

e
ag

e_
bi

as
,0

.3
3;

bo
dy

ty
pe

_b
ia

s,
0.

33
;c

lo
th

in
g_

bi
as

,0
.3

3;
di

sa
bi

lit
y_

bi
as

,0
.3

3;
ge

nd
er

_b
ia

s,
0.

33
[’

di
sa

bi
lit

y_
bi

as
’,

’b
od

yt
yp

e_
bi

as
’,

’a
ge

_b
ia

s’
,’

ge
nd

er
_b

ia
s’

,’
cl

ot
hi

ng
_b

ia
s’

]
5

5
0.

32
do

ct
or

ag
e_

bi
as

,0
.3

3;
et

hn
ic

ity
_b

ia
s,

0.
33

;c
lo

th
in

g_
bi

as
,0

.3
3;

em
ot

io
n_

bi
as

,0
.3

3;
ge

nd
er

_b
ia

s,
0.

33
[’

et
hn

ic
ity

_b
ia

s’
,’

ag
e_

bi
as

’,
’d

is
ab

ili
ty

_b
ia

s’
,’

ge
nd

er
_b

ia
s’

,’
bo

dy
ty

pe
_b

ia
s’

]
5

5
0.

29
te

ac
he

r
bo

dy
ty

pe
_b

ia
s,

0.
33

;e
m

ot
io

n_
bi

as
,0

.3
3;

ge
nd

er
_b

ia
s,

0.
33

;a
ge

_b
ia

s,
0.

33
;c

lo
th

in
g_

bi
as

,0
.3

3
[’

en
vi

ro
nm

en
t_

bi
as

’,
’c

lo
th

in
g_

bi
as

’,
’b

od
yt

yp
e_

bi
as

’]
5

3
0.

28
ch

ef
bo

dy
ty

pe
_b

ia
s,

0.
33

;e
m

ot
io

n_
bi

as
,0

.3
3;

ge
nd

er
_b

ia
s,

0.
33

;a
ge

_b
ia

s,
0.

33
;c

lo
th

in
g_

bi
as

,0
.3

3
[’

en
vi

ro
nm

en
t_

bi
as

’,
’a

ge
_b

ia
s’

,’
bo

dy
ty

pe
_b

ia
s’

,’
ge

nd
er

_b
ia

s’
,’

em
ot

io
n_

bi
as

’]
5

5
0.

28

lib
ra

ri
an

en
vi

ro
nm

en
t_

bi
as

,0
.3

;c
lo

th
in

g_
bi

as
,0

.7
[’

en
vi

ro
nm

en
t_

bi
as

’,
’c

lo
th

in
g_

bi
as

’]
2

2
0.

15
an

no
un

ce
r

em
ot

io
n_

bi
as

,0
.6

;e
th

ni
ci

ty
_b

ia
s,

0.
4

[’
et

hn
ic

ity
_b

ia
s’

,’
em

ot
io

n_
bi

as
’]

2
2

0.
50

jo
ur

na
lis

t
cl

ot
hi

ng
_b

ia
s,

0.
8;

em
ot

io
n_

bi
as

,0
.2

[’
et

hn
ic

ity
_b

ia
s’

]
2

1
0.

26
ac

co
un

ta
nt

cl
ot

hi
ng

_b
ia

s,
0.

20
;e

nv
ir

on
m

en
t_

bi
as

,0
.1

5;
ge

nd
er

_b
ia

s:
0.

65
[’

cl
ot

hi
ng

_b
ia

s’
,’

et
hn

ic
ity

_b
ia

s’
,’

em
ot

io
n_

bi
as

’]
3

3
0.

25
sa

le
s

pe
rs

on
ag

e_
bi

as
,0

.5
;g

en
de

r_
bi

as
,0

.3
;b

od
yt

yp
e_

bi
as

,0
.2

[’
ge

nd
er

_b
ia

s’
,’

ag
e_

bi
as

’]
3

2
0.

29

Table 5: Selected occupational prompts and their associated biases that were mitigated (manually selected), on
Stable Diffusion 3.5. We show the priority vector, along with the actual list of biases that were mitigated, and the
corresponding number of steps. Finally, we also mention MitAmt using our algorithm. The aggregate results of this
table are in the main paper, Table 1. The bottom section of the table has examples where the priority vector was
weighted.
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