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Abstract

Cross-lingual chain-of-thought prompting tech-
niques have proven effective for investigating
diverse reasoning paths in Large Language
Models (LLMs), especially for low-resource
languages. Despite these empirical gains, the
mechanisms underlying cross-lingual improve-
ments remain perplexing. This study, therefore,
addresses whether the benefits of cross-lingual
prompting arise from reasoning structures in-
trinsic to each language, or are simply a con-
sequence of improved comprehension through
cross-linguistic exposure. We employ neuron
intervention and perturbation techniques to ana-
lyze and deactivate language-specific reasoning
neurons during cross-lingual prompting, lead-
ing to performance disparities across languages,
upto 27.4%. Our findings disentangle that these
neurons are essential for reasoning in their re-
spective languages but have minimal effect on
reasoning in other languages, providing evi-
dence for the existence of language-specific
local reasoning structures and guiding the de-
velopment of more interpretable and effective
multilingual Al systems.!

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable reasoning capabilities, yet per-
formance disparities across languages persist, par-
ticularly for low-resource languages with limited
training data (Zhang et al., 2023; Alam et al.,
2024). Chain-of-thought (CoT) prompting (Wei
et al., 2022), which guides models to break prob-
lems into sequential reasoning steps, has become
a go-to strategy to unlock latent reasoning power,
potentially due to the ability of CoT to leverage
local clusters of “reasoning locality” (Prystawski
et al., 2023), and has been effectively applied as
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cross-lingual prompting in parameter-frozen multi-
lingual LLMs (MLLMs) (Qin et al., 2023; Ranaldi
et al., 2024b). The significant performance im-
provements observed with cross-lingual prompting,
particularly for low-resource languages, are well-
documented, but the underlying mechanisms driv-
ing these gains are still not fully understood. A fun-
damental question remains entangled: Do improve-
ments from cross-lingual prompting arise from dis-
tinct local reasoning structures intrinsic to each
language, or are they simply by-products of en-
hanced problem comprehension achieved through
cross-linguistic exposure?

Figure 1 illustrates this vital distinction. When
presented with identical mathematical problems in
different languages, LLMs often produce different
reasoning processes and solutions. The source is
unclear, whether certain languages inherently scaf-
fold different reasoning structures through their
syntax, morphology, and discourse conventions, or
framing the same problem in multiple languages
simply clarifies ambiguities and better translations.

To address this question, our work offers a com-
prehensive analysis aimed at disentangling whether
cross-lingual prompting yields genuinely distinct
local reasoning structures per language or merely
enhances the understanding of problems originally
written in low-resource languages. Our main con-
tributions are:

* Systematic Framework: We leverage neu-
ron intervention to analyze between language-
specific reasoning structures and language un-
derstanding in cross-lingual prompting.

* Structural Analysis: Through our experiments,
we compare language reasoning paths and an-
alyze their structural properties, highlighting
the role of language-specific features, with
disabling them causing a gap of upto 27.4%.

* Insights into Multilingual Reasoning: By iso-
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Figure 1: Hypotheses of cross-lingual reasoning. Direct Prompting (Orange & Green): Prompts in native
languages may engage distinct, language-specific reasoning structures. Cross-Lingual Prompting (Blue): The
consistent local structure hypothesis posits that an English prompt directing the model to reason in other languages
would yield a uniform reasoning scaffold across target languages. Empty nodes denote shared intermediate states.
Empirical results indicate, however, that distinct structures persist even under cross-lingual prompting.

lating the contributions of language under-
standing and reasoning structure, our work
provides evidence for existence of language-
specific reasoning structures within LLMs.

2 Related Works

Cross-lingual prompting Reasoning methods
such as CoT prompting (Wei et al., 2022) elicit
step-by-step problem solving from LLMs. Cross-
lingual prompting and its variants, including self-
consistent and tree-of-thought, first attempt to trans-
late the low-resource input to a target language that
is then used for reasoning on each instance, for mul-
tiple target languages; claiming to ensemble differ-
ent reasoning paths across languages (Qin et al.,
2023; Huang et al., 2023; Ranaldi et al., 2024b,a).
However, the origin of its gains, whether from im-
proved language understanding due to translation,
avoidance of failures in specific language transla-
tion, or from intrinsic language-specific reasoning
structures, remains an open question, one we seek
to investigate and clarify.

Local structures in language models Recent
studies suggest that CoT benefits arise when related
concepts cluster closely in model activations (Prys-
tawski et al., 2023). Other works show that rea-
soning may reside in middle layers, where a for-
ward pass of LLMs first goes through surface-level
translation and generation occur only at later lay-
ers (Tang et al., 2024; Tran et al., 2024; Hu et al.,
2025). Building on these findings, our work identi-
fies language-specific patterns associated with dif-
ferent reasoning behaviors. We examine how this

Simulate the collaboration of 3 mathematicians answering a question.
The mathematicians are native speakers of Spanish, French,
Chinese...This process continues until reaching a definitive answer
to the question.
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Figure 2: Our intervention approach for analyzing and
disentangling language understanding and local reason-
ing structures in cross-lingual LLM prompting.

manifests in cross-lingual CoT and their implica-
tions for both performance and interpretability.

3 Methodology

We investigate the origins of multilingual reason-
ing in LLMs by analyzing the internal activation
patterns and functional roles of language-specific
and shared neural pathways during cross-lingual
prompting for mathematical and commonsense rea-
soning tasks. The experimental design comprises
multiple phases, each aimed at uncovering the struc-
ture of reasoning processes across languages.

The first phase identifies neurons that are highly
specific to reasoning in individual languages.
Leveraging the LAPE technique (Tang et al., 2024),
which operates by calculating the entropy of each
feed-forward network neuron’s activation probabil-
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ities across large text corpora from multiple lan-
guages, neurons exhibiting low entropy, meaning
they preferentially activate for a single language,
are considered language-specific.

Next, to evaluate how the model encodes linguis-
tic information, multilingual queries are fed into
the model, and output embeddings at each layer are
decoded into model vocabulary tokens. These de-
coded tokens are classified as either English or non-
English. Results reveal that, in the initial layers,
embeddings produced from non-English queries
predominantly correspond to non-English tokens
while in intermediate layers, English tokens begin
to take over. This pattern suggests that the model
initially processes and comprehends non-English
inputs through language-specific pathways (Zhao
et al., 2024), therefore, deactivation of language
neurons in intermediate layers does not impact the
model’s understanding of the input question, in-
dicating them as language-specific reasoning neu-
rons.

To provide a robust baseline for perfor-
mance analysis, we employ Cross-lingual Tree-of-
Thought (Cross-ToT) prompting (Ranaldi et al.,
2024b) and perform intervention with language-
specific reasoning neurons, as shown in Figure 2.
In this setup, the model is prompted to simulate
collaboration among mathematicians/experts, each
working in their native language. The original
prompt encourages each one to reason step by step
in their language, refining and cross-referencing
their solutions at each stage until a consensus is
reached. Here, we refine the prompt to explicitly
label each reasoning path according to the expert’s
language, allowing for extraction and analysis of
the reasoning trajectory for each language. Key per-
formance metrics, including logical soundness and
correctness, are evaluated using LL.M-as-a-judge
framework (Zheng et al., 2023; Ye et al., 2025).

The final phase examines the results and be-
haviors of neuron deactivation interventions. The
impact on performance is assessed by measuring
changes in the metrics after selectively disabling
language-specific neurons. By analyzing which
reasoning paths and performance metrics are most
affected by these perturbations, we analyze whether
distinct local reasoning structures are maintained
for each language or if reasoning converges on a
shared representational core. For instance, if de-
activating neurons specific to language X disrupts
reasoning only for that language while leaving oth-
ers unaffected, it provides strong evidence for the

existence of language-specific reasoning circuits.

4 Experiments

4.1 Setup

To identify language-specific reasoning neurons,
we follow the original approach (Tang et al., 2024),
utilizing Wikipedia articles as a high-quality, multi-
lingual resource and compute perplexity scores for
each language subset. To avoid selecting inactive
or uninformative neurons, we filter out any neuron
whose activation in all languages falls below the
95th percentile of global neuron activations. This
ensures that only sufficiently active neurons are
considered for entropy ranking. We also select a set
of random neurons of equal size (500 per language)
to serve as a control group for our interventions.
This ensures that observed effects are specifically
attributable to language-specific circuits rather than
general model capacity reduction.

For cross-lingual prompting, we adopt the tree-
of-thought variant (Ranaldi et al., 2024b), which
enables the generation of multi-step reasoning
paths in various languages. The perturbation setup
mirrors this, but zeros out the selected language-
specific neurons during generation. While our anal-
ysis is grounded in this specific framework, our
method is broadly applicable to any cross-lingual
prompting strategy.

All experiments are conducted with Llama 3.1-
8B-Instruct, Llama 3.1-70B-Instruct (Grattafiori
etal., 2024; Al 2024) models selected for its strong
performance and open source license. To evaluate
the effects of cross-lingual prompting and interven-
tions on language-specific neurons, we use ques-
tions from the MGSM, an arithmetic reasoning
benchmark (Shi et al., 2023) and XCOPA, a com-
monsense reasoning benchmark (Ponti et al., 2020)
in different languages. We compare performance
with and without language-specific reasoning neu-
rons deactivation across both Latin and non-Latin
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Figure 3: Distribution of identified language specific-
neurons across layers in Llama-3.1-8B-Instruct.
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script languages, and all resource regimes (high,
medium, and low-resource languages).

To assess the quality of generated reasoning
paths, we employ Claude 3.7 Sonnet (Anthropic,
2025) as automated evaluator, providing consistent
scoring for each language’s reasoning process. The
validity of this evaluation method was established
by correlating its outputs with those of a strong
open-weight baseline, Qwen-3-32B. First, the base-
line’s internal consistency was verified; evalua-
tions using two different random seeds yield a high
intra-model correlation (Pearson’s r = 0.8726, p
< 0.000001). Subsequently, the assessments from
Claude 3.7 Sonnet demonstrates a strong correla-
tion with the validated baseline (r = 0.8423, p =
0.000012). The Nvidia HGX platform with H100
GPUs is used throughout our experiments.

4.2 Results

Figure 3, 4 show the distribution of identified
language-specific neurons across the layers of the
models. Most of these neurons are concentrated in
the reasoning layers, suggesting a role in language-
specific reasoning circuits. The number of English-
specific neurons identified in each layer is rela-
tively small compared to other languages. For ex-
ample, out of 6,650 language-specific neurons iden-
tified in total of Llama-3.1-8B-Instruct, only 148
(2.23%) are specific to English, with the highest
concentration being 35 neurons in layer 29. We at-
tribute this phenomenon to English being the domi-
nant language in Llama 3.1°s training data, thereby
requiring fewer specialized neurons to support
English-specific language ability. Neurons may
be shared across multiple languages. To further as-
sess their reasoning relevance, we benchmark cross-
lingual tree-of-thought prompting on three Latin
script languages (English, Spanish, French) and
two non-Latin script languages (Japanese, Chinese)
from MGSM. For XCOPA, we include Chinese (a
medium resource language) along with Vietnamese
and Indonesian, both considered low-resource lan-
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Figure 4: Distribution of identified language specific-
neurons across layers in Llama-3.1-70B-Instruct.

Model Lang Self-Perturb Self-Perturb
(Same) (Other)
en +0.9% +1.0%
es +1.3% +8.2%
Llama 3188 24.1% -10.0%
ja —27.4% +1.2%
zh -2.5% —4.8%
en +2.5% +2.1%
Llama3.1-70B 5% 3%
ostract fr ~2.8% -1.2%
ja -1.0% -0.3%
zh -5.8% -1.1%

Table 1: Self vs. Cross-language intervention effects
on MGSM. Logical soundness changes (%) relative to
no-intervention baseline.

Model Lang Self-Perturb Self-Perturb
(Same) (Other)
zh -11.3% -3.6%
Llama 3.1-88 4 ~15.3% ~6.3%
id -5.7% -2.0%
zh -2.7% -2.0%
Llama 31708 22.6% 2.4%
id -12.5% -1.5%

Table 2: Self vs. Cross-language intervention effects
on XCOPA. Logical soundness changes (%) relative to
no-intervention baseline.

guages (Joshi et al., 2020) (Liu et al., 2025) with
less than 1% representation in Common Crawl.
Performance metrics, as evaluated by Claude 3.7
Sonnet, are summarized in Tables 1-2.

4.3 Analysis

Our experiments reveal several key insights regard-
ing the role of language-specific reasoning neurons
in multilingual LLMs. First, we find that the major-
ity of these neurons are concentrated in the model’s
reasoning layers, rather than in layers associated
with surface-level language understanding. This
localization suggests that these neurons participate
directly in the reasoning process, forming distinct
circuits for different languages.

When we selectively deactivate the reasoning
neurons associated with a specific language, the
model’s performance on reasoning tasks in same
language, denoted Self-Perturb (Same), drops sig-
nificantly. More specifically, in all scenarios (p-
value = 0.006, two-tailed), deactivating a language-
specific neurons will affect the performance when
prompt to reason in that language (an average

2ht’cps: //commoncrawl.github.io/
cc-crawl-statistics/plots/languages
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Model Lang Baseline Perturbed Change
(%) (%) (%)

en 65.60 64.00 -1.60

es 61.60 56.29 531

Llama 3.1-88 fr 59.20 51.94 7.26
ja 46.80 39.20 7.60

zh 56.40 53.26 3.14

en 65.60 66.65 1.05

(pertubed  with 61.60 61.40 -0.20
Peg“e kV)V‘ fr 59.20 59.15 -0.05
random mas ja 46.80 46.90 0.10
zh 56.40 56.45 0.05

en 93.60 92.91 0.69

es 84.40 81.94 2246

Llama 31708 5 79,60 78.29 131
ja 80.80 80.51 -0.29

zh 86.40 84.11 -2.29

Table 3: Accuracy on the MGSM benchmark. Baseline
accuracy, accuracy after perturbing language-specific
neurons, and absolute change. Random mask control
shows negligible impact.

Model Lang Baseline Perturbed Change
(%) (%) (%)
h 68.60 63.27 533
Llama 3188 i 69220 68.87 -0.33
id 7060 68.00 260
th 9340 91.80 -1.60
Llama 31708 9200 90.93 1,07
‘ id 9340 91.80 -1.60

Table 4: Accuracy on the XCOPA commonsense rea-
soning benchmark, showing selective degradation after
neuron perturbation across model sizes.

drop of —8.31%), compared to reason in other lan-
guages, denoted Self-Perturb (Other), (an aver-
age drop of —1.60%), which, will use the other
language-specific reasoning neurons, with a degra-
dation of upto 27.4% compared to baseline for
Japanese. This selective degradation demonstrates
that the affected neurons are primarily responsible
for separate, local reasoning in their correspond-
ing language, rather than for general language
understanding or for multilingual reasoning as a
whole. On XCOPA, we also observe that the ef-
fects are more severe on low-resource languages
(Vietnamese and Indonesian), compared to high-
resource ones (Chinese), with a performance drop
of —14.03% versus —7.00%. This is potentially
due to these languages being less regularized dur-
ing pre-training (Conneau et al., 2020) (Pires et al.,
2019), and their language-specific reasoning neu-
rons are more specific to their own languages, lead-
ing to deactivating them having larger effects.

Furthermore, when comparing the results to the
baseline with no neuron deactivation, we observe
that disabling these neurons does not cause uni-
form performance drops across all languages or
tasks. In the case of English and Spanish, overall
performance is even improved. This outcome con-
firms the interpretation that these neurons are not in
charge of initial language comprehension, support-
ing the existence of language-specific reasoning
structures within LLM (and potentially language
understanding neurons), and that interventions tar-
geting these neurons selectively disrupt reasoning
in their respective languages without broadly affect-
ing multilingual performance or comprehension

We report results with accuracy metric in Tables
3 and 4. On MGSM with Llama 3.1-8B-Instruct,
perturbing Japanese-specific and French-specific
neurons produced a —7.60% and —7.26% abso-
lute drop in final-answer accuracy, respectively On
XCOPA, perturbing Chinese-specific neurons on
Llama 3.1-8B yielded a —5.33% accuracy drop
(Table 4). By contrast, applying a matched random-
neuron mask produces negligible changes in accu-
racy (Table 3, “Random Mask (Control)” rows),
indicating that the observed effects are not at-
tributable to generic capacity reduction, stochastic
noise, or model instability but rather to targeted
disruption of functionally important units.

5 Conclusion

We demonstrate that LLMs exhibit distinct
language-specific reasoning and language under-
standing structures, with specialized local reason-
ing neurons that primarily support inference within
individual languages. By systematically analyzing
the effects of targeted neuron deactivation, we find
that these language-specific neurons are crucial for
reasoning in their respective languages, while hav-
ing limited impact on reasoning in others. These
results provide strong evidence that multilingual
LLMs do not rely solely on a shared reasoning core
but instead develop local reasoning structures for
different languages. Our findings offer valuable in-
sight into the internal organization of cross-lingual
reasoning and new directions for developing more
interpretable and effective multilingual Al systems.
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Limitations

This study is limited to the evaluation of the Llama
3.1 series, and its findings have not yet been vali-
dated across other LLLMs, such as Llama 4’s series
(AI, 2025) due to potential concerns regarding li-
cense’. Additionally, the languages investigated
are primarily mid- to low-resource, and do not in-
clude extremely low-resource languages (Ghosh
et al., 2025). We believe that the observed phe-
nomena would be even more pronounced in ex-
tremely low-resource scenarios. The evaluation
methodology also relies on LLM-as-a-judge ap-
proach, which may introduce challenges related
to scalability and assessment robustness. Despite
these constraints, the clear performance disparities
observed in our experiments provide compelling
evidence for the presence of language-specific rea-
soning structures and offer valuable insights into
the internal organization of cross-lingual reasoning.
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