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Abstract

This paper introduces MoRoVoc, the largest
dataset for analyzing the regional variation of
spoken Romanian. It has more than 93 hours
of audio and 88,192 audio samples, balanced
between spoken Romanian in Romania and the
Republic of Moldova. We further propose a
multi-target adversarial training framework for
speech models that incorporates demographic
attributes (i.e., age and gender of the speak-
ers) as adversarial targets, making models dis-
criminative for primary tasks while remaining
invariant to secondary attributes. The adver-
sarial coefficients are dynamically adjusted via
meta-learning to optimize performance. Our
approach yields notable gains: Wav2Vec2-Base
achieves 78.21% accuracy for the variation
identification of spoken Romanian using gen-
der as an adversarial target, while Wav2Vec2-
Large reaches 93.08% accuracy for gender clas-
sification when employing both dialect and age
as adversarial objectives.

1 Introduction

Dialect identification poses a fundamental chal-
lenge in speech processing, and low-resource lan-
guages face persistent difficulties due to the scarcity
of annotated corpora. Despite its millions native
speakers, Romanian remains underrepresented in
speech technology research.

We introduce MoRoVoc, the largest corpus for
Romanian spoken dialect identification to date, con-
taining 93+ hours of annotated speech with 88,192
audio samples balanced between standard Roma-
nian and Moldavian dialects. The dataset includes
comprehensive demographic metadata and is de-
rived from high-quality parliamentary recordings.

Our methodological contribution introduces a
novel multi-target adversarial training framework
for fine-tuning speech models through gradient re-
versal (Avram et al., 2024, 2025). This approach
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incorporates multiple demographic attributes as
adversarial targets (Zhao et al., 2022) with dy-
namically adjusted adversarial coefficients through
meta-learning (Vettoruzzo et al., 2024), allowing
models to learn representations that are discrimina-
tive for the primary task while remaining invariant
with secondary attributes.

Our experiments with Wav2Vec2 (Baevski et al.,
2020) demonstrate that our multi-target adversarial
training significantly improves performance across
all classification tasks. For spoken dialect iden-
tification, Wav2Vec2-Base achieves 78.21% accu-
racy (a 5.20% improvement over baseline) when us-
ing gender as adversarial target, while Wav2Vec2-
Large reaches 77.53% accuracy when both gender
and age serve as adversarial targets.

The main contributions of our work can be sum-
marized as follows:

• We present MoRoVoc, the largest corpus for
Romanian spoken dialect identification, which
includes detailed gender and age annotations,
and is available for public use1.

• We conducted an in-depth analysis of Mo-
RoVoc and compared it with another dataset
of spoken dialect identification available in
the literature (see the Appendix A).

• We propose a novel multi-target adversar-
ial training framework for speech models
that employs gradient reversal on multiple at-
tributes, adapting their coefficients using meta-
learning, which results in an improvement of
up to 5.20% for dialect identification.

2 MoRoVoc Dataset

2.1 Data Collection and Annotation
The audio samples in the MoRoVoc dataset were
obtained from publicly available recordings of par-

1https://huggingface.co/datasets/avramandrei/
morovoc
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Dialect Train/Val/Test # hours SNR SRR

RoDia

Transylvanian 427/-/119 0.39 29.18 36.88
Banatian 424/-/99 0.37 23.47 35.18
Moldavian 384/-/206 0.42 25.68 30.78
Wallachian 603/-/106 0.51 28.67 35.62
Oltenian 326/-/74 0.29 26.58 31.66

Overall 2164/-/604 1.99 26.89 34.15

MoRoVoc

Moldavian 39.6k/2.7k/2.6k 46.07 21.01 23.22
Standard Romanian 37.9k/2.6k/2.6k 47.40 20.71 23.25

Overall 77.6k/5.3k/5.2k 93.48 20.86 23.24

Table 1: Overview of dataset statistics comparing Mo-
RoVoc and RoDia. The table details dialect-specific
train/validation/test splits, total duration in hours, and
key audio quality metrics (SNR and SRR).

liamentary debates from Romania and the Republic
of Moldova. These recordings, sourced from offi-
cial legislative sessions, provide a natural setting
in which the speakers exhibit both the standard
Romanian accent and distinct Moldavian phonetic
traits. To ensure a high-quality and representative
corpus for dialect identification, we used a rigorous
selection process.

Initially, each recording was manually seg-
mented to isolate single-speaker segments. The
segments containing overlapping speech or exhibit-
ing low intelligibility were then discarded. To en-
sure reliable dialect labels, all segments were subse-
quently submitted to local annotators, native speak-
ers proficient in the standard Romanian language,
for manual validation. Samples with ambiguous
dialect cues were removed from the final collection.

After curation, the MoRoVoc dataset comprises
88,192 audio samples (i.e., 43,186 for Romanian
and 45,006 for Moldavian) with durations ranging
from 0.4 to 30 seconds, all recorded at a sampling
rate of 22,050 Hz. To prevent models from overfit-
ting to speaker-specific characteristics unrelated to
dialect, the dataset was divided into disjoint train-
ing, validation, and testing splits, which tried to
maintain the original distribution of the data. In
total, 77,638 samples were allocated for training,
5,349 for validation, and 5,207 for testing, ensuring
that no speaker appears in more than one split.

2.2 Dataset Statistics

A detailed overview of the audio quality and
data distribution statistics for MoRoVoc, com-
pared to RoDia (Codrut, et al., 2024), is provided
in Table 1. In particular, the table reports the

Figure 1: Distribution of gender (left) and age groups
(right) in the MoRoVoc dataset.

number of samples per dialect (along with their
train/validation/test splits), the total duration in
hours (93.48 hours), as well as quality metrics in-
cluding the signal-to-noise ratio (SNR) and the
signal-to-reverberation ratio (SRR). Both quality
metrics indicate relatively low levels of background
noise and reverberation in the recordings.

Beyond spoken dialect identification, our annota-
tors also provided demographic labels based on age
and gender. Figure 1 illustrates the resulting distri-
butions: 67.9% of the speakers are male and 32.1%
are female, with the largest age segments being
50–60 (38.5%) and 40–50 (37.9%). Younger speak-
ers, aged 30–40, represent 15.2% of the dataset,
while 7.8% of the speakers are in the 60–70 age
range, and 0.6% fall into the “other” category (i.e.,
those under 30 years and older than 70 years). This
age distribution reflects the typical demographic
makeup of parliamentary sessions, where middle-
aged and older speakers are more prevalent com-
pared to younger speakers.

Finally, to assess the reliability of these demo-
graphic annotations, we measured the inter-rater
agreement using the Quadratic Weighted Kappa
(Vanbelle, 2016), which yielded a value of 0.87.
This result indicates a high level of consistency
among the annotators. Furthermore, the average
accuracy among the annotators was 91%, which
further highlights the strong consensus in labeling
the age and gender categories. Textual statistics are
presented in Appendix B.

3 Methodology

We introduce a novel fine-tuning strategy for pre-
trained Wav2Vec2 models incorporating multiple
adversarial targets. Our approach ensures invari-
ance to demographic attributes, including dialect,
gender, and age. We consider three configurations,
each with a different main task and the remaining
attributes as adversarial objectives: 1) spoken di-
alect identification as the main task with gender
and age as adversarial goals, 2) gender classifica-
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tion as the primary objective with dialect and age
as adversarial tasks, and 3) age classification with
dialect and gender as adversarial tasks.

3.1 Fine-tuning Wav2Vec2

We adapt the Wav2Vec2 model by attaching three
task-specific classification heads to the shared en-
coder. In a given configuration, one head is des-
ignated as the main task head with the loss Ltask,
while the remaining two heads generate adversarial
losses L(1)adv and L(2)adv.

For each task-specific head, we obtain a global
representation of the input speech by averaging the
encoder outputs:

ē =
1

T

T∑

t=1

et. (1)

The prediction is then computed via a linear trans-
formation:

ŷ = σ(θē+ b), (2)

where θ and b are the weights and bias, and σ
denotes an appropriate activation function.

3.2 Multi-Target Adversarial Training

The key novelty of our approach is the simultane-
ous use of multiple adversarial objectives during
fine-tuning. The overall training objective is as
follows:

L = Ltask + λ1 L(1)adv + λ2 L(2)adv, (3)

where λ1 and λ2 control the influence of the adver-
sarial losses.

We reverse the gradients from adversarial losses
during backpropagation. Let θenc denote the param-
eters of the Wav2Vec2 encoder. The update is as
follows:

θenc ← θenc − α
(
∇θencLtask − γ1∇θencL

(1)
adv − γ2∇θencL

(2)
adv

)
, (4)

where α is the learning rate, while γ1 and γ2 control
the strength of the adversarial objectives. This
update can be viewed as minimizing:

L′ = Ltask − λ1 L(1)adv − λ2 L(2)adv. (5)

3.3 Meta-Learning for Adversarial
Coefficient Adaptation

Selecting appropriate values for coefficients γ1 and
γ2 is challenging. We employ a gradient-based

meta-learning strategy to adaptively tune them dur-
ing training, adopting the model-agnostic meta-
learning technique (Finn et al., 2017).

Thus, after updating model parameters via the
inner loop (Equation 3), we define a meta-loss on a
validation set:

Lmeta(γ) = Ltask(xval, yval; θ
′). (6)

The outer loop updates the adversarial coefficients:

γ ← γ − η∇γLmeta(γ), (7)

where γ = (γ1, γ2) and η is the meta-learning rate.
This update optimizes the main task performance
on unseen data.

4 Results

Table 2 presents the performance of the Wav2Vec2-
Base and Wav2Vec2-Large models on the Mo-
RoVoc dataset2. We evaluated three main tasks
while exploring different adversarial objectives.
We measure the accuracy, precision, recall, and
the F1-score on each task.

4.1 Task-Specific Performance

Spoken Dialect Identification. For dialect iden-
tification, Wav2Vec2-Base achieves the highest F1-
score (78.05%) when using only gender as an ad-
versarial target, representing a significant improve-
ment over the baseline (71.80%). With Wav2Vec2-
Large, the optimal F1 performance (77.16%) is
achieved when both gender and age serve as adver-
sarial targets, suggesting that larger models better
manage multiple adversarial constraints.

Gender Classification. The gender classification
shows strong baseline F1 performance (87.04%
for Wav2Vec2-Base and 87.49% for Wav2Vec2-
Large). Using both dialect and age as adversarial
targets yields the highest F1-scores: 88.90% for
Wav2Vec2-Base and 91.00% for Wav2Vec2-Large,
confirming consistent benefits from multi-target
adversarial training.

Age Classification. Age prediction demonstrates
lower F1-scores overall, with baselines of 26.27%
(Wav2Vec2-Base) and 28.71% (Wav2Vec2-Large).
For both models, employing dialect and gender
jointly as adversarial targets yields the best F1 per-
formance: 27.23% for Wav2Vec2-Base and 31.83%

2Further details about the performance of other models
with our methodology are given in Appendix C.
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Table 2: Wav2Vec2-Base and Wav2Vec2-Large results on MoRoVoc. Up arrow (↑) depicts the target optimization
objective, down arrow (↓) depicts the adversarial optimization objective(s), while ✗ outlines that we did not use that
optimization objective.

Model Dialect Gender Age Acc. P R F1

Wav2Vec2-Base ↑ ✗ ✗ 73.01 75.08 72.02 71.80
Wav2Vec2-Base ↑ ↓ ✗ 78.21 78.23 77.98 78.05
Wav2Vec2-Base ↑ ✗ ↓ 76.36 76.42 76.07 76.15
Wav2Vec2-Base ↑ ↓ ↓ 70.54 72.03 71.22 70.40

Wav2Vec2-Base ✗ ↑ ✗ 89.60 89.93 84.34 87.04
Wav2Vec2-Base ↓ ↑ ✗ 89.80 89.90 86.63 88.23
Wav2Vec2-Base ✗ ↑ ↓ 88.78 89.25 84.71 86.92
Wav2Vec2-Base ↓ ↑ ↓ 90.21 89.89 86.94 88.90

Wav2Vec2-Base ✗ ✗ ↑ 47.32 26.77 28.66 26.27
Wav2Vec2-Base ↓ ✗ ↑ 46.27 24.72 30.16 27.17
Wav2Vec2-Base ✗ ↓ ↑ 45.27 22.12 26.84 24.23
Wav2Vec2-Base ↓ ↓ ↑ 48.02 24.95 30.02 27.23

Wav2Vec2-Large ↑ ✗ ✗ 75.41 75.37 75.18 75.24
Wav2Vec2-Large ↑ ↓ ✗ 76.57 76.51 76.39 76.44
Wav2Vec2-Large ↑ ✗ ↓ 77.26 77.37 76.93 77.03
Wav2Vec2-Large ↑ ↓ ↓ 77.53 78.00 77.04 77.16

Wav2Vec2-Large ✗ ↑ ✗ 90.26 90.13 85.01 87.49
Wav2Vec2-Large ↓ ↑ ✗ 91.57 91.89 86.71 88.83
Wav2Vec2-Large ✗ ↑ ↓ 92.19 92.44 87.75 89.71
Wav2Vec2-Large ↓ ↑ ↓ 93.08 93.03 89.43 91.00

Wav2Vec2-Large ✗ ✗ ↑ 47.46 28.64 28.79 28.71
Wav2Vec2-Large ↓ ✗ ↑ 48.76 23.80 28.76 26.04
Wav2Vec2-Large ✗ ↓ ↑ 49.45 30.27 29.79 30.02
Wav2Vec2-Large ↓ ↓ ↑ 49.93 34.36 29.66 31.83

for Wav2Vec2-Large, indicating a more substantial
improvement for the larger model.

4.2 Error Analysis

Figure 2 presents confusion matrices for the best-
performing model configurations on each task. Di-
alect identification reveals an asymmetric misclas-
sification: Romanian speakers are misclassified
as Moldavian 12.3% of the time, while the re-
verse occurs only 8.7% of the time. This pattern
likely reflects the linguistic relationship between
dialects, where spoken Romanian in the Repub-
lic of Moldova preserves archaic Romanian fea-
tures alongside Russian-influenced phonetic pat-
terns, and standard Romanian exhibits greater in-
ternal variation, particularly among speakers from
eastern regions who display transitional dialectal
features.

Gender classification achieves 93.08% accuracy

with a slight male bias (94.5% vs. 90.1% for female
speakers), potentially due to dataset imbalance and
the neutralizing effect of formal speech on gender-
specific prosody. The age classification performs
poorly (49.93% accuracy), with strong confusion
between adjacent groups: 30-40 year-olds are cor-
rectly identified only 45% of the time and are fre-
quently confused with the 40-50 group (35%). At
the same time, the sparse category "Other" achieves
just 10% accuracy. This systematic pattern sug-
gests that formal parliamentary discourse signifi-
cantly attenuates age-distinctive acoustic features,
such as speech rate and voice quality, as speakers
adopt standardized delivery patterns regardless of
age.

4.3 Discussion

Wav2Vec2-Large consistently outperforms
Wav2Vec2-Base on all tasks, with the most
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Figure 2: Confusion matrices for the best-performing models on three classification tasks using the MoRoVoc test
set. Values represent classification percentages for each true-predicted class pair. (a) Spoken dialect identification
using Wav2Vec2-Large with gender and age as adversarial targets. (b) Gender classification using Wav2Vec2-Large
with dialect and age as adversarial targets. (c) Age classification using Wav2Vec2-Large with dialect and gender as
adversarial targets.

substantial improvements in the F1-score for
gender classification (3.50%) and age prediction
(4.60%). The performance gap for spoken dialect
identification is smaller (1.01%), suggesting that
even the smaller model can capture the linguistic
features used in this task.

Our results demonstrate that multi-target adver-
sarial training enhances performance; however, the
optimal configuration depends on both the task and
model size, a finding also observed in other works.
This pattern indicates complex relationships be-
tween speech attributes, which our meta-learning
approach effectively navigates by finding an opti-
mal balance between task-specific discriminative
power and attribute invariance.

5 Conclusion

This paper introduced MoRoVoc, the largest corpus
of Romanian spoken dialect identification to date,
comprising over 93 hours of speech and 88,192
audio samples balanced between standard Roma-
nian and Moldavian dialects, with comprehensive
gender and age annotations. We also proposed a
novel multi-target adversarial training framework
for fine-tuning speech models that incorporates de-
mographic attributes as adversarial targets with
coefficients dynamically adjusted through meta-
learning, yielding significant performance improve-
ments across all classification tasks: Wav2Vec2-
Base achieved 78.21% accuracy for dialect iden-
tification (a 5.20% improvement over baseline)
when using gender adversarially. At the same time,
Wav2Vec2-Large reached 93.08% accuracy for gen-

der classification when using both dialect and age
adversarially.

6 Limitations

Despite MoRoVoc’s contributions, several limita-
tions warrant consideration. Our dataset relies ex-
clusively on parliamentary recordings with formal
speech registers, which may not generalize well
to colloquial contexts. The demographic distribu-
tion is skewed (67.9% male, 76.4% aged 40–60),
with minimal representation of younger and older
speakers. This could impact the model’s general-
ization capabilities across different groups, which
may explain its modest performance on the age
classification task.

Binary dialect classification (standard Romanian
vs. Moldavian) also simplifies Romania’s dialectal
landscape, which traditionally includes five ma-
jor regional variants as seen in the RoDia dataset
(Codrut, et al., 2024). Future work should diversify
speech registers, improve demographic balance,
and evaluate performance in various acoustic en-
vironments and model architectures. Additionally,
exploring the application of our multi-target adver-
sarial training framework to other speech recogni-
tion tasks beyond dialect identification could fur-
ther validate its effectiveness.

7 Ethical Considerations

The MoRoVoc corpus was developed with strict
adherence to ethical research standards. All au-
dio recordings were sourced from publicly avail-
able parliamentary sessions in Romania and the
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Republic of Moldova, with proper documentation
of sources and metadata. Speaker identities are pro-
tected in accordance with established privacy pro-
tocols, ensuring that our resources advance speech
technology research while upholding legal and eth-
ical standards for the distribution of speech data.
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(Lounnas et al.), Italian (La Quatra et al., 2024),
Styrian (Yeh et al., 2019), Vietnamese (Dinh et al.,
2024), German (Dobbriner and Jokisch, 2019), and
Japanese (Imaizumi et al., 2022), each exploring
different aspects of dialectal speech.

In Chinese speech processing, datasets such as
KeSpeech (Tang et al., 2021) have showcased large-
scale dialectal speech collections that include mul-
tiple subdialects of Mandarin. This dataset, with
1,542 hours of speech from over 27,000 speakers,
supports various tasks, including SDI and auto-
matic speech recognition (ASR). Similarly, Arabic
dialect identification (ADI) datasets such as ADI-5
(Ali et al., 2017) and ADI-17 (Ali et al., 2019)
offer resources for dialectal speech recognition,
demonstrating the potential of transfer learning and
self-supervised learning models for robust dialect
identification in domain shifts (Kulkarni and Aldar-
maki, 2023). In contrast, Japanese SDI focuses on
tightly coupled linguistic and acoustic features, as
seen in studies employing multi-task learning for
end-to-end SDI and ASR systems (Imaizumi et al.,
2022).

For low-resource languages, initiatives to iden-
tify German dialects in Irish and Swiss have ex-
plored methods to handle limited data while em-
phasizing dialectal distinctions. For Irish, exper-
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iments with ECAPA-TDNN (Desplanques et al.,
2020) and XLS-R (Babu et al., 2022) illustrated
the effectiveness of combining acoustic and textual
information for SDI (Lonergan et al., 2023). Sim-
ilarly, RoDia (Codrut, et al., 2024), a pioneering
dataset for identifying Romanian dialects, repre-
sents a significant step in low-resource language
processing. RoDia comprises speech samples from
five Romanian dialects and provides baseline mod-
els for evaluation. However, its limited scale, with
only two hours of annotated speech, reflects the
challenges of resource constraints.

Although RoDia set an important precedent for
Romanian SDI, our newly introduced MoRoVoc
dataset addresses its limitations by offering a signif-
icantly larger collection of annotated speech sam-
ples. This scale advantage underscores MoRoVoc
as a crucial enhancement in the advancement of
Romanian SDI research.

B Textual Statistics

We used the turbo version of the Whisper model
(Radford et al., 2023) to generate transcriptions for
the speech samples available in MoRoVoc. The
RoQLlama-7b tokenizer (Dima et al., 2024) was
then used to calculate the token statistics for these
transcriptions. This process allowed us to quan-
tify the textual characteristics of each dialect repre-
sented in our corpus.

As shown in Table 3, the MoRoVoc dataset in-
cludes approximately 984,000 tokens for Molda-
vian samples and 1,064,000 tokens for standard
Romanian samples. In particular, standard Roma-
nian samples contain an average of 24.64 tokens per
sample, which is slightly higher than the Moldavian
average of 21.87 tokens per sample. This slight dif-
ference in verbosity between dialects could be at-
tributed to the varying speaking styles or discourse
patterns characteristic of each region. Overall, the
MoRoVoc dataset contains a substantial 88k sam-
ples across both dialects, yielding approximately 2
million tokens in total. This represents a significant
textual corpus with an average of 23.19 tokens per
sample, demonstrating the robustness of the dataset
for computational linguistic analysis and natural
language processing tasks.

We also performed a Term Frequency-Inverse
Document Frequency (TF-IDF) (Leskovec et al.,
2020) analysis of the transcriptions to identify the
most distinctive terms for each dialect. The re-
sults presented in Table 4 reveal interesting lexical

Dialect # Samples # Tokens Avg. Tok.
per Sample

Moldavian 45k 984k 21.87
Standard Romanian 43k 1,064k 24.64

Overall 88k 2,049k 23.19

Table 3: Textual statistics of the MoRoVoc dataset show-
ing sample count, total token count, and average tokens
per sample for each dialect.

preferences between the two dialects. For stan-
dard Romanian speakers, terms such as "Moldova",
"part" (eng. "part"), and the formal pronoun "dum-
neavoastră" (eng. "you") have high distinctive-
ness scores. This suggests frequent references to
Moldova and possibly a more formal register in
parliamentary discourse.

For Moldavian speakers, terms such as "senator,"
"domnul" (eng. "the gentleman/sir"), and "punc-
tul" (eng. "the point") emerge as highly distinctive.
Interestingly, "românia" (eng. "Romania") appears
as a characteristic term in Moldavian speech, indi-
cating frequent references to Romania in the par-
liament of the Republic of Moldova. This pattern
aligns with the expected topics of geopolitical dis-
course between these neighboring regions.

These lexical differences, while subtle, provide
valuable linguistic insights into how the two di-
alects differ in formal parliamentary settings. The
TF-IDF analysis highlights both content-based dif-
ferences (references to the respective countries) and
potentially stylistic variations in formal address and
discourse patterns between standard Romanian and
Moldavian dialects.

C Additional Model Results

To further validate the effectiveness of our multi-
target adversarial training framework, we extended
our experiments to include the HuBERT (Hsu et al.,
2021) and WavLM-Base (Chen et al., 2022) mod-
els. These additional experiments demonstrate the
generalizability of our approach across different
self-supervised speech representation architectures.
Table 5 presents the complete results for both mod-
els in all task configurations.

HuBERT achieves its best performance for the
spoken dialect identification task, with an F1-score
of 80.22% when using gender as the only adversar-
ial goal, representing a 4.59% improvement over
its baseline (75.63%). This pattern closely mirrors
the results obtained with Wav2Vec2-Base, suggest-
ing that gender-based adversarial training consis-
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Country Word Translation TF-IDF Score

Romania

moldova Moldova 0.054
parte part 0.047
dumneavoastră you (formal) 0.046
vedem we see 0.038
domnul the gentleman/sir 0.038
stat state 0.037
cadrul the framework 0.035
fapt fact 0.035
lucru thing/work 0.035
partea the part 0.034

Republic of Moldova

senator senator 0.139
domnul the gentleman/sir 0.123
punctul the point 0.103
românia Romania 0.085
zi day 0.066
lege law 0.065
domnule sir 0.063
vedem we see 0.059
privind regarding 0.058
vot vote 0.058

Table 4: Top ten most distinctive words for standard Romanian and Moldavian dialects based on TF-IDF analysis of
transcribed speech. The table includes the original words, their English translations, and corresponding TF-IDF
scores indicating the relative distinctiveness of each term within its dialect.

tently enhances dialect discrimination across dif-
ferent architectures. For gender classification, Hu-
BERT obtains an F1-score of 90.19% when em-
ploying both dialect and age as adversarial targets,
while age classification yields a modest 29.31%
F1-score under the same multi-adversarial configu-
ration. Notably, HuBERT outperforms Wav2Vec2-
Base in spoken dialect identification tasks (80.22%
vs. 78.05% F1-score with gender as the adversar-
ial objective), indicating its superior capability to
capture dialectal acoustic variations.

WavLM-Base performs even better, obtain-
ing the highest dialect identification F1-score of
81.67% among all base-sized models when us-
ing gender as an adversarial goal, an improve-
ment of 5.33% over its baseline. This model also
excels in gender classification, achieving an F1-
score of 90.93% with both dialect and age as ad-
versarial targets, surpassing both Wav2Vec2-Base
(88.90%) and HuBERT (90.19%). For age classi-
fication, WavLM-Base achieves 30.44% F1-score,
marginally outperforming other base models. The
consistent superiority of WavLM-Base across all
tasks can be attributed to its joint training on both

speech and denoising objectives, which potentially
provides more robust representations for handling
the acoustic variations present in parliamentary
speech recordings. These results reinforce our find-
ing that multi-target adversarial training yields sig-
nificant improvements regardless of the underlying
self-supervised architecture, with optimal config-
urations varying based on the specific model’s in-
ductive biases.
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Table 5: HuBERT and WavLM-Base results on MoRoVoc. Up arrow (↑) depicts the target optimization objective,
down arrow (↓) depicts the adversarial optimization objective(s), while ✗ outlines that we did not use that optimiza-
tion objective.

Model Dialect Gender Age Acc. P R F1

HuBERT ↑ ✗ ✗ 75.87 76.12 75.44 75.63
HuBERT ↑ ↓ ✗ 80.34 80.41 80.15 80.22
HuBERT ↑ ✗ ↓ 78.92 78.88 78.71 78.76
HuBERT ↑ ↓ ↓ 77.15 77.34 77.08 77.19

HuBERT ✗ ↑ ✗ 90.43 90.76 85.92 88.27
HuBERT ↓ ↑ ✗ 91.15 91.34 87.88 89.58
HuBERT ✗ ↑ ↓ 90.67 91.02 86.45 88.68
HuBERT ↓ ↑ ↓ 91.84 91.67 88.76 90.19

HuBERT ✗ ✗ ↑ 49.18 28.34 30.12 29.19
HuBERT ↓ ✗ ↑ 48.65 26.88 31.45 28.99
HuBERT ✗ ↓ ↑ 47.93 25.67 29.34 27.38
HuBERT ↓ ↓ ↑ 50.34 27.12 31.88 29.31

WavLM-Base ↑ ✗ ✗ 76.54 77.23 76.12 76.34
WavLM-Base ↑ ↓ ✗ 81.76 81.88 81.52 81.67
WavLM-Base ↑ ✗ ↓ 79.88 79.95 79.65 79.78
WavLM-Base ↑ ↓ ↓ 78.34 78.67 78.12 78.28

WavLM-Base ✗ ↑ ✗ 91.12 91.45 86.67 89.00
WavLM-Base ↓ ↑ ✗ 91.88 92.01 88.34 90.14
WavLM-Base ✗ ↑ ↓ 91.45 91.78 87.23 89.45
WavLM-Base ↓ ↑ ↓ 92.56 92.45 89.45 90.93

WavLM-Base ✗ ✗ ↑ 50.12 29.45 31.23 30.30
WavLM-Base ↓ ✗ ↑ 49.78 27.56 32.45 29.82
WavLM-Base ✗ ↓ ↑ 48.89 26.89 30.78 28.71
WavLM-Base ↓ ↓ ↑ 51.45 28.34 32.89 30.44
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