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Abstract

Drawing real world social inferences usually
requires taking into account information from
multiple modalities. Language is a particu-
larly powerful source of information in social
settings, especially in novel situations where
language can provide both abstract informa-
tion about the environment dynamics and con-
crete specifics about an agent that cannot be
easily visually observed. In this paper, we
propose Language-Informed Rational Agent
Synthesis (LIRAS), a framework for drawing
context-specific social inferences that integrate
linguistic and visual inputs. LIRAS frames
multimodal social reasoning as a process of
constructing structured but situation-specific
agent and environment representations – lever-
aging multimodal language models to parse
language and visual inputs into unified sym-
bolic representations, over which a Bayesian
inverse planning engine can be run to produce
granular probabilistic judgments. On a range of
existing and new social reasoning tasks derived
from cognitive science experiments, we find
that our model (instantiated with a compara-
tively lightweight VLM) outperforms ablations
and state-of-the-art models in capturing human
judgments across all domains.

1 Introduction

Making sense of any real social situation requires
integrating many different sources of information.
Language, in particular, can fundamentally recast
our understanding of the social environment around
us. Being told the abstract dynamics underlying
a social institution, from the rules of American
football to the norms of drive-through restaurants,
gives us a useful overarching picture of people’s
goals and intentions in unfamiliar settings. Other
times, language can provide specifics about particu-
lar people and environments. Hearing that a friend
tends to get hungry around midnight and keeps a
spare stash of chocolate in the highest pantry shelf,

for instance, gives new meaning to a few glimpses
of someone bumbling around the kitchen in the
dark. These tidbits of socially-relevant informa-
tion from language allow us to draw much richer,
more flexible, and often quite situation-dependent
conclusions about the behavior we see.

How do we integrate language with perceptual
information to support this kind of grounded but
often highly ad-hoc social reasoning, in which lan-
guage can flexibly restructure our inferences about
the agents we observe? This setting poses par-
ticularly acute challenges for two dominant fla-
vors of computational work in social reasoning.
For approaches that cast social reasoning as prin-
cipled inferences over structured models of agents
and environments, as in many symbolic AI and
cognitive science frameworks (e.g., Baker et al.
2011; Jara-Ettinger et al. 2016), this setting tests
the scalability and breadth that can be achieved
using (usually hand-engineered) symbolic models
of particular environments and domains. For ap-
proaches that use large-scale neural models trained
on language and visual inputs, like recent LLM
and VLM-based systems (e.g., Kosinski 2024; Jin
et al. 2024), this setting tests the generalizability
of complex decision-making and latent inference
over particularly novel inputs. Ongoing evaluations
suggest that each component of grounded, ad-hoc
social reasoning poses challenges for both domi-
nant approaches (Hu et al., 2025; Schulze Buschoff
et al., 2025; Jin et al., 2024) – challenges that only
compound in the harder multi-modal setting.

In this paper, we develop Language-Informed
Rational Agent Synthesis (LIRAS), a framework
that can integrate linguistic and visual inputs
to draw ad-hoc, probabilistic inferences about
agents’ mental states in grounded settings. Our
approach achieves this by using neural models
to parse language and visual inputs into unified
symbolic representations, which support automatic
Bayesian inference and inverse planning. Impor-
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Figure 1: Overview of Language-Informed Rational Agent Synthesis (LIRAS). (a) Overall architecture. (b)
LIRAS uses a vision-capable large language model (LLM) to parse linguistic descriptions into a domain-specific
environment model expressed in PDDL, which specifies object types, predicates, functions and action definitions.
(c) LIRAS constructs a rational agent model based on the linguistic descriptions about the agent, including the
space of the agent’s goals, beliefs, etc. (d) LIRAS parses visual inputs into symbolic PDDL environment states, and
derives agent actions from those states.

tantly, our approach casts multimodal social reason-
ing as a process of constructing small but structured
environment representations on-the-fly, tailored to a
particular set of inputs. Rather than hand-construct
domain-specific world models, or seek to derive
universal features for visual understanding, our ap-
proach lets new, relevant details from language
change how we parse and reason about any particu-
lar visual scene.

We evaluate our approach on a suite of popular
domains used for social cognition experiments, as
well as novel variants designed to probe people
and models’ generalization capacities under new
environment dynamics and abstract rule structures.
We demonstrate that our framework, even when
built with a lightweight VLM, can capture human-
like social reasoning in a context-sensitive way
across each of these domains. In contrast, we find
that much larger state-of-the-art VLMs, such as
OpenAI’s o3 model, often fail to reliably integrate
linguistic details with visual observations and gen-
erally are much more uneven in capturing human
judgments across these domains.

2 Language-Informed Rational Agent
Synthesis (LIRAS)

In this paper, we consider how to solve ad-hoc
social reasoning tasks that are grounded in visual

observations of an agent taking actions over time.
Each task (L,Q, V1:T ) is defined by a linguistic
description L of the agent and its environment,
a social inference query Q expressed in natural
language, and a sequence of T + 1 video frames
V0:T showing how the agent interacts with the en-
vironment over time. Given (L,Q, V0:T ), LIRAS
produces k ≥ 1 graded ratings R1:k ∈ Rk about
the agent’s mental states (e.g. goals, beliefs, etc.)
based on the query Q. Since probabilistic social
reasoning lacks a “ground-truth” answer (Baker
et al., 2017; Ying et al., 2025a), we assess task
performance based on how human-like the ratings
R1:k are, measuring correlation with a dataset of
collected human responses (see Section 3).

To solve these tasks, we propose Language-
Informed Rational Agent Synthesis (LIRAS, Figure
1). LIRAS differs from social reasoning methods
which rely on either prompting a single LLM (Sap
et al., 2022; Moghaddam and Honey, 2023) or scaf-
folding of LLM calls within a structured probabilis-
tic inference procedure (Cross et al., 2024; Kim
et al., 2025; Zhang et al., 2025). Instead, given a
language description L, LIRAS synthesizes a ratio-
nal model of an agent and its environment — which
assigns likelihoods to an agents’ actions by solving
the (Partially Observable) Markov Decision Pro-
cess ((PO)MDP) (Bellman, 1958; Kaelbling et al.,
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1998) that describes the agent’s decision problem
— and draws probabilistic inferences about mental
states from the agent’s actions via Bayesian inverse
planning with respect to that agent model (Baker
et al., 2009, 2017; Zhi-Xuan et al., 2020). This
process is decomposed into four components: (i)
synthesis of an environment model (Fig. 1b); (ii)
synthesis of a rational agent model (Fig. 1c); (iii)
parsing environment states and agent actions (Fig.
1d); (iv) mental state inference via Sequential In-
verse Agent Modeling (SIAM) (Fig. 1a, right), a
flexible engine for Bayesian inverse planning that
extends Sequential Inverse Plan Search (Zhi-Xuan
et al., 2020). We describe each component below.

2.1 Synthesizing Environment Models

In order to synthesize a rational agent model,
we first need to synthesize a environment model
or world model that the agent model is situated
within. Following work that translates language
into symbolic world models represented as pro-
grams (Wong et al., 2023; Tang et al., 2024; Wong
et al., 2024; Liu et al., 2023; Xie et al., 2023), LI-
RAS achieves this by using an LLM to translate
the task description L into a planning domain D
represented in the Planning Domain Definition Lan-
guage (PDDL) (Aeronautiques et al., 1998; Zhi-
Xuan, 2022). Given L and an instruction prompt
Ienv, we rejection sample from the LLM to ensure
syntactic and semantic validity of the generated
PDDL domain:

D ∼ PLLM(D|L, Ienv,D is valid) (1)

As shown in Figure 1(b), a planning domain
D = (T ,P,A) consists of a set of object types T ,
predicates P , and action templates A. Given a spe-
cific set of (typed) objects O, a planning domain
defines a concrete environment E = (S,A, Ps),
where S is the set of possible environment states
formed from predicates defined over objects in
O, A is the set of possible actions derived by fill-
ing in action templates with object arguments and
Ps(st|st−1, at) is an environment transition distri-
bution. This gives us the basic structure on top of
which we can define an agent model and perform
visual parsing of environment states.

2.2 Synthesizing Rational Agent Models

When people reason about the mental states of an-
other agent, we form an implicit model of that
agent that predicts and explains their actions in
light of their goals, beliefs, and other mental states

(Dennett, 1981). Importantly, we assume that the
agent is approximately rational — their beliefs are
consistent with what they observe, and they take
efficient actions to achieve their goals and satisfy
their desires. To formalize this, we follow work in
Bayesian theory-of-mind (Baker et al., 2017; Jara-
Ettinger et al., 2016; Alanqary et al., 2021; Ying
et al., 2025b), treating an agent as a generative
processes of the following form:

Mental Prior: m0 ∼ Pθ0(m0; s0) (2)

Mental Update: mt ∼ Pθm(mt|st−1,mt−1) (3)

Action Selection: at ∼ Pa(at|mt, st−1) (4)

Here, mt represents the mental state of the agent
at step t, which can include beliefs bt, goals gt,
rewards rt that the agent assigns to achieving a
goal, or the perceived costs ct of certain actions.
At each step t, the agent may update their beliefs
bt ∈ mt based on their observations in st−1 in a
way that preserves consistency: If some predicate
p is observed to hold true in state st−1, then p
must also hold true in the updated belief bt. They
then take an action at to efficiently achieve the
goals or rewards specified in mt while minimizing
costs. Specifically, we assume that at follows a
Boltzmann-rational distribution:

Pa(at|mt, st−1) ∝ exp
(
Q̂mt(st−1, at)

)
(5)

where Q̂m(st−1, at) is an estimate of the expected
utility of reaching any goal in mental state mt by
taking action at at state s. Action at then causes
a change in the environment st ∼ Ps(st|st−1, at)
per the environment model described earlier, and
the process repeats.

Depending on the situation, an observer may not
need to model all of the agent’s mental states. For
instance, if the agent has full observability of the
environment st, there is no need to represent the
agents’ belief state bt, since bt will always agree
with st. As such, LIRAS constructs agent models
in an ad-hoc manner: Given the language descrip-
tion L, (and an instruction prompt Iagent), we use
an LLM to synthesize the parameters Θ = (θ0, θm)
that define the agent model (Figure 1(c)):

Θ ∼ PLLM(Θ|L, Iagent) (6)

θ0 includes information like the space of possible
initial beliefs, goals, goal rewards, or action costs
(over which we assume a uniform prior), and θm
includes information like the observability of var-
ious objects in state st (since this affects how the
agent updates their beliefs). By flexibly synthesiz-
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ing different models based on the social situation
described in L, LIRAS captures human-like flex-
ibility in social reasoning, while preserving the
rationality assumptions of belief consistency and
action efficiency described above.

2.3 Parsing Environment States and Actions
To infer an agent’s mental states, LIRAS first needs
to parse the images I0:T into a sequence of sym-
bolically represented environment states s0:T and
actions a1:T (Figure 1(d)). We achieve this using a
vision-language model (VLM) in a decoding pro-
cedure that exploits the grid-based nature of our
environments.1 Specifically, for each grid cell in
a video frame Vt, we use the VLM to detect the
object in that cell (if any), and generate correspond-
ing PDDL code for the object’s properties. This
allows us to parse a state st from frame Vt:

st ∼ PVLM(st|Vt, Istates) (7)

where Istates in an instruction prompt. Given the
full sequence of environment states s1:t, we can
then greedily reconstruct each action at under the
environment model Ps(st|st−1, at):

at = argmaxa Ps(st|st−1, a) (8)

2.4 Bayesian Mental State Inference via
Sequential Inverse Agent Modeling

Having synthesized an environment model, agent
model, environment states s1:T and actions a1:T ,
LIRAS answers the social inference queries in Q
via Bayesian inverse planning. Specifically, we
use Sequential Inverse Agent Modeling (SIAM),
an extension of the SIPS probabilistic program-
ming architecture for inverse planning (Zhi-Xuan
et al., 2020, 2024a) that supports joint inference
over not just goals g (as in Zhi-Xuan et al. (2020)),
but also goal preferences/rewards r (similar to Zhi-
Xuan et al. (2022)), beliefs (as in belief-space SIPS
(Ying et al., 2025b)) and action costs c (similar
to Zhi-Xuan et al. (2024b)). SIAM efficiently in-
verts the rational agent model described in Section
2.2, computing a posterior distribution over the full
sequence of latent mental states m0:T :

PΘ(m0:T |s0:T , a1:t) ∝ Pθ0(m0; s0)
∏T

t=1 Pθm(mt|st−1,mt−1)Pa(at|mt, st−1)

where the mental state mt can be a subset of
(gt, bt, rt, ct) depending on the agent model con-

1This is not key to our architecture, but simply what we
found was necessary given the current unreliability of VLMs
and parsing full 2D visual scenes.

figuration Θ. SIAM achieves efficiency by using
incremental planning algorithms to rapidly estimate
the expected utility of an action Q̂mt(st−1, at). We
provide details in the Appendix.

Having computed a posterior over all mental
states PΘ(m0:T |s0:T , a1:t), LIRAS can answer a
social inference query Q by computing marginal
probabilities or posterior expected values. For ex-
ample, if Q asks for how likely each goal is given
the actions, LIRAS returns the marginal posterior
P (g0|s0:T , a1:t) over the agent’s goal. If Q instead
asks for the cost ca0 of some action a ∈ A, LIRAS
returns the posterior expectation E[ca0|s0:T , a1:t].
When Q contains k sub-queries, LIRAS produces
k corresponding ratings R1:k from these quantities.

3 Experiments

3.1 Domains
We compare our model and baselines to human
social inferences on existing cognitive science do-
mains from the social reasoning literature, and
a set of expanded multimodal variants that are
derived from earlier work but that we construct
specifically to evaluate the role of language in
more complex, grounded environments. The exist-
ing experiments have been well-modeled by hand-
constructed, domain-specific symbolic models; we
choose these to assess how well our approach (and
baselines) can capture judgments by synthesizing
these structured models from inputs. Collectively,
we choose these multi-modal domains to represent
a diverse range of social reasoning tasks that vary in
features including number of agents, observability,
and variables of interest.

The two existing cognitive science domains we
consider are:

• Food trucks (78 stimuli): a domain from
(Baker et al., 2017) in which the instructions
describe a student navigating a campus while
choosing which (movable) food truck to go to
for lunch. The visual stimuli depicts varying
paths taken by the agent with partial observ-
ability of the trucks. Participants are asked to
jointly infer the agents’ beliefs and desires.

• Astronaut (47 stimuli): a domain from (Jara-
Ettinger et al., 2016) in which the instructions
describe an astronaut navigating alien terrain
to pick up care packages on the way to a space
station. The visual stimuli show various col-
ored terrains and paths. Participants must infer
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the relative costs of walking on each terrain
type and the rewards of the care packages.

We also evaluate on an expanded set of multi-
modal domains derived from the Doors, Keys, and
Gems (DKG) stimuli (introduced in Zhi-Xuan et al.
2020, with a multi-agent version introduced in Ying
et al. 2023). The original domains evaluate multi-
step planning and inverse planning. Instructions
describe an obstacle course in which a player is
navigating a maze to reach one of several colored
gems, but must first acquire various keys that un-
lock doors in the maze. We extend both original
domains (adding significantly more stimuli to the
mutli-agent case), and construct new variants that
modify the linguistic instructions which specify the
underlying environment dynamics:

• DKG-Simple (32 stimuli): One colored key
unlocks one door of the same color.

• DKG-Double (16 stimuli): Two colored keys
unlock one door of the same color.

• DKG-Reuse (16 stimuli): One colored key
unlocks all doors of the same color.

• DKG-Inverse (16 stimuli): One colored key
unlocks one door of a different color.

• Multiagent DKG (m-DKG) (30 stimuli):
Mazes contain two players, a principal and
an assistant. The team works together to get
one goal gem to the principal agent.

Each of the visual stimuli in the DKG-Double,
DKG-Reuse, and DKG-Inverse variants has an
identical corresponding stimulus in the base DKG-
Simple domain, allowing paired comparison of the
role of language in inferences about agent behavior.

3.2 Human Data Collection
For the food truck (Baker et al., 2017) and as-
tronaut (Jara-Ettinger et al., 2016) domains, we
evaluate on the original published data, which only
contains mean human judgments (averaged over all
participants) for each inference question. For our
extended DKG domains, we recruit n = 20 par-
ticipants for each variant (totaling 100 participants
across 5 variants; mean age = 39.40, 55 female, 45
male). All human data collection took place over a
customized web interface (see interface examples
in the Appendix), where the participants first com-
pleted a tutorial and comprehension check. The
experiment is approved by an IRB Board at a US
University. Participants were paid $15 USD per

hour. We excluded 13 participants who gave high
likelihood scores to all options.

3.3 LIRAS Model Configuration
We instantiate the LIRAS model with Gemini 2.0
Flash (Team et al., 2025) as our base VLM for all
parsing and code synthesis, and the execution of
the inference by SIAM takes place on a MacBook
Pro. During code synthesis, we provide the VLM
with a generic prompt shared across all domains
and variants. This prompt includes a tutorial on
SIAM syntax and primitives, and one example toy
domain with accompanying parses (see Appendix).
We synthesize all code with temp= 1.0 to ensure
sufficient diversity in initial synthesis, using rejec-
tion sampling until we generate a sample for each
stimulus in which the full pipeline runs to comple-
tion. In our experiments we use k = 1 samples per
stimulus, as qualitatively semantic variation among
models that actually compile is minimal (the fully
specified stimuli in the domains we use do not ulti-
mately suggest much uncertainty over environment
dynamics – an interesting grounds for future work).

For each stimulus, we provide the model with
the full visual input and linguistic experimental
setup (including instructions explaining the task,
concatenated with the scene scenario and query for
each stimulus) shown to human participants. We
also augment the instructions to explicitly specify
which actions the agent can perform, and the size
of the environment grid. These same visual and
linguistic specifications are used for all baselines.

3.4 Ablations and Baselines
We compare against the following alternatives:

• No explicit inference (ablation): to probe
the role of the explicit Bayesian inference en-
gine (SIAM), we run the LIRAS pipeline to
fully synthesize the same symbolic environ-
ment and model representations (using the
same base Gemini 2.0 Flash model), but then
prompt the LLM to directly generate the an-
swers to questions conditioned on the stimulus
and generated symbolic model.

• Chain-of-thought: we also compare our
pipeline to more standard chain-of-thought
(Wei et al., 2022) prompting. We evaluate on
Gemini 2.0 Flash (our base neural model),
GPT-4o (OpenAI et al., 2024) (an alternate
SOTA LM), and OpenAI o3 (an explicit rea-
soning model). For all CoT baselines, we use
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temp=1 (to match our model) and report av-
erage inferences over k=3 samples to better
estimate the posterior (our Appendix shows
that we find significantly more variability, and
worse performance, with any set of just k=1
samples.)

We also experimented with the AutoToM (Zhang
et al., 2025) framework, which is explicitly de-
signed for text-based Bayesian Theory of Mind.
As AutoToM was only designed for natural lan-
guage inputs, we experimented with first prompt-
ing a VLM (we tried both Gemini 2.0 Flash and
GPT-4o) to generate a verbal narrative of the visual
stimuli which could be provided to the text-based
AutoToM model for end-to-end reasoning. How-
ever, we found widespread failure using either base
neural model to directly generate an accurate or
complete account of the visual inputs in natural lan-
guage, making downstream text-based reasoning
unreliable (see Appendix).

4 Results

LIRAS demonstrates human-like reasoning on
social reasoning tasks across domains. We com-
pare LIRAS and baselines against human data.
Table 1 and 2 presents the correlations between
model predictions and human judgments. We find
that LIRAS achieves substantially higher correla-
tion with human responses compared to many al-
ternatives (Table 1). The Gemini 2.0 Flash vanilla
model, the foundational visual and parsing com-
ponent for LIRAS, shows markedly weaker per-
formance (and even several instances of negative
correlation with human judgments). One natural
question however is whether such models simply
cannot reason over visual inputs. We find that the
ablated LIRAS model, which synthesizes symbolic
world and agent models, but instead uses an LLM
to perform probabilistic inference, performs sig-
nificantly worse than the full model and no better
than the Gemini 2.0 Flash base model. This demon-
strates the importance of the Bayesian inference
engine and highlights that the failure of the smaller
VLM models may be beyond visual parsing: even
when given a full symbolic representation, they are
unable to perform human-like probabilistic social
reasoning.

While the state-of-the-art multimodal reason-
ing model OpenAI o3 exhibits stronger align-
ment with human judgments than lighter-weight
models such as Gemini Flash, its performance

still lags significantly behind that of LIRAS and
shows a much weaker correlation against human
judgments (average r = 0.63) on these classical
cognitive social reasoning domains. These find-
ings underscore a key limitation of contemporary
vision-language models: even when extensively
pre-trained and fine-tuned for complex reasoning
tasks, they still face challenges in achieving human-
like multimodal social reasoning, particularly when
prompted to interpret visual scenes conditioned
on complex linguistic information about the do-
main. These results show that grounded Theory-
of-Mind reasoning with both language and visual
inputs is challenging for most state-of-the-art foun-
dation models – even in classic relatively simple
social reasoning domains, echoing recent findings
by Buschoff et al. (2025).

Human
vs

Gemini 
2.0-Flash

Human
vs

GPT-4o

Human
vs

OpenAI o3

Human
vs

LIRAS

``The player no longer possesses 
the key after unlocking the door.``

``All keys can be reused and they don’t 
disappear after unlocking a door.``

t = 1 t = 4

Figure 2: A qualitative example showing how models
and human participants adjust their goal inference sub-
ject to changes in game dynamics. Top) Two Frames
showing the agent walk a few steps up then turn right.
Bottom) Model vs Human judgments on the player’s
goal. In the DKG-Reuse condition where each key can
unlock multiple doors, humans and LIRAS find Gem A
and B to be almost equally likely, where other baselines
generally infer that Gem B is likely the agent’s goal.

LIRAS’s inference is adaptive and robust to
meaningful changes in linguistic inputs. A key
motivation for this work is to computationally ac-
count for how language shapes inferences about so-
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Models Foodtruck Astronaut
Inference Belief Desire Rewards Cost

Gemini 2 Flash 0.01 [-0.13, 0.15] 0.23 [0.10, 0.35] 0.11 [-0.15, 0.33] 0.02 [-0.24, 0.23]
GPT 4o -0.03 [-0.18, 0.12] 0.15 [0.02, 0.26] -0.20 [-0.42, 0.05] -0.17 [-0.36, 0.04]
OpenAI o3 0.52 [0.41, 0.62] 0.45 [0.35, 0.54] 0.33 [0.12, 0.49] 0.80 [0.69, 0.88]
LIRAS (Ablated) 0.03 [-0.10, 0.15] 0.19 [0.06, 0.32] 0.20 [-0.04, 0.40] -0.08 [-0.28, 0.14]
LIRAS (Full) 0.76 [0.69, 0.82] 0.74 [0.68, 0.79] 0.87 [0.76, 0.94] 0.75 [0.63, 0.85]

Table 1: Correlation coefficients and corresponding 95% confidence intervals comparing each model against human
judgments on various cognitive domains for social reasoning. DKG results are displayed in Table 2. Scatterplots for
each domain are shown in the Appendix.

Models DKG-Single DKG-Double DKG-Reuse DKG-Inverse m-DKG

Gemini 2.0 Flash 0.50 [0.34, 0.64] 0.19 [-0.10, 0.47] 0.21 [-0.01, 0.41] 0.12 [-0.15, 0.38] 0.11 [-0.16, 0.37]
GPT 4o 0.40 [0.24, 0.55] 0.39 [0.07, 0.68] 0.29 [-0.00, 0.58] 0.11 [-0.13, 0.35] 0.36 [0.13, 0.57]
OpenAI o3 0.73 [0.60, 0.83] 0.73 [0.60, 0.83] 0.52 [0.34, 0.69] 0.79 [0.70, 0.87] 0.81 [0.73, 0.88]
LIRAS (Ablated) 0.57 [0.42, 0.69] 0.42 [0.12, 0.66] 0.45 [0.20, 0.66] -0.11 [-0.31, 0.13] 0.53 [0.33, 0.71]
LIRAS (Full) 0.79 [0.70, 0.84] 0.74 [0.58, 0.83] 0.75 [0.61, 0.83] 0.74 [0.61, 0.86] 0.78 [0.70, 0.85]
Human (Split-half) 0.78 [0.70, 0.84] 0.73 [0.60, 0.84] 0.80 [0.72, 0.88] 0.80 [0.74, 0.86] 0.73 [0.63,0.81]

Table 2: Correlation coefficients for each model on the four variants of the single-agent DKG domain and the
multi-agent DKG domain. Overall, LIRAS shows robust correlation against humans across all variants. Other VLM
baselines correlate moderately well on the DKG-Single variant, but they are less robust on some other variants with
more unusual but interesting dynamics. Model results statistically significant from others are bolded. Scatterplots
for each variant are shown in the Appendix.

cial situations. To that end, we next assess LIRAS
under variants of the DKG domain that modulate
the underlying rule structure, using language. We
find in Table 2 that that, similar to the model per-
formances across domains, LIRAS performance
is robust across all DKG variants, with correla-
tions roughly at the noise ceiling of the human data
(as computed under split-half correlations). We
again find that ablations of LIRAS impair perfor-
mance – as do alternate VLM baselines (Gemini
2.0 Flash and GPT-4o) especially as rules become
more unusual. While o3 generally achieves similar
performance, we similarly notice a marked drop in
performance for the DKG-Reuse condition, where
a key can be reused to unlock multiple doors.

To illustrate, we also show a qualitative example
in Figure 2. In this example, there are four gems,
A, B, C, D. The same visual stimulus were tested
under DKG-Single and DKG-Reuse variants. In
the Single condition, the OpenAI o3 model finds
A and B to be similarly likely, where humans and
LIRAS both rate gem B to be more likely. This
is because the agent would have gone to get the
closer blue key(s) on the left, if they are aiming for
gem A, C, or D. Under the DKG-Reuse condition,
where the participants are told that each key can
be reused after unlocking doors, human judgments
change significantly. LIRAS is able to capture this
shift in probability distribution, reasoning that now

the agent is equally likely to go for gem A or gem
B, since the top right blue key can now unlock both
blue doors to get to gem A. On the other hand, all
other baseline models judge only gem B to be the
most likely option.

4.1 Error Analysis
Overall after inspecting the CoT tokens by the Gem-
ini 2.0 and GPT 4o model, we find widespread hal-
lucination and factual errors in its reasoning. We
highlight some in the appendix. The OpenAI o3
model does not output its thinking tokens. We in-
stead ask it to justify its answer with reasoning and
we also find factual mistakes and illogical state-
ments even if the final results appear to be similar
to human judgments.

In LIRAS, we also noticed some hallucination
and syntax errors in world model synthesis and
visual parsing. However by giving a structured
prompt and parsing the grid cell by cell, LIRAS
reduces the inaccuracy in the final synthesized out-
put. Multiple checks and resampling were needed
to ensure the model synthesized can be compiled
and executed.

5 Discussion

In this paper, we propose LIRAS, a multimodal
model synthesis architecture capable of synthesiz-
ing agent and world models “on the fly”, from
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visual and linguistic inputs, to reason about agents’
mental states from observation. We test our model
on a variety of popular cognitive science domains
with different aspects of social reasoning under dif-
ferent settings. Like people, our model flexibly
adapts to variations in the underlying rules of the
scenario at hand. Our work provides a computa-
tional account of how language can help construct
an ad-hoc world model for people to contextualize
and interpret other agents’ behavior.

On the other hand, despite using Gemini 2.0
Flash, a lightweight VLM, in the model architec-
ture, LIRAS is able to match or outperform state-
of-the-art multimodal reasoning models on most
social reasoning tasks, and significantly exceeds the
performance of the same Gemini 2.0 Flash model
that LIRAS uses for model synthesis. By construct-
ing these ad-hoc world and agent models on-the-fly,
our study is a step towards a generalized cognitive
model capable of human-like flexible social rea-
soning navigating the social world and form more
effective human-AI thought partners (Collins et al.,
2024).

6 Related Work

6.1 Model-based Theory-of-Mind Reasoning

Our work builds on a long history of research in
cognitive science and AI that shows that humans
interpret others’ behaviors by assuming they are
rational agents (Dennett, 1981; Baillargeon et al.,
2016). Numerous computational models have been
proposed to capture this model-based reasoning
process (Baker et al., 2017; Shum et al., 2019;
Wu et al., 2021; Alanqary et al., 2021; Ying et al.,
2025b) and have been shown to capture graded hu-
man judgments in reasoning about agents’ mental
states from observations.

6.2 Theory-of-Mind in Foundation Models

Theory-of-Mind reasoning in Foundation Models
has been subject to great interests and heated de-
bates from the AI and NLP community. Many
studies have shown that Foundational Models are
capable of human-like Theory-of-Mind reasoning
in many real world tasks (Kosinski, 2023), while
some have highlighted numerous limitations (Ying
et al., 2025a; Ullman, 2023). Recent work has
also proposed cognitively inspired approach to
teach LLMs to reason about linguistic social sce-
narios in a Bayesian way through prompting or
fine-tuning (Zhang et al., 2025; Kim et al., 2025;

Qiu et al., 2025; Zhu and Griffiths, 2024). Recent
work (Jin et al., 2024; Shi et al., 2025) has also
applied Bayesian Theory of Mind to multimodal
settings by having a VLM first converting video to
action predicates, although most of such existing
work has focused on QA and not capturing graded
human uncertainty in Theory-of-Mind reasoning.

6.3 Automated Model Synthesis

The ability for Foundation Models to to synthe-
size code unlocks new possibilities for automated
model synthesis. Automated model synthesis has
been applied in different areas, from statistical rea-
soning (Li et al., 2024; Domke, 2025) and plan-
ning (Silver et al., 2023) to cognitive modeling
(Wong et al., 2023; Brooke-Wilson, 2023). This
preceding work is restricted only to language-based
model synthesis, while the current work extends
this to the multimodal domain. It is the first work to
apply model synthesis to social reasoning, includ-
ing joint synthesis over world and agent models.

7 Limitations

Our work is not without limitations. First, our cur-
rent approach is restricted to discrete domains and
does not extend to continuous spaces, reflecting
a major limitation inherent in the PDDL frame-
work. Additionally, modeling multiagent scenarios
remains challenging, particularly in competitive set-
tings; our framework cannot yet adequately capture
the complexities of multiagent interactions. While
we found that a single set of prompts can handle
all four tested domains, the generalizability of this
approach to novel domains is not guaranteed, due
to possible issues with domain-specific syntactic
or semantic mismatches. In addition, the LIRAS
model currently parses gridworld domains by enu-
merating each cell, which does not generalize to
more complex visual inputs.

Lastly, our model depends on explicitly provided
linguistic information—such as a clearly enumer-
ated action space and well-defined transition dy-
namics (e.g., specifying that agents cannot walk
through buildings). In contrast, humans can of-
ten infer such rules implicitly from context, draw-
ing upon commonsense knowledge to build mental
models of new environments without explicit in-
structions.

To address these limitations, future research
could focus on scaling up and improving gen-
eralization by fine-tuning vision-language mod-

12224



els (VLMs) with more diverse training examples
across broader domains. This could enable more
robust handling of new task domains on-the-fly.
Furthermore, enhancing the model’s capacity to
infer implicit domain constraints — possibly by
incorporating structured priors — could make this
approach more generalizable to cases where the
linguistic information is ambiguous or incomplete.
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A Human Data Collection

The interface used for human data collection is shown in Fig. 3. Human participants first complete a
consent form and a tutorial for the experiment. They then complete 16 trials of the study in a randomized
order. In each trial, they are asked to watch the animation and then rate the likelihood for each goal
gem from 0 (Extremely Unlikely) to 100 (Extremely Likely). The results are then normalized as a
probability distribution across four ratings such that they sum up to 1. All human subject data collected
are anonymized.

Figure 3: Experiment Interface for the human data collection.

B Translation Accuracy and Runtime Analysis

To assess the deployability of LIRAS, we evaluate both the effectiveness (translation accuracy) and
efficiency (runtime) of its neurosymbolic pipeline in the FoodTruck domain.

Accuracy We define translation accuracy as the proportion of synthesis runs that yield a PDDL model
passing both syntactic and semantic validation. Under this definition, LIRAS achieves 89.7% accuracy
in the FoodTruck domain, indicating that, with Gemini 2.0 Flash as the underlying VLM, a valid PDDL
program is produced in 89.7

Runtime We compare end-to-end runtime across models. For baseline VLMs, runtime is measured as
the wall-clock time from API request initiation to receipt of the response. For LIRAS, runtime is the total
wall-clock time required to execute all stages of the pipeline in Figure 1, including both program synthesis
and probabilistic inference.

The results, summarized in Figure ??, show that non-deliberative models such as Gemini 2.0 Flash
(mean = 3.45) and GPT-4o (mean = 20.00) are substantially faster than OpenAI o3 (mean = 39.34). LIRAS

Figure 4: Comparison of runtime across models. LIRAS takes longer to run than Gemini 2.0 Flash but significantly
faster than OpenAI o3.
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(mean = 22.03) incurs additional overhead relative to Gemini 2.0 Flash but remains markedly faster than
o3. Because LIRAS inference was executed on a personal MacBook, further speedups are likely with
optimized hardware and parallelization.

C Analysis of Qualitative Examples

Snippets of Gemini 2.0 Flash reasoning on the DKG-Reuse condition for the example highlighted in Fig.
2.

**Gem-A**: Far from the starting position, requiring navigation across the locked doors. No
indication of movement in that direction so far. **Gem-B**: Accessible directly without requiring
a key. The player didn’t move toward it, even though it’s relatively close. **Gem-C**: Behind
a door that requires a blue key. The player hasn’t moved toward a key to unlock it. **Gem-D**:
Also behind a door requiring a blue key. Similar to Gem-C, no movements have been made toward
unlocking it.

Snippets of GPT 4o 2.0 reasoning on the DKG-Reuse condition for the example highlighted in Fig. 2.

The player is likely trying to collect gem B as there is no way for the player to reach gem A or D
without going to the right, and the player is heading towards that side. Alternatively, the player could
be heading to get the key to unlock gem D or C.But, the key on the right is more accessible. So, it is
more likely that the player is going to collect gem B. [5, 80, 5, 10]

Snippets of OpenAI o3’s reasoning on the DKG-Reuse condition for the example highlighted in Fig. 2.

• Gem B (right-centre): From the current square the quickest, completely key-free way to a gem is to
walk right through the top of the vertical gap (col 6) and then drop down to gem B. This route is open
and costs only a few steps, so B is the most natural target.

• Gem A (top-left): To obtain A the player must – keep moving right to the column-6 opening, –
climb to the top row, – walk all the way to the blue key at the far right, – return left and unlock two
blue doors, then collect A. The present position is consistent with the first of those steps, but the plan
is quite a bit longer and key-dependent.

<answer>[10,60,5,25]</answer>

D Representing Spatial Input for Text-Based Reasoning Models

We also attempted to compare LIRAS against AutoToM (Zhang et al., 2025) a recent work which
similarly combines LLM-guided model synthesis with Bayesian inference for social reasoning. However,
AutoToM is restricted to textual input. Our stimuli here critically revolve around rich visual input extended
over multiple time steps. While we attempted to automatically convert the GIFs to text-only narratives
describing the scene, we found that the descriptions were often impoverished and not giving AutoToM a
fair chance. We show a few example narratives to demonstrate the challenges. We do so not to illustrate
that current models are incapable of describing such scenarios but to highlight that baseline use for such
visual description is nontrivial.

We tried both Gemini 2.0 Flash and GPT-4o. We prompted Gemini through the API, concatenating
png slices of the GIF; we used the default temperature 1.0. We separately prompted GPT-4o through the
chat interface (uploading the GIF directly). In both cases, we described the Doors, Keys, Gems game
environment and task the models with describing the scene in detail (where objects were and what the
agent did). We depict example representative narrative descriptions for the figure we show in Figure 2.

Gemini:
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The player begins in the middle of the screen. The player moves down one square. Then the player
moves up one square.

GPT-4o:
The player starts near the center of the grid. They move up one space to get a better view. Spotting a
blue key to the left, they move left and pick it up. With the first key in hand, the player returns to the
center and heads right. They acquire a second blue key on the right side.

E Sequential Inverse Agent Modeling

In Algorithm 1, we provide pseudo-code for the Sequential Inverse Agent Modeling (SIAM) algorithm
introduced in Section 2.4. We show the case where all possible mental states we consider (goals, rewards,
costs, and beliefs) are jointly inferred, since dropping any of the mental states corresponds to a special
case.2 We note that since we consider deterministic PDDL environments, the expected utility of reaching
a goal g is equivalent to the goal reward rg plus the cost of the shortest path of reaching that goal. The cost
of the shortest path PATH-COST can be efficiently computed via A* search, with the results memoized.
Shortest path computations can even be incrementally computed using approaches like tree-adaptive A*
(Hernández et al., 2011), such that once a shortest path is found from state s, finding a shortest path from
a nearby state s′ is often much cheaper. We refer the reader to the appendices of Ying et al. (2025b)
and Zhi-Xuan et al. (2024b) for more explanation of how memoization and incremental planning can be
exploited by SIPS-derived algorithms like SIAM.

Algorithm 1 Sequential Inverse Agent Modeling (SIAM) for mental state inference
1: procedure SIAM(G,R,C,B0, a1:T , s0:T )
2: H ← G× R× C× B0 ▷ Enumerate all hypotheses (goal, reward, cost, & belief combinations).
3: W ← {wi := P (gi|ri, ci, s0)}|H|

i=1 ▷ Initialize (unnormalized) weights for all hypotheses.
4: for t ∈ [1, T ] do
5: for hi := (gi, ri, ci, bi0:t−1) ∈ H do
6: bit ← BELIEF-UPDATE(bit−1, s

i
t, at−1) ▷ Simulate agent’s belief update.

7: hi ← (gi, ri, ci, bi0:t)
8: QBel(g

i, ri, ci, bit, ã)← 0 for ã ∈ VALID-ACTIONS(bit) ▷ Initialize belief-space Q-values.
9: for (s̃, w̃) ∈ bit and ã ∈ VALID-ACTIONS(s̃) do ▷ Iterate over environment states in agent’s belief.

10: Q∗(gi, ri, ci, s̃, ã)← MEMOIZED(PATH-COST(s̃, ã, gi, ri, ci) + rigi) ▷ Compute shortest path cost to g.
11: QBel(g

i, ri, ci, bit, ã)← Q∗(gi, ri, ci, bit, ã) + w̃ ·Q(gi, ri, ci, s̃, ã) ▷ Update belief-space Q-values.
12: end for
13: P (at|bit, gi, ri, ci)← exp(βQBel(g

i,ri,ci,bit,at))∑
a exp(βQBel(g

i,ri,ci,bit,a))
▷ Compute likelihood of action at.

14: wi ← wi · P (at|bit, gi, ri, ci) ▷ Update weight with action likelihood.
15: end for
16: end for
17: return (H,W) ▷ Return all hypotheses and their (unnormalized) weights.
18: end procedure

F LIRAS Model Synthesis Prompts

F.1 Prompt for synthesizing the PDDL domain model
"""
You will read instructions about a game setup and a dictionary of objects presented
in the problem. You will then synthesize a PDDL domain for the text description you are
given.

Note that in our PDDL definition, we use a bit-matrix and array to represent different types
of cells. These cell types generally refer to generic barriers or kinds of terrains / spaces.

If the same actions have different costs depending on the cells it is located, then each type
of cell should have a separate action definition. Note that the costs of actions on each
terrain will be represented in a separate file and you do not need to encode that in the PDDL
domain file. If certain cells represent barriers, then make sure you cannot move onto those
cells.

2Modulo minor differences — when goal rewards R are not specified, goals are assumed to be distributed from a uniform
prior. When rewards are specified, the agent is modeled as initially selecting a goal from a Boltzmann distribution over the net
utility of each goal (i.e. goal reward minus shortest path cost to goal), as in Jara-Ettinger et al. (2020).
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You must include all generic_objects from the object dictionary in the PDDL types.
The predicates should be about the states, relations or attribute of objects
(e.g. you can define isshape, iscolor, isempty, etc.). Please do not include predicates
that are not relevant for the agents' goals (i.e. don‘t represent every possible
object attribute). The types in the PDDL domain definition should refer to broad
category of objects (e.g. fruit) and attributes (e.g. shape, color) and not specific instances.

The task instructions will provide you with a list of actions that can be taken by the agent(s).
Please do not invent any new actions in the PDDL domain file.

Here is an example:

Input: In this domain, you are observing a boy trying to reach some balls and plates.
There are three unique balls: a tennis ball, a basketball and a baseball.
The plates can have shapes of circle or square. The plates are placed inside cabinets.
The agent can move up, down, left or right. There are whitespaces and blackspace in the map.
The agents and objects can only exist in whitespaces.

objects = {'generic_objects': ['ball', 'plate', 'cabinet'],
'unique_objects': ['tennisball', 'basketball', 'baseball'],
'background_cells': ['whitespace', 'blackspace'],
'agent': ['boy']}

Output:

(define (domain example)
(:requirements :fluents :adl :typing)
(:types

ball plate - item ; you may include small generic objects
item cabinet agent - object ; include 'item', 'agent' and any other objects
shape ;this can be shape, color or other attributes

)
(:predicates

(has ?a - agent ?i - item)
(at ?a - agent ?o - object) ; do not change
(adjacent ?a - agent ?o - object) ; do not change
(isplateshape ?p - plate ?s - shape)
(isballshape ?b - ball ?s - shape)

)

(:constants
boy - agent ; name(s) of the agent(s) should be listed here,
circle square - shape ; list kinds of attributes mentioned
tennisball basketball baseball - ball ; list all unique objects

)

(:functions
(gridheight) - integer
(gridwidth) - integer
(xloc ?o - object) (yloc ?o - object) - integer
(whitespace) (blackspace) - bit-matrix ;
this should be an exact list as in physical_generic_objects["background_cells"]

)

(:derived (at ?a ?o) (and (= (xloc ?a) (xloc ?o)) (= (yloc ?a) (yloc ?o))))

(:action pickup
:parameters (?a - agent ?i - item)
:precondition

(and (not (has ?a ?i))
(adjacent ?a ?i)

:effect
(and (has ?a ?i)
(assign (xloc ?i) -1) (assign (yloc ?i) -1)
)

)
)

(:action up-white
:parameters (?a - agent)
:precondition

(and (> (yloc ?a) 1)
(= (get-index whitespace (yloc ?a) (xloc ?a)) true)
(= (get-index blackspace (- (yloc ?a) 1) (xloc ?a)) false)

)
:effect

(and (decrease (yloc ?a) 1))
)

[omitting other actions]

)

In cases where you can move on the black space but at a different cost:

(:action right-white
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:parameters (?a - agent)
:precondition

(and (< (xloc ?a) (gridwidth))
(= (get-index whitespace (yloc ?a) (xloc ?a)) true)

)
:effect

(and (increase (xloc ?a) 1))
)

(:action right-black
:parameters (?a - agent)
:precondition

(and (< (xloc ?a) (gridwidth))
(= (get-index blackspace (yloc ?a) (xloc ?a)) true)

)
:effect

(and (increase (xloc ?a) 1))
)

Multiagent cases:

If multiple agents are present, we use an agent-code to number the agents
and a turn variable to indicate which agent is in turn to act.

Include these in the functions only in cases with more than 1 agent:

(agentcode ?a - agent) - integer
(turn)- integer

then you should check (= turn (agentcode ?a)) as a precondition for each agent's action.
Then after completing the action, we would move on to the next agent: (assign turn (- 1 turn))

Now please generate a PDDL domain given the input below:

"""

F.2 Prompt for Parsing Image Cells
Your task is to take an image of a cell in a gridworld, then output a json file describing the object
in the cell, using pddl, based on the pddl domain definition.

There can be multiple objects in the cell, please make sure you represent them all.

The location should be set with xloc and yloc, using placeholder $i and $j for the values.
Please also remember to add relevant attributes such as color and shapes if applicable.

Example:

Input:

Instruction: There are pins and balls on the table. The items can be used or new.
The pins can have a circle or square shape.

object_types:
{

"generic_objects": ["pin"],
"unique_objects": ["tennisball", "basketball", "baseball"],
"agent": ["human"]

}

pddl_predicates: (isShape ?p - pin ?s - shape) (isNew ?i - item)

Image: [insert image of the cell showing a new circle pin and a baseball on a white square]

Output:

{
"object_name": ["pin", "baseball"]
"object_pddl_str": "(= (yloc pin) $i) \n(= (xloc pin) $j) \n(isShape pin circle) \n(isNew pin) \n(=
(yloc baseball) $i) \n(= (xloc baseball) $j)\n "
}

if you are classifying objects that have attributes such as shapes and colors, you must include those attributes.

F.3 Prompt for Synthesizing the Agent Configuration
Your task is to synthesize a json configuration file given the problem description.

Grid_size: size of the grid, row by column.

Observability: should either "full" or "partial", indicating whether the agent can see the full map.

Belief config: If observability is full, return an empty dictionary, otherwise,
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include information below. Note that you should read these from

1. Belief_object: In case of partial observability, you should indicate what is the item being hidden.

2. Belief_container: In case of partial observability, you should indicate what are the containers
for the hidden objects.

3. Barrier: Name any physical barrier that obstructs the view of the agent.

4. Agent: Name of the agent.

Goals: should be a list of predicate strings. If the problem doesn't call for goal inference
(i.e. goal is given), then this should be a list with 1 predicate. Please note that sometimes the goal
can be a composite if the agent can have multiple objectives. For example, if an agent's goal is to get to get
home, but has the option to pick up a flower or pizza on the way home, the goal space would be [["(at agent home)"],
["(at agent home)", "(has agent flower)"], ["(at agent home)", "(has agent pizza)"], ["(at agent home)", "(has agent flower)",
"(has agent pizza)"] ]. Make sure the predicates are allowed based on the PDDL domain definition. Make sure all goal object
names match with the object names provided to you.

Costs: should be a list of possible different action cost profiles (dictionary). The action names should match exactly
with the actions from the PDDL description file. If the task doesn't call for different action costs (i.e. action costs vary
across different cells), then this should have only 1 action cost profile. Action costs should be a real number greater than 0.
In general, specific actions such as pickup should have higher costs than movements.

Query: should be one or more of the following: "belief", "goal", "reward", "cost". Note that rewards usually asks how much does agent
like X, whereas goals questions ask which item is the agent's goal.

Temperature: How rational is the agent? The value should be a real number greater than 0. A lower temperature indicates more rational
actions. By default this should be 1.

=========================

Here is an example:

Suppose the task is to infer a human's beliefs, goals, as well as the costs of movement in two kinds of terrains, black and
white, at a 3 by 4 grid. The human cannot see through the black terrain.

The human's goal is to get one of the three balls: baseball, basketball, and tennisball. The balls are hidden in boxes and the agent
cannot see which ball is in which box.

actions from PDDL domain: up-white, down-white, left-white, right-white, up-black, down-black, left-black, right-black, pickup

object types:
{

"generic_objects": ["ball", "box"],
"unique_objects": [

"baseball", "basketball", "tennisball"
],
"agent": [

"human"
]

}

Example output:

{
"grid_size": [3,4],
"observability" : "partial",
"belief_config" : {

"belief_object": "ball",
"belief_container": "box",
"barrier": "blackterrain",
"agent" : "human"

},
"goals": [["(has human baseball)"], ["(has human basketball)"], ["(has human tennisball)"]],
"costs": [

{
"up-white": 1, "down-white": 1, "left-white": 1, "right-white": 4, "up-black": 4, "down-black": 4,
"left-black": 4, "right-black": 4, "pickup": 5,

}
{

"up-white": 2, "down-white": 2, "left-white": 2, "right-white": 2, "up-black": 2, "down-black": 2, "left-black":2,
"right-black": 2, "pickup": 5,

}
{

"up-white": 4, "down-white": 4, "left-white": 4, "right-white": 4, "up-black": 1, "down-black": 1, "left-black": 1,
"right-black": 1, "pickup": 5,

}

],
"query":["belief", "goal", "costs"],

}

Now please generate a configuration file for the following scenario:

12233



G Scatterplots for Model and Human Judgments
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Figure 5: Scatterplots of model vs human judgments on Foodtruck and Astronaut domains. Error bar indicates
standard deviation.
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Figure 6: Scatterplots of model vs human judgments on DKG domains and variants. Error bars indicate standard
deviation.
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