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Abstract

We present a broad empirical study of state-
of-the-art LLMs and LRMs (Large Reason-
ing Models) on PROOFGRID, a new battery
of challenging but tractable logical inference
tasks that form a domain-independent test of
constraint-based reasoning. The tasks include
proof writing and proof checking across propo-
sitional and equational logic. We also introduce
two novel tasks: proof inpainting and proof
gap-filling. Solving these problems requires
tracking the global structure of a mathemati-
cal argument, writing hierarchical subproofs,
maintaining coherence across nested assump-
tions, performing complex case analyses, ap-
plying inference rules, reasoning about iden-
tity and term rewriting, and reasoning about
proofs themselves. Our experiments reveal im-
pressive performance by top-tier models but
also systematic failure modes. Along with the
benchmarks, we release a new data resource
comprising over 10K formal deduction prob-
lems and corresponding proofs.

1 Introduction

Large language models (LLMs) have rapidly ad-
vanced, finding applications in increasingly com-
plex problems well beyond their original scope of
narrow NLP tasks such as summarization, informa-
tion extraction, and composition of short texts like
emails. The recent development of the inference-
compute paradigm, commonly powered by rein-
forcement learning, has given rise to so-called large
reasoning models (LRMs). These models perform
test-time search to identify promising completions
that are more likely to yield correct answers, at the
expense of higher inference costs. Driven by this
scaling of test-time compute, LRMs have demon-
strated dramatic improvements in logical and math-
ematical reasoning, enabling some models to even
surpass human performance on some very challeng-
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ing benchmarks, such as FrontierMath (Glazer et al.
2024).

However, most test batteries for logical reason-
ing are focused on the correctness of the final an-
swer, typically determined by an exact-match com-
parison with the ground truth. This ignores the
reasoning behind the answers and is likely to in-
flate performance, because models might arrive
at the right answers for the wrong reasons, by
latching on to superficial patterns. This evaluation
paradigm is particularly unsuitable for mathemat-
ics, where proofs are not just a means to an end but
the very foundation of the discipline. Thus, to prop-
erly assess the mathematical reasoning abilities of
LLMs and LRMs, it is essential to evaluate whether
they can construct and verify proofs. PROOFGRID
addresses this gap by requiring models to write,
check, and reason about formal logic proofs.

An advantage of using pure logic to evaluate rea-
soning ability is that the problems are entirely ab-
stract and thus require what psychologists call fluid
intelligence, as opposed to crystallized intelligence
(Sternberg, Robert 2020). Fluid intelligence refers
to innate reasoning ability employed to solve novel
problems, while crystallized intelligence reflects
the declarative knowledge and problem-solving
know-how that accumulates through explicit in-
struction. Current benchmarks often allow models
to leverage their vast stores of crystallized knowl-
edge, acquired through their pretraining, enabling
them to memorize their way to correct answers by
employing shortcuts that are sometimes valid but
are other times derived from spurious patterns. By
focusing on form rather than content, symbolic-
logic problems gauge pure reasoning competence.

In addition, most existing benchmarks no longer
pose a serious challenge and are approaching sat-
uration, as shown by near-ceiling performances
from even general-purpose LLMs. PROOFGRID
incorporates complex and structurally rich reason-
ing challenges that expose the limitations of even
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the most capable models. We hope that this will
stimulate continued research and development in
this field.

The initial version of the PROOFGRID dataset
contains about 10K problems and proofs for propo-
sitional logic and 1K problems and proofs pure
equational logic. This is a data resource that we
plan to expand continuously with new material. In
addition to the data, we release a set of benchmarks
based on fask slices of the overall dataset. These
are specific tasks based on fixed smaller subsets of
the full dataset, each typically containing 200-500
instances. Using this approach, we benchmarked
15 prominent LRMs and LLMs across multiple
tasks: proof checking, proof discovery, proof in-
filling, and recovery of proof gaps. Proofs have
formal syntax and semantics and are expressed in
a natural-deduction style that mirrors human infer-
ential practices The rest of this document is struc-
tured as follows. Section 2 discusses related work;
Section 3 describes the datasets of PROOFGRID;
Section 4 presents the results of our evaluations;
Section 5 presents some findings from analyzing
the results; and Section 6 concludes.

2 Related Work

There are many datasets for evaluating a diverse ar-
ray of reasoning skills, and while we cannot review
all of them here, we can categorize them into 4
main groups depending on the type of reasoning on
which they focus: (a) natural-language reasoning;
(b) mathematical and scientific reasoning; (c) gen-
eralist/hybrid reasoning; and (d) formal reasoning.

Benchmarks in the first group probe the abil-
ity of models to reason in natural language. This
includes classical NLI benchmarks such as SNLI
(Bowman et al. 2015) and MNLI (Williams et al.
2018), which study entailment judgments of the
form T' = h, where T is a context (or “theory”)
and h is a hypothesis. Both 7" and h are natural-
language texts found in the wild, and the task is to
determine if h follows from 7', is contradicted by
it, or neither. These determinations are typically
supported by informal or commonsense reasoning
and general background knowledge, and require
relatively shallow inferences.

We include in this category datasets in which
T and h are expressed in “controlled natural lan-
guage” (CNL), namely, natural language that is not
organic but rather synthesized from logic-formula
templates, where the formulas come from a well-

circumscribed logic such as Datalog or a particular
description logic. These datasets, which tend to
emphasize multi-step inference chains and closed-
world reasoning, include RuleTaker (Clark et al.
2021), ProofWriter (Tafjord et al. 2021), ProntoQA
(Saparov and He 2023), Logiclnference (Ontaiién
et al. 2022), LogicAsker (Wan et al. 2024), Logic-
NLI (Tian et al. 2021), and FLD (Morishita et al.
2023). Folio (Han et al. 2024) can arguably be
placed in the same group.

Math benchmarks include GSM8K (Cobbe
et al. 2021), MATH (Hendrycks et al. 2021b),
OlympiadBench (He et al. 2024), Omni-MATH
(Bofei et al. 2024), and the more recent (and much
more demanding) FrontierMath (Glazer et al. 2024)
and OlymMATH (Sun et al. 2025). Problems here
are expressed in natural language and the expected
answers are literals such as numbers or symbolic
expressions like 2 — 5. These benchmarks do not
test mathematical reasoning per se, since they fol-
low an outcome-based evaluation paradigm that
judges models only on their final answers. This
allows models to exploit memorization, heuristics,
and pattern matching. Scientific-reasoning datasets,
like ARC (Clark et al. 2018), Entailment Bank
(Dalvi et al. 2021), and TheoremQA (Chen et al.
2023) focus on natural science rather than mathe-
matics, but they follow essentially the same pattern:
questions are posed in natural language and probe
problem-solving in knowledge-rich domains; only
the answers are evaluated, not the reasoning.

The third group comprises broad-coverage
benchmarks like MMLU (Hendrycks et al. 2021a)
and its successor MMLU Pro (Wang et al. 2024),
HLE (Humanity’s Last Exam) (Scale Al and Cen-
ter for Al Safety 2025), BBH (Suzgun et al. 2023)
and its successor BBEH (“Big Bench Extra Hard”)
(Google Research 2025), and SuperGPQA (Team
et al. 2025). These provide a coarse picture of
general model ability but blur distinctions between
domain knowledge, language understanding, and
reasoning. They also remain outcome-focused.

The last category includes formal-reasoning
datasets that use symbolic inputs rather than natu-
ral language. A notable example here is MiniF2F
(Zheng et al. 2022), which contains 488 mathe-
matics problems expressed symbolically in Lean,
Metamath, Isabelle, and HOL Light, and whose
solutions require formal proofs in these systems.
In principle, such benchmarks can verify not just
the correctness of an answer but also the correct-
ness of the reasoning behind the answer, since the
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reasoning is expressed as a formal proof that can
be checked by machine. However, such bench-
marks tend to be tied to specialized proof systems,
restricting their accessibility.

PROOFGRID falls into this last group, since its
inputs are based on symbolic formulas and its out-
puts require structured formal proofs. It mitigates
the issue of heavy dependence on esoteric details
of complex formal systems by employing a mini-
malist natural-deduction formalism, which is both
strikingly compact (the entire proof language is
fully described in a short prompt) and aligned with
ordinary reasoning practices. This should make
PROOFGRID both rigorous and approachable.

PROOFGRID can also be compared with the
CNL members of the first group (benchmarks for
“natural-language reasoning”), since they are also
based on formal logics. Relevant points of compari-
son include (i) the expressiveness of the underlying
formalism; (ii) the range of reasoning mechanisms
tested; (iii) the maximum depth of reasoning re-
quired; and (iv) the current degree of saturation. Re-
garding expressiveness, some of the CNL datasets,
such as RuleTaker and ProofWriter, are based on
stratified Datalog, which supports recursive Horn
clauses and limited negation but disallows full dis-
junction, unrestricted negation, quantifier alterna-
tion, and function symbols. Likewise, ProntoQA is
based on positive Horn Logic, which is reducible to
Datalog over unary predicates. In theory, FLD sup-
ports full first-order logic, albeit without equality
or function symbols. In practice, the fragment it ex-
ercises is far more limited, essentially confined to
monadic predicates without quantifier alternations.
This reflects a broader trend among benchmarks in
the CNL category. Even though they are solidly
framed in logic, most of them end up targeting very
weak subsets of predicate logic, partly because of
the sheer complexity of the infrastructure that is
needed for a correct implementation of full-blown
proofs in first-order logic. Similar remarks apply
to LogicInference, LogicAsker, LogicNLI, and Fo-
lio. Consequently, these benchmarks end up test-
ing mostly variants of simple forward chaining on
conditional rules, which requires little more than
universal specialization and modus ponens.

By contrast, the current version of PROOFGRID
is based on full propositional logic (with unre-
stricted negation and disjunction) and equational
logic. The former allows us to encode a vast range
of reasoning-intensive problems requiring proofs,
many of which cannot be represented in Datalog

(e.g., problems involving parity and counting in
general, graph connectivity, pigeonhole constraints,
injectivity, mutual exclusion, and others). Equa-
tional logic allows us to test the ability of Al mod-
els to reason about function applications and iden-
tity, which is beyond the scope of the CNL bench-
marks. Moreover, PROOFGRID supports a diverse
range of reasoning idioms, including hypothetical
reasoning (conditional proofs under provisional as-
sumptions), which requires the tracking of nested
assumption scopes, reasoning by contradiction and
indirect proof, complex and highly nested case
analyses, and so on. These are foundational tools
in mathematical reasoning and crucial for evaluat-
ing whether a model understands how to structure
and manage complex deductive arguments, not just
chain together atomic rules.

The maximum depth of reasoning required by
CNL benchmarks is smaller than 10 (the most de-
manding is FLD, with a maximum depth of 8).
PROOFGRID problems feature reasoning chains
with dozens of steps (in some cases over 100
steps). Finally, the CNL benchmarks are largely
saturated (Zhou et al. 2025), with DeepSeek-R1
exceeding 80% overall accuracy on FLD, Folio,
and ProntoQA, and even GPT-40 scoring over 98%
on ProntoQA. By contrast, the mean accuracies
of DeepSeek R1 and GPT-40 on PROOFGRID are
35% and 13%, respectively.

In summary, PROOFGRID differs from prior rea-
soning benchmarks in four key ways: it enforces
proof-based evaluation rather than outcome-only
scoring; it minimizes content-knowledge advan-
tages by using abstract symbolic inputs; it employs
a minimalist natural-deduction framework that still
supports a wide range of common reasoning mech-
anisms; and it introduces challenging tasks that
even the best current models cannot solve reliably.

3 Datasets

The inaugural version of PROOFGRID' has two
parts, one for propositional logic and one for equa-
tional logic. The former has 2 datasets, PL; and
PLo, and 4 tasks: proof checking; proof writ-
ing; proof infilling; and proof gap-filling. The
equational-logic part has one dataset, EQ;, and
3 similar tasks (proof checking, proof writing, and
proof gap-filling). We describe all of them in detail
below.

All proofs in PROOFGRID are formal, and those

lhttps ://github.com/System-2-Labs/ProofGrid/
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in PL; and PLy are written in natural deduction
style. Natural deduction makes direct and intuitive
use of techniques like conditional proof, reason-
ing by contradiction, case analysis, and applica-
tion of inference rules that reflect the way human
mathematicians and scientists construct and verify
arguments. To evaluate and write these proofs, a
reasoner must be able to recognize local and global
logical relationships, track assumption and lemma
scope, and compose multiple steps into coherent
chains of inference. Because natural deduction
aligns closely with human inferential practice, both
formally and cognitively, it offers an ideal testbed
for probing the reasoning competence of Al mod-
els.

Another advantage of the particular natural-
deduction system used in PROOFGRID is its sim-
plicity and autonomy. Models do not need to have
mastered the intricate syntax of complex interactive
theorem-proving systems, either via pretraining or
fine-tuning. Instead, our PL; tasks rely solely on
short but rigorous and self-contained prompts de-
scribing the formal syntax and operational seman-
tics of an exceptionally simple and stripped-down
natural-deduction language, NDL, along with a
few well-chosen ICL examples. Our EQ; proofs
are even simpler (essentially sequences of term
rewrites); their syntax and semantics are also fully
described in short prompts and illustrated with ex-
amples.

PL; Data

PL; is a relatively simple dataset comprising short
and minimally structured problems and proofs.
LRMs do well both on proof-checking and on
proof-writing in PL1, but we show that proof mask-
ing and gap-filling pose challenges even in this
basic setting.

PL; contains 1.4K problems, where each prob-
lem consists of a set of premises p1,...,p, and
a conclusion p that is logically entailed by the
premises. The p and p; are formulas constructed in-
ductively from propositional atoms A, B, C, .... A
complex formula is either a negation (~ p); a con-
junction (p; & p2); a disjunction (p; | p2); a con-
ditional (p; = p2); or a biconditional (p; < p2).
The negation operator ~ binds most tightly, fol-
lowed by conjunctions, disjunctions, conditionals,
and biconditionals. All binary constructors are
right-associative.

Premises and goals were randomly generated as
tree structures; see Appendix B for details.

Here is a sample proof-writing problem: derive
p=(B|D) from p = (A=B), po=(~"A=C);
and p; = (C = D). Appendix B contains additional
examples and various statistics on the generated
problems.

Proofs for all problems were generated auto-
matically by a theorem prover written in Athena
(Athena Language Team 2025), a natural-deduction
system for proof engineering that can be viewed
as a proper superset of NDL. All proofs generated
by this theorem prover were confined to the NDL
core. Here is an example of a formal proof for the
problem described above:

assert premise-1 := (A ==> B)

assert premise-2 := (~ A ==> C)

assert premise-3 := (C ==> D)

# We prove (B | D) by a case analysis on (A | ~ A),

# which holds by the law of the excluded middle.
{
(A | ~ A) BY ex-middle on A;

# Case 1: Show that A implies (B | D)
assume A {

# Applying modus ponens to premise-1 and the
# assumption A gives B:

B BY mp on premise-1, A;

# So now (B | D) follows by

# disjunction introduction:

(B | D) by left-either on B, D;
bi

# Case 2: Show that (~ A)
assume (~ A) {

C BY mp on premise-2, (~ A);

D BY mp on premise-3, Cj;

(B | D) BY right-either on B, D;

implies (B | D)

i

# The case analysis is now complete:

(B | D) BY cases on (A | ~ A),

(a ==>3 | D),

(~A ==> B | D)
}
As mentioned above, NDL is a minimal subset of
Athena that contains only introduction and elimina-
tion rules, conditional subproofs, and a few other
convenient derived inference rules, such as De Mor-
gan and disjunctive syllogism.

The theorem prover generated correct proofs by
construction. To obtain a balanced dataset with
roughly equal numbers of correct and incorrect
proofs, we (a) randomly corrupted a number of
these proofs so as to make them incorrect, and we
(b) included proofs written by 03 and Gemini-2.5-
Pro, which tended to have more organic errors than
those produced by the noising procedures described
in (a).

PL; Task 1: Proof Checking

This task contains 300 instances. The objective is
simple: Given a proof for a given problem, deter-
mine if it is correct. An incorrect verdict must be
accompanied by additional information: the line
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number containing the earliest error, the type of the
error (syntax error, type error, or logic error); and a
detailed description of the error. The full prompt
can be found on the PROOFGRID repo.

Ground truth is determined by an instrumented
version of the Athena proof checker, designed to
make the checker compatible with the NDL de-
scription given in the prompts. This instrumenta-
tion is necessary because some of these 300 proofs
were written by models and contain syntax forms
that are interesting generalizations of NDL’s syn-
tax forms, but are not, strictly speaking, allowed
by NDL proper. For instance, in NDL an infer-
ence rule R is always applied to a number of plain
formulas py, . .., p,. But models started taking the
liberty of writing entire subproofs inline for various
pi. Athena actually allows this, but NDL does not,
so instrumentation is needed to ensure alignment,
so that when a model later is asked to check such a
proof and complains that the proof violates NDL
syntax, it receives full credit. As another example,
case analyses are always binary in NDL: the ternary
inference rule cases is applied to a binary disjunc-
tion (p1 | p2) and two conditionals of the form
(p1 = ¢q) and (p2 = ¢). But some models started
applying cases to more complex disjunctions of
the form (p; | p2 | -+ | pn) forn > 2, along
with n conditionals (p; = ¢) fori = 1,...,n, for
a total of n 4 1 arguments. This is also allowed by
Athena, but it is nowhere mentioned in the NDL
definition in the proof-checking prompt, so if a
model later checks such an LRM-generated proof
and complains that cases is applied to too many
arguments, it should be given credit, even if Athena
accepts such liberal applications of cases.

Our evaluation methodology for this task is le-
nient. If the proof is correct (according to this
modified checker) and the model reports it as cor-
rect, we give the model a full point. We also give
the model a full point if the proof is incorrect and
the model reports it as such, although a manual
review of error details reveals that in some cases
models report spurious errors.

PL; Task 2: Proof Writing

This task contains 400 instances. Given a deduction
problem (“Derive p from py,...,p,”), the model
must write a proof for it, including English com-
ments explaining the reasoning strategy. Accuracy
here is evaluated by checking the generated proofs
with Athena. We are lenient with respect to minor
syntax errors: we wrote scripts that patch up a wide

range of common syntax errors made by the models
(such as failing to balance parentheses) before we
send the result to Athena for checking. We believe
it is possible to likewise detect and repair a good
deal of minor non-syntactic errors as well, in which
case these accuracies would be expected to go up;
this is left for future work.

PL; Task 3: Proof Infilling

The data for this task was obtained by masking 400
proofs from the PL; dataset. Given a proof, we
randomly mask any number of the following four
types of items: (a) conclusions (formulas imme-
diately preceding the BY keyword); (b) inference
rules (immediately preceding on); (c) assumptions
(immediately following assume); and (d) one or
more arguments to an inference rule application
(immediately following on). Masks are unique
identifiers: MASK1, MASK2, and so on.

The objective is to determine if there is a way to
unmask the proof completely so that it correctly de-
rives the target conclusion from the given premises;
and if so, to provide a detailed assignment of appro-
priate values to the masks. This is essentially a con-
straint satisfaction problem where the constraints
are given by the syntax rules and operational se-
mantics of proofs. The key question addressed by
this task is whether a model can infer missing sym-
bolic structure consistent with the rules that gov-
ern natural-deduction reasoning, and in particular
whether it can jointly restore syntax and semantics.
High accuracy in this task would strongly suggest
that the model possesses a robust internal model
of logical reasoning that goes beyond surface-level
pattern recognition.

Model responses are evaluated by unmasking
the proof according to the specified mask values
and then checking that the resulting proof correctly
derives the expected conclusion. If a model claims
that the problem is unsolvable, we consider that
response as incorrect when the original (unmasked)
proof succeeds and correct when the original proof
fails. This evaluation is deliberately lenient, be-
cause masking an erroneous proof might salvage
it by occluding the error. Thus, the accuracies re-
ported in Section 4 for this task are upper bounds
on actual performance. By contrast, when we re-
strict evaluation to correct proofs that have been
masked, then an unsolvability claim is always in-
correct and we count it as such. Accuracy restricted
on the set of correct proofs is reported in Section 4
as “strict” accuracy. As expected, a model’s strict
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accuracy on proof infilling tends to be lower.

PL; Task 4: Proof Gap Filling

This dataset was obtained by randomly inserting
holes (gaps) in a set of 200 correct proofs, written
either by the Athena theorem prover or by a model.
Unlike masks, which are locally focused on individ-
ual formulas and rules, gaps apply at the subproof
level, i.e., a gap replaces a subproof, which could
be either a single step (inference rule application),
or a conditional subproof, or a proof chain: a se-
quence of consecutive subproofs. A proof usually
receives several gaps, in different places. More in-
formation can be found in Appendix B.1.2. We ask
the models to map every gap to a subproof in such
a way that the result becomes a correct proof of
the goal from the premises. A solution is counted
as correct iff it achieves that. We report accuracy
based on this notion of correctness. Since this task
also involves the writing of proof fragments, we ex-
tend the same leniency toward minor syntax errors
as in the proof-writing task.

PL,

PLy consists of 300 much more structurally rich
propositional-logic problems. They are grouped
as follows: (1) 10 pebbling problems on DAG
pyramids; (b) 5 counting-principle (partition) prob-
lems; (c¢) 15 problems for odd-numbered De Bruijn
formulas; (d) 30 relativized pigeonhole-principle
problems; (e) 50 Tseitin-formula problems; (f) 70
subset-cardinality problems; (g) 70 graph-coloring
problems; and (h) 50 simple DAG pebbling prob-
lems encoding Horn-clause inference. We provide
more details in Appendix B.2. The structure of
all 300 problems is similar to that of PL;: each
problem consists of a number of premises and a
target conclusion. In all 300 cases, the conclusion
does follow from the premises. In this paper we
only study proof writing in PL.

The task involves NDL{, an even simpler ver-
sion of NDL that replaces all inference rules with a
single inference syntax form: p FROM p1, ..., Pn.
The semantics of this form are simple: conclude p
on the basis of py, ..., p,, where each p; is either a
premise or an active assumption or a result deduced
earlier in the proof, as long as (1) p indeed follows
from py,...,pp;and 2) n < 5.

This specification is operationalized as follows.
First, we check to make sure that n < 5 and that
each p; is in the current assumption base (meaning
it’s a premise, or an active assumption or previously

derived conclusion). If not, an error is reported.
Otherwise we make a call to a SAT solver to see
if p follows from py, . . ., p,. If it does, the step is
accepted, otherwise an error is reported.

The restriction n < 5 is imposed to limit the
granularity of the inferences that a model can make
with FrROM. If no limit is placed, a model could
avoid honest toil by generating an one-line proof:
goal FROM premises. Requiring n < 5 is a simple
and effective way to preclude such pseudo-proofs.?

In this version of NDL, models are free to take
much larger reasoning steps without bothering with
tedious details. This ability to formulate helpful but
straightforward lemmas without having to prove
them in detail is crucial for PLy, because these
problems are considerably more complex; demand-
ing fully detailed NDL proofs for them would be
neither fair nor realistic. It is also a more accurate
reflection of how mathematicians actually work.

While PLs problems are complex, they may be
viewed as easy-hard problems. They are hard in-
sofar as their general problem families are known
to be challenging. But they are easy in that we
make sure to only use problems whose size and
difficulty are strictly bounded, in order to keep the
tasks realistic and feasible. First, we ensure that
the CNF encodings for the vast majority of prob-
lems (over 95% of them) contain no more than 100
clauses each (although we do not use CNF in the
dataset, retaining full propositional-logic notation
throughout). Second, we ensure that every goal
has a resolution proof with fewer than 150 steps.
Note that we generated most of these problems as
unsatisfiability proofs for a list of formulas, but we
then converted them to forward inference problems
by taking the premises to be the tail of the list and
the goal to be the negation of the head of the list.

We solved each problem with Vampire and an-
alyzed the output resolution proofs to ensure that
the overall number of inference steps was less than
the maximum of 150 (we do not count CNF con-
version steps). We then translated all resolution
proofs produced by Vampire into NDL; natural-
deduction proofs, which became the raw material
for the proof-checking task: determine if the given

*In principle, a model could circumvent this definition by
gradually merging premises into a single conjunction, using
no more than four at a time, and then deriving the goal in one
large FROM step. We have not observed any such attempts. In
any case, simple extensions of the n < 5 rule could block such
contrived strategies as well (e.g., by also enforcing m < 5,
where m is the total number of conjuncts across all arguments
that represent premises).
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NDL proof is correct. All 300 NDL; proofs are
correct by construction, so a model would attain
perfect proof-checking accuracy if it deemed every
proof to be correct. The proof-writing task was
simply to write a proof in NDL that derives the
goal from the premises.

Equational Logic

EQ; contains 1K purely equational proofs. Each
example includes a set of equational axioms
{E1,..., Ep} and a derivation of an identity s = ¢
from those axioms. Each axiom is of the form

Vri,...,2,.L=R

and is given a unique name. L and R are standard
first-order terms, with variables and/or constants at
the leaves and function symbols with arity greater
than 0 at internal nodes, e.g., g(a, f(X)). Variable
names start with upper-case letters and function
symbols with lower-case letters. A proof is correct
iff for every step s; = s;41 by E;,...,E;, , the
term s, 1 is correctly derived from s; by the cited
equations. All of the proofs were initially correct
by construction. About half of them were then
synthetically corrupted. Details and examples can
be found in Appendix C. We study the following
three tasks in EQ;.

Proof Checking: This task contains 200 samples
from EQq, about half of which are correct. Check-
ing an equational proof means verifying that each
step goes through owing to the cited identities. If
the model determines that a proof is correct, it must
not only pronounce it correct but also output a se-
quence of detailed structured explanations, one for
each step of the proof. If the model says that the
proof is incorrect, it needs to indicate the first step
where the proof goes wrong and detailed about the
error, including positional information. Credit is
given only if the model gets all the details right.

Recovery of Elided Equations: This task, which
also has 200 samples, omits the justifying equations
from every step of the proof and asks the model
to find them. Here we report two accuracy quan-
tities, one in which a problem is considered cor-
rectly solved only if the model recovers all needed
equations for every step of the proof; and one that
records the number of steps (out of the total num-
ber of steps across all proofs) for which the model
has recovered the right equations.

Gap Filling: This task, with 96 instances, inserts
a gap of a randomly chosen size at a randomly
chosen location in a given proof and asks the model

to fill that gap with an appropriate sequence of
steps. A problem here is solved correctly iff the
model provides a sequence of steps for the gap that
makes the proof valid.

4 Results

We use the following abbreviations:

opus—4: claude-opus-4-20250514
rl: deepseek-rl-0528

ds-v3: deepseek-v3
sonnet-4: claude-sonnet-4-20250514
magistral: magistral-medium-2506
grok-3: grok-3-beta
llama: llama-3.1-405b (by Nous Research)

Accuracies for proof checking and writing in PL;
are given in Tables 1 and 2, respectively.

Model Acc || Model Acc
gpt-5 0.86 o3 0.85
gemini-2.5-pro | 0.84 || opus—4 0.81
grok-4 0.78 || 0o3-mini 0.76
o4-mini 0.75 rl 0.72
sonnet-4 0.64 || 1lama 0.64
ds-v3 0.63 || gpt-4.1 0.63
grok-3 0.60 || magistral | 0.56
gpt-4o 0.54

Table 1: PL; proof-checking accuracies

Model Acc || Model Acc
grok-4 0.63 || gpt-5 0.62
gemini-2.5-pro | 0.59 || o3 0.55
opus—4 046 || rl 0.39
o4-mini 0.38 sonnet-4 | 0.35
grok-3 0.29 gpt-4.1 0.28
o3-mini 0.26 || ds-v3 0.26
magistral 0.13 gpt-4o 0.11
llama 0.08

Table 2: PL; proof-writing accuracies

Proof unmasking and gap filling results for PL;
are shown in Table 3. PLg proof-writing results
appear in Table 4. These numbers reflect
syntax repairs (such as parenthesis balancing) that
we performed automatically on all generated PLo
proofs. Performance is considerably lower without
these repairs (e.g., the raw accuracies of the top
four models are as follows: 0.43 for Grok-4, 0.37
for GPT-5, 0.33 for Gemini-2.5-Pro, and 0.21 for
03). Finally, EQ; results are shown in Table 5.

S Analysis

Models generally performed well on checking the
simple proofs of PL, and even on generating them,
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Gap Filling they are often willing to accept false presupposi-

Accuracy Strict Accuracy Accuracy tions. To illustrate, when asking LRMs to prove

Model Proof Infilling

gpt-5 0.62 0.53 0.85
o3 0.65 0.55 0.59
gemini-2.5-pro 0.65 0.62 0.56
grok-4 0.70 0.58 0.58
o4-mini 0.52 0.40 0.28
o3-mini 0.34 0.30 0.18
rl 0.51 0.36 0.23
grok-3 0.16 0.16 0.32
opus-4 0.37 0.32 0.14
sonnet-4 0.23 0.23 0.13
ds-v3 0.24 0.13 0.18
gpt-4.1 0.15 0.09 0.18
llama 0.07 0.10 0.13
magistral 0.16 0.05 0.12
gpt—4o 0.26 0.04 0.11

Table 3: Performance on PL; proof infilling and gap
filling.

Model Acc || Model Acc
grok-4 0.51 gpt-5 0.40
gemini-2.5-pro | 0.36 o3 0.23
rl 0.14 || opus-4 0.11
o4-mini 0.07 sonnet-4 0.06
ds-v3 0.05 grok-3 0.05
o3-mini 0.05 magistral | 0.03
llama 0.03 gpt—4o 0.02
gpt—4o 0.01

Table 4: PLy proof-writing accuracies

but they did worse on proof unmasking and gap
filling. Performance drops sharply on PL5, with
only Grok-4 managing to reach 50% accuracy.

In general, we find that models continue to make
elementary errors, and decoy problems reveal that

Model PC | ER-G | ER-L | Gaps
gpt-5 0.67 | 0.77 0.98 0.56
grok—4 0.54 | 0.60 0.94 0.55
o3 0.52 | 0.67 0.96 0.33
gemini-2.5-pro | 0.52 0.77 0.98 0.43
o4-mini 0.41 0.30 0.81 0.15
o3-mini 0.25 0.39 0.83 0.03
opus-4 0.25 0.33 0.90 0.16
rl 0.24 | 0.39 0.80 0.17
sonnet-4 0.22 0.29 0.85 0.07
grok-3 0.13 0.12 0.74 0.02
ds-v3 0.06 | 0.09 0.72 0.02
llama 0.05 0.01 0.16 0.01
gpt-4o 0.04 | 0.00 0.04 0.01
gpt-4.1 0.02 | 0.07 0.47 0.03
magistral 0.01 0.02 0.30 0.01

Table 5: Performance on EQ, tasks. PC: equational
proof-checking accuracy; ER-G and ER-L: global/lo-
cal ER accuracy.

even-indexed instances of the De Bruijn formula
(see Appendix B.2.5), most of them generate fabri-
cated proofs. In addition, slight changes in problem
presentation can have a significant impact on per-
formance. A notable example is conditionalizing a
problem (importing its premises into the theorem it-
self): while logically equivalent, this reformulation
makes the conclusion longer and more complex,
which degrades the performance of even the best
models, especially on larger instances.

On the other hand, a closer look at the detailed re-
sults reveals many instances of exceptionally strong
performance on hard reasoning problems. Many
models did well on DAG-pyramid pebbling prob-
lems, for example. These are fundamentally about
dependencies, resource constraints, and sequential
execution; several Al planning problems can be
translated into SAT using pebbling-like encodings.
The DAG-pyramid pebbling problems are particu-
larly interesting because a naive approach to them
would require exponentially long proofs. Only sys-
tems capable of structured reasoning with abstrac-
tion and lemma reuse can tackle these problems
successfully as the height of the pyramid increases.

We asked all models to describe their proof
strategies in natural language, and here is what
o4-mini had to say about its proof for the pyra-
mid of height 5: We build the desired disjunction
(A1, V Ay,) by lifting the given OR-premises on
the leaf atoms A11 and Aqs up through each level
of implications. At each stage we use nested case
analyses (disjunction elimination) on the two OR-
facts for that level, together with the appropriate
conditional premises, to derive the OR-fact one
level higher. Repeating this from A7 /Ag/Ag/A10
up to As/As and finally Ay yields (A1, V A1,).
Even when the models get the proof wrong, the
high-level strategy is often correct. For instance,
even in some cases where 03 tended to avoid hard
work by “proving” the conjecture with a single-line
application of FroM to dozens of premises, it would
still articulate a proper strategy.

This separation between strategic competence
(e.g., outlining the overall proof structure and iden-
tifying relevant lemmas) and formal execution high-
lights the promise of an agentic approach to the-
orem proving. In such a framework, LLM-based
agents act as planners that explore and propose
viable proof strategies, while classical proof assis-
tants or symbolic solvers serve as executors that
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enforce rigor at the formal level. Iterative inter-
action between these components mirrors human
mathematical practice, where conceptual insights
typically precede fully formalized arguments, and
points toward a scalable neurosymbolic paradigm
that combines the generative strengths of language
models with the reliability of symbolic verification.

6 Conclusions

This paper presented PROOFGRID, a novel bench-
mark designed to assess the logical reasoning abili-
ties of LLMs and LRMs through tasks that demand
rigorous proof construction, checking, and infilling
across propositional and equational logic. Unlike
prior benchmarks that focus solely on answer ac-
curacy, PROOFGRID emphasizes the integrity of
reasoning processes and offers a more accurate as-
sessment of mathematical and logical competence.
Our results demonstrate that while state-of-the-art
LRMs exhibit very impressive capabilities on sim-
pler inference problems, they continue to struggle
with more challenging tasks, especially in reason-
ing over structurally rich problems.

Nonetheless, instances of high-quality reason-
ing, especially on problems requiring multi-step
abstraction such as DAG pebbling, suggest that
these models are beginning to develop powerful
inferential strategies. The results on the novel tasks
of proof unmasking and gap-filling are particularly
impressive. To solve these problems, models must
reason about proofs themselves, identifying miss-
ing steps, determining the scope of relevant as-
sumptions and lemmas, and reconstructing fully
valid derivations. Solving these tasks requires an
awareness of proof structure that goes far beyond
forward application of inference rules. While the
masked proofs are relatively simple, it is never-
theless notable that leading LRMs perform quite
well, suggesting that these systems are beginning to
exhibit competence in reasoning about reasoning it-
self. PROOFGRID should provide a robust platform
for tracking and accelerating these developments,
underscoring the importance of proof-based eval-
uation as models move toward deeper integration
into scientific and mathematical workflows.

The implications of progress on proof-based rea-
soning extend well beyond benchmarking. The
formal methods community has long regarded fully
verified proofs of program correctness as the gold
standard for software reliability, but such proofs
have been prohibitively difficult and resource-
intensive, reserved mainly for mission-critical sys-

tems. If Al models advance to the point of reliably
generating formal proofs alongside code, this could
radically transform software development: models
could not only produce implementations, but also
provide correctness guarantees that can be indepen-
dently verified by trusted proof checkers. Such a
capability would represent a major step towards
making LLM-generated software genuinely robust
and trustworthy.

7 Limitations

While PROOFGRID offers a comprehensive evalua-
tion of logical reasoning capabilities in LLMs and
LRMs, a number of limitations should be acknowl-
edged.

First, our benchmark primarily tests logical
reasoning within formal languages, not natural-
language reasoning. Although we did translate
all PL; proofs to English for one set of experi-
ments, this represents a small portion of our eval-
uation. Thus, PROOFGRID’s results may not fully
generalize to models’ reasoning abilities in natural
language contexts.

Second, our benchmark’s evaluation metrics fo-
cus on accuracy, rather than efficiency. Different
LRMs may achieve similar accuracy scores while
varying significantly in test-time compute or other
resource requirements. A more comprehensive
evaluation would include these dimensions.

Finally, we note that our findings apply to current
state-of-the-art models evaluated during our study
period. Given the rapid advancement in Al capa-
bilities, particularly in reasoning-focused models,
the relative performance of various model fami-
lies may change significantly in the not-too-distant
future. Despite these limitations, PROOFGRID rep-
resents a significant advancement in the evaluation
of logical reasoning in Al systems, offering insights
into both the impressive progress and the persistent
challenges in this crucial domain.
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A NDL Specification

As mentioned in Section 3, NDL can be viewed as
a drastically stripped-down subset of Athena. Its se-
mantics are specified in terms of assumption bases.
An assumption base is simply a finite set of formu-
las 5. In particular, after specifying the abstract
syntax of proofs D, as we do below, the denota-
tional semantics of any proof D can be specified as
a function Z that takes D and an assumption base
[ and produces either the conclusion obtained by
evaluating D in the context of 5 or an error. Thus,
the denotational semantics of NDL proofs coincide
with the expected behavior of proof checking.

In the case of zero-order (propositional) logic, a
deduction (proof) D in NDL is either:

* An application of an inference rule Rton > 0
arguments: R on pi,...,p,. Most of the in-
ference rules in NDL are either introduction
or elimination rules, but there are also some
convenient derived rules (meaning rules that
can be derived from the introduction and elim-
ination rules), such as De Morgan and disjunc-
tive syllogism. A complete list can be found
online in the PROOFGRID prompts.

* A conditional proof of the form
assume p D. Here the formula p is a
hypothesis and the subproof D is the body
of the conditional proof. These proofs are
used to produce conditional conclusions of

the form (p = q).

* A proof sequence {Dl; Dy --- ;Dn}. This
is a lemma formation mechanism: first we
evaluate proof D; and obtain its conclusion
p1, which now becomes available as a lemma
for the subsequent proofs; we then go on to
Dy and so on. The final conclusion is that
obtained by D,,.

As mentioned above, to evaluate a proof D in
NDL in some assumption base 5 means to check
D. Evaluation produces either the conclusion of
D or some error which indicates that D is incor-
rect. Below we sketch this evaluation algorithm via
structural recursion on the input proof D.

Primitive proofs: If D is a primitive proof
R on pi,...,pn,

we first check to see if p1, ..., p, are in 8 and
then proceed by a case analysis of K. For

instance, if R is both (conjunction introduc-
tion) and n = 2, and p1, p2 are both in 3, we
produce the conclusion (p; A p2). It’s an error
if a rule is given a different number or type of
arguments than what it expects. For instance,
if both is applied to only one argument p,
the evaluation algorithm will produce the
result error.> Further, with the exception
of the rules ex-middle, left-either,
from-false, and
by-contradiction, all of the argu-
ments given to a rule R must be in the
current assumption base, [3; it is a logical
error if that is not the case. For the binary
rule left-either, only the first argument
needs to be in 3, while for right-either
and by-contradiction only the second
argument needs to be in [3.

right-either,

Conditional Proofs: To evaluate a conditional
proof assume p D in an assumption base
5, we evaluate the body D in the augmented
assumption base 5 U {p}. If and when that
produces a conclusion g, we return the result
(p = q), otherwise we return error.

Proof Sequences: To evaluate
{Dl;Dg; e ;Dn} in 5, we start by
evaluating D; in 3. If that gives error, we
also return error. Otherwise we return the re-
sult of recursively evaluating { Do; - -+ ; Dy, }

in 3U {p1}.

The conclusion of a subproof D can be given
aname I and then subsequent proofs can refer to
that conclusion by the name I, and likewise for
hypotheses, e.g.:

assume hyp := (A <==> B) {
pl := left-iff on hyp;
p2 := right-iff on hyp;

both on pl, p2
}

# Evaluating (checking) this proof will produce the
# conclusion ((A <==> B) ==> ((A ==> B) & (B ==> A))
).

The BY keyword is also frequently used to broad-
cast the conclusion expected by a rule application:
p BY R on pi,...,py,. If the application of R to
P1, - - -, P, (in some assumption base () does pro-
duce the conclusion p, then the entire step succeeds
and its result becomes p. But if the application of

3To keep the exposition simple, we assume that there is a
single distinguished token error that represents all evaluation
failures. In practice, of course, the reported error messages
vary in accordance with the context.

12387



R either results in error or in a conclusion g other
than the advertised p, then the result of the entire
BY step becomes error.

B Additional Information on PL; and
PL,

B.1 PL,

For PL;, premises and goals for all problems were
generated randomly as ASTs (abstract syntax trees)
by choosing a logical operator as the root (or an
atom for a leaf) and then recursively generating
subtrees up to a maximum depth. To minimize
degenerate problems, we imposed the following
constraints on any premises pi, . . ., p, and goal p:

1. all n + 1 formulas must be distinct;

2. {p1,...,pn} must logically imply p;

3. every premise p; must be necessary, meaning
that if we remove p;, the goal p is no longer
entailed by the remaining premises;

4. the goal does not contain any atoms that do
not occur in the premises; and

5. the premises by themselves are logically con-
sistent (as is the negation of the goal).

We used a SAT solver to enforce 2, 3, and 5.

We limit duplicate entries by normalizing a prob-
lem’s representation as follows: sort the list of
all premises, conjoin the resulting elements, form
the conditional between that conjunction and the
conclusion, and then universally quantify over all
atoms in that conditional. We then identify two
problems iff these universally quantified normal
forms are alpha-equivalent (identical up to renam-
ing of bound variables). Thus, for instance, the
argument with py = (A= B), p» = (B=0),
ps = (~ C), and conclusion (~ A) is represented
by the QBF (Quantified Boolean Formula):

VA, B,C. (A= B) & (B=C) & (~C)) = (~ A))

and is thus considered identical to the problem with
p1=(C=D),py=(~FE),p3=(D=FE),and
conclusion (~ C).

The Athena theorem prover that generated most
of the proofs in the dataset uses a combination of
backward and forward heuristics, ordered accord-
ing to the strategy in Section 4.1.14 of the textbook
Fundamental Proof Methods in Computer Science
(Arkoudas and Musser 2017). The theorem prover

is written as an Athena method, which is automati-
cally instrumented so that a successful run produces
a low-level certificate: a fully detailed proof com-
prising all applications of primitive inference rules
that were made during the run, as well as all condi-
tional (sub)proofs and (sub)proofs by contradiction,
properly scoped. This certificate is typically a very
long proof (many thousands of lines), because it in-
cludes all inferences made even during paths of the
search tree that were ultimately dead ends. These
proofs are then simplified by an aggressive proof-
optimization algorithm (Arkoudas 2005) that re-
moves detours and other inefficiencies from formal
proofs, radically simplifying their structure.

The deliberate corruption of a proportion of
these proofs used interventions such as altering
the logical form of an argument to an inference
rule (e.g., applying conjunction elimination to a
disjunction), or the number of arguments, remov-
ing a step from a chain of subproofs, and so on.
As mentioned in the body of the paper, we also
included in the dataset proofs written by models
(along with relevant provenance data).

B.1.1 Proof Masking

As an example of this task, below is a masked
version of the proof given in Section 3.

assert premise-1 := (A ==> B)
assert premise-2 := (~ A ==> C)
assert premise-3 := (C ==> D)
# Goal: (B | D)
{

(A | ~ A) BY ex-middle on MASKI1;

assume A {
MASK2 BY MASK3 on premise-1, MASK4;
(MASK5 | D) by left-either on MASK6, MASK7;
}i
assume MASKS8 {
MASKY9 BY mp on premise-2, MASKI1O0;
D BY mp on MASK11l, MASK12;
MASK13 BY right-either on B, D;
}i
MASK14 BY cases on (A | ~ A), MASK15, MASK16
}

Having seen the original proof, the correct as-
signment is easy to decipher: MASK1: A; MASK2: B;
MASK3:mp; MASK4: A; and so on. But without the
benefit of having seen the proof before, this is not
n easy task. We have to infer that Mask1 must be A
from the specification of the excluded-middle rule
and the fact that we see the conclusion (a |~2a) to
the left of Bvy. On the last line, because the goal is
(B | ~D) and the pivot disjunction is (A |~a), we
can infer from the specification of case analysis
that Mask15 and MaSk16 must be conditionals of
the form (A ==> (8 | D)) and (~A==> (B | D)),
respectively. When a proof is heavily obscured, the
corresponding problem generally becomes more
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complex. In our dataset, we randomly masked any-
where from 30% to 90% of all candidates (of all 4
types listed above) in a given proof.

Masking problems are usually underdetermined,
i.e., there may be multiple mask assignments that
yield a correct proof. Accordingly, it is not ex-
pected that a mask assignment produced by a model
recovers the original proof. For instance, the origi-
nal proof might contain a chain of two consecutive
applications of left and right conjunction elimi-
nation: - - - (A&B); right-and on
(& & B); ---. Butif we mask both rules, e.g., by
replacing left-and by MASK-3 and right-and by
MASK-4, then MASK3: left-and; MASK4: right-and
and MASK3: right-and; MASK4: left-and are both
valid solutions, because the two inference steps can
be swapped without affecting the correctness of the
subsequent reasoning.

left-and on

B.1.2 Proof Gap Filling

The following is a simple example of a gap-filling
problem:

1 assert premise-1 := (C | (A & E))

2 assert premise-2 := (C ==> D)

3 assert premise-3 := (A <==> (E ==> D))
4 # Goal: (E ==> D)

5

6 {

7 left-iff on premise-3;

8 GAP-1;

9 assume E {

10 casel := assume C {

11 mp on premise-2, C

12 }i

13 case2 := assume (A & E) {

14 left-and on (A & E);

15 mp on (A ==> (E ==> D)), A;
16 GAP-2

17 }i

18 GAP-3

19 }
20}

Bearing the goal (» ==> D) in mind, it is clear
from the structure of the overall proof skeleton,
and particularly from the structure of the top-level
conditional proof (the assume that opens on line
9 and closes on line 19), that this conditional
proof establishes (E ==> D). The body proceeds
by a case analysis of premise-1, the disjunction
(c | (a &E)). The casel subproof establishes
that ¢ implies D, thus case2 must establish that
(a & E) implies . Therefore, cap-2 must derive
D from the assumption base at the end of line 15,
which includes the conditional (¢ ==> D) (derived
on line 15) and the case-2 hypothesis (2 & E) (as
Gap-2 is inside the scope of that hypothesis). So
this gap is easy to fill: First detach E from the as-
sumption (A & E) and then use modus ponens on
(E ==> D) and E to infer . cAP-3 is a simple ap-

plication of cases to premise-1, (C ==> D) and
((A & E) ==> D).

Gap-1 does not make any contribution to the
proof. It is there only because the LLM that gen-
erated the initial proof included a redundant step
at that point—the application of right-iff on
premise-3. Any replacement for that gap is given
full credit as long as the entire proof obtained by
filling the gaps as specified by the model correctly
derives the goal from the premises.

B.2 PL.

In this section we describe the problem families in
PL,.

B.2.1 DAG Pebbling Problems

Consider a DAG pyramid, e.g., of height 2, as
shown below. Nodes A—F represent tasks. Each
task can be completed in two ways: a; and ay for
A, by and by for B, and so on. We indicate this
by attaching these disjunctions to every node. The
DAG’s source nodes are D, F, and F'; they have
no dependencies on other tasks. Arrows indicate
task dependencies: B depends on D and E, C' de-
pends on E and F' (cannot be completed before
they are), and so on. A is the target node, the
task that can only be completed (or pebbled) last.

aq \/CLQ

C1 \/Cg

by V ba (B)
d1V d> (D) )

e1 Ve

iV fa

A pebbling problem on a DAG pyramid of this sort
is defined by 3 classes of formulas. The source for-
mulas assert that every source node can be pebbled,
i.e., we have dy V ds, €1 V eo, and f1 V fo. The
precedence formulas encode dependencies: For
every non-source node, we assert 4 conditional
precedence formulas encoding 4 distinct comple-
tion possibilities. For instance, the 4 precedence
conditionals for B are: d; A\ ej = by V ba, for all
i,7 € {1,2}. This says that B can be pebbled if
either D has been pebbled by d; and E by e, or
D by d; and E by es, and so on. (Precedence for-
mulas are typically represented by clauses but we
find conditionals more intuitive.) The last class of
formulas consists of the negations of all target dis-
junctions, in our case simply —(a; V ag) since we
only have 1 target (A). The task now is to show that
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the set of all formulas is unsatisfiable. However,
in our forward-inference formulation we simply
prove that target A must be pebbled: a; V ay. This
follows logically from the source and precedence
formulas.

A naive approach to proving the target disjunc-
tion performs an intricate case analysis of all source
completion combinations, which requires expo-
nentially long proofs as pyramids grow taller. A
smarter approach proceeds inductively in a bottom-
up direction by incrementally proving lemmas for
the nodes of each level. The source nodes pro-
vide the induction basis, and the precedence formu-
las act as inductive hypotheses of sorts. Continu-
ing this way finally derives the target disjunction.
We include 10 problems for DAG pyramids up to
height 10, and our ground-truth NDL proofs are
written programmatically (using the outlined algo-
rithm).

The 50 “simple” DAG pebbling problems don’t
have disjunctions associated with nodes and the
DAGs are not pyramids. Rather, they have long lin-
ear dependency chains and can thus gauge how well
a system can reason about long inference chains
captured by Horn clauses (conditionals with atomic
conclusions and conjunctive antecedents), either in
a forward or in backwards-chaining fashion.

B.2.2 Graph Coloring Problems

For the 70 graph-coloring problems we restrict at-
tention to 3 colors. We use the networkx library to
construct random undirected graphs with relatively
few nodes (typically < 10) and edge probability
randomly chosen from the uniform distribution
[0.6,0.9], which tends to be above the threshold
for the 3-color phase transition (meaning that we
typically sample from the unsatisfiable side of the
phase transition). Using a greedy coloring heuristic,
we filter out those few graphs that can be colored
with K < 3 colors. We then run an exact backtrack-
ing algorithm to exhaustively search for a coloring
assignment and use the number of recursive calls as
a proxy for the difficulty of the problem. We finally
retain only those problems that satisfy the addi-
tional constraint that their unsatisfiability (showing
it’s impossible to color the graph with 3 colors) can
be proved with < 150 resolution steps.

B.2.3 Relativized Pigeonhole Principle
Problems

We have m pigeons, t resting places, and n pi-
geonholes. We introduce two families of Boolean

variables:

Dik St
a; (1<E<t 1<j<n).
Informally,

* p; ) means “pigeon ¢ comes to rest at place k.”

* qr,; means “the (unique) pigeon at resting
place k eventually flies into hole j.”

We then conjoin formulas enforcing the following
constraints:

1. Coverage of pigeons by resting places:
(pig VpiaV---Vpig) (i=1,...,m),
so every pigeon chooses some resting place.

2. Mutual exclusion at resting places:

Pig =ik V1I<i<j<m,1<k<Ht,
S0 no two pigeons share the same resting
place.

3. Coverage of occupied places by holes:

Dik = (%,1 VggaV:-V Qk,n)
Vi<i<m, 1<k<t,

so if a pigeon rests at k, that place is assigned
to some hole.

4. Mutual exclusion at holes:
Ak, = Gk’
V1i<k<k <t 1<j<n,
so no hole receives more than one pigeon.

A simple combinatorial argument shows that the
conjunction of these clauses is satisfiable if and
only if
m < t < n.

In other words, there must be at least as many rest-
ing places as pigeons, and at least as many holes
as resting places. Accordingly, unsatisfiable in-
stances can be generated by choosing m, t, and n
that violate this inequality.

As an example, take m = 2 pigeons, t = 2
resting places, and n = 1 hole. Then

{p1,1,p1,27p2,17p2,2, Q1,1,CI2,1}
are our variables, and the above four sets of con-
straints become
1,1V P12,
Pk = P2,k
Pik = Qk,1
1,1 = 7g2,1-

P21V P22,
(k=1,2),
(i=1,2, k=1,2),
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Here m =2 <t=2butt =2 > n =1, so these
formulas are unsatisfiable, as there is no way to
route two pigeons—via two resting places—into a
single hole.

B.2.4 Subset Cardinality Problems

Let B = (L, R, E) be a bipartite graph with left
part L, right part R, and edge set E C L x R,
where the vertices in L and R are represented as
integers. We introduce one Boolean variable x; ;
for each edge (i,j) € E, where z; ; means we
“select” the edge (7, j). For any vertex v € L U R,
we write N (v) for the set of v’s neighbors:

Nw) = {u:(u,v) € Eor(v,u) € E}

and we define d(v) = |N(v)|. We build formulas
enforcing two sets of cardinality constraints:

o Left-side constraint. For each ¢ € L, at least
half of its incident edges must be selected:

Z Tij > [@-‘

JEN()

¢ Right-side constraint. For each j € R, at
most half of its incident edges may be se-

lected:
Z rij < L@J

1€EN(7)

Each of these inequalities (or equalities) is then
translated into conjunctive normal form by a stan-
dard cardinality-constraint encoding, e.g., a sorting-
network encoding or a sequential counter (Sinz
2005). We used the cnfgen library (Massimo
Lauria 2021) to generate 70 unsatisfiable formulas
of this type in DIMACS format, and we then re-
versed the CNF transformation in most cases and
converted the formulas into the uniform NDL/A-
thena notation used throughout PROOFGRID.

B.2.5 De Bruijn Formula Problems

For any integer n > 0, the n™ De Bruijn for-
mula, which we denote by D, is defined as the
conditional p = ¢, where ¢ is the conjunction
Ay A --- AN A, and p is the conjunction of the n
conditionals (41 < As) = ¢, (A2 = A3) =q, ...,
(A < Aj) =q. Itis easy to show that D,, is a
tautology (and hence provable) iff n is odd. The
formula does not hold for any even n. We auto-
matically generated NDL proofs for the first 15
odd-indexed instances of D,,. These proofs grow
quite large with increasing n. They are a hard test
for proof checking not just due to their sheer length,

but also because they have multiple nested assump-
tions that require very careful and precise tracking
of assumption scope.

B.2.6 Tseitin Formula Problems

Consider the following undirected graph G, where
each node (A, B, C, D) is also viewed as a propo-
sitional atom, and where additional propositional
atoms x; are attached to the edges:

T

CO——®@

The core Tseitin formula for G is the conjunction
of the following definitions, one for each node:
AT S ao P as, Box ®as, Cexo® g,
D s x3 ® x4 © x5, where @ denotes the exclu-
sive or: z; @ x5 < (x; A~ x;) V (z; A~ x;). An
easy induction on n, with n = 2 as the base case,
shows that p; & pa & - - - @ p,, holds iff exactly an
odd number of p; hold (we omit parentheses since
@ is commutative and associative). Thus, these
definitions assert that each node atom holds iff an
odd number of edges incident to that node hold.
So far all we have is a set of definitions, one for
each node, that are perfectly jointly consistent. But
now suppose we go on to assert that an odd number
k of node atoms hold, say by specifying A, ~B,
~C, ~D (so that only k£ = 1 atom holds, A in this
case). By what we just said about the exclusive
or, it would follow that A & B & C @& D holds.
However, by the given definitions, we have:

A®B®C®D & (v1Dx2Das)d (1D x3)
D (x2Dx4) D (3B xs ®ws5)
& (z1 @) B (2 B x2)

@ (3 B x3)

O (x4 D x4) D (x5 B xs)
& false.

The first step follows just by rearranging the vari-
ables on the right-hand side of the first equiv-
alence, while the second step follows because
p @ p < false for any formula p. Thus we have
a contradiction: A® B & C @& D holds because we
have stipulated that only A holds, but at the same
time we have shown that A @ B @& C @ D cannot
hold because it leads to false. The key intuition
is that because each edge variable appears twice on
the right-hand side of the first equivalence (once
for each node to which the edge is incident), we
can regroup all variables as shown above to derive
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false.

While the conventional formulation of a Tseitin
problem is as a jointly unsatisfiable set of formu-
las (typically clauses, but again, we work with full
propositional logic), we can easily pose it as a for-
ward inference problem: Given the n definitions
for the n node atoms of a graph GG, prove the nega-
tion of any conjunction of an odd number of those
atoms.

B.2.7 Counting Principle Problems

The 5 problems in this group encode statements
of the form There is a way to partition a set of M
elements into subsets of size p each. Clearly, this
statement is satisfiable iff p divides M. Set n =
M /p. For each element e € {1,2,..., M} and
each part (or “block™) b € {1,2,...,n}, introduce
a Boolean variable x. ; that holds iff element e is
assigned to block b. We conjoin the following sets
of constraints:

1. Exactly one block per element. Every element
e must appear in exactly one block:

(Te,i V@ea VooV Tey) and @ep, = Tep,

Vb #£by, e=1,...

2. Exactly p elements per block. Each block b
must contain exactly p elements:

M
EE:ZEeb =D
e=1

In SAT, such an equality is typically encoded
by a pair of cardinality constraints > p and
< p, each represented by a standard cadinality
encoding.

b=1,...,n.

Simple counting shows that these constraints admit
a satisfying assignment precisely when p divides
M.

C Equational Proofs

In the example term g(a, f(X)) mentioned in Sec-
tion 3, f and g have arities 1 and 2, respectively,
and a is a constant (symbol of arity 0). Variables
start with upper-case letters; unary function sym-
bols are f, f1, .. .; binary symbols are g, g1, g2, . - -;
ternary symbols are h, hq, .. .; and quaternary func-
tion symbols (arity 4) are r,r1,.... The proof is
a sequence of rewrite steps s; = sg = - - -
starting from the original term s = s; and leading
to s, = t. Each step s; = s;41 is justified by citing
one or more of the given axioms.

:Sn

.M.

The following is a simple example of a set of
(unconditional) axioms and an equational proof
based on these axioms:

- Axioms:

El: h(c,V1170,c) = h(V1170,a,£f4(fl(c)))

E2: h(V1173,V1174,V1173) = g2(V1173,V1174)

E3: h(a,V1181,f4(fl(c))) = gl(£f2(£4(V1181)),£f4 (e)
E4: f2(f4(V1184)) = g(£3(V1184),f2(e)

E5: g(V1187,f2(e)) = g4 (£f1(£5(v1187)),d)

E6: f4(v1188) = v1188

- Proof:

s = g(h(c,a,c),h(a,c,a))
g(h(a,a,£4(f1(c))),h(a,c,a)) by E1
g(h(a,a,f4(fl(c))),g92(a,c)) by E2
g(gl(f2(f4(a )) f4(e)),92(a,c)) by E3
g(9l(g(f3(a),f2(e)),f4(e)),g2(a,c)) by E4
g (gl (g4 (£l (f5< 3(a))),d),e),g92(a,c)) by E5, E6

This is a rather short proof. The average number of
steps in an EQ; proof is 18; the maximum is 35.

What does it mean to say that such a proof
is correct? It means that for every proof step
s; = 8iy1 by F4,...,E;  theterm s; has k > 0
subterms uy, ..., u; called redexes, in mutually
disjoint positions, where each redex wu; matches the
left-hand side of exactly one of the £ listed equa-
tions, call it E,,,, under some substitution 0;. A
substitution 6 is a function from variables to terms;
we say that a term s’ matches a term s under 6
iff O(s) = s, where 6 is the unique homomor-
phic extension of § to the set of all terms. The
term s;4+; is then obtained from s; by replacing
every redex u; with the corresponding right-hand
side of E,,, called the contractum, i.e., by apply-
ing the substitution 6; to the right-hand side of
E,,. For example, if E; is f(X) = g(X, f(X)),
then h(a, f(b),c) = h(a,g(b, f(b)),c) by Ej, be-
cause the subterm f(b) matches the left-hand side
of F1 under § = {X ~— b} and we can obtain
h(a, g(b, f(b)), c) by replacing the redex f(b) with
the corresponding right-hand side of Ej—the con-
tractum g(b, f(b)).

All problems were randomly generated, first by
generating a chain of terms sy, . . ., s, where each
Si+1 18 a minor perturbation of s; and then inducing
a set of universally quantified equations enabling
the rewriting of s; into s;4+1. The proofs in this
dataset are tedious and involve fairly large terms
but are routine and do not require much ingenuity.

For the equational proof-checking task, each dic-
tionary (record) in EQ; comprises the following
items:

* start and end represent the starting and des-
tination terms;

* equationalAxioms is a dictionary mapping
the names of equational axioms to the axioms;
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numberOfProofSteps gives the number of
steps in the proof;

correctProof is boolean signifying
whether the proof is actually correct;

incorrectStep is the position of the first
step in the proof that contains an error, if such
a step exists, and -1 otherwise;

proof is a list of steps, where every step is a
structured record (dictionary) with the follow-
ing keys:

— step: the position of the step (counting
starts with 0);

— term: the term corresponding to that
step;

— redexList: the list of redexes that
rewrite this step’s term into the term of
the next step; each redex in redexList
is a dictionary with the following keys:

* equation gives the matching equa-
tion for that particular redex;

* equationName is the unique name
of that equation;

* redex gives the term representation
of the redex;

* redexPosition gives the unique
position of the redex inside the over-
all term as a list of positive integers
representing the Dewey decimal po-
sition of the redex;

* theta gives the matching substitu-
tion.

Below is a full example of the above representation
of an equational proof:

- start: g(r(c,e,d,c),r(b,e,c,e))

end: g(g3(fl(f4(b)),d),£f2(£5(gl(e,b))))

equationalAxioms:

El: £4(V186772) = V186772

E2: g4 (V186784,V186785) = £3(V186784)

E3: g4(Vv186773,V186774) = g2 (f4(£3(v186773)),
V186774)

E4: h5(V186755,c,e) = £1(f1(gl(V186755,¢e)))

E5: £(V186794) = g3(Vv186794,d)

E6: g2 (f4(£3(v186783)),b) = £(g3(V186783,a))

E7: £1(f1(V186767)) = £f4(g4(V186767,f4 (e))

E8: r(c,e,V186752,c) = g4 (£3(V186752),b)

E9: r(V186733,e,V186734,V186735) = h5(V186733,
V186734,V186735)

E10: £3(V186766) = £4(V186766

E1l: £3(V186793) = f2(£5(V186793))

E12: gl(V186758,V186759) = gl(V186759,V186758)

E13: g3(V186799,V186800) = £1(V186799)

numberOfProofSteps: 9
correctProof: false
incorrectStep: 9

proof:
- step: 0
term: g(r(c,e,d,c),r(b,e,c,e))
redexList: []
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- step: 1
term: g(r(c,e,d,c),h5(b,c,e)
redexList:

- equation: r(v186733,e,V186734,V186735) =
h5(v186733,V186734,V186735
equationName: E9
redex: r(b,e,c,e)
redexPosition:
= 2
theta:
V186735: e
V186734: c
V186733: b
contractum: h5(b,c,e)
- step: 2
term: g(g4(£3(d),b),h5(b,c,e)
redexList:
- equation: r(c,e,V186752,c) = g4 (£3(
V186752),b)
equationName: E8
redex: r(c,e,d,c)
redexPosition:
!
theta:
V186752: d
contractum: g4 (£3(d),b)
- step: 3
term: g(g4(£3(d),b),fl(fl(gl(b,e))))
redexList:
- equation: h5(V186755,c,e) = f1(f1l(gl(
V186755,e)))
equationName: E4
redex: h5(b,c,e)
redexPosition:
= 2
theta:
V186755: b
contractum: f1(£f1(gl(b,e)))
- step: 4
term: g (g4 (£3(d),b),fl(fl(gl(e,b))))
redexList:
- equation: gl(V186758,V186759) = gl(
V186759,V186758)
equationName: E12
redex: gl(b,e)
redexPosition:
= 2
= 1
= 1
theta:
V186759: e
V186758: b
contractum: gl (e,b)
- step: 5
term: g (g4 (f4(d),b), f4 (g4 (gl(e,b),fd(e))))
redexList:
— equation: £3(V186766) = f£4(V186766)
equationName: E10
redex: £3(d)
redexPosition:
!
= 1
theta:
V186766: d
contractum: f4 (d)
— equation: f1(f1(V186767)) = f4(g4(
V186767,f4 (e)))
equationName: E7
redex: f1l(fl(gl(e,b)))
redexPosition:
= 2
theta:
Vv186767: gl (e,b)
contractum: f4(g4(gl(e,b),fd(e)))
- step: 6
term: g(g2(f4(£3(f4(d))),b),g4(gl(e,b),f4d(e)
))
redexList:
- equation: f4(V186772) = V186772
equationName: E1
redex: f4(g4(gl(e,b),fd(e)))
redexPosition:
= 2
theta:
V186772: g4 (gl(e,b),fd(e))
contractum: g4 (gl (e,b),fd(e))
- equation: g4(V186773,V186774) = g2 (f4(£f3



(V186773)),V186774)
equationName: E3
redex: g4 (f4(d),b)

redexPosition:
=1

theta:
v186774: b

V186773: f4(d)
contractum: g2 (f4 (£3(£4(d))),b)

- step: 7
term: g(f(g3(f4(d),a)),£3(gl(e,b)))
redexList:
- equation: g2 (f4(£3(V186783)),b) = £ (g3(
V186783, a))

equationName: E6
redex: g2 (f4(f3(f4(d))),b)
redexPosition:

= i
theta:

V186783: £f4(d)
contractum: £ (g3 (£f4(d),a))

- equation: g4(V186784,V186785) = £3(
V186784)

equationName: E2
redex: g4 (gl(e,b),fd(e))
redexPosition:

= 2
theta:

V186785: f4 (e)

V186784: gl(e,b)
contractum: £3(gl(e,b))

- step: 8
term: g(g3(g3(f4(d),a),d),£2(£5(gl(e,b))))
redexList:
- equation: £3(V186793) = f2(£5(V186793))

equationName: E11
redex: £3(gl(e,b))
redexPosition:

= 2
theta:

V186793: gl (e,b)
contractum: f2 (£f5(gl(e,b)))

- equation: £f(V186794) = g3(V186794,d)

equationName: E5
redex: f(g3(f4(d),a))
redexPosition:

= 1
theta:

V186794: g3 (f4(d),a)
contractum: g3(g3(f4(d),a),d)

- step: 9
term: g(g3(fl(f4(b)),d),£f2(£5(gl(e,b))))
redexList:
- equation: g3(V186799,V186800) = £1(
V186799)

equationName: E13
redex: g3 (f4(d),a)

redexPosition:
= 1
= 1

theta:
Vv186800: a

V186799: £f4(d)
contractum: f1(f4 (b))
corrupted: true
correctContractum: f1(f4(d))
corruptionMethod: contractumCorruption
corruptedRedex: 1

For the proof-checking task, as mentioned in
Section 3, if a model judges a proof to be correct
then it must output an explanation of that correct-
ness for each step of the proof. An explanation for
a step s; = s;41 must list every redex for that step,
along with the position of the redex and the corre-
sponding equation and contractum. The position
of a redex is encoded as a list of positive integers
representing the Dewey decimal position of the re-
dex in the term. If the model asserts that a proof
is incorrect, it must specify the first step where the

proof goes wrong and how exactly it does so. A
proof is correctly checked iff the model correctly
evaluates every step in the proof. The metric we
report in Section 4 is accuracy—the fraction of
proofs that are correctly checked.
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