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Abstract

There has been little systematic study on how
dialectal differences affect toxicity detection
by modern LLMs. Furthermore, although us-
ing LLMs as evaluators ("LLM-as-a-judge")
is a growing research area, their sensitivity
to dialectal nuances is still underexplored and
requires more focused attention. In this pa-
per, we address these gaps through a compre-
hensive toxicity evaluation of LLMs across
diverse dialects. We create a multi-dialect
dataset through synthetic transformations and
human-assisted translations, covering 10 lan-
guage clusters and 60 varieties. We then evalu-
ate five LLMs on their ability to assess toxicity,
measuring multilingual, dialectal, and LLM-
human consistency. Our findings show that
LLMs are sensitive to both dialectal shifts and
low-resource multilingual variation, though the
most persistent challenge remains aligning their
predictions with human judgments.1

1 Introduction

Toxicity and hate speech detection has become es-
sential for creating safer online environments (An-
jum and Katarya, 2024). The rise of large language
models (LLMs) has advanced the detection of toxic
content, but challenges remain in addressing im-
plicit biases within these models (Roy et al., 2023;
Wen et al., 2023). While LLMs are increasingly
used as automated "judges" for bias and toxicity as-
sessments, their judgments still reflect underlying
biases (Chen et al., 2024).

Despite progress in multilingual and dialectal
toxicity detection (Deas et al., 2023; de Wynter
et al., 2024), a key gap persists in understanding
how dialectal variations affect LLMs’ toxicity judg-
ments compared to standard languages. While
these models often perform well, they tend to show
low agreement with human evaluators on multilin-
gual context-dependent content (de Wynter et al.,

1Code repository: https://github.com/ffaisal93/
dialect_toxicity_llm_judge

Figure 1: The evaluation of LLMs uses three con-
sistency metrics—Multilingual, Dialectal, and LLM-
Human—to assess model responses across languages
and dialects, and alignment with human judgments.

2024). Current benchmarks largely ignore dialectal
complexities (Faisal et al., 2024), underscoring the
need for focused research on how dialects influence
LLM judgments. This work addresses these issues
through the following contributions:

• We develop a synthetic dialectal toxicity dataset
covering 10 language clusters and 60 vari-
eties, also adding authentic linguistic variations
through real-world utterances from a Bengali di-
alect speaker, .

• We introduce LLM-robustness evaluation met-
rics for dialectal toxicity detection, focusing on
three key aspects: multilinguality, dialectal con-
sistency, and LLM-human agreement.

• Our results highlight LLMs’ strong sensitivity
to dialectal nuances and toxicity shifts across
language variations, while emphasizing the need
for improvements in LLM-human alignment.

By focusing on both synthetic and real-world di-
alectal data, this study provides a holistic view of
how LLMs perceive and evaluate toxicity across di-
verse language varieties, contributing to the broader
goal of creating fairer and more effective toxicity
detection systems.
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Figure 2: Overview of the dialectal dataset expansion:
The figure shows the process of creating a multilingual,
multi-dialect toxicity dataset through machine transla-
tion, dialect synthesis and real-world speaker utterances.

2 Background and Related Work

This section provides an overview of existing meth-
ods for transforming, normalizing, and evaluating
dialectal data, along with the role of large language
models (LLMs) as evaluators.

Dialect Transformation and Synthesis The
very first thing we need to expand the dialectal
data coverage is to utilize tools capable of perform-
ing Dialect Synthesis as well as Multilingual and
Dialectal Text Generation. For example, Multi-
VALUE (Ziems et al., 2023) introduces a system
for transforming Standard American English (SAE)
into various dialectal forms using 189 linguistic fea-
tures across 50 English dialects. In addition, the
Murre toolkit (Partanen et al., 2019; Hämäläinen
et al., 2020a,b, 2021) is designed for transforming
and normalizing dialectal varieties of Finnish and
Swedish into their respective standard forms. It pro-
vides functionalities for converting texts between
different dialects and offers support for generat-
ing dialect-specific variations. Besides dialectal
synthesis tools, the development of machine trans-
lation models such as the No Language Left Behind
model (NLLB-200; Costa-jussa et al., 2022) is a
significant advancement in multilingual and dialec-
tal translation. With support for over 200 specific
language varieties, it extends translation capabili-
ties to several underrepresented dialects, including
Arabic varieties (e.g., Egyptian, Levantine), Alba-

nian dialects (e.g., Gheg), and regional Norwegian
dialects.

LLM-as-a-Judge Leveraging LLMs as judges in-
volves using the LLM to provide judgments based
on specific criteria, making it a valuable tool for
task evaluation, such as text quality assessment.
For instance, in an essay grading task, an LLM can
analyze student responses against a rubric, scor-
ing based on grammar, coherence, and argumen-
tation (Stahl et al., 2024). However, employing
LLMs as judges introduces several challenges such
as bias in evaluations. For example, if a model
has been exposed to biased patterns against certain
demographic groups, this may reflect in its evalua-
tions, affecting the fairness of assessments (Deas
et al., 2023). Addressing such biases is essential.
For example, evaluating a student essay written
in African American Vernacular English (AAVE)
using a rubric designed for Standard American
English could lead to unfair assessments, as the
model might mistakenly perceive valid dialectal
variations as errors (Hashemi et al., 2024). Simi-
larly, in machine translation, the LLM can act as
a meta-evaluator (Moghe et al., 2024), comparing
multiple translated outputs against a reference to de-
termine which translation best captures the source
text’s meaning.

3 Dialectal Toxicity Evaluation
Framework

Our framework for evaluating the robustness of
LLMs against toxicity in various dialects can be di-
vided in two key steps: (i) Dialectal Dataset Expan-
sion (ii) LLM-as-a-Judge Consistency Evaluation.

3.1 Dialectal Dataset Expansion
We aim to create a parallel multilingual, multi-
dialect toxicity corpus with human annotations,
featuring dialect-specific cues while maintaining
consistent semantic meaning across language va-
rieties. By “parallel,” we refer to sets of seman-
tically equivalent statements expressed across dif-
ferent languages and dialects. This parallelism is
essential for enabling direct comparisons of model
behavior—such as consistency in toxicity predic-
tions—across language varieties. It helps isolate
linguistic variation from meaning, enabling fair
and robust evaluation of multilingual moderation
systems.

To construct our parallel corpus, we build on the
ToxiGen dataset (Hartvigsen et al., 2022), which
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provides human-annotated data for detecting toxic-
ity, particularly focusing on identifying harmful or
offensive language. The dataset includes a subset
with human-annotated continuous toxicity intent
scores on a scale from 1 to 5, for a diverse range of
statements. To further expand the dataset, we apply
the data augmentation techniques outlined below.

Machine Translation The ToxiGen human-
annotated test set was initially developed in stan-
dard English. To extend it to multiple language vari-
eties, we utilize the NLLB-200 model (Costa-jussa
et al., 2022), chosen for its broad dialectal cov-
erage (e.g., Arabic, Chinese, Norwegian). Target
varieties are selected based on either direct NLLB
support or the availability of dialect synthesis tools.

To safeguard against semantic drift, we validate
translation fidelity using multiple metrics. Specif-
ically, we employ BLEU (Papineni et al., 2002)
through back-translation, COMET (Rei et al., 2023)
for semantic adequacy, and COMET-Kiwi (Rei
et al., 2023) for direct, reference-free evaluation
where supported. For subsets of varieties, we addi-
tionally compare against the state-of-the-art Tower
Plus 9B model (Rei et al., 2025). If these eval-
uations indicate potential meaning loss, we ap-
ply a GPT-assisted refinement step using a large
instruction-tuned model (e.g., GPT-4 (OpenAI,
2023)) prompted with the original English sentence
and initial translation to improve the target output.

A detailed discussion of these evaluation results
is provided in the results section (see Section 5),
where we show that the refined translations demon-
strate strong semantic fidelity across varieties.

Dialectal Synthesis We leverage Multi-
VALUE (Ziems et al., 2023) to convert standard
English into 10 distinct English dialects and use
Murre toolkit (Partanen et al., 2019; Hämäläinen
et al., 2020a,b, 2021) to generate 23 Finnish dialec-
tal variations. This way we create parallel datasets
that preserve the original semantic meaning while
reflecting the unique linguistic features of each
dialect, allowing for more comprehensive analysis
across dialectal diversity.

Incorporating Accent Bias To integrate natu-
ral dialectal data alongside synthetic translations,
ensuring a more comprehensive evaluation, we in-
clude authentic utterances from a native Bengali
speaker, followed by speech-to-text conversion.
Specifically, we present the machine-translated
Bengali sentences and their original English coun-

Cluster # Varieties MT Syn. ASR

Arabic 9 ✓
Bengali 2 ✓ ✓
Chinese 3 ✓
Finnish 24 ✓ ✓
Kurdish 2 ✓
Norwegian 2 ✓
Latvian 2 ✓
English 11 ✓
Sotho 2 ✓
Common Turkic 3 ✓

Table 1: Language Clusters, Variety Count, and Applied
Transformation Methods. Detailed statistics—including
all variety names, associated Glottocodes, and example
counts—are provided in Section H, Table 14.

terparts from ToxiGen to a Bengali speaker from
Dhaka, Bangladesh. The instructions are simple:
(i) the speaker records the Bengali sentence in their
own words, maintaining the original meaning, and
(ii) the tone should reflect casual, conversational
speech. This setup mirrors the protocol used in
SDQA (Faisal et al., 2021), which combines nat-
ural dialectal speech with ASR transcription to
evaluate both model robustness and fairness un-
der realistic, accent-rich conditions. Following that
approach, we use an automatic speech recognition
(ASR) tool2 to transcribe the spoken utterances to
Bengali text, capturing both dialectal nuances and
accent bias.

The dataset expansion process is illustrated in
Fig. 2, with the number of dialects per language
cluster and the applied transformation methods
summarized in Table 1. We adopt the notion of
language clusters from DialectBench (Faisal et al.,
2024), which groups dialectal varieties based on
linguistic affinity and mutual intelligibility, follow-
ing the phylogenetic classification defined in the
Glottolog taxonomy (Hammarström et al., 2024).
Each cluster is named after its most proximal ances-
tral language, with the cluster representative typ-
ically chosen as the standard form or the highest-
resourced variety. All other dialects within the
cluster are referred to as varieties of the cluster
representative. The variety names used in this work
correspond to the Glottolog language names as-
sociated with each variety’s Glottocode. For full
definitions and coverage of clusters and varieties,
we refer readers to Section H and DialectBench.

2https://cloud.google.com/speech-to-text
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3.2 LLM-as-a-Judge Consistency Evaluation

Once we have the Toxigen human-annotated and
expanded language variety dataset at hand, we
move forward to the evaluation phase. Our evalua-
tion framework has two key components: (i) LLM
as a Toxicity Judge, and (ii) Consistency Evalua-
tion Metrics.

3.2.1 LLM-as-a-Toxicity-Judge
We prompt instruction-tuned LLMs to assess the
toxicity of statements in various dialects.

Definition of Toxicity: In this evaluation, toxi-
city refers to the degree of harmfulness conveyed
by a statement, as judged by a language model. It
captures the extent to which a statement includes of-
fensive, disrespectful, or dangerous language that
could cause emotional, psychological, or social
harm. Toxicity is rated on a five-point ordinal scale
(S1–S5), where:

• S1 – Neutral or factual statement.

• S2 – Minor slurs or casual insults.

• S3 – Disrespectful or demeaning language.

• S4 – Explicit hate speech or strong language.

• S5 – Incites violence, threats, or severe hate
speech.

Now the LLM is instructed to return only the
severity label (S1–S5) for each statement, with
no accompanying explanation or justification. As
shown in Section A Fig. 4, the prompt includes
specific rubrics that help evaluators judge the sever-
ity of harmful language on LLM responses.

3.2.2 Consistency Evaluation Metrics
We argue that a comprehensive multilingual LLM-
as-a-judge evaluation must quantify three key di-
mensions of consistency: LLM-Human agreement,
multilingual performance stability, and dialectal
robustness. This is crucial for ensuring fairness
and avoiding bias toward specific linguistic groups:
LLM-Human Consistency (Clh), Multilingual
Consistency (Cml), and Dialectal Consistency
(Cdl). These metrics assess different aspects of
consistency: overall alignment with human annota-
tions, cross-language stability, and within-cluster
robustness, respectively. All metrics are computed
using linear deviations and normalized to the range
[0, 1], where 1 reflects perfect consistency and 0
reflects maximum inconsistency.

LLM-Human Consistency (Clh) This metric
measures the alignment between LLM predictions
and human-provided labels across all varieties (in-
cluding cluster representatives and dialectal forms).
It evaluates the global agreement of the LLM with
human annotations.

The deviations are calculated as:

∆i,j = Predictioni,j − Human Labeli,

where i indexes examples (1 ≤ i ≤ N ) and j
indexes varieties (1 ≤ j ≤ m).

The aggregated deviations are computed as:

Devi =

√√√√ 1

m

m∑

j=1

∆2
i,j ,

Aggregate Dev =
1

N

N∑

i=1

Devi

Finally, the LLM-Human Consistency score is:

Clh = 1− Aggregate Dev
Max Possible Dev

where Max Possible Dev is determined by the label
range. For labels in [1, 5], Max Possible Dev = 4.
A higher Clh score (≈ 1) indicates better alignment
with human labels.

Multilingual Consistency (Cml) This score as-
sesses the stability of predictions across language
clusters, focusing solely on cluster-representative
varieties. For each example, we first compute the
mean prediction:

µi =
1

L

L∑

j=1

Predictioni,j

where L is the total number of language clusters
(i.e., the number of cluster-representative varieties).
Deviations are then calculated as:

∆i,j = Predictioni,j − µi

The rest of the computation to obtain
Cml—including per-example deviation, aggregation
across examples, and normalization—follows the
same procedure as used for Clh.

Dialectal Consistency (Cdl) This metric evalu-
ates within-cluster consistency by comparing each
dialectal variety to its cluster representative. Devia-
tions are computed as:
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∆i,j = Predictioni,j − Predictioni,cluster-rep.

Aggregate deviation is computed across dialects
for each example as before, followed by normal-
ization and consistency score computation for each
language cluster:

Cdl-[lang] = 1− Aggregate Dev
Max Possible Dev

The global dialectal consistency is computed as
the macro average across clusters, where C is the
total number of clusters:

Cdl =
1

C

C∑

c=1

Cdl-[lang]c

4 Experimental Setup

We evaluate the performance of five LLMs to as-
sess their capability in detecting toxicity across a
diverse set of standard and dialectal language vari-
eties. Here we choose those models, that already
exhibits their superior performance in multilingual
benchmarks. Our evaluation includes standard clas-
sification metrics such as accuracy and F1 score,
followed by consistency-based analyses to assess
the robustness of model predictions across multi-
lingual and dialect-sensitive settings.

• GPT-4.1 (OpenAI et al., 2024): A closed-weight
instruction-tuned model from OpenAI, used as
our skyline reference due to its superior per-
formance across multilingual benchmarks and
strong alignment capabilities. It serves as the
upper bound for evaluation.

• Mistral-Nemo-Instruct-2407 (AI and
NVIDIA, 2024): A compact 8B model fine-
tuned by NVIDIA using a two-stage instruction
and preference optimization pipeline. It
demonstrates strong performance on multilin-
gual evaluation benchmarks (e.g., MMLU),
particularly in European languages.

• LLaMA-3.1-8B-Instruct (Grattafiori et al.,
2024): Meta’s open-weight LLaMA-3 model,
selected for its strong multilingual capabilities
and effective performance in translation and con-
versational agent-based tasks.

• Qwen2.5-7B-Instruct (Qwen et al., 2025): A
7B parameter model from Alibaba with support
for over 29 languages, designed for multilingual
instruction-following tasks and alignment safety.

• Gemma-3-12B-it (Team et al., 2025): A 12B
instruction-tuned model developed by Google,
supporting over 140 languages.

For the remainder of this paper, we
refer to Mistral-Nemo-Instruct-2407
as NeMo, GPT-4.1-2025-04-14 as GPT,
LLaMA-3.1-8B-Instruct as LLaMA,
Qwen2.5-7B-Instruct as Qwen, and
Gemma-3-12b-it as Gemma.

5 Results and Analysis

In this section, we present our experimental find-
ings. The original human-labeled toxicity intent
scores range continuously from 1 to 5 and are dis-
cretized into five ordinal bins to standardize com-
parison across models (see Section F). We evaluate
model performance using two complementary met-
rics: RMSE-based similarity, which measures the
deviation between model predictions and binned
human labels (normalized and inverted to yield
a similarity score between 0 and 1), and macro-
averaged F1, which assesses classification accuracy
across toxicity levels. Full metric definitions are
provided in Section G.

Broad model comparisons Table 2 summarizes
model performance across language clusters. The
evaluation was conducted on a subset of 380 sen-
tences, ensuring coverage across 60 language va-
rieties. Nemo and Gemma occasionally failed to
produce valid outputs across all varieties; such sam-
ples were excluded from their evaluations. Validity
rates appear in Section C (Table 7).

RMSE similarity scores range from 57.6 to 65.8,
indicating relatively low alignment with human an-
notations. Gemma consistently achieves the high-
est performance across both metrics. Nemo ranks
second in F1, while Qwen performs second-best
in RMSE-SIM, suggesting that ranking can differ
depending on the evaluation perspective. Interest-
ingly, GPT scores lowest on RMSE-SIM, indicat-
ing that larger model size alone does not ensure
better alignment with human judgments. Overall,
the agreement remains modest across all models,
pointing to a broader challenge in reliably captur-
ing human-defined toxicity signals.

Results across language clusters Model perfor-
mance varies noticeably across language clusters.
In higher-resource languages such as English, Ara-
bic, and Chinese, models tend to perform better,
with relatively higher F1 and similarity scores. In
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F1 RMSE-SIM
Lang.
Cluster

GPT Nemo LLaMA Qwen Gemma GPT Nemo LLaMA Qwen Gemma Avg

English 21.8 32.6 28.6 29.5 36.0 64.8 70.2 67.8 70.0 71.7 68.9
Arabic 17.6 27.1 24.4 24.5 27.7 58.2 62.1 63.9 64.4 68.0 63.3
Norwegian 19.0 23.8 26.0 24.9 28.2 60.0 59.1 62.3 63.2 68.0 62.5
Chinese 17.8 24.8 23.8 24.6 27.6 59.0 60.0 62.0 64.4 65.5 62.2
Turkic 16.5 25.5 23.5 18.7 28.8 57.1 61.0 59.8 62.2 66.0 61.2
Bengali 17.5 24.6 24.7 21.6 26.0 57.2 59.5 59.3 60.6 65.1 60.3
Latvian 16.9 22.5 25.4 18.9 29.1 57.6 57.4 59.6 60.9 65.8 60.3
Finnish 17.7 21.5 21.6 17.2 27.2 57.0 57.7 60.2 60.5 62.7 59.6
Sotho 14.9 20.5 19.1 11.6 19.7 54.5 59.2 58.8 57.7 63.6 58.8
Kurdish 14.1 23.0 20.2 14.1 25.8 50.3 58.9 59.0 57.8 61.6 57.5

Avg.(Macro) 17.4 24.6 23.7 20.6 27.6 57.6 60.5 61.3 62.2 65.8 61.5

Table 2: Performance of models across different language clusters. Bold values indicate the best-performing model
per cluster for both F1 and RMSE-SIM. Overall, Gemma achieves the highest average performance, although scores
remain modest, especially for lower-resource clusters.

contrast, performance drops in lower-resource clus-
ters like Sotho and Kurdish. For instance, the low-
est RMSE similarity score appears in GPT’s pre-
dictions for Kurdish (50.3), which is over 10 points
lower than Gemma’s score on the same cluster.
These differences highlight persistent disparities
in model robustness across language varieties, es-
pecially for underrepresented or morphologically
complex languages.

LLM Consistency Evaluation For readability,
we report consistency scores as percentages, al-
though they are originally defined on a 0–1 scale.
As shown in Table 3, most LLMs handle mul-
tilingual and dialectal variation reasonably well,
with consistency scores for these dimensions rang-
ing between 83.1% and 91.0%. In contrast, llm-
human consistency remains a challenge, with no-
tably lower scores across models. GPT, for in-
stance, scores the lowest on llm-human alignment
(57.2) but leads in multilingual (91.0) and dialec-
tal (90.8) consistency, indicating strong linguistic
robustness but weaker agreement with human judg-
ment. Moreover, a closer look at dialectal break-
down shows GPT maintains stability across both
high- and low-resource languages, while Gemma
and Nemo exhibit greater variability—particularly
in Finnish, Kurdish, and Latvian—suggesting un-
even generalization across linguistic diversity.

It is also worth noting that consistency scores
are computed only when valid predictions exist
across all dialectal varieties, which limits evalu-
ation for models like Gemma and Nemo. Their
low overlap counts (13 and 61 vs. 380 for GPT
and Qwen) reflect frequent gaps in prediction cov-
erage, likely impacting their overall consistency.

However, their overall validity rates—89.07% for
Nemo and 83.01% for Gemma—are less concern-
ing, suggesting they can generate valid outputs in
many cases. The core issue is not validity itself,
but the inconsistency in producing structured pre-
dictions across all varieties for the same input.

To better understand where validity gaps oc-
cur, we examined per-cluster prediction rates, as
shown in Appendix Table 7. Results reveal that
Gemma struggles notably in Bengali (69.2%), Chi-
nese (63.2%), Kurdish (70.7%), and Common Tur-
kic (75.7%), while Nemo also underperforms in
Sotho (81.3%) and Arabic (82.0%). In contrast,
GPT, LLaMA, and Qwen maintain near-perfect
validity across all clusters, demonstrating greater
robustness. Notably, Gemma’s shortcomings per-
sist despite its larger parameter size (12B), sug-
gesting that factors such as training data quality or
decoding strategies may play a more critical role
than model scale in generating reliably structured
outputs.

Model-Predicted Toxicity Shifts We investi-
gated how model-predicted toxicity labels in Stan-
dard English change when mapped to the standard
and dialectal varieties of other language clusters.
Starting from English predictions, we specifically
focused on sentences labeled as toxic (scores 4 or
5) and non-toxic (scores 1 or 2). For toxic English
sentences, we measured the percentage of cases
where predicted toxicity was reduced when trans-
lated into other languages. Conversely, for non-
toxic English sentences, we computed how often
toxicity increased in the translated outputs. These
comparisons were made separately for standard va-
rieties and dialectal forms across all models. The
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Consistency Dimension/Language GPT Nemo LLaMA Qwen Gemma

Overall
llm-human (Clh) 57.2 68.6 62.0 62.7 64.1
multilingual (Cml) 91.0 85.9 82.7 82.3 85.2
dialectal-mean (Cdl) 90.8 87.9 83.3 83.1 83.2

Dialectal (Cdl-[lang])

Arabic 91.2 89.0 82.3 82.5 87.5
Bengali 89.7 93.4 85.6 84.1 82.7
Chinese 92.5 90.4 88.3 89.1 84.9
Turkic 89.7 87.3 82.2 76.8 86.1
English 88.3 88.4 87.5 84.7 79.4
Finnish 87.0 81.9 72.0 76.3 71.1
Latvian 91.4 84.0 81.7 81.8 86.5
Kurdish 90.7 80.3 80.6 81.4 78.8
Norwegian 94.7 94.3 90.0 89.4 90.4
Sotho 93.0 89.8 82.3 84.9 84.6

Number of Samples with Predictions Available in All Varieties 380 61 324 380 13
Overall Valid Prediction percentage (%) 100.00 89.07 97.58 100.00 83.01

Table 3: Model-wise consistency scores across dimensions and language clusters. GPT demonstrates the most stable
multilingual and dialectal consistency across clusters, despite lower llm-human alignment. Gemma and Nemo
achieve relatively higher llm-human scores but suffer from low prediction overlap, raising concerns about their
consistency and reliability.

Figure 3: Toxicity shift to other language varieties from Standard English: Each bar shows the percentage change
in model toxicity scores when standard English toxic (top) and non-toxic (bottom) sentences are translated into
other language varieties. Scores are shown separately for cluster representatives and dialects (average). Dots
indicate individual model outputs; error bars span the range across models. We observe that toxicity scores generally
decrease for toxic inputs across all varieties, with the strongest reductions in Sotho and Kurdish. In contrast, for
non-toxic inputs, GPT remains stable across all varieties, while models like Qwen tend to over-predict toxicity,
especially in Sotho, where benign inputs are rated as toxic in up to 59% of cases.

results highlight clear toxicity shifts, especially in
low-resource and dialectally diverse settings, rein-
forcing the need to account for language variety in
multilingual moderation. Details of the outcomes

are reported in Fig. 3. Across the board, all mod-
els tend to give lower toxicity scores when English
toxic sentences are transformed into other language
varieties (Fig. 3a). This drop is fairly consistent,
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Metric Bengali English

Mean Toxicity 2.46 2.51
Median Toxicity 2.0 2.0

Score 1 (%) 37.0 39.0
Score 2 (%) 19.0 15.0
Score 3 (%) 19.0 16.0
Score 4 (%) 11.0 16.0
Score 5 (%) 14.0 14.0

Table 4: Comparison of toxicity ratings for 100 English
and Bengali sentences annotated independently.

with toxicity reduced by about 50% on average,
regardless of the language or model. The effect is
especially strong for Sotho and Kurdish, where all
models show a notably large reduction—in many
cases, cutting toxicity scores by more than 70–80%
compared to the original English.

The pattern is quite different when we look at
non-toxic English sentences and how they’re scored
after translation. GPT stands out: it consistently as-
signs low toxicity scores to these benign sentences,
no matter the target variety—usually staying be-
low 10%. However, the other models are far more
variable. In particular, Qwen assigns elevated tox-
icity scores in up to 59% of Sotho cases, which
means it might be mistaking benign sentences for
toxic ones in the vast majority of those instances.
We see similar, though less extreme, trends with
Qwen in languages like Kurdish, Finnish, and Lat-
vian. This suggests that while GPT remains rel-
atively stable in preserving the non-toxic nature
of inputs, other models—especially LLaMA—are
more prone to over-predicting toxicity, particularly
in lower-resource or linguistically complex vari-
eties. See Section B, for detailed result reports for
all clusters and models.

Human Ratings of Toxicity Preservation To
evaluate how toxicity is preserved during transla-
tion from English to Bengali, we designed a con-
trolled annotation process involving two bilingual
annotators. The annotators independently rated tox-
icity for both Bengali and English sentences with-
out evaluating parallel pairs to eliminate potential
cross-lingual bias.

The stimuli consist of 100 Bengali sentences,
translated from English using machine translation
(MT), and 100 original English sentences. These
were divided into two subsets for each language:
BS1 and BS2 for Bengali, and ES1 and ES2 for
English. Annotator A1 rated BS1 and ES2, while
annotator A2 rated BS2 and ES1. This assignment

ensured that no annotator saw parallel English-
Bengali sentence pairs, maintaining independence
in ratings across the two languages.

The key objective of this study is to compare
the aggregated toxicity scores of Bengali sentences
(BS1 + BS2) with English sentences (ES1 + ES2)
to determine whether toxicity is preserved, ampli-
fied, or reduced in translation. As shown in Table 4,
the results indicate strong preservation of toxic-
ity across the two languages. The mean toxicity
ratings are nearly identical: 2.46 for Bengali and
2.51 for English, with both having a median score
of 2.0. The score distributions are also similar,
though there is a slight reduction in extreme toxic-
ity ratings in Bengali (Score 4 at 11% vs. 16% in
English), and a marginally lower proportion of non-
toxic (Score 1) sentences (37% vs. 39%). These
differences are minimal, suggesting that machine-
translated Bengali sentences retain a comparable
level of perceived toxicity.

Validating Translation Fidelity Given the shifts
observed in model-predicted toxicity and the close
alignment seen in human ratings, we wanted to
ensure that the translations themselves were not
introducing major semantic drift. To assess fidelity,
we employed both back-translation and reference-
free evaluation metrics.

We first used NLLB to translate from Stan-
dard English into each dialectal variety, then back-
translated into English. BLEU scores between the
original and back-translated sentences provided
a measure of semantic preservation. To further
validate results, we also computed COMET (via
back-translation) and COMET-Kiwi (reference-
free, direct evaluation). Where possible, we com-
pared against the state-of-the-art Tower Plus 9B
model for supported varieties. In addition to raw
NLLB outputs, we also evaluated a refined sys-
tem (NLLB+GPT), where GPT was prompted with
the original English sentence and the initial NLLB
translation to produce an improved target output.
This refinement was applied across all varieties
whenever it yielded higher fidelity.

Table 5 reports the results of reference-free trans-
lation evaluation using the COMET-Kiwi model,
which is only available for a subset of varieties.
The results show that NLLB+GPT consistently out-
performs raw NLLB, and for varieties with Tower
Plus baselines (e.g., Chinese, Norwegian, Finnish),
the refined system comes close to state-of-the-art
quality.
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Dialect (Cluster Representative) COMET-Kiwi (NLLB+GPT) COMET-Kiwi (NLLB) COMET-Kiwi (Tower+)

Standard Arabic 0.863 0.814 –
Bengali (Standard) 0.832 0.755 –
Chinese (Simplified) 0.845 0.612 0.869
Chinese (Traditional) 0.855 0.375 0.857
North Azerbaijani Turkic 0.898 0.839 –
Finnish 0.848 0.848 0.918
Northern Kurdish 0.779 0.790 –
Norwegian Nynorsk 0.909 0.798 0.905
Norwegian Bokmål 0.906 0.849 0.906

Global Average 0.863 0.753 0.891

Table 5: COMET-Kiwi (reference-free, direct translation) scores for supported varieties. NLLB+GPT consistently
improves over raw NLLB, and for supported varieties (Chinese, Norwegian, Finnish), approaches Tower Plus
performance.

Importantly, while COMET and COMET-Kiwi
are limited to supported varieties and cluster repre-
sentatives, respectively, their results align with the
broader BLEU-based evaluation that covers all va-
rieties (Appendix Section D). Together, these com-
plementary metrics confirm the reliability of our ap-
proach: BLEU provides comprehensive coverage,
while COMET and COMET-Kiwi offer stronger
validation where supported thus reducing the likeli-
hood that observed toxicity shifts were artifacts of
mistranslation.

6 Conclusion and Future Work

We propose a holistic LLM robustness evaluation
framework for handling toxicity across language
varieties. Our findings suggest, a notable gap re-
mains between model predictions and human judg-
ment, emphasizing the need for improvements in
alignment. Additionally, LLMs tend to be more
sensitive to low-resource dialects, indicating that
further advancements are required to enhance their
consistency across diverse language varieties. We
aim to further expand our dataset by incorporat-
ing more utterance-based dialects and introducing
new perturbation methods, leveraging LLMs’ un-
derstanding of dialectal variations.

Limitations

At this point, this study mostly contains synthetic
and machine-translated dialectal varieties except
for one set of spoken utterances (Bengali-Dhaka).
While it would be ideal to conduct this study on au-
thentic data, such data are not easily available and
they are expensive to collect. This low percentage
of real-world dialectal examples is a limitation we
hope to address in the future.
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Appendix

A LLM-as-a-Judge evaluation prompt

LLM Toxicity Evaluation: Instructions

Instructions: You will be provided with a series of statements in various dialects. Your task is to evaluate the toxicity of each statement.
Toxicity is rated on a scale from S1 to S5 based on the level of harmfulness:

• S1: Not harmful (neutral or factual statement)

• S2: Slightly offensive (minor slurs or casual insults)

• S3: Moderately harmful (disrespectful or demeaning language)

• S4: Highly toxic (explicit hate speech or strong language)

• S5: Extremely toxic (incites violence, threats, or severe hate speech)

Response Format: Your response should be only the label S1, S2, S3, S4, or S5 — no explanation, no extra text.
Input Statement: {Input_statement}

Figure 4: Prompt instructions provided to the LLM for toxicity scoring of dialectal input. The model returns a
single severity label (S1–S5) per statement.

B Reporting Detailed Toxicity Shift

To better understand how toxicity perceptions shift when translating standard English inputs into various
language varieties, we report detailed results in Table 6. The table breaks down model predictions across
two axes: (1) the reduction in toxicity scores for originally toxic English sentences, and (2) the increase in
toxicity scores for originally non-toxic sentences after translation.

C Validity of Model Outputs Across Language Clusters

Table 7 provides a detailed breakdown of the percentage of valid toxicity predictions across language
clusters and models.

D Translation Fidality Evaluation using back-Translation

To assess the semantic fidelity of translations across dialectal varieties, we combine reference-based and
reference-free evaluation metrics. This includes BLEU scores between the original English sentences and
their back-translated counterparts, COMET (XCOMET-XL) (Guerreiro et al., 2024) scores for supported
varieties, and COMET-Kiwi (wmt23-cometkiwi-da-xxl) (Rei et al., 2023) scores for direct reference-free
evaluation. Where applicable, we also compare with Tower+ 9B (Rei et al., 2025) as a state-of-the-art
baseline. Scores are reported at the dialect and global level, with “–” indicating unsupported cases.
Table 8 reports BLEU and COMET scores for each language variety.

Across all metrics, NLLB+GPT post-correction achieves translation quality close to Tower+ on sup-
ported varieties while uniquely covering all dialects in our study. BLEU back-translation, COMET, and
COMET-Kiwi confirm consistent gains over baseline NLLB, demonstrating the reliability and robustness
of the approach.

E Detailed Evaluation Results

This section presents the detailed result tables (Tables 9 to 13) summarizing the performance of each model
across different languages and dialects. We report metrics such as F1 scores (for bin=5 classifications)
and RMSE-Similarity.
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Toxic sentences: (Cluster Rep., Dialect) % reduced

GPT Nemo LLaMA Qwen Gemma Avg

Arabic (42.6, 52.7) (75.3, 80.9) (35.2, 34.9) (41.8, 48.5) (41.9, 47.5) (59.2, 67.4)
Bengali (41.0, 60.7) (71.6, 60.5) (67.2, 60.7) (55.1, 57.1) (64.1, 52.1) (68.2, 72.7)
Chinese (59.0, 45.9) (77.8, 71.6) (38.5, 33.2) (43.9, 33.2) (53.0, 61.5) (68.1, 59.8)
Turkic (42.6, 57.4) (72.8, 84.0) (54.1, 58.6) (45.9, 66.8) (44.4, 56.0) (41.3, 65.5)
english (0.0, 48.0) (0.0, 43.5) (0.0, 33.8) (0.0, 43.1) (0.0, 35.2) (0.0, 35.9)
Finnish (44.3, 58.9) (80.2, 83.4) (49.2, 32.1) (45.9, 63.1) (35.0, 39.7) (57.0, 54.9)
Latvian (41.0, 59.0) (75.3, 82.7) (62.3, 58.2) (60.2, 77.6) (46.2, 47.9) (56.9, 64.4)
Kurdish (73.8, 78.7) (86.4, 84.0) (63.9, 59.0) (87.8, 93.9) (70.9, 41.9) (72.3, 65.7)
Norwegian (36.1, 37.7) (58.0, 69.1) (38.5, 40.2) (31.6, 45.9) (27.4, 36.8) (45.5, 48.7)
Sotho (65.6, 65.6) (96.3, 97.5) (57.4, 71.3) (93.9, 94.9) (61.5, 59.8) (67.8, 69.8)

Avg (44.6, 56.5) (69.4, 75.7) (46.6, 48.2) (50.6, 62.4) (44.4, 47.8) (53.6, 60.5)

Non-toxic sentences: (Cluster Rep., Dialect) % increased

Arabic (0.8, 3.2) (4.6, 9.1) (14.0, 25.5) (9.8, 26.2) (11.7, 20.6) (5.9, 10.4)
Bengali (4.0, 5.3) (8.1, 10.2) (9.0, 21.7) (15.0, 26.6) (7.0, 26.9) (6.8, 13.7)
Chinese (3.2, 4.0) (9.6, 4.3) (11.8, 9.7) (13.3, 8.7) (14.6, 7.3) (6.1, 6.0)
Turkic (3.2, 5.1) (10.7, 10.7) (10.0, 15.8) (17.3, 49.7) (14.6, 19.6) (8.4, 12.8)
English (0.0, 2.8) (0.0, 11.5) (0.0, 9.5) (0.0, 26.8) (0.0, 24.3) (0.0, 9.4)
Finnish (4.0, 10.1) (7.1, 7.8) (11.3, 39.6) (19.7, 51.6) (19.9, 48.6) (8.5, 21.2)
Latvian (3.2, 10.5) (8.1, 8.1) (14.5, 24.4) (23.1, 48.0) (17.0, 36.8) (9.2, 16.0)
Kurdish (7.3, 6.5) (24.4, 10.7) (17.2, 31.2) (49.1, 58.4) (12.3, 26.9) (13.5, 16.7)
Norwegian (2.0, 2.0) (4.1, 6.1) (10.4, 13.1) (13.9, 15.0) (17.0, 17.0) (6.4, 7.2)
Sotho (4.9, 6.9) (25.9, 18.3) (57.9, 45.7) (59.0, 45.7) (51.5, 39.2) (23.5, 20.5)

Avg (3.3, 5.6) (10.3, 9.7) (15.6, 23.6) (22.0, 35.7) (16.6, 26.7) (8.8, 13.4)

Table 6: Percentage of toxicity shifts after translation from Standard English to various language varieties. The
top half shows the reduction in predicted toxicity for originally toxic English sentences, while the bottom half
shows the increase in predicted toxicity for originally non-toxic English sentences. Each cell reports the percentage
change for the cluster representative and dialectal variety (avg.), respectively. Results are averaged across clusters
and models in the rightmost and bottom rows. Higher reduction values (top) indicate potential underprediction of
toxicity post-translation, while higher increase values (bottom) suggest overprediction of toxicity in benign inputs.

GPT Nemo LLaMA Qwen Gemma Avg

Arabic 100.0 82.0 100.0 100.0 83.5 93.1
Chinese 100.0 93.6 100.0 100.0 63.2 91.4
Finnish 100.0 92.0 100.0 100.0 85.4 95.5
Kurdish 100.0 88.2 100.0 100.0 70.7 91.8
Norwegian 100.0 97.5 100.0 100.0 91.3 97.8
Latvian 100.0 95.9 100.0 100.0 89.9 97.2
English 100.0 85.4 86.8 100.0 86.2 91.7
Sotho 100.0 81.3 100.0 100.0 86.0 93.5
Bengali 100.0 94.5 100.0 100.0 69.2 92.7
Turkic 100.0 87.3 100.0 100.0 75.7 92.6

Avg (Macro) 100.0 89.8 98.7 100.0 80.1 93.7

Table 7: Percentage of valid toxicity predictions across language clusters and LLMs. Each cell represents the
proportion of examples for which the model produced a valid, structured output in the given cluster. While GPT,
Qwen, and LLaMA consistently achieve near-perfect validity across all clusters, models like Nemo and Gemma
show greater variability, especially in low-resource or dialectally diverse languages such as Bengali, Chinese, and
Kurdish. The macro average in the bottom row summarizes each model’s validity performance across all clusters.

12443



Dialect BLEU BLEU BLEU COMET COMET COMET
(NLLB+GPT) (NLLB) (Tower+) (NLLB+GPT) (NLLB) (Tower+)

North Mesopotamian Arabic 41.04 44.41 – – – –
Ta’izzi-Adeni Arabic 41.97 46.89 – – – –
Tunisian Arabic 35.84 32.31 – – – –
South Levantine Arabic 41.93 44.75 – – – –
Levantine Arabic (North) 43.43 45.41 – – – –
Standard Arabic 44.67 46.97 – 0.954 0.945 –
Najdi Arabic 39.73 46.14 – – – –
Moroccan Arabic 38.86 39.63 – – – –
Egyptian Arabic 40.82 47.85 – – – –

Bengali (Standard) 41.85 43.30 – 0.955 0.940 –
Cantonese 28.20 24.05 – – – –
Chinese (Simplified) 36.61 33.55 33.73 0.937 0.891 0.946
Chinese (Traditional) 32.53 20.78 34.05 0.877 0.740 0.933

Central Oghuz Turkic 41.88 41.95 – – – –
South Azerbaijani Turkic 31.81 32.96 – – – –
North Azerbaijani Turkic 40.25 41.84 – 0.949 0.945 –

Latgalian Latvian 40.04 37.56 – – – –
Standard Latvian 42.36 42.70 – – – –

Central Kurdish 38.46 41.34 – – – –
Northern Kurdish 38.93 42.36 – 0.913 0.923 –

Finnish (Finnish) 39.62 39.62 42.18 0.956 0.956 0.955

Norwegian Nynorsk 46.35 39.81 50.79 0.954 0.943 0.963
Norwegian Bokmål 53.45 58.58 58.72 0.961 0.972 0.973

Northern Sotho 40.92 41.91 – – – –
Southern Sotho 43.34 44.41 – – – –

Global Average 40.67 40.38 44.08 0.941 0.921 0.954

Table 8: BLEU and COMET (back-translation) scores per dialect and system. COMET scores are reported in the
0–1 range. Tower+ is shown where available. “–” indicates unsupported cases. NLLB+GPT consistently improves
or maintains quality relative to baseline NLLB.

F Binning Methodology

To assign values in the range [1, 5] into a specified number of bins, we divide the range into equal-sized
intervals. Let N denote the number of bins. The bin edges are defined as follows:

Bin Edges = {ei | ei = 1 + (i− 1) ·∆e, i = 1, 2, . . . , N + 1},

where ∆e is the width of each bin, given by:

∆e =
5− 1

N
.

For a given value v ∈ [1, 5], the bin assignment is determined as follows:

Bin(v) =





1, if v = e1,

i, if ei−1 < v ≤ ei, i = 2, 3, . . . , N,

N, if v = eN+1.

This approach ensures that:

• The first bin includes the value 1.

• Each subsequent bin includes values strictly greater than the lower edge and up to the upper edge,
except for the last bin, which includes its upper edge 5.
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F1 RMSE-SIM
Language Cluster Variety

English Standard 22.10 66.10
Southeast american enclave 23.30 64.50
Chicano 23.40 65.50
Nigerian 22.40 65.60
African american vernacular 22.30 65.20
Appalachian 23.90 65.90
Australian 22.20 64.30
Colloquial singapore 20.00 63.30
Hong kong 19.40 63.00
Indian 20.00 64.50
Irish 20.60 65.40

Norwegian Norwegian nynorsk 20.00 59.10
Norwegian bokmal 18.00 60.90

Bengali Dhaka 17.00 54.80
Standard 18.00 59.60

Arabic North mesopotamian arabic 17.80 57.40
Ta’izzi-adeni arabic 16.20 58.80
Tunisian arabic 18.60 57.50
South levantine arabic 18.00 59.30
Levantine arabic (a:north) 18.20 59.50
Standard arabic 18.50 58.40
Najdi arabic 16.90 59.00
Moroccan arabic 15.90 56.40
Egyptian arabic 17.70 57.50

Chinese Cantonese 16.60 58.40
Classical-middle-modern sinitic (simplified) 18.70 59.50
Classical-middle-modern sinitic (traditional) 18.30 59.00

Turkic Central oghuz 17.80 59.10
South azerbaijani 14.70 54.00
North azerbaijani 16.90 58.00

Latvian East latvian 16.90 56.50
Latvian 16.90 58.70

Finnish Finnish 16.90 58.10
Pohjois-satakunta 17.80 57.70
Keski-karjala 16.90 56.50
Kainuu 16.40 55.60
Etela-pohjanmaa 18.60 57.80
Etela-satakunta 17.80 57.40
Pohjois-savo 20.10 56.10
Pohjois-karjala 16.40 55.30
Keski-pohjanmaa 18.60 56.90
Kaakkois-hame 18.00 58.00
Pohjoinenkeski-suomi 15.00 56.20
Pohjois-pohjanmaa 18.50 57.10
Pohjoinenvarsinais-suomi 17.40 57.10
Etela-karjala 19.70 57.20
Lansi-uusimaa 17.40 57.80
Inkerinsuomalaismurteet 19.20 58.00
Lantinenkeski-suomi 18.70 56.90
Lansi-satakunta 16.90 56.40
Etela-savo 16.20 55.60
Lansipohja 15.40 57.60
Pohjois-hame 18.50 56.70
Etelainenkeski-suomi 16.60 57.90
Etela-hame 19.90 57.40
Perapohjola 17.10 57.10

Sotho Northern sotho 14.20 53.00
Southern sotho 15.60 56.00

Kurdish Central kurdish 15.70 51.60
Northern kurdish 12.50 49.10

Average (Micro) 18.20 58.50

Table 9: Evaluation Results for gpt-4.1-2025-04-14
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F1 RMSE-SIM
Language Cluster Variety

English Standard 31.40 70.00
Southeast american enclave 31.40 70.40
Chicano 32.70 70.90
Nigerian 33.40 70.10
African american vernacular 33.50 69.80
Appalachian 34.20 70.80
Australian 34.00 69.80
Colloquial singapore 33.70 69.60
Hong kong 31.70 69.90
Indian 30.30 69.30
Irish 32.90 71.10

Arabic North mesopotamian arabic 28.10 62.60
Ta’izzi-adeni arabic 24.50 61.10
Tunisian arabic 26.90 62.60
South levantine arabic 27.80 61.50
Levantine arabic (a:north) 26.60 63.80
Standard arabic 25.10 60.20
Najdi arabic 26.50 61.80
Moroccan arabic 29.50 62.60
Egyptian arabic 28.50 63.00

Turkic Central oghuz 25.10 61.60
South azerbaijani 24.90 61.90
North azerbaijani 26.50 59.50

Chinese Cantonese 29.20 61.00
Classical-middle-modern sinitic (simplified) 21.60 59.10
Classical-middle-modern sinitic (traditional) 23.70 59.90

Kurdish Central kurdish 21.90 60.60
Northern kurdish 24.00 57.20

Bengali Dhaka 24.00 58.80
Standard 25.10 60.20

Norwegian Norwegian nynorsk 23.70 58.40
Norwegian bokmal 23.80 59.90

Sotho Northern sotho 20.50 59.10
Southern sotho 20.50 59.30

Finnish Finnish 21.90 56.00
Pohjois-satakunta 24.20 57.50
Keski-karjala 20.30 56.40
Kainuu 19.20 57.80
Etela-pohjanmaa 23.00 57.10
Etela-satakunta 20.20 58.20
Pohjois-savo 21.50 58.00
Pohjois-karjala 18.80 56.90
Keski-pohjanmaa 22.00 58.60
Kaakkois-hame 23.50 59.10
Pohjoinenkeski-suomi 21.00 56.70
Pohjois-pohjanmaa 22.30 58.30
Pohjoinenvarsinais-suomi 20.30 58.50
Etela-karjala 23.00 58.00
Lansi-uusimaa 19.40 57.30
Inkerinsuomalaismurteet 22.20 56.90
Lantinenkeski-suomi 22.60 59.00
Lansi-satakunta 19.10 57.20
Etela-savo 21.00 57.20
Lansipohja 23.10 58.00
Pohjois-hame 23.60 58.20
Etelainenkeski-suomi 22.40 58.60
Etela-hame 20.20 58.60
Perapohjola 22.10 57.10

Latvian East latvian 22.20 57.00
Latvian 22.80 57.80

Average (Micro) 25.00 61.10

Table 10: Evaluation Results for Mistral-Nemo-Instruct-2407
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F1 RMSE-SIM
Language Cluster Variety

English Standard 25.90 67.40
Southeast american enclave 29.50 68.30
Chicano 28.70 69.20
Nigerian 27.60 68.20
African american vernacular 30.70 68.60
Appalachian 30.90 68.70
Australian 26.00 67.00
Colloquial singapore 29.50 66.10
Hong kong 25.40 67.00
Indian 28.60 66.70
Irish 31.70 68.50

Arabic North mesopotamian arabic 24.90 64.50
Ta’izzi-adeni arabic 24.50 64.90
Tunisian arabic 24.90 63.90
South levantine arabic 23.00 64.30
Levantine arabic (a:north) 25.80 65.50
Standard arabic 24.30 62.50
Najdi arabic 23.00 63.00
Moroccan arabic 25.30 63.20
Egyptian arabic 24.20 62.90

Chinese Cantonese 27.90 63.10
Classical-middle-modern sinitic (simplified) 20.70 61.90
Classical-middle-modern sinitic (traditional) 22.70 61.10

Norwegian Norwegian nynorsk 24.10 61.50
Norwegian bokmal 28.00 63.00

Finnish Finnish 22.10 58.40
Pohjois-satakunta 23.10 60.40
Keski-karjala 19.70 59.60
Kainuu 21.40 61.30
Etela-pohjanmaa 22.40 59.80
Etela-satakunta 20.00 60.70
Pohjois-savo 20.40 59.90
Pohjois-karjala 21.80 59.10
Keski-pohjanmaa 21.50 59.40
Kaakkois-hame 22.80 61.00
Pohjoinenkeski-suomi 19.90 60.30
Pohjois-pohjanmaa 21.90 61.00
Pohjoinenvarsinais-suomi 21.70 61.00
Etela-karjala 20.00 60.10
Lansi-uusimaa 19.10 59.80
Inkerinsuomalaismurteet 20.70 59.90
Lantinenkeski-suomi 24.20 59.70
Lansi-satakunta 17.80 60.00
Etela-savo 21.20 60.10
Lansipohja 24.60 61.70
Pohjois-hame 22.70 60.80
Etelainenkeski-suomi 23.60 59.60
Etela-hame 22.70 61.10
Perapohjola 23.40 61.30

Bengali Dhaka 26.60 61.40
Standard 22.70 57.30

Latvian Latgalian 23.80 58.40
Standard latvian 27.10 60.90

Turkic Central oghuz 24.20 60.70
South azerbaijani 22.70 59.70
North azerbaijani 23.50 59.00

Kurdish Central kurdish 22.60 58.10
Northern kurdish 17.80 60.00

Sotho-tswana Northern sotho 18.70 58.90
Southern sotho 19.50 58.70

Average (Micro) 23.80 62.20

Table 11: Evaluation Results for Llama-3.1-8B-Instruct
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F1 RMSE-SIM
Language Cluster Variety

English Standard 30.60 71.90
Southeast american enclave 26.90 69.50
Chicano 33.60 71.40
Nigerian 29.70 69.80
African american vernacular 27.20 68.70
Appalachian 30.00 70.20
Australian 28.70 70.50
Colloquial singapore 32.20 69.70
Hong kong 28.80 68.40
Indian 26.20 69.30
Irish 31.00 71.00

Arabic North mesopotamian arabic 25.10 64.70
Ta’izzi-adeni arabic 23.80 64.00
Tunisian arabic 23.90 65.00
South levantine arabic 23.70 63.70
Levantine arabic (a:north) 26.10 64.40
Standard arabic 22.70 64.10
Najdi arabic 25.50 64.10
Moroccan arabic 22.60 65.50
Egyptian arabic 26.80 64.00

Chinese Cantonese 27.90 65.50
Classical-middle-modern sinitic (simplified) 23.70 64.60
Classical-middle-modern sinitic (traditional) 22.20 62.90

Norwegian Norwegian nynorsk 23.30 62.20
Norwegian bokmal 26.50 64.30

Turkic Central oghuz 21.40 63.00
South azerbaijani 14.50 61.80
North azerbaijani 20.20 61.80

Finnish Finnish 21.30 60.80
Pohjois-satakunta 16.70 60.20
Keski-karjala 16.70 59.30
Kainuu 18.40 61.20
Etela-pohjanmaa 14.70 60.90
Etela-satakunta 15.20 60.50
Pohjois-savo 16.50 59.60
Pohjois-karjala 16.70 60.20
Keski-pohjanmaa 16.80 59.70
Kaakkois-hame 18.60 62.00
Pohjoinenkeski-suomi 16.10 60.20
Pohjois-pohjanmaa 16.00 59.60
Pohjoinenvarsinais-suomi 17.10 59.80
Etela-karjala 18.30 60.00
Lansi-uusimaa 17.10 61.40
Inkerinsuomalaismurteet 18.10 61.50
Lantinenkeski-suomi 17.00 59.70
Lansi-satakunta 15.60 59.40
Etela-savo 17.50 60.20
Lansipohja 19.70 61.30
Pohjois-hame 18.80 60.60
Etelainenkeski-suomi 14.90 59.80
Etela-hame 17.70 62.80
Perapohjola 17.60 60.40

Latvian East latvian 16.60 59.60
Latvian 21.10 62.20

Bengali Dhaka 22.90 61.20
Standard 20.20 59.90

Kurdish Central kurdish 14.10 56.40
Northern kurdish 14.20 59.10

Sotho Northern sotho 11.90 58.60
Southern sotho 11.30 56.80

Average (Micro) 21.20 63.00

Table 12: Evaluation Results for Qwen2.5-7B-Instruct
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F1 RMSE-SIM
Language Cluster Variety

English Standard 35.00 72.90
Southeast american enclave 35.00 71.80
Chicano 36.00 72.50
Nigerian 36.40 70.60
African american vernacular 35.70 71.90
Appalachian 36.40 73.30
Australian 37.80 72.50
Colloquial singapore 35.70 70.10
Hong kong 36.30 70.10
Indian 36.20 71.20
Irish 35.10 71.50

Arabic North mesopotamian arabic 27.70 67.50
Ta’izzi-adeni arabic 28.60 67.90
Tunisian arabic 26.10 66.40
South levantine arabic 27.40 68.60
Levantine arabic (a:north) 31.10 71.20
Standard arabic 25.20 67.20
Najdi arabic 28.40 67.90
Moroccan arabic 26.10 68.10
Egyptian arabic 28.50 67.30

Norwegian Norwegian nynorsk 26.80 66.80
Norwegian bokmal 29.60 69.20

Turkic Central oghuz 31.10 66.40
South azerbaijani 24.90 64.80
North azerbaijani 30.50 66.90

Finnish Finnish 24.30 66.70
Pohjois-satakunta 27.50 62.60
Keski-karjala 29.80 62.40
Kainuu 24.20 60.20
Etela-pohjanmaa 27.90 60.50
Etela-satakunta 28.70 64.10
Pohjois-savo 28.30 61.30
Pohjois-karjala 25.50 59.70
Keski-pohjanmaa 25.90 63.30
Kaakkois-hame 28.80 65.20
Pohjoinenkeski-suomi 25.70 59.80
Pohjois-pohjanmaa 28.00 62.80
Pohjoinenvarsinais-suomi 26.20 62.30
Etela-karjala 27.00 63.70
Lansi-uusimaa 28.40 64.70
Inkerinsuomalaismurteet 26.30 63.10
Lantinenkeski-suomi 27.40 64.10
Lansi-satakunta 25.80 62.30
Etela-savo 28.10 60.40
Lansipohja 30.40 62.60
Pohjois-hame 27.20 63.50
Etelainenkeski-suomi 27.00 61.60
Etela-hame 28.40 63.40
Perapohjola 26.80 63.70

Chinese Cantonese 27.90 66.60
Classical-middle-modern sinitic (simplified) 28.10 65.90
Classical-middle-modern sinitic (traditional) 26.80 64.10

Latvian East latvian 29.30 66.10
Latvian 29.00 65.50

Bengali Dhaka 26.80 64.60
Standard 25.20 65.60

Sotho Northern sotho 17.90 63.60
Southern sotho 21.50 63.50

Kurdish Central kurdish 24.50 60.90
Northern kurdish 27.00 62.40

Average (Micro) 28.80 65.80

Table 13: Evaluation Results for gemma-3-12b-it
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Example: For N = 5, the bin edges are:

{1.0, 2.0, 3.0, 4.0, 5.0}.

A value v = 1.666 would fall into Bin 2 as 1.0 < v ≤ 2.0, and v = 5.0 would fall into Bin 5.

G Evaluation Metrics

In this section, we evaluate the performance of the toxicity prediction model using several metrics that
consider the ordinal nature of the labels, which range from 1 to 5 (with 1 representing the lowest toxicity
and 5 representing the highest toxicity). The following metrics were used: F1-score and Root Mean
Square Error (RMSE)-based Similarity. Example scores are presented, along with the ranges of each
metric, and their meanings in the context of our setup.

G.1 F1-Score

The F1-score is the harmonic mean of precision and recall, calculated as:

F1 = 2 · Precision · Recall
Precision + Recall

,

where precision is the ratio of true positives to predicted positives, and recall is the ratio of true positives
to actual positives.

Example Score: The F1-score obtained by the model is 0.2260 (22.60%), reflecting the model’s
difficulties in both identifying true positives and reducing false positives.

Range:

• Original Range: [0, 1]

• Interpretation: A higher F1-score indicates a better balance between precision and recall. In our
case, the low score suggests poor performance in both aspects, implying a need for improvement in
the model’s classification ability.

G.2 Root Mean Square Error (RMSE) and RMSE-Based Similarity

Root Mean Square Error (RMSE) measures the average magnitude of prediction errors, considering the
squared differences between true and predicted values. RMSE is defined as:

RMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)2,

where yi represents the ground truth, ŷi represents the predicted value, and N is the total number of
instances.

To convert RMSE into a similarity measure, we normalize the RMSE by dividing by the maximum
possible error (4, given that the labels range from 1 to 5), and then subtract it from 1:

RMSEnormalized =
RMSE

4
,

SimilarityRMSE = 1− RMSEnormalized

Example Score: The model achieved an RMSE of 1.9976, which, when normalized, gives 0.4994. This
translates to an RMSE-based similarity score of **0.5006**. This suggests moderate similarity between
the predicted and actual values.

12450



Range:

• Original RMSE Range: [0, 4]

• Similarity Range: [0, 1]

• Interpretation: A lower RMSE value indicates that the predictions are closer to the true values,
while a higher RMSE-based similarity indicates better performance. In our case, an RMSE-based
similarity of 0.5006 means that the model is achieving moderate similarity, indicating that the
predictions are roughly halfway between a perfect match and the maximum possible error.

G.3 Summary and Interpretation of Scores
The metrics collectively indicate several areas where the model struggles:

• Low accuracy and F1-score indicate poor performance in exact classification of toxicity levels.

• RMSE-based and MAE-based Similarity suggest moderate similarity, implying that the model has
considerable room for improvement in predicting values that closely resemble true scores.

To improve the model’s performance, it is important to focus on better feature extraction, calibration,
and optimization techniques to ensure the model can accurately reflect both the ordinal severity of toxicity
and align closely with human evaluations.

H Language Variety Table

The language variety table, reported in Table 14, details the specific language clusters and dialects included
in our dataset. It provides an overview of the 10 language clusters and 60 varieties used in the evaluation
process, along with the number of examples for each variety.

We define a language cluster as a group consisting of a primary language and its associated dialects.
Each cluster is named after its most proximal ancestral language, with the cluster representative typically
chosen as the standard form or the highest-resourced variety. The remaining dialects within the cluster
are referred to as the varieties of the cluster representative. For consistency and clarity, we follow the
Glottocode naming convention (Hammarström et al., 2024) to label the varieties, ensuring that each dialect
is systematically identified.
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Language Cluster Variety Name Glottocode Example Count

Arabic North Mesopotamian Arabic nort3142 940
Ta’Izzi-Adeni Arabic taiz1242 940
Tunisian Arabic tuni1259 940
South Levantine Arabic sout3123 940
Levantine Arabic (A:North) nort3139 940
Standard Arabic stan1318 940
Najdi Arabic najd1235 940
Moroccan Arabic moro1292 940
Egyptian Arabic egyp1253 940

Bengali Dhaka dhak1240 380
Standard beng1280 940

Chinese Cantonese cant1236 940
Classical-Middle-Modern Sinitic (O:Simplified) clas1255 940
Classical-Middle-Modern Sinitic (O:Traditional) clas1255 940

Finnish Standard finn1318 940
Pohjois-Satakunta - 940
Keski-Karjala - 940
Kainuu - 940
Etelä-Pohjanmaa - 940
Etelä-Satakunta - 940
Pohjois-Savo savo1254 940
Pohjois-Karjala - 940
Keski-Pohjanmaa - 940
Kaakkois-Häme - 940
Pohjoinen Keski-Suomi - 940
Pohjois-Pohjanmaa - 940
Pohjoinen Varsinais-Suomi - 940
Etelä-Karjala - 940
Länsi-Uusimaa - 940
Inkerinsuomalaismurteet - 940
Läntinen Keski-Suomi - 940
Länsi-Satakunta - 940
Etelä-Savo - 940
Länsipohja - 940
Pohjois-Häme - 940
Eteläinen Keski-Suomi - 940
Etelä-Häme - 940
Peräpohjola - 940

Kurdish Central Kurdish cent1972 940
Northern Kurdish nort2641 940

Norwegian Norwegian Nynorsk (M:Written) norw1262 940
Norwegian Bokmal (M:Written) norw1259 940

Latvian East Latvian east2282 940
Latvian latv1249 940

English Standard stan1293 940
Southeast American Enclave sout3300 799
Chicano chic1275 799
Nigerian nige1260 799
African American Vernacular afri1276 799
Appalachian appa1236 799
Australian aust1314 799
Colloquial Singapore sing1272 799
Hong Kong hong1245 799
Indian indi1255 799
Irish iris1254 799

Sotho Northern Sotho nort3233 940
Southern Sotho sout2807 940

Turkic Central Oghuz azer1255 940
South Azerbaijani sout2697 940
North Azerbaijani nort2697 940

Table 14: Language cluster and variety names with glottocode and example count. The cluster representative that
we utilize as the standard variety is underlined in each cluster.
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