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Abstract

Low-Rank Adaptation (LoRA) enables
parameter-efficient fine-tuning of large lan-
guage models by decomposing weight updates
into low-rank matrices, significantly reducing
storage and computational overhead. While
effective, standard LoRA lacks mechanisms for
uncertainty quantification, leading to overconfi-
dent and poorly calibrated models. Bayesian
variants of LoRA address this limitation, but
at the cost of a significantly increased number
of trainable parameters, partially offsetting
the original efficiency gains. Additionally,
these models are harder to train and may suffer
from unstable convergence. In this work, we
propose a novel parameter-efficient Bayesian
LoRA via subspace inference, demonstrating
that effective uncertainty quantification can be
achieved in very low-dimensional parameter
spaces. The proposed method achieves strong
performance with improved calibration and
generalization while maintaining computa-
tional efficiency. Our empirical findings show
that, with the appropriate projection of the
weight space: (1) uncertainty can be effectively
modeled in a low-dimensional space, and (2)
weight covariances exhibit low ranks.

1 Introduction

LoRA (Low-Rank Adaptation) (Hu et al., 2022) re-
duces computational overhead by decomposing the
update weights of pre-trained models into low-rank
matrices, enabling efficient adaptation to down-
stream tasks. Minimizing the number of trainable
parameters reduces memory and storage require-
ments, making large-scale model adaptation fea-
sible. Reducing computational overhead speeds
up training time and makes adaptation possible in
resource-constrained settings.

Unlike pre-trained models, which are relatively
well-calibrated (OpenAI, 2023), fine-tuned large
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Figure 1: Performance averaged over multiple GLUE
datasets (individual results in Fig. 3). Our method
achieves superior calibration (ECE) and competitive
predictive performance (Brier) while maintaining com-
putational efficiency. For example, at r “ 8 (Ĳ), we
reduce ECE by half with only 1/10th LoRA parameters.

models (e.g., LLMs) often become overconfident
and poorly calibrated (Jiang et al., 2021; Tian et al.,
2023; Xiao et al., 2022; He et al., 2023), especially
when trained on limited data. This hinders their
usability for applications where uncertainty-aware
decisions are performed.

Bayesian treatment is then frequently proposed
to address overconfidence in neural networks (Blun-
dell et al., 2015; Kristiadi et al., 2020; Aitchi-
son et al., 2021; Izmailov et al., 2021). Conse-
quently, recently proposed Bayesian variants of
LoRA (Onal et al., 2024; Yang et al., 2024; Doan
et al., 2025) address the aforementioned challenges
by introducing uncertainty estimation directly into
the fine-tuning process. During training, these mod-
els continuously adjust both the mean and covari-
ance of fine-tuned parameters to achieve better gen-
eralization and uncertainty quantification.

Learning the posterior covariance matrix is nec-
essary for modeling epistemic uncertainty. How-
ever, its size grows quadratically with the number
of parameters, which can easily cancel out the bene-
fits of LoRA, in addition to making learning signifi-
cantly harder. Using low-rank, Kronecker-factored,
or diagonal-only covariances partially alleviates
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Figure 2: (left): Weight-adaptation approaches: LoRA vs. B-LoRA-XS. As indicated by the color coding, some
parameters remain frozen (blue), others are trained (orange) or obtained via SVD (green). (right): Number of
trainable parameters per method. XS variants remain computationally competitive even for ranks as large as r “ 25.

the problem, but as we demonstrate in Sec. 3, this
comes at the cost of results quality loss. Further-
more, even at rank = 2, the number of trainable pa-
rameters is quadrupled compared to vanilla LoRA.
This creates a need for an alternative approach that
retains covariance modeling capacity while reduc-
ing the number of required parameters.

We propose a method that learns Bayesian poste-
riors for weights projected onto a low-dimensional
manifold, hence maintaining parameter efficiency.
The thoughtfully selected projection allows for the
effective representation of the covariances between
weights through covariances between representa-
tions in the lower-dimensional space. In this design,
we follow the work of Bałazy et al. (2024), who
recently proposed a strategy for finding such pro-
jections with SVD. We prove that they are effective
for learning Bayesian models as well.

Operating in such a reduced parameter space sig-
nificantly improves the feasibility of Bayesian infer-
ence. We show that correlations between weights
can be represented very efficiently – unlike in the
original weight space, we can use covariance matri-
ces with ranks as low as k “ 2. Thanks to the low
number of parameters, training is also more stable.
Finally, the method achieves superior calibration
and accuracy at low budgets (e.g., see Fig. 1).

A key contribution of our work lies in introduc-
ing Bayesian learning within a low-rank projected
subspace derived from pre-trained weights. While
the individual components of our method, such as
SVD projections and Bayesian inference, are es-
tablished techniques, their synergistic application
to learn Bayesian posteriors within a compressed

subspace constitutes a meaningful conceptual in-
novation. Our approach enables uncertainty-aware
fine-tuning with strong parameter efficiency, yield-
ing improved uncertainty quantification with mini-
mal computational overhead.

In the Appendix, we supplement the results pre-
sented in the paper with a discussion of related
work, a detailed overview of the experimental setup,
and the exact numeric values for the figures in the
main text.

The source code is available online1.

2 Method: B-LoRA-XS

LoRA fine-tunes large pre-trained models by learn-
ing low-rank weight updates ∆W instead of train-
ing the weights W directly. For a pre-trained pa-
rameter matrix W 0 P Rmˆn that is kept fixed,
LoRA learns a rank-r update ∆W “ AB, where
A P Rmˆr and B P Rrˆn have far fewer pa-
rameters. The effective weight is then: W “
W 0 `∆W “ W 0 `AB, where only A and B are
trained. LoRA is then typically applied jointly for
multiple layers l, yielding a set of updates t∆Wlu.
Then, Bayesian treatment of LoRA can improve its
calibration and uncertainty quantification.

Bayesian treatment of a neural network in-
volves finding the posterior ppθ | Dq given train-
ing data D. By Bayes’ theorem: ppθ | Dq “
ppD|θq ppθq

ppDq , where θ represents the model’s pa-
rameters (i.e., weights) considered random vari-
ables. Specifically, for the Bayesian LoRA set-
ting, θ denotes a set of the learned model up-
dates, while the remaining frozen weights are hid-

1Source code: https://github.com/gmum/b-lora-xs
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Figure 3: Median˘s.d. accuracy (left), ECE (middle), and NLL (right) on 4 GLUE tasks (rows) vs. total parameter
count for several methods and varying ranks r. B-LoRA-XS (our) achieves the accuracy and the calibration of
SWAG-LoRA while using significantly fewer parameters than LoRA. See Fig. 1 for averaged results. The arrows
in the figure indicate the direction of improvement ("towards better") in the standard manner. The exact numeric
values underlying the plots are reported in Tables 1-4 in the Appendix.

den inside the model likelihood, given by ppD |
θq “ ś

iPrDs ppyi|xi, θq. The learned posterior al-
lows Bayesian model averaging at inference as:
ppy˚ | x˚,Dq “ ş

ppy˚ | x˚, θq ppθ | Dq dθ «
1
S

ř
θ„ppθ|Dq ppy˚ | x˚, θq.

Bayesian LoRAs obtain the posterior for
t∆Wlu through the learned posterior for θ “
YltAl Y Blu, where l indexes the weight updates
(layers). The posterior itself is approximated either
using a set of particles or a closed-form distribu-
tion. Due to its superior performance, we rely on
the latter and assume ppθ|Dq « N pµ,Σq, where
µ is the vector of means (of size equal to the num-
ber of learned parameters) and Σ is the covariance
matrix, whose size grows quadratically with the
total number of parameters. Notably, we aim to
model cross-layer interdependencies, requiring co-
variance estimation also across weights in different
layers tlu. This however results in an impractically
large number of parameters. Consequently, we ex-
plore methods to reduce this cost by representing
distributions ppt∆Wlu|Dq differently, e.g., using
SVD-based projections.

In LoRA-XS (Bałazy et al., 2024), the adap-
tation matrices A and B are initialized using the
truncated SVD of the corresponding pre-trained
weight matrices W 0. This initialization captures
the most informative singular components of the
original weights. Under the assumption that the
fine-tuned task is similar to the original task, these
projections retain the functional properties also for

downstream adaptations. LoRA-XS then freezes
A and B and inserts a small trainable matrix
R P Rrˆr between them, reducing the number
of trainable parameters to r2 (r2 ! pn ` mq ¨ r)
per weight matrix. Then, the fine-tuning update
is: h “ xW 0 ` x∆W “ xW 0 ` xARB, where
A P Rmˆr and B P Rrˆn are low-rank matrices
obtained from the truncated SVD of W 0, specifi-
cally A “ UrSr and B “ V T

r .
B-LoRA-XS, proposed in this paper, leverages

the frozen projections A and B for effective and
efficient Bayesian learning. Its core idea is to ap-
ply the Bayesian treatment in the extremely com-
pressed parameter space given by SVD-based pro-
jections, making Bayesian inference tractable and
highly efficient. Although this specific idea is
novel, it can be related to the framework of sub-
space Bayesian Inference.

Subspace Inference (SI) (Izmailov et al., 2020)
was proposed as a remedy for the intractability of
full-dimensional posteriors in modern networks.
Low-dimensional affine manifold, carefully cen-
tred on a well-trained solution, already contains
a rich family of high-performing weight vectors.
Performing Bayesian integration restricted to that
manifold restores calibrated uncertainty without
revisiting the entire parameter space. In particular,
given a well-trained reference point w̄ P Rd and
K ! d orthonormal basis vectors-e.g. the leading
PCA directions of an SGD trajectory - the learn-
ing subspace is S :“ tw “ w̄ ` Pz | z P RKu,

1262



P P RdˆK , where Bayesian parameters are the
low-dimensional representations θ “ tzu.

B-LoRA-XS defines a layer-local manifold that
leaves the pretrained backbone untouched. For
each frozen weight matrix W 0

l , an SVD W 0
l “

UlSlV
T
l is computed once, and the top r singular

directions yield fixed projectors Al “ Ul,rSl,r and
Bl “ V T

l,r. Note that, whereas SI learns P from
the training dynamics, B-LoRA-XS projects onto
directions already favored by the pretrained back-
bone. Then, all task-specific variability is captured
by these square adapters Rl P Rrˆr.

Vectorising and stacking these layer-projections
defines w “ w̄ ` PBzB , PB “ blockdiagpBT

l b
Alq, where w “ rvecpW1qT , . . . , vecpWlqT , . . .sT ,
w̄ “ rvecpW 0

1 qT , . . . , vecpW 0
l qT , . . .sT , and PB is

a block-diagonal matrix with blocks BT
l b Al, one

for each layer l.
Thus B-LoRA-XS explores an affine subspace

SB :“ tw “ w0 ` PBzB|zB P R
ř

l r
2u, whose

dimension scales with r2 per adapted layer.
In Sec. 3, we empirically demonstrate that Al

and Bl, obtained from the SVD of the pre-trained
weights, are not only effective for point-wise fine-
tuning but also enable effective uncertainty quantifi-
cation for t∆Wlu through modeling covariances
for tRlu. Although we never compute it explic-
itly, the covariance matrix for individual ∆W is
expressed as Σ∆Wl

“ pBT
l bAlqΣRl

pBT
l bAlqT ,,

where ΣR is the (intra-layer) covariance matrix for
R and b denotes the Kronecker product.

In practice, we simply learn the joint posterior
ppθ “ YlRl|Dq « N pµ,Σq (only) for the inner
matrices R. The covariance matrix Σ captures both
inter-layer and intra-layer dependencies, allowing
the model to learn complex relationships. At infer-
ence, similar to LoRA, we use samples of R along
with the respective projections A and B to obtain
h, as realized through samples of ∆W , however
without ever computing it explicitly.

The parameters µ and Σ are learned efficiently
using SWAG (Maddox et al., 2019) (though Vari-
ational Inference or the Laplace approximation
could also be used). After a burn-in phase (a fixed
10 or 25 epochs) of the gradient-based optimiza-
tion, the algorithm maintains µ̂ – a running av-
erage of θ – along with k vectors of differences
D̂last “ θlast ´ µ̂ for the last k values of θ, and
a running average of θ2. Based on these aver-
ages, we estimate the variances σ̂2 for individ-
ual parameters and approximate the covariance as
Σ̂ « 1

2pD̂ ¨ D̂T ` diagpσ̂2qq, which constitutes a

rank-k approximation to the covariance matrix.
We illustrate B-LoRA-XS method in Fig. 2. Our

method uses the total of |θ| ¨ pk ` 2q parameters,
where |θ| “ ř

l r
2.

3 Experiments

Setup: We performed experimental evaluation on
four GLUE tasks (Wang et al., 2018) (RTE, MRPC,
CoLA, and SST-2) using RoBERTa-large (Liu
et al., 2019). We compare our method (B-LoRA-
XS) against the standard LoRA, LoRA-XS – a
parameter efficient variant, and against SWAG-
LoRA (Onal et al., 2024) – a Bayesian variant.
For LoRA-XS and B-LoRA-XS we considered
ranks r P t2, 8, 16, 25u and for LoRA and SWAG-
LoRA due to limited budget we were able to test
r P t2, 8u. The number of parameters (a proxy for
storage and computation costs) as a function of
ranks r and k is summarized in Fig. 2. We report
accuracy (higher is better), ECE and NLL (lower
is better) of median˘s.d. across 5 runs.

Performance analysis: Fig. 3 compares accu-
racy, Expected Calibration Error (ECE), and Nega-
tive Log-Likelihood (NLL) against total parameter
count across 4 datasets. Our main claim is that
B-LoRA-XS improves overall model performance,
with a particular focus on calibration metrics. In-
deed, Figure 3 (middle and right) demonstrates
that B-LoRA-XS consistently yields lower ECE
and NLL compared to standard LoRA across all
parameter scales. Regarding accuracy (Figure 3:
left), while standard LoRA shows marginally bet-
ter results for a few configurations at moderate
parameter scales, the majority of configurations
show B-LoRA-XS matching or exceeding the ac-
curacy of standard LoRA. More importantly, in no
setting does standard LoRA significantly outper-
form B-LoRA-XS in terms of calibration, which
is a primary focus of our work. Bayesian variants,
including B-LoRA-XS and SWAG-LoRA, gener-
ally outperform their non-Bayesian counterparts
in ECE and NLL. However, our model achieves
these strong calibration results with 5–15 times
fewer parameters than SWAG-LoRA. Moreover,
while SWAG-LoRA sometimes performs well, its
results vary significantly between runs. In contrast,
B-LoRA-XS exhibits stable and consistent conver-
gence. Finally, as results for MRPC and CoLA
suggest, its performance remains robust across dif-
ferent values of k, whereas SWAG-LoRA’s ECE
deteriorates significantly at k “ 2.

1263



CoLA

  0.86

  0.87

  0.88

Ac
cu

ra
cy

 0.05
 0.10
 0.15
 0.20

EC
E

 0.40

 0.60

 0.80

NL
L

LoRA r=2 (0.2M)
LoRA-XS r=16 (25k)
LoRA-SWAG r=8
LoRA-SWAG r=2
B-LoRA-XS r=16

MRPC

0 2 5 10 20
covariance matrix rank (k)

0.905

0.910

0.915

Ac
cu

ra
cy

0 2 5 10 20
covariance matrix rank (k)

 0.05

 0.10

 0.15

 0.20

EC
E

0 2 5 10 20
covariance matrix rank (k)

 0.40

 0.60

NL
L

# Params
< 0.2M
< 0.5M
< 1.0M
more

Figure 4: Impact of the posterior covariance matrix rank (k “ 0 indicates the case with no off-diagonal elements)
for CoLA (top) and MRPC (bottom). For brevity, confidence bars (˘ standard deviation) are omitted for MRPC.
The colored lines represent non-Bayesian baselines (e.g., standard LoRA or LoRA-XS at a given rank r). The
exact numeric values underlying the plots are reported in Tables 5 and 6 in the Appendix.

CoLA

0.05

0.00

Ac
c 

ch
an

ge  all data avg performance 

0.00

0.05

EC
E 

ch
an

ge

0

1

NL
L 

ch
an

ge LoRA r=8
LoRA-XS r=16
LoRA-SWAG r=2
B-LoRA-XS r=16

MRPC

-90% -75% -50%
training data size reduction

0.1

0.0

Ac
c 

ch
an

ge  all data avg performance 

-90% -75% -50%
training data size reduction

0.00

0.05

EC
E 

ch
an

ge

-90% -75% -50%
training data size reduction

0

1
NL

L 
ch

an
ge LoRA-SWAG r=2

B-LoRA-XS r=16

Figure 5: Accuracy, ECE and NLL change as the training set is progressively reduced (e.g. -90% means using only
10% of the data for training). The dashed line marks the model’s performance when trained on the full dataset.

Covariance matrix rank analysis: Figure 4
compares the sensitivity of the Bayesian LoRA
variants to changes in covariance matrix rank k.
Markers indicate model sizes (e.g., SWAG-LoRA
" B-LoRA-XS). As expected, SWAG-LoRA de-
teriorates proportionally as rank decreases. On
the other hand, B-LoRA-XS maintains its perfor-
mance across a wide range of k. Significant degra-
dation occurs only when off-diagonal covariance
values are entirely ignored (i.e., at k “ 0). Notably,
B-LoRA-XS achieves the best calibration at low
ranks, particularly at k “ 2 or k “ 5. This demon-
strates that the SVD-based projection effectively
disentangles parameters, enabling low-dimensional
uncertainty modeling.

Data size reduction analysis: Figure 5 com-
pares how accuracy, ECE, and NLL degrade when
training data is subsampled. All methods pre-
dictably lose accuracy as data size decreases, with
little difference between the various LoRA-based
approaches. We conclude that Bayesian learning
does not improve robustness in this case. However,
we note variations across datasets in terms of accu-
racy. For example, in MRPC, the decline is more
pronounced, likely due to the dataset smaller size.

4 Conclusion

B-LoRA-XS addresses the lack of uncertainty
quantification in LoRA fine-tuning while maintain-
ing parameter efficiency. It utilizes truncated SVD
to project model updates into a lower-dimensional
space and leverages the Bayesian framework to
enhance uncertainty estimation.

Our method’s primary strength lies in its
calibration capabilities; it consistently achieves
lower expected calibration error and negative log-
likelihood compared to standard LoRA and LoRA-
XS across various parameter scales. While standard
LoRA may exhibit marginally better accuracy in a
few specific configurations, B-LoRA-XS generally
matches or exceeds its accuracy in most settings,
and critically, always provides superior or equal cal-
ibration. Compared to the Bayesian LoRA baseline,
B-LoRA-XS matches or surpasses its accuracy and
calibration performance while using significantly
fewer parameters, exhibiting greater training stabil-
ity, and relying on simpler, lower-rank covariance
representations.
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Limitations

While B-LoRA-XS demonstrates promising results in

parameter-efficient uncertainty quantification, several limi-

tations should be acknowledged. First, the effectiveness of

B-LoRA-XS inherently depends on the quality of the initial

SVD projection derived from pre-trained weights (as in LoRA-

XS). If the principal components of the pre-trained model

are not well-aligned with the requirements of a significantly

different downstream task, the performance might be subop-

timal. Second, our method employs SWAG with a low-rank

approximation for the covariance matrix. While efficient, this

is one specific approach to approximate Bayesian inference.

Other techniques (e.g., more sophisticated variational infer-

ence methods or different posterior approximations) might

yield different trade-offs between performance, calibration,

and computational cost, and were not explored in this work.

Third, although B-LoRA-XS significantly reduces the number

of trainable parameters for Bayesian adaptation, the inference

process still requires multiple forward passes for sampling,

which increases computational cost compared to non-Bayesian

LoRA or LoRA-XS. Fourth, our empirical validation is con-

ducted on GLUE classification tasks using RoBERTa-Large.

The generalizability of B-LoRA-XS’s benefits to other model

architectures, much larger model scales, or different task types

(such as text generation or more complex reasoning tasks)

warrants further investigation. Finally, the optimal choice of

LoRA rank r and SWAG covariance rank k might require care-

ful tuning for different datasets and models, potentially adding

to the practical overhead of applying the method effectively.
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A Related Work

PEFT: As large language models continue to
grow, parameter-efficient fine-tuning (PEFT) has
become a popular approach to reducing compu-
tational and storage costs. Among various meth-
ods (Houlsby et al., 2019; Guo et al., 2021; Li
and Liang, 2021; Lester et al., 2021), LoRA (Hu
et al., 2022) has emerged as one of the most widely
used. Building on its success, several approaches
have been proposed to enhance different aspects of
PEFT (Kopiczko et al., 2024; Zhang et al., 2023;
Dettmers et al., 2024). One such method, LoRA-
XS (Bałazy et al., 2024), further optimizes parame-
ter efficiency by enabling flexible control over the
number of trainable parameters per adaptation mod-
ule. B-LoRA-XS reuses the idea of SVD-based
projections to reduce the parameter space dimen-
sionality.

Bayesian LoRAs: Standard LoRA (Hu et al.,
2022) does not account for uncertainty, mak-
ing fine-tuned models susceptible to miscalibra-
tion. Then, Bayesian LoRA approaches integrate
Bayesian inference techniques into LoRA to im-
prove uncertainty estimation and generalization.

Several Bayesian LoRA methods have been pro-
posed, each employing different Bayesian tech-
niques to address these challenges. SWAG-LoRA
(Onal et al., 2024) combines Stochastic Weight
Averaging-Gaussian (SWAG) with LoRA to enable
approximate Bayesian inference, significantly im-
proving model calibration and reducing overconfi-
dence. Laplace-LoRA (Yang et al., 2024) applies a
Laplace approximation to the posterior over LoRA
parameters. Bella (Doan et al., 2025) introduces
an approach that reduces the cost of Bayesian deep
ensembles by applying multiple low-rank perturba-
tions to a pre-trained model. BLoB (Bayesian Low-
Rank Adaptation by Backpropagation) (Wang et al.,
2024) jointly learns both the mean and covariance
of model parameters throughout the fine-tuning pro-
cess using Variational Inference. B-LoRA (Meo
et al., 2024) introduces a Bayesian perspective to
both quantization and rank selection by using a
prior distribution over these hyperparameters, op-
timizing model efficiency and reducing bit opera-
tions.

The key challenge lies in balancing uncertainty
modeling with parameter efficiency, as Bayesian in-
ference typically increases both the number of train-
able parameters and computational cost. Despite
their advantages, Bayesian LoRA methods face

challenges related to increased parameter count and
computational cost. One major issue is the higher
storage and memory requirements, as Bayesian
methods often require additional parameters to
model uncertainty, particularly those involving co-
variance estimation, such as SWAG-LoRA. Scala-
bility remains a concern for methods that explicitly
model uncertainty across a large number of param-
eters.

B Scientific Artifacts Licenses

Listed below are the licenses for the scientific ar-
tifacts used in this research. For complete infor-
mation, please use the links below and refer to the
original sources.

Scientific Artifacts: RoBERTa-large (MIT),
MRPC (Unknown), RTE (Unknown), CoLA (Un-
known), SST-2 (Unknown), HuggingFace Trans-
formers Library (Apache-2.0), SWAG-LoRA repos-
itory2 (MIT), LoRA-XS repository3 (Unknown).

C Model Size And Budget

• RoBERTa-large: 355M parameters

• GPUs: RTX4090 and V100-SXM2-32GB,
each run was performed on a single GPU

• GPU total time: « 63 days

D Statistics For Data

We followed the original GLUE train-validation
split

• MRPC - train: 3’668, val: 408

• RTE - train: 2’490, val: 277

• CoLA - train: 8’551, val: 1043

• SST2 - train: 67’349, val: 872

E Experimental Setup Details

The study was conducted on a subset of the GLUE
benchmark (Wang et al., 2018), specifically on
RTE, MRPC, CoLA, and SST-2 tasks (with the
original train-validation split), using RoBERTa-
large (Liu et al., 2019) checkpoints from the
HuggingFace Transformers library (Wolf et al.,
2020). For the RTE and MRPC tasks, we followed
LoRA-XS and initialized LoRA-XS modules with

2https://github.com/fortuinlab/swag-lora
3https://github.com/MohammadrezaBanaei/

LoRA-XS
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weights fine-tuned on the MNLI task. We inte-
grated B-LoRA-XS/LoRA-XS modules into the
Query, Value, Attention Output, and Output Fully
Connected weight matrices in all transformer lay-
ers (Vaswani et al., 2017), whereas due to budget
limits, standard LoRA and SWAG-LoRA modules
were added only to the Query and Value matrices.
Note this is sufficient for SWAG-LoRA to achieve
its best performance.

For each dataset, for the burn-in stage of training,
we adopted hyperparameters from the LoRA-XS
paper. These include: learning rate, batch size,
AdamW optimizer (Loshchilov and Hutter, 2019),
linear scheduler with warm-up, dropout, and the
LoRA scaling factor α. For standard LoRA we
followed the same setup, except for the learning
rate, which was determined through grid search.
Similarly, the SWAG starting epoch (e.g. 10 or 25)
was selected through grid search. Based on the find-
ings from SWAG-LoRA, we used a constant learn-
ing rate scheduler (SWALR) with warm-up. The
SWAG learning rate was set to the maximum learn-
ing rate from the first (burn-in) phase of training.
Unless stated otherwise, we used a low-rank covari-
ance matrix approximation with the rank k “ 10.
In all our experiments, SWAG estimation was ap-
plied exclusively to the LoRA modules, and SWAG
predictions were consistently obtained with S “ 15
model samples.

F Numeric Results

Tables 1-6 present exact numeric values for the
plots presented in Figures 3 and 4.
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Accuracy ECE NLL
median s.d. median s.d. median s.d.

method r k

LoRA 2 10 0.865 0.004 0.116 0.044 0.652 0.215
8 10 0.870 0.004 0.125 0.008 0.933 0.154

LoRA-SWAG 2 2 0.870 0.003 0.086 0.013 0.390 0.018
10 0.870 0.002 0.049 0.013 0.365 0.015

8 2 0.875 0.005 0.078 0.016 0.384 0.012
10 0.874 0.004 0.037 0.008 0.351 0.009

LoRA-XS 2 10 0.822 0.009 0.065 0.023 0.451 0.022
8 10 0.853 0.002 0.059 0.021 0.440 0.052
16 10 0.859 0.003 0.096 0.016 0.516 0.067
25 10 0.869 0.002 0.099 0.021 0.465 0.102

B-LoRA-XS 2 5 0.822 0.002 0.040 0.009 0.412 0.003
10 0.822 0.005 0.036 0.017 0.422 0.016

8 10 0.855 0.004 0.044 0.005 0.372 0.018
16 5 0.863 0.003 0.038 0.020 0.354 0.037

10 0.863 0.001 0.046 0.007 0.367 0.006
25 5 0.870 0.003 0.041 0.006 0.360 0.021

10 0.869 0.002 0.049 0.013 0.378 0.016

Table 1: Numeric values for CoLA dataset.

Accuracy ECE NLL
median s.d. median s.d. median s.d.

method r k

LoRA 2 10 0.912 0.003 0.069 0.010 0.406 0.230
8 10 0.912 0.005 0.086 0.006 0.727 0.165

LoRA-SWAG 2 2 0.917 0.004 0.112 0.035 0.332 0.034
10 0.917 0.005 0.052 0.016 0.306 0.031

8 2 0.912 0.003 0.056 0.035 0.331 0.031
10 0.912 0.004 0.048 0.018 0.321 0.127

LoRA-XS 2 10 0.861 0.017 0.048 0.010 0.338 0.022
8 10 0.886 0.007 0.078 0.023 0.355 0.105
16 10 0.904 0.006 0.079 0.015 0.450 0.135
25 10 0.904 0.008 0.088 0.015 0.560 0.176

B-LoRA-XS 2 2 0.860 0.012 0.080 0.029 0.386 0.027
10 0.858 0.012 0.046 0.011 0.336 0.025

8 10 0.890 0.004 0.043 0.014 0.304 0.023
16 2 0.912 0.003 0.037 0.010 0.270 0.030

10 0.909 0.007 0.047 0.007 0.301 0.044
25 2 0.917 0.005 0.036 0.011 0.268 0.020

10 0.909 0.005 0.049 0.004 0.312 0.013

Table 2: Numeric values for MPRC dataset.
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Accuracy ECE NLL
median s.d. median s.d. median s.d.

method r k

LoRA 2 10 0.874 0.008 0.123 0.007 1.264 0.239
8 10 0.874 0.010 0.125 0.010 1.072 0.123

LoRA-SWAG 2 10 0.870 0.007 0.091 0.009 0.518 0.046
8 10 0.877 0.011 0.078 0.009 0.388 0.039

LoRA-XS 2 10 0.632 0.043 0.126 0.046 0.730 0.052
8 10 0.870 0.005 0.116 0.017 0.698 0.188
16 10 0.884 0.007 0.097 0.013 0.644 0.123
25 10 0.902 0.005 0.099 0.006 0.957 0.045

B-LoRA-XS 2 10 0.650 0.062 0.079 0.025 0.652 0.024
8 10 0.877 0.003 0.083 0.004 0.465 0.029
16 10 0.888 0.007 0.073 0.011 0.446 0.030
25 10 0.892 0.005 0.076 0.022 0.510 0.239

Table 3: Numeric values for RTE dataset.

Accuracy ECE NLL
median s.d. median s.d. median s.d.

method r k

LoRA 2 10 0.961 0.003 0.030 0.006 0.162 0.027
8 10 0.962 0.002 0.032 0.004 0.198 0.025

LoRA-SWAG 2 10 0.956 0.003 0.020 0.069 0.145 0.068
8 10 0.966 0.004 0.030 0.033 0.141 0.031

LoRA-XS 2 10 0.944 0.001 0.026 0.002 0.168 0.003
8 10 0.953 0.002 0.034 0.005 0.175 0.011
16 10 0.959 0.002 0.032 0.003 0.161 0.012
25 10 0.958 0.003 0.032 0.005 0.160 0.021

B-LoRA-XS 2 10 0.945 0.002 0.025 0.003 0.163 0.003
8 10 0.952 0.001 0.019 0.006 0.152 0.008
16 10 0.958 0.001 0.025 0.006 0.147 0.014
25 10 0.961 0.000 0.027 0.005 0.137 0.007

Table 4: Numeric values for SST-2 dataset.
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Accuracy ECE NLL
median s.d. median s.d. median s.d.

method r k

LoRA 2 - 0.865 0.004 0.116 0.047 0.652 0.228
LoRA-SWAG 2 0 0.859 0.002 0.117 0.007 0.675 0.067

2 0.870 0.003 0.086 0.013 0.390 0.018
5 0.869 0.002 0.047 0.012 0.362 0.010
10 0.870 0.003 0.049 0.014 0.365 0.016
20 0.870 0.005 0.039 0.003 0.373 0.018

8 0 0.864 0.006 0.122 0.008 0.773 0.064
2 0.875 0.005 0.078 0.016 0.384 0.012
5 0.873 0.005 0.051 0.008 0.364 0.013
10 0.874 0.004 0.037 0.009 0.351 0.010
20 0.876 0.005 0.032 0.019 0.360 0.034

LoRA-XS 16 - 0.859 0.004 0.096 0.017 0.516 0.071
B-LoRA-XS 16 0 0.865 0.004 0.068 0.008 0.396 0.021

2 0.864 0.007 0.047 0.016 0.372 0.031
5 0.863 0.003 0.038 0.020 0.354 0.037
10 0.863 0.001 0.046 0.008 0.367 0.006
20 0.861 0.003 0.051 0.005 0.360 0.015

Table 5: Covariance matrix rank k analysis for CoLA dataset.

Accuracy ECE NLL
median s.d. median s.d. median s.d.

method r k

LoRA 2 - 0.912 0.003 0.069 0.011 0.406 0.244
LoRA-SWAG 2 0 0.904 0.003 0.089 0.003 0.628 0.077

2 0.914 0.004 0.135 0.045 0.340 0.040
5 0.914 0.007 0.048 0.005 0.294 0.028
10 0.917 0.005 0.052 0.017 0.306 0.033
20 0.914 0.005 0.051 0.015 0.306 0.086

8 0 0.907 0.005 0.094 0.005 0.759 0.123
2 0.912 0.003 0.056 0.035 0.331 0.031
5 0.914 0.003 0.040 0.019 0.283 0.103
10 0.917 0.004 0.051 0.017 0.328 0.128
20 0.909 0.006 0.053 0.018 0.314 0.177

LoRA-XS 16 - 0.909 0.007 0.079 0.011 0.388 0.095
B-LoRA-XS 16 0 0.907 0.006 0.078 0.009 0.426 0.037

2 0.912 0.003 0.037 0.010 0.270 0.030
5 0.909 0.009 0.051 0.010 0.304 0.032
10 0.909 0.004 0.050 0.008 0.325 0.035
20 0.912 0.004 0.042 0.010 0.318 0.014

Table 6: Covariance matrix rank k analysis for MRPC dataset.
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