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Abstract

Language models (LMs) hallucinate. We in-
quire: Can we detect and mitigate hallucina-
tions before they happen? This work answers
this research question in the positive, by show-
ing that the internal representations of LMs
provide rich signals that can be used for this
purpose. We introduce FACTCHECKMATE,
which preemptively detects hallucinations by
learning a classifier that predicts whether the
LM will hallucinate, based on the model’s
hidden states produced over the inputs, be-
fore decoding begins. If a hallucination is
detected, FACTCHECKMATE then intervenes
by adjusting the LM’s hidden states such that
the model will produce more factual outputs.
FACTCHECKMATE provides fresh insights that
the inner workings of LMs can be revealed
by their hidden states. Practically, both its de-
tection and mitigation models are lightweight,
adding little inference overhead; FACTCHECK-
MATE proves a more efficient approach for mit-
igating hallucinations compared to many post-
hoc alternatives. We evaluate FACTCHECK-
MATE over LMs of different scales and model
families (including Llama, Mistral, Qwen and
Gemma), across a variety of QA datasets from
different domains. Our results demonstrate the
effectiveness of FACTCHECKMATE, achieving
over 70% preemptive detection accuracy. On
average, outputs generated by LMs with inter-
vention are 34.4% more factual compared to
those without.

1 Introduction

Language models (LMs) hallucinate, a phe-
nomenon where they produce nonfactual or even
misleading outputs that often appear plausible (Ji
et al., 2023a; Bang et al., 2023; Xu et al., 2024;
Zhang et al., 2023; Li et al., 2024a; Huang et al.,
2023; Ye et al., 2023). Extensive efforts have been
devoted to mitigating their hallucination issues

“Equal contribution.

(Min et al., 2023; Manakul et al., 2023b; Rawte
et al., 2023; Zhou et al., 2021). These approaches
are mostly reactive, addressing hallucinations af-
ter they occur, and often require resampling new
outputs (Li et al., 2023; Manakul et al., 2023a),
substantially increasing the inference overhead. In
addition, they often treat the LM as a black box,
while relying on external LMs for detecting hallu-
cinations, missing the opportunity to gain deeper
insights into the internal workings of these models.

Recent findings by Azaria and Mitchell (2023)
and Burns et al. (2022) show that the LMs’ rep-
resentations can provide useful information about
the factuality of their outputs. Marks and Tegmark
(2023) observe that LMs’ hidden states generated
over factual and non-factual statements are linearly
separable. However, these studies have a relatively
narrow focus, primarily addressing hallucination
detection in a reactive manner, and a more thor-
ough investigation is needed.

The key hypothesis of this paper is that, the LMs’
hidden states reveals valuable information about
their internal working mechanisms, and provide sig-
nals that can be used to predict whether it will hallu-
cinate before decoding. We propose FACTCHECK-
MATE to answer the following research question
(RQ): Can we preemptively predict and mitigate
hallucinations with LMs’ internal representations?
FACTCHECKMATE learns a classifier that, taking
the models’ hidden states over the inputs, predicts
whether the model is about to hallucinate. If a
hallucination is detected, FACTCHECKMATE inter-
venes, by adjusting the LM’s hidden states with
a learned intervention model, and steering them
towards producing more factual outputs (Figure 1).

Our controlled experiments answer the RQ in the
positive. We evaluate FACTCHECKMATE across
four QA datasets from different domains: NQ-open
(Wikipedia; Lee et al., 2019), MMLU (STEM ex-
ams; Hendrycks et al., 2020), MedMCQA (medi-
cal; Pal et al., 2022), and GSM8K (Math; Cobbe
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Figure 1: FACTCHECKMATE P at inference time. A demonstration of how preemptive detection and subsequent
mitigation work. As shown, at a layer [, the hidden states of only the prefix I are aggregated and passed to the
classifier fy (highlighted in the light blue box §3). Once hallucination is detected with classification probability

< a, gy (highlighted in the light brown box §4) intervenes and adjusts the last token hy). This leads to a more

factual output than before.

et al., 2021). Using the LMs’ hidden states over
the input questions, FACTCHECKMATE can suc-
cessfully predict whether or not the LMs will hal-
lucinate over 70% of the time, significantly outper-
forming a 50% random baseline (§3). We observe
consistent trends across base and fine-tuned LMs
of different scales and families, including Llama2
(7B and 13B; Touvron et al., 2023a), Llama3 (8B
and 70B) and Llama3.1 (8B and 70B) (Dubey et al.,
2024) Mistral-7B (Jiang et al., 2023), Gemma-7B
(Team et al., 2024), and Qwen2.5 (7B and 32B)
Qwen et al., 2025.

We further conduct cross-model and cross-
dataset evaluations to assess the generalizability
of FACTCHECKMATE. In the cross-model train-
ing, we train on the hidden states of multiple mod-
els. Whereas, in the cross-dataset, we train the
classifier on multiple domains. The cross-model
classifier achieves on average 71% accuracy in pre-
emptive hallucination detection, demonstrating its
robustness across different models. Similarly, the
cross-dataset classifier attains an average of 65%
accuracy. Furthermore, FACTCHECKMATE’S inter-
vention model can effectively improve the LMs’
factuality. Using GPT-40 as a judge, which shows
high agreement with human evaluations in our ex-
periments, we find that on average, outputs gen-
erated by LMs with intervention are 34.4% more
factual than those produced without intervention
(§4). We also calculate the inference time over-
head introduced by FACTCHECKMATE, incurring

minimal average overhead of a 1.2% increase in de-
coding time, showing minimal impact on inference
efficiency (§5.1). FACTCHECKMATE reveals sur-
prising insights into existing LMs, and can poten-
tially lead to more profound understanding of their
internal working. All code, data, and checkpoints
for reproducing our findings will be released.

2 Related Work and Motivation

Hallucination Detection. We investigate halluci-
nations in language models that generate responses
based solely on their parametric knowledge, sim-
ilar to Azaria and Mitchell (2023). This contrasts
with in-context generation scenarios where exter-
nal knowledge sources are explicitly incorporated
within the prompt. We focus on addressing factual-
ity hallucinations, an important type of hallucina-
tions as argued in Huang et al. (2023).

Existing research primarily focuses on post-
processing methods applied after the inference
process is completed and often utilizing external
knowledge for verification (Manakul et al., 2023a;
Li et al., 2023; Chern et al., 2023). For instance,
CRITIC (Gou et al., 2024) validates model outputs
through tool interactions, and FACTSCORE (Min
et al., 2023) breaks down generated content into
atomic facts, assessing their accuracy by compar-
ing them against reliable sources.

A recent line of research leverages the inter-
nal mechanics of LMs to detect hallucinations
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(Burns et al., 2024; Azaria and Mitchell, 2023;
Marks and Tegmark, 2023). Meng et al. (2022)
locates where factual associations are stored in
GPT models. These studies have spurred further
research into using LMs’ internal representations
in hallucination detection (Chen et al., 2024a;
CH-Wang et al., 2024). For instance, MIND (Su
et al., 2024) generates training data in unsupervised
approach for training hidden states based halluci-
nation detectors. Duan et al. (2024) conducts an
experimental examination of the hidden states of
LLMs when processing factual versus nonfactual
responses. FACTCHECKMATE demonstrates the
effectiveness of preemptive hallucination detection,
identifying warning signals several tokens before
the hallucinations actually occur, via the language
model’s hidden states.

Hallucination Mitigation. For hallucination
mitigation at inference time, existing works have
explored self-correction and automated feedback
approaches, where the language model is prompted
to fix its generation flaws, with or without leverag-
ing feedback from the model itself or some external
knowledge source (Pan et al., 2023; Dhuliawala
et al., 2023; Ji et al., 2023b). A recent approach
involves utilizing activation engineering (Subra-
mani et al., 2022; Duan et al., 2024; Zhang et al.,
2024). FACTCHECKMATE builds on these findings
and explores activation engineering techniques to
preemptively intervene and mitigate hallucinations
during inference time. It is also related to inference-
time approaches that utilize a scoring function to
steer the LM toward desired behavior (Dathathri
et al., 2020; Khalifa et al., 2023).

Hidden States as Predictive Signals of Hal-
lucination. Previous works primarily use hidden
states as indicators of factuality after generation
(Chuang et al., 2024; Zhang et al., 2024; Li et al.,
2024b; Orgad et al., 2024). FACTCHECKMATE
instead asks: Can hidden states reveal early sig-
nals of hallucination before tokens are generated?
If so, this would suggest that factuality cues are
embedded in the model’s internal mechanisms ear-
lier than previously assumed. FACTCHECKMATE
demonstrates, for the first time, that hidden states
offer early signals correlated with hallucination. Its
finding reveals that factuality cues are embedded
within the model’s internal mechanisms well be-
fore the output is generated. This fresh insights
allows FACTCHECKMATE to use the model’s hid-
den states to anticipate when it is likely to hallu-
cinate, rather than waiting for errors to surface in

generated tokens. This reduces the need for ex-
pensive post-hoc corrections and provides insight
into how factual knowledge is internally encoded
and accessed. Our results (§3) suggest that hal-
lucinations are not merely failures of token-level
prediction but often emerge from systematic pat-
terns in how models encode factual information
during inference (Zou et al., 2023).

3 Preemptive Hallucination Detection

This section focuses on FACTCHECKMATE’s pre-
emptive hallucination classifier (§3.1) and experi-
mental results (§3.2).

3.1 Preemptive Hallucination Detection with a
Lightweight Classifier over Hidden States

Classifier. FACTCHECKMATE learns a binary
classifier fy to preemptively detect hallucinations.
Parameterized by a learned two-layer ReLU-MLP
followed by a sigmoid function, fy takes as input
the LM’s hidden states and outputs the probabil-
ity that the LM will hallucinate. More specifically,
let {hgl)}i[:1 be a sequence of I hidden states that
the LM produces over the input question with 1
tokens. A d-dimensional vector hl(-l) denotes the
output of the feedforward network (FFN) of the
I-th transformer layer, at the i-th token.'.

The classifier fy takes as input the pooled values
over {hgl) I_, and produces a scalar between 0 and
1 indicating the probability that the LM will hallu-

cinate in its response to the input: fg({hgl) )=

o (ReLU-MLP (A({h§l> {:1) ))

where A represents the pooling function, which
can be the mean, max, or selecting the last token.
[ is empirically determined based on validation
performance, and can vary by the LMs and datasets.
In general, [ tends to be the middle to last layers.
More details about the best empirical layer for each
LM can be found in Appendix C.1.

We train a separate classifier tailored to each
LM. We consider LMs from different families of
different scales, including Llama2 (7B and 13B;
Touvron et al., 2023a), Llama3 (8B and 70B) and
3.1-8B (8B and 70B; Dubey et al., 2024), Mistral-
7B (Jiang et al., 2023), Gemma-7B (Team et al.,

'We utilize the outputs of the FENs, following previous
work by (Marks and Tegmark, 2023; Azaria and Mitchell,
2023), as the FFN module is commonly regarded as a knowl-
edge memory (Hernandez et al., 2024)
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2024), and Qwen2.5 (7B and 32B; Qwen et al.,
2025) for base and fine-tuned versions.

Data collection and training. In order to train
fo, we need to collect paired data consisting of
the LMs’ hidden states and binary labels indicat-
ing whether it will hallucinate. We construct the
training data on four QA datasets from different
domains: NQ-open (Wikipedia; Lee et al., 2019),
MMLU (STEM; Hendrycks et al., 2020), MedM-
CQA (medical entrance exam; Pal et al., 2022),
and GSMS8K (Math; Cobbe et al., 2021). NQ-open
is a QA dataset and contains question and answer
pairs. MMLU and MedMCQA are multiple choice
datasets, pairing each question with multiple op-
tions. We convert MMLU and MedMCQA into
a QA dataset by pairing each input question with
the gold answer. GSM8K consists of grade school
math problems, where each problem takes between
2 and 8 steps, we convert GSMS8K into a QA dataset
by pairing each problem with the final answer.

To collect the training data for LM M, we
prompt M with few-shot demonstrations followed
by a question, and then collect its hidden states
over the inputs and the outputs. M’s output an-
swers are checked against gold ones with the ex-
act match (EM), following standard practice (Gao
et al., 2023). If the model’s output is wrong, its
associated hidden states are labeled nonfactual and
vice versa, as shown in Figure 2. After producing
hidden state and label pairs, we subsample the data
to obtain balanced training data containing roughly
the same amount of positive (factual) and nega-
tive (nonfactual) pairs. In order to compare across
different LMs, we create a shared test split across
all LMs. Each LM have different training/valida-
tion splits. Table 6 in Appendix A summarizes the
statistics of the datasets. fy is trained with a cross-
entropy loss on the input’s hidden state and label
pairs. Early stopping based on the validation accu-
racy is used. Other training details are explained in
C.1.

[ 1 1 1 1 1 1 1 1 1 1 { }
Which  vitamin is supplied only from animal  source ? Vitamin ® x

Label: 0.0 —

B2/

Figure 2: Example of the data collection process. We
capture the hidden states over the input and output then
label them based on EM with the gold outputs. (§3.1).

We choose to focus on short-answer QA tasks

because they allow for unambiguous evaluation us-
ing exact match (EM) and controlled experiments.
Besides, the short answers allow us to identify ex-
actly where hallucinations begin, as our approach
involves preemptively analyzing hidden states be-
fore hallucinations occur. More concretely, for a
non-factual output, we can use the first token in the
wrong answer as the starting point of the hallucina-
tion.

3.2 Experiments

Layerl
Which L ] -N
vitamin L ]
is | | [—
supplied | | — N
from | ] -3
only | ] -2 Prompting LMs
animal | 1 a1 r
source? | 1 *\ L-i
XN {3
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Figure 3: An illustration of different settings used in the
experiment. (Input + Output) are the hidden states of
both the input and output. The subsequent hidden states
in the experiment are taken by using only the input or
by dropping the last n tokens from the prefix.

Setting. We evaluate fy with the settings below:

* I: our preemptive classifier. It takes the LMs’

hidden states produced over the input ques-
tions only.

* I-n takes it even further, restricting
FACTCHECKMATE’s access to only prefixes
of the input questions that exclude the last n
tokens. See Figure 3 for illustrative diagrams.

* I+0 is a reactive setting, and is not to be
compared to FACTCHECKMATE because it
leverages additional information from a con-
catenation of both the input questions and the
models’ outputs and is expected to perform
better. Rather, it serves as an approximation
of the ceiling performance.

Results. Table 1 shows the hallucination detec-
tion test accuracy. We see that across all sizes (7B
to 70B), various families (ILlama2, LLlama3, Mistral,
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Gemma, Qwen), various types (base, chat, instruct)
I achieves competitive performance, sometimes
even comparable to I+O (e.g., only a 1% gap
with Llama2-13b on MMLU) This means that the
hidden states are capable of predicting the hallu-
cination just by looking at the question, i.e even
before the model outputs any incorrect answer.

This confirms that LMs’ hidden states provide
useful signal for predicting their hallucinations pre-
emptively. In some cases, using a prefix of I-n
underperforms I, while for others their perfor-
mance is comparable. These results suggest that
fo can often predict whether the LM is likely to
hallucinate before it even finishes processing the
input questions.

Cross-Model and Cross-Dataset Generalization.
Results are shown in Table 2. For the cross-model
setting, fy is trained on the input hidden states of
Llama2-7B, Llama-3.1-8B, and Mistral-7B. These
LMs were chosen to ensure consistent embedding
sizes. Similar to the previous experiments Table 1,
the accuracy of using only the input hidden states
(I') remains comparable to using both input and
output hidden states (I+O ) across all three test
sets. However, it struggles with model transferabil-
ity, showing limited effectiveness when applied to
unseen models (Table 13 in Appendix G)

For cross-dataset generalization, we train fy on
a combined dataset spanning NQ-open, MMLU,
and MedMCQA. As seen in Table 3, the classifier
maintains consistent accuracy for I across all three
datasets. However, it performs reasonably well in
generalizing to out-of-domain datasets.(Table 12
in Appendix G). In summary, training on diverse
datasets and models provides an appealing and
practical way for FACTCHECKMATE to general-
ize to various tasks and architectures.

4 FACTCHECKMATE Preemptive
Hallucination Mitigation

This section focuses on using FACTCHECKMATE to
preemptively mitigate hallucinations, including its
intervention model (§4.1) and experiments (§4.2).

4.1 The Intervention Model

When fy detects that LM M is about to halluci-
nate, FACTCHECKMATE relies on an intervention
model g to mitigate hallucinations preemptively.

Conditioning on hgl), g, generates a d-dimensional

vector and adds it to h,gl), before the LM decodes.

RO = )+ g (1)) g

Egl) is then used in place of hgl) for onward LM
decoding. In inference, the intervention is applied
at the last hidden state of the input hgl), as it aligns
with the natural progression of decoding and targets
the point where hallucinations are most likely to
arise.

Intuitively, g4 is supposed to steer the LM’s
hidden state towards a “target hidden state” h*(!),
which is more likely to lead to a factual output.

We explore a deterministic and a stochastic g:

* The deterministic g is a three-layer ReLU-
MLP. It trains by minimizing the mean
squared error (MSE) between the adjusted hid-
den state ;Lgl) and the target one h*(1).

* The stochastic g treats the adjustment vector
as a random variable of multivariate Gaus-
sian. It applies a reparameterization trick:
g¢(h§l)) = u(hy)) +e® a’(hgl)) for training.
Two three-layer ReLU-MLPs are used to for
p and o, with the first two layer shared. Its
training objective remains the same MSE loss.
One benefit of the stochastic g is allowing
for sampling the adjustment vectors during in-
ference, which we explore in the experiments.

Data collection and training. g is trained on

pairs of h(l), last token over the concatenation of
the input and the output of N sequence length, and
h*(). When the LM answers the question correctly,
no further modification is needed and h*() = hg\l,).
However, when the model answers the question in-
correctly, we set the h*() to the LM’s final hidden
state over the input prompt followed by the gold
answer. We construct the training data on two QA
datasets: NQ-open (Wikipedia; Lee et al., 2019),
and MedMCQA (medical entrance exam; Pal et al.,
2022). Other training details are explained in C.1.

4.2 Experiments

Setting. Our preliminary experiments indicate
that Exact Match (EM) fails to capture the nuanced
improvements introduced by interventions. EM’s
binary nature overlooks partial corrections, which
are common in our setting. For instance, if the
gold answer is May 2024, the base model outputs
2025, and the intervened model outputs May, EM
considers both as equally incorrect. However, the
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NQ

MMLU

MedMCQA

GSMSK

Preemptive (ours)

Preemptive (ours)

Preemptive (ours)

Preemptive (ours)

LM I+O I -1 -2 -3 I+O0 I -1 -2 -3 I+O I -1 -2 -3 +O0 I -1 -2 -3

Llama2-7B 728 718 71.1 68.1 657 91.7 919 91.7 91.7 917 77.0 729 729 729 745 658 66.0 66.0 63.5 63.5
Llama2-13B 744 720 70.6 714 69.7 940 93.0 84.1 927 857 760 783 786 783 742 684 69.1 684 66.8 63.8
Llama3-8B 749 702 685 66.8 66.8 93.8 940 875 87.1 773 771 763 743 712 673 713 725 729 713 66.2
Llama3.1-8B 743 73.1 709 689 68.1 945 923 863 800 780 784 762 749 73.6 694 723 69.1 612 60.2 60.6
Mistral-7B 733 725 714 71.1 703 932 902 83.0 825 828 779 754 752 739 728 694 70.0 70.0 71.8 71.8
Gemma-7B 802 745 744 742 739 922 969 913 815 89.6 77.0 775 747 752 752 709 674 67.0 674 678
Qwen2.5-7B 76.1 745 727 712 692 943 940 713 854 744 789 76.6 769 757 749 67.0 672 672 672 67.0
Llama2-7B-chat 762 745 675 694 692 948 909 79.1 833 83.0 81.1 793 793 79.0 793 723 73.6 722 729 722
Llama2-13B-chat 748 724 70.7 709 685 93.8 939 80.1 786 921 813 733 708 70.0 719 723 719 719 719 719
Llama3-8B-Instruct  81.5 78.6 772 764 750 93.8 956 874 850 795 814 773 722 71.1 688 747 743 743 743 743
Llama3.1-8B-Instruct ' 83.3 745 713 709 66.7 93.1 918 864 854 80.1 817 788 765 71.7 70.1 762 784 78.0 78.0 784
Llama3-70B-Instruct ' 81.0 77.1 733 69.6 659 87.6 79.6 76.5 764 734 747 67.6 645 63.6 61.0 827 788 725 713 69.4
Mistral-7B-Instruct  75.1 742 709 669 658 943 939 89.7 70.7 90.8 762 759 756 76.1 753 715 729 729 729 725
Gemma-7B-it 832 754 735 715 687 902 940 789 788 843 77.0 762 762 75.0 752 747 755 61.1 646 702
Qwen2.5-7B-Instruct 744 72.6 702 699 66.6 925 945 859 87.8 862 82.0 775 757 739 723 764 804 748 674 67.8

Table 1: Hallucination detection test accuracy. I+O indicates a “reactive” baseline that classifies the LMs’ hidden

states produced over both input questions and output answers, while I preemptively classifies hallucinations based
on the hidden states over only the inputs. —n indicates that the classifier only sees a prefix of the input excluding

the last n tokens.

Model I+0 I I-1 I-2 I-3
Llama 2 7B 78.3 69.2 62.8 61.6 62.7
Llama 3.1 8B 78.6 68.6 64.2 61.7 62.0
Mistral VO.37B = 80.4 76.4 76.0 75.8 75.7

Table 2: Test accuracy results of different models on
various test datasets. The models were trained on Llama-
2-7B, Llama-3.1-8B, and Mistral-V0.3-7B on the NQ-
open dataset.

Test Data I1+0 | I-1 I-2 I-3
NQ-Open 79.2 72.9 68.0 68.1 68.9
MMLU 82.1 69.1 69.4 68.9 67.3
MedMCQA = 754 59.3 54.2 54.6 54.6

Table 3: Test accuracy results of Llama2-7b-hf after
training a multi-data classifier on different test datasets.
The model was trained on MMLU, NQ-Open, and
MedMCQA.

intervened output is clearly closer to the gold an-
swer. This limitation makes EM uninformative for
evaluating interventions that move outputs toward
greater factual accuracy, even if they don’t perfectly
align with the gold answer. Hence, following re-
cent works (Raju et al., 2024; Chen et al., 2024b),
we employ GPT-40 (OpenAl et al., 2024) as the
evaluator to assess for factuality. See Appendix B
for the full prompt. Human evaluation performed
by the authors indicate that there is a substantial

agreement between GPT-40 and human judgement,
with a Cohen’s Kappa of 0.6 (substantial agree-
ment), justifying our choice of using GPT-40 as
an automatic evaluation metric. For the stochastic
g4, we sample 1, 10, 20, and 30 different €, and
apply the interventions; we then use fy to select
the intervened hidden state that leads to the highest
probability by fp, which is then used for onward
decoding.”? We apply the adjustment only to the
first decoding step, modifying h(Il) to ﬁgl) when the
classifier’s confidence « is less than or equal to 0.3.

Results. Figure 4 summarizes the performance
of FACTCHECKMATE’s intervention performance
on the NQ-open dataset, including both the deter-
ministic and stochastic variants, with greedy decod-
ing. The intervened LMs consistently outperform
the base LMs, with a higher proportion of wins
favoring the adjusted outputs. The deterministic
intervention consistently achieves a win rate of at
least 60% in all cases, while without interventions
(Base), the LMs show significantly lower perfor-
mance, with wins as low as 34%. On average, the
winning rate of LMs with intervention across all
intervention models is 34.4% higher than that of
the base LMs. A similar trend is observed on the
MedMCQA dataset; results are provided in E.

%A higher probability by f, indicates the hidden state is
more likely to lead to a factual output.
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LM Inference Time Increase (A)
Llama-2-7B 0.94%
Llama-3-8B 1.71%
Llama-3.1-8B 0.96%

Table 4: LMs inference time overheads over three runs
per LM. The average relative increase in inference time
is approximately 1.2%, showing minimal impact on
inference performance §5.1).

The results demonstrate that both deterministic
and stochastic intervention models improve the fac-
tuality of LM’s outputs. These finding suggest that,
we can mitigate the hallucination even before it
shows up in the generation of the LM. Additional
qualitative examples are presented in Appendix F.

We note that direct comparison with decoding-
based methods such as (Chuang et al., 2024) may
not be directly comparable, as they assess factu-
ality after tokens have been generated, whereas
FACTCHECKMATE predicts hallucination risk be-
fore generation begins. Similarly, existing miti-
gation methods typically assess factuality and ap-
ply corrections on the generated output at different
stages, including the hidden states (Zhang et al.,
2024; Li et al., 2024b), while FACTCHECKMATE
operates purely on input-conditioned hidden states.
Due to this fundamental difference, we focus on
preemptive detection rather than methods that lever-
age the full generated output for mitigation. Our
goal is to explore the feasibility and potential ben-
efits of early intervention, which may help reduce
hallucinations before they occur.

5 Additional Experiments

In the following section, we first evaluate the in-
ference time overhead (§5.1). Next, we investigate
the role of word embedding layers (§5.2). Other
experiments are detailed in (§H)

5.1 FACTCHECKMATE’s Time Overhead

Both fp and gy are lightweight and should in-
cur minimal inference overhead. We confirm this
across three models: Llama-2-7B, Llama-3-8B,
and Llama-3.1-8B. For each model, the average in-
ference time was measured both with and without
FACTCHECKMATE over three runs, each process-
ing 400 few-shot prompts. The results are summa-
rized in Table 4. FACTCHECKMATE introduces a
negligible overhead. We see that the result is con-
sistent over models. This negligible overhead is

Preemptive

LM I+O I -1 -2 -3

Llama-2-7B = 63.9 52.3 55.3 54.9 55.6

Table 5: Results for the word embedding layer of Llama-
2-7b on MedMCQA dataset. (§5.2). The table shows
classification accuracy of approximately 50%, indicat-
ing no influence of the question difficulty or type on the
preemptive hallucination results shown in Table 1.

a promising factor for scaling the experiments or
integrating it into the existing LMs’ pipelines.

5.2 fy Classifies the Hidden States Rather
than the Questions

One possible explanation for fy’s strong preemp-
tive hallucination detection is that it might be clas-
sifying the input questions rather than the LMs’
hidden states, since intuitively, more difficult ques-
tions could lead to a higher chances of hallucina-
tions by the LMs. However, our results indicate
that it is the LMs’ hidden states, rather than the
questions themselves, that drive the success of fj.

Table 5 summarizes the test accuracies for an fy
trained and tested on the word embedding layer of
Llama-2-7B, before any contextualization by the
LM. Across the board, the accuracies are close to
50% random guess. This confirms that the model
is not skewed towards favoring a certain type of
question over another while doing the classifica-
tion. The difficulty of the question is hence, not
a contributing factor to the accuracy calculated by
classifying the hidden states.

6 Conclusion

In conclusion, FACTCHECKMATE demonstrates
that the LMs’ hidden states encode rich informa-
tion that can be used to predict hallucination pre-
emptively, even before they appear in the generated
output. Leveraging this insight, we develop a pre-
emptive detection and intervention mechanism that
steers the LM’s generation towards more factual
outputs, once the hallucination is likely to occur.
We achieve a preemptive hallucination detection
accuracy of more than 70%, and an average of
34.4% more factual output by LMs supported by
FACTCHECKMATE, compared to the base LMs.
We empirically prove the significant potential of uti-
lizing the internal working of LMs, through learn-
ing lightweight models for hallucination detection
and mitigation, introducing a negligible average
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Figure 4: Comparison of FACTCHECKMATE’s intervention models. The stochastic model resamples e for 1, 10, 20,
and 30 times, fp used to select the intervened hidden state that leads to the highest probability by fy. Green color

indicates tie, orange for the intervened LM wins, and blue for the base LM wins. (§4.2).
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overhead of 1.2% increase in the inference time.

7 Limitations and Future work

While our current experiments focus on QA tasks
due to their structured evaluation, the core idea be-
hind FACTCHECKMATE leveraging hidden states
for preemptive hallucination detection and mitiga-
tion could extend to other generation tasks. For
tasks like summarization or dialogue systems, we
anticipate similar patterns in hidden states when
the model is about to generate hallucinated con-
tent. However, pinpointing where the hallucina-
tion starts to analyze preceding hidden states is
challenging and presents a more nuanced problem.
Therefore, alternative assessment metrics, such as
faithfulness scoring or costly human annotation,
would be needed instead of exact match evaluation.

Additionally, we have only looked at the hidden
states as an internal component for classification
to predict the factuality of a sentence. Exploring
other LM’s internal components presents a poten-
tial direction for future work. This pipeline also
would not work for Black-box LMs.

8 Ethics Statement

In developing the FACTCHECKMATE framework,
we committed to advancing the ethical use and
dependability of large language models (LLMs).
We recognize that as LLMs increasingly perme-
ate various aspects of life, ensuring their reliability
and truthfulness in generating content is paramount.
Thus, our research focused on preemptively detect-
ing factual inaccuracies, aiming to mitigate poten-
tial misinformation spread and reduce the propaga-
tion of biases present in training data. Furthermore,
we meticulously avoided using any data that could
potentially compromise individual privacy or confi-
dentiality and ensured our data handling procedures
comply with relevant data protection regulations.
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A Dataset size
B Factual Assessment Prompt

To assess factual accuracy, we use GPT-40 (Ope-
nAl et al., 2024) as the evaluator. To reduce stochas-

ticity in the prompting process, we set the temper-
ature to 1 x 10714 and top_p to 1 x 10717, The
prompt used for evaluation is as follows:

System: You are an expert evaluator with
an access to Google Search. Your task is
to evaluate two responses to a question for
factual accuracy. For this task, ’Factual
accuracy’ refers to the correctness and rele-
vance of the information, aligned with facts
accepted or verified as recent as 2021. Ig-
nore stylistic differences, length, opinions,
or phrasing unless they change the factual
meaning. Supported by your Google Search
results, decide which response, if any, is cor-
rect. Answer ’first’ if the first response is the
only correct response, 'second’ if the sec-
ond response is the only correct response,
"both’ if both responses are correct, or 'nei-
ther’ if neither response is correct or if the
information provided is ambiguous or insuf-
ficient for making a decision, You should
favor the response that shows uncertainty if
the other response is incorrect. Then, in a
new line, briefly explain the reason.

User: Question: who played first game in
world cup 2018? First Response: Russia vs
Saudi Arabia Second Response: Brazil vs
Germany.

\

C Experiments for classification

C.1 Hidden Representation Classification
Analysis

Given the datasets and models described above, for
every layer in a model we train a corresponding
classifier on hidden states of that respective layer.
We use three modes for aggregating the hidden
states before passing them to the classifier: mean
pooling, max pooling and taking the last token in
the hidden states. Figure 5b illustrates the accu-
racy of hallucination detection of the classifiers for
the entire sequence, using the mean token repre-
sentation for aggregation. As shown, the accuracy
across all evaluated models mostly exceeds 0.75,
indicating a robust capability to identify hallucina-
tions. This high level of performance underscores
the efficacy of the hidden state representations in
distinguishing factual accuracies within generated
content. As seen in the figure, we see that the
accuracy peaks for the middle layers. The best per-
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Train (70%) Validation (15%) Test (15%)

Dataset Total Size
NQ-Open (Lee et al., 2019) 6,666
MMLU (Hendrycks et al., 2020) 1,844
MedMCQA (Pal et al., 2022) 2,000
GSMSK (Cobbe et al., 2021) 1,040

4,666 1,000 1,000
1,292 276 276
1,400 300 300

728 156 156

Table 6: Dataset splits and sizes for training the hallucination classifier fy over the LMs’ hidden states (§3.1).

forming layer per model and dataset is shown in
Table 7.

Therefore, for all models we calculate the test
accuracy across all layers and all modes of aggre-
gation. Quantitative results are shown in the first
column of Table 1. Given the three modes of ag-
gregation, we see that mean pooling gives the best
results in most cases. Figure 5a shows the test
accuracy per layer and mode.

Classifier Setup: The classifier fy is two-layer
MLP with ReLLU activations and BCELoss, trained
using an Adam optimizer with a learning rate of
10~* with a dropout rate of 0.1. We train all classi-
fiers for 50 epochs and apply early stopping based
on the validation accuracy.

Intervention Setup: The intervention model g
is a three-layer RELU MLP. It is trained using an
Adam optimizer. MSE loss is used between the
altered hidden state and original hidden state. We
train it for 100 epochs.

Mistral 7b v0.3 test_acc by Layer

(a) Test Accuracy by Layer for all modes for the
Mistral-7b

ion Detection per Layer for the Mean Mode (For nq_open Dataset)

30

20
Layer Index

(b) Accuracies for entire sentence across models
and layers.

LM NQ MMLU MedMCQA
Llama-2-7b-hf 14 16 14
Llama-2-13b-hf 22 15 14
Llama-3-8B 15 17 11
Llama3.1-8B 23 14 15
Mistral-7B 13 - 12
Gemma-7B 17 17 18
Llama2-7B-chat 14 13 14
Llama2-13B-chat 19 14 16
Llama3-8B-Instruct 15 15 12
Llama-3.1-8B-Instruct 15 13 14
Llama3-70B-Instruct 74 35 75
Mistral-7B-Instruct 18 15 18
Gemma-7B-it 16 18 18

Table 7: Best Performing layer per model and dataset

Preemptive
LM I+O I -1 -2 -3
Llama3-70B 78.0 71.2 76.8 76.8 76.5
Qwen2.5-32B 79.8 76.3 75.9 75.5 75.9

Llama3.1-70B-Instruct ~ 85.3 81.0 77.6 70.9 77.2

Table 8: Results for the gsm8k dataset on the following
models

Preemptive
LM I+O I -1 -2 -3
Qwen2.5-32B 92.7 90.8 86.9 87.3 74.4

Qwen2.5-32B-Instruct | 92.7 92.1 83.7 86.2 83.8

Table 9: Results for the mmlu dataset on the following
models

C.2 Additional Experiments

D Impact on Nominal Questions

A key consideration is whether the proposed
intervention method impacts nominal, non-
hallucinatory questions, particularly given the clas-
sifier’s false positive rate (FPR). To address this, we
conducted a detailed analysis of non-hallucinatory
responses generated by the Llama 3.1-8B model on
the MedMCQA dataset after intervention.

The classifier achieved robust performance met-
rics: Precision: 0.987, Recall: 0.571, F1-Score:
0.723, and Accuracy: 0.623. Among the 1,362 re-
sponses analyzed, 9 cases were identified as false
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Table 10: Confusion Matrix for Llama 3.1-8B Model
After Intervention

Actual
Positive  Negative
Predicted Positive 672 (TP) 9 (FP)
Predicted Negative 505 (FN) 176 (TN)

positives, where the intervention occurred despite
the absence of hallucination. Importantly, only 2
out of these 9 false positives led to a degradation
in the factual quality of the generated output. This
finding highlights the minimal disruptive impact of
our intervention on non-hallucinatory responses.

Furthermore, interventions correctly enhanced
factual outputs in 672 true positive cases, demon-
strating the classifier’s ability to effectively im-
prove factuality while minimizing unnecessary dis-
ruptions. This cautious approach ensures that
the vast majority of factual responses remain
unaffected, while significant improvements are
achieved for hallucinatory responses.

These results alleviate concerns about the clas-
sifier’s FPR by showing that the proposed method
maintains high reliability, minimally impacting
nominal questions while effectively enhancing the
factuality of hallucinatory outputs.

E MedMCQA Dataset Intervention
Results

Results. Figure 6 presents the results of the de-
terministic g4 on the MedMCQA dataset. The
trends are consistent with those observed for NQ-
open: the intervened LMs consistently outperform
the base LMs. These results further highlight the
effectiveness of FACTCHECKMATE's intervention
model in mitigating hallucinations and improving
factuality across several domains.

F Qualitative Examples
G Generalization results
H Ablation Study

H.1 Preemptive Hallucination Detection
across various Aggregation Methods

We explore three modes for aggregating the hidden
states : mean pooling, max pooling, and taking the
last token. We see that the mean pooling shows the
best accuracy as shown in Fig 5a. To test how differ-
ent modes of aggregation work for the preemptive

experiments, we compare all the three modes. This
is done across the same layer for a the same model.
As shown in Table 14, we see that the accuracy of
the entire sentence ( I+0 ) is similar for last token
and mean pooling. However, the drop in the subse-
quent accuracies is the maximum when last token is
used. The maximum accuracy for I is when mean
pooling is used. Therefore, we use mean pooling
as our mode of aggregation in all our experiments.

H.2 Ablation Study: Classifier-Based
Sampling without Intervention

Sample-FACTCHECKMATE-CLS refers to a
sampling-based decoding approach that leverages
the hallucination classifier fy component of
FACTCHECKMATE to select the sample with
the highest classifier accuracy, without applying
intervention. To evaluate its effectiveness, we
compare Sample-FACTCHECKMATE-CLS against
the native sampling of the non-intervened LM,
using the same random seed for fair comparison,
with top-100. As shown in Figure 7, while
Sample-FACTCHECKMATE-CLS improves perfor-
mance in certain cases, it underperforms in others.
This highlights the necessity of intervention to
effectively mitigate hallucinations and achieve
consistent factual improvements.
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i Intervened wins o Ties mmm Base wins
Mistral-7B
Llama-3.1-8B
Llama-2-13B

Gemma-7B

Figure 6: Comparison of FACTCHECKMATE’s deterministic g intervention model on the MedMCQA dataset,
under greedy decoding. Green color indicated tie, orange for the intervened LM, and blue for the base LM. Similar
to the NQ results, the intervened LMs achieve significantly higher win rates compared to the base LMs. (§E)

i Sample-FACTCHECKMATE-CLS wins =5 Ties  mmm Base wins

Llama-3.1-8B

Llama-3-8B

Llama-2-7b
(a) Sample-FACTCHECKMATE-CLS

Figure 7: The figure shows the winning rate of the Sample-FACTCHECKMATE-CLS LM (Orange), the base LM
(Blue), and the ties (Green) (§H.2).

Question Base Answer Answer af- | Explanation

ter Interven-

tion
When was the last time the | June (1999) The last execution in Pennsylva-
death penalty was used in PA? nia was in 1999. The second re-

sponse is correct.

How many Black Eyed Pea | Over one hun-| O The Black Eyed Pea restaurant
restaurants are there? dred chain has significantly reduced

its number of locations, and as
of recent years, it has closed all
of its locations. Therefore, the
second response is correct.

When does Jess come back on | Season six Season five Jess returns to New Girl in season
New Girl? five after a brief absence.

Who plays Angela’s father on | William Daniels | (Unknown) | The character of Angela’s father
Boy Meets World? on Boy Meets World is played

by Julius Carry, not William
Daniels. William Daniels played
Mr. Feeny on the show. The sec-
ond response is correct in indi-
cating uncertainty as it does not
provide incorrect information.

Table 11: Qualitative Examples. Comparison of base and intervened answers with their explanations from GPT4o0
justifying its choice.
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Model used Training Data Test Data I+0 I I-1 I-2 I-3

NQ-Open 75.6 70.8 67.0 67.4 68.6
Llama2-7b-hf MMLU + NQ-Open MMLU 80.0 72.3 70.7 68.7 68.9
MedMCQA = 63.2 58.8 58.7 59.2 58.5

Table 12: Test accuracy results of Llama2-7b-hf on different test datasets and out-of-domain data.

Trained on Tested on I1+0 | I-1 I-2 I-3
Llama 2 7B Llama 3.1 8B 48.4 48.4 48.4 48.4 48.4
ama Mistral VO.3 7B~ 51.5 51.5 51.5 51.5 51.5
Llama 3.1 8B Llama 2 7B 477 483 483 48.4 48.3
ama 3. Mistral VO.3 7B~ 51.5 51.5 51.5 51.5 51.5
. Llama 2 7B 48.8 48.4 48.4 48.4 48.4
Mistral VO.37B ) 0 3.1 8B 485 484 484 484 484

Table 13: Performance results of different models on various test datasets.

Mean Pooling Last Token Max Pooling
Preemptive Preemptive Preemptive
LM I+O0 I -1 -2 -3 I+O I -1 -2 -3 I+0 I -1 -2 -3

Llama3-8B = 794 759 734 722 71.6 81.7 710 633 51.8 513 73.1 705 699 68.8 689

Table 14: Comparison of hallucination classification across different aggregation modes for the same layer and LM.
We show the results for the Llama3-8B on layer 15. We see that the difference between I+O and I is the least when
the mean is the mode of aggregation.

12428



