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Abstract

Clinical interviews are a standard method for
assessing depression. Recent approaches have
improved prediction accuracy by focusing on
specific questions posed by the interviewer and
manually selected question-answer (QA) pairs
that target mental health content. However,
these methods often neglect the broader conver-
sational context, resulting in limited general-
ization and reduced robustness, particularly in
less structured interviews, which are common
in real-world clinical settings. In this work,
we develop a multimodal dialogue-level trans-
former that captures the dynamics of dialogue
within each interview by using a combination
of sequential positional embedding and ques-
tion context vectors. In addition to the depres-
sion prediction branch, we build an adversar-
ial classifier with a gradient reversal layer to
learn shared representations that remain invari-
ant to the types of questions asked during the
interview. This approach aims to reduce biased
learning and improve the fairness and gener-
alizability of depression detection in diverse
clinical interview scenarios. Classification and
regression experiments conducted on three real-
world interview-based datasets and one syn-
thetic dataset demonstrate the robustness and
generalizability of our model.

1 Introduction

Major depressive disorder, commonly known as
depression, is a prevalent mental health condition
that can have severe consequences, including emo-
tional distress, social withdrawal, and even suicide.
The World Health Organization (WHO)' reports
that more than 300 million people around the world
are affected by depression, which significantly af-
fects individuals, families, and society as a whole.
Unfortunately, in many communities, factors such
as lack of awareness and financial constraints lead

1https ://www.who.int/news-room/fact-sheets/
detail/depression

to underdiagnosis and undertreatment of depres-
sion and other mental health issues (World Health
Organization, 2017).

The clinical interview is the standard method for
evaluating depressive symptoms (He et al., 2022).
Each interview consists of a sequence of question-
and-answer (QA) pairs between the interviewer
and the participant. In the past decade, multimodal
approaches that incorporate multiple data sources,
such as audio, transcribed text, and video collected
during interviews, have shown improved perfor-
mance compared to unimodal methods (Gong and
Poellabauer, 2017; Al Hanai et al., 2018; Yang
et al., 2024; Zhang et al., 2024).

Recent multimodal studies have shown that the
incorporation of the interviewer’s question as an
additional text modality can improve depression
detection (Shen et al., 2022; Milintsevich et al.,
2023; Chen et al., 2024; Agarwal et al., 2024).
However, the high accuracy reported may stem
from models learning interviewer question patterns
rather than participant responses (Burdisso et al.,
2024). For example, a follow-up question such as
“Has your mental health improved?” may reflect
previous affirmative responses, providing indirect
cues about the participant’s condition. Some prior
work also uses manually selected QA pairs to dis-
tinguish depressed individuals (Yang et al., 2017;
Agarwal et al., 2024), often ignoring the broader
conversational context. Figure 1 illustrates two ex-
cerpts from the same interview. In Figure 1a, the
exchange reveals clear depressive cues, whereas
Figure 1b is less informative—making the former
easier for models to flag as depressed based on
surface-level signals.

Therefore, despite the impressive performance
metrics presented in previous work, we have sig-
nificant concerns about the generalizability and ro-
bustness of these models on other interview-based
speech datasets and real-world clinical situations,
where interview questions tend to be more generic
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and participants may conceal their true feelings or,
in some cases, exaggerate their symptoms (Preto-
rius et al., 2019; Wilson et al., 2011; Mao et al.,
2023; Zhang et al., 2025). It is important that mod-
els do not rely on these misleading shortcuts for
discrimination.

In this paper, we tackle interviewer-induced bias
and shortcut learning in depression detection from
clinical interviews using a multimodal architecture
that combines interviewer questions and partici-
pant responses with gated fusion. We introduce
Dialogue-based Contextual Positional Encoding
for improved understanding of dialogue turns and a
lightweight Dialogue Transformer to capture inter-
view dynamics. Additionally, we apply an adversar-
ial regularization strategy that uses large language
model (LLM) annotated interviewer question func-
tions as targets for an adversarial classifier, and the
classifier is paired with a gradient reversal layer.
As a result, our model is trained to accurately pre-
dict depression while simultaneously reducing its
dependence on potentially biased interviewer ques-
tioning patterns. The code has been released.’

2 Related Work

2.1 Unimodal Depression Detection

Unimodal approaches in depression detection typi-
cally analyze a single data stream, most commonly
focusing on the participant. These include pro-
cessing participant speech audio using techniques
such as self-supervised pre-trained models (Zhang
et al., 2021) or traditional acoustic features with
LSTMs (Du et al., 2023). Textual analyses have
explored participant responses from transcribed in-
terviews, often using methods such as graph convo-
lutional networks for semantic understanding (Bur-
disso et al., 2023), or leveraging social media text
by defining symptom patterns with BERT (Nguyen
et al., 2022) or using contrastive learning with cap-
sule networks (Liu et al., 2024).

2.2 Multimodal Depression Detection

Multimodal approaches to depression detection typ-
ically integrate two or more data streams from
participants, such as speech audio, lexical con-
tent from transcripts, and visual cues, to achieve
more robust assessments than unimodal methods.
Researchers have explored various techniques, in-
cluding ensembling diverse features with topic
modeling (Gong and Poellabauer, 2017), using

Zhttps://github.com/coolsoda/e-dep/tree/main
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Figure 1: Two segments from the same interview ses-
sion. The first (top) segment contains more discrimi-
native information for assessing depression, while the
second (bottom) is less clear.

LSTMs for sequential modeling of audio-text in-
teractions (Al Hanai et al., 2018), leveraging self-
supervised foundational models for enriched repre-
sentations (Wu et al., 2023), applying expert knowl-
edge in fusion (Yang et al., 2024), using cross-
modal attention (Iyortsuun et al., 2024), and in-
tegrating acoustic landmarks into LLMs (Zhang
et al., 2024).

Recent studies have shown performance gains
by including the interviewer’s questions as an addi-
tional textual modality (Niu et al., 2021; Dai et al.,
2021; Shen et al., 2022; Milintsevich et al., 2023;
Agarwal et al., 2024; Chen et al., 2024; Xue et al.,
2024). However, (Burdisso et al., 2024) found
that such models may exploit “shortcuts,” relying
on interviewer’s prompts rather than participant’s
speech or language, leading to inflated results on
certain datasets and poor generalizability across
varied interview styles.

Our multimodal framework is designed to coun-
teract the biases introduced by interviewers. We
use Dialogue-based Contextual Positional Encod-
ing by merging sequential position with the content
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of the questions to get representations that contain
turn-level context. Additionally, our adversarial
interviewer-behavior regularization, implemented
with a gradient reversal layer, trains the model to
learn representations that are unaffected by poten-
tially biased questioning patterns. This approach
promotes a more robust and genuinely participant-
focused assessment of depression.

3 Methodology

3.1 Problem Formulation

The dataset D={I,...,I,} consists of n clin-
ical interviews, each interview I is composed
of a sequence of k question-response pairs
{(Qj, Aj)}é?:l, where k can vary between inter-
views. Each question (); is presented in text format,
while each participant’s response A; is multimodal,
including an audio recording A;“dio and its corre-
sponding transcription A'. The objective is to
predict the depression status for each complete in-
terview Ij. This involves two prediction tasks. The
first task is a binary classification, aimed at pre-
dicting a depression label y; € {0, 1}, where O
indicates a healthy individual and 1 indicates a de-
pressed individual. The second task is a regression
task, in which we predict a continuous depression
scalar score y;, € R>q. The overall framework is
illustrated in Figure 2.

3.2 Feature Extraction

Transcribed speech. To extract semantic rep-
resentations from interviewer questions and par-
ticipant transcriptions, we use XLM-RoBERTa
(XLMR) (Conneau et al., 2019), a multilingual
transformer-based language model. XLMR is built
on the RoBERTa architecture and is trained on 100
different languages using a masked language mod-
eling objective (Conneau et al., 2019). For each
input sentence, we first tokenize and encode it to
get a fixed-dimensional vector representation. By
applying mean pooling over all token embeddings,
we derive a sentence-level embedding of a 768-
dimensional feature vector for each sentence, de-
noted ¢! for the question and a**" for the partici-
pant’s response.

Audio signal. For the spoken response of the
participant, we use Wav2Vec2-XLSR-53 (XLSR-
53) (Conneau et al., 2020) as a multilingual self-
supervised speech encoder to extract audio features.
XLSR-53 is a variant of wav2vec 2.0 large (Baevski
et al., 2020), pretrained on 53 languages using

16kHz sampled speech audio, including English,
simplified Chinese, and Italian. XLLSR-53 outputs
frame-level audio embeddings with a dimension of
1024. We apply mean pooling over the temporal
frames to obtain a fixed-dimensional representa-
tion, represented as ;. Then we apply a linear
projection layer to map the audio embeddings to
the same dimensional space of text (768):

aa}udio — Wproj X agaw +b (D

(2

where af™ € R1924 js the mean-pooled audio em-

bedding, and W,; € R708%102 5 the learned
projection matrix.

More details on the rationale for choosing
XLMR and XLSR-53 over other models, as well
as their architecture and pre-training specifics for
each language, are discussed in Appendix I.

3.3 Modality Fusion

We adopt a gated fusion mechanism (Arevalo et al.,
2017) to combine the interviewer’s question (g;™"),
the participant’s text response (a}™"), and audio fea-
tures (a;‘-“dio) for each QA pair. Each modality is
encoded via a two-layer MLP with ReLLU activa-
tions:

hq = MLP,(¢f™)

ht = MLPt (a}e’“)

ha = MLP,(a3""°) )

Each MLP maps R7%® — R768. Gating coeffi-
cients are computed using sigmoid activations over
linear projections of the original inputs:

9m = U(Wmmj + bm)a me {q,t,a} 3)

The final fused representation z; is an element-
wise gated sum:

2j = 0q O hg+ gt © ht + ga © hy “4)

3.4 Contextual Positional Encoding

Contextual  Positional  Encoding (CoPE)
(Golovneva et al., 2024) is a method used
in transformer-based natural language process-
ing that adjusts position embeddings based on
context, rather than fixed absolute or relative
indices (Vaswani, 2017; Shaw et al., 2018; Raffel
et al., 2020). While effective in tasks such as
counting and selective copy, original CoPE, which
increments positions based on content tokens, is
less suitable for turn-level dialogue modeling.
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Figure 2: Overview of the proposed multimodal framework for depression detection. (k) is the length of the
current interview, and (3) is the index of the turn. The model processes interviewer questions (¢);) and participant
responses (text A;, audio Af) using respective text and audio encoders. Fused representations (Z;) are added
with Dialogue-based Contextual Positional Encoding (C';) to produce Z ; A Dialogue Transformer then generates
contextualized turn embeddings H ;. For depression prediction, the H; sequence is aggregated via attention pooling
(Hgoba) and fed to an MLP classifier. In parallel, an adversarial branch with a Gradient Reversal Layer uses
H; to predict LLM-annotated Interviewer Question Functions (Qiapei/j), €ncouraging representations invariant to

interviewer’s question.

To address this, we propose Dialogue-based
CoPE (D-CoPE), tailored for encoding question-
answer (QA) turns in clinical interviews. D-CoPE
integrates both turn position and interviewer seman-
tics. For each QA pair j in an interview of length
k, we generate an absolute sinusoidal positional
embedding p; € R7%. The interviewer’s question

text

q; is passed through a two-layer MLP to extract
a contextual vector:

qcj = MLPcopg(q;™) )

We then concatenate p; and gc;, and project the
result back to the model’s hidden space:

¢j = Weope[pj; 4¢;] + beope (6)

where WCoPE S R768X1536 and bCoPE S R768. The
final D-CoPE vector c; is added element-wise to
the fused multimodal representation z;:

Z; =2zjt¢ @)
3.5 Dialogue-level Transformer

To capture the complete conversational context
and model the interdependencies between differ-

ent QA turns in an interview, we process the se-
quence of CoPE-enhanced fused representations
{z1,25,...,2.} as input for a lightweight two-
layer transformer encoder. The sequence 7' €
R¥*768 is fed into a standard transformer encoder
with L layers:

Z/ c Rk X768 (8)

The output of the encoder is a sequence of con-
textualized representations:

H = TransformerEncoder(Z") 9)

where H € R¥*768 Each vector H j 1s a contex-
tualized representation of the j-th QA pair.

3.6 Depression Detection

To obtain a fixed size representation for an en-
tire interview from the sequence of contextualized
QA embeddings { H1, ..., Hy }, we apply attention
pooling. The global interview embedding Hgjobal
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is computed as a weighted sum:

T
Hyiobar = »_ ;H, (10)
=1

where a; denotes the learned attention weight for
the j-th QA pair. This effectively summarizes all
turns within a single interview.

Hygjopa 1s then fed into a two-layer MLP classifier
with ReL.U activation in the hidden layer. For the
binary classification task, the final layer uses a sig-
moid activation to produce a probability € [0, 1]
that indicates the likelihood of depression. The
model is trained with binary cross-entropy loss:

ﬁmain = -

[ylog(y) + (1 —y)log(1 —g)] (11)

For the regression task, the output layer uses
linear activation to produce a scalar prediction §
corresponding to the severity score of depression.
The training objective is the mean squared error
(MSE) loss:

1 N
— & . 2
Lomain = N 'E_l (51 52) (12)

where s; is the ground truth score for the i-th inter-
view and §; is the model’s prediction.

3.7 Prompt Label Prediction

During data preprocessing, for each prompt Q;
from the interviewer, we use LLMs to categorize
the prompt into one of seven carefully defined ques-
tion functions (QFs): ‘open-ended’, ‘change talk’,
‘neutral information gathering’, ‘transitional’, ‘spe-
cific probing’, ‘supportive’, and ‘other’. These QFs
are based on foundational taxonomies for question
classification and functional taxonomies from clin-
ical psychology and psychotherapy (Trzepacz and
Baker, 1993; Choi and Pak, 2004; Perikyli et al.,
2008; Kallio et al., 2016). Detailed prompts, in-
structions, and principles followed by the LLM are
discussed in Appendix H.

For each QA-level representation H;, which is
the output of the Dialogue-Level Transformer, we
train an adversarial classifier. This classifier is pre-
ceded by a gradient reversal layer (GRL) and is
designed to predict the QF label T};:

Tj = MLP,q, (GRL(H;)) (13)

MLP,4y is a shallow feedforward network with
two layers. The adversary tries to predict the QF

(7) from H; and minimizes the adversarial loss
Ladv, so the gradients of L,4y flow back to the ad-
versary, making it better at predicting the QF from
H;.

The GRL lies between the main depression pre-
diction model and the adversary. During the back-
propagatiom, when gradients from £,4y reach the
GRL, it flips their sign. Therefore, the primary de-
pression prediction model receives two sets of gra-
dient signals to guide the formation of H;. From
the loss function Lmain, the model learns to im-
prove Hj to predict depression. In contrast, the
loss function L,qy aims to make H; less effective
in predicting QF. This dual approach requires the
main model to identify features for depression pre-
diction that are independent of the QF information.

3.8 Training Objective

The overall training objective for our model is de-
signed to achieve two goals simultaneously: accu-
rately predict the primary outcome (e.g., depression
status) and reduce the model’s reliance on poten-
tially biased Interviewer Question Functions (QFs).
This is accomplished by combining the main pre-
diction loss (Lmain) With the adversarial regulariza-
tion loss (Laqv) With hyperparameter A:

£total = Emain — A Eadv (14)

The hyperparameter A is a nonnegative scalar
that controls trade-off between minimizing the
main task’s prediction error and minimizing the
information about QFs in the learned representa-
tions Hj.

4 Experimental Setup

4.1 Data Augmentation and Preprocessing

In this study, we used three real-world datasets
and one synthetic dataset, and all datasets
are fully anonymized. The Distress Analysis
Interview Corpus/Wizard-of-Oz (DAIC-WOZ)
dataset® (Gratch et al., 2014) is one of the most
widely used resources for speech-based depres-
sion research. This English-language dataset com-
prises 189 interviews collected from 189 partici-
pants. It features 16kHz audio recordings, tran-
scribed text, and manually extracted visual data.
Each participant is assigned a score based on the
Patient Health Questionnaire with 8 items (PHQ-
8) (Kroenke et al., 2009). Of the 189 interviews, 57

3https://dcapswoz.ict.usc.edu/

12173


https://dcapswoz.ict.usc.edu/

participants are classified as depressed, while 132
are classified as healthy controls. The Emotional
Audio-Textual Depression (EATD) corpus* (Shen
et al., 2022) is a Chinese dataset containing inter-
views with 162 participants, each labeled using the
Self-Rating Depression Scale (SDS) (Zung, 1965).
In this dataset, 30 participants are identified as de-
pressed, while 132 are classified as healthy controls.
It also includes audio recordings at 16 kHz and their
corresponding transcriptions. The Androids cor-
pus5 (Tao et al., 2023) consists of 116 interviews
with 116 participants, conducted in Italian and la-
beled according to the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) (Associa-
tion et al., 2013). In this dataset, 62 participants
are identified as depressed and 54 as healthy con-
trols. The audio recordings are initially at 44.1
kHz and have been resampled to 16 kHz. Detailed
information of the three datasets is discussed in
Appendix C.

Clinical datasets often exhibit imbalanced class
distributions, which can significantly impact model
performance. For the DAIC-WOZ dataset, we ap-
plied random oversampling in the training set to cre-
ate duplicate samples for the minority (depressed)
class, thus achieving a balance between the num-
ber of depressed individuals and healthy controls.
For the EATD corpus, we followed the oversam-
pling strategy proposed by the original authors to
rearrange the order of QA pairs within each inter-
view, generating additional data points to balance
the class distribution (Shen et al., 2022). In both
the DAIC-WOZ and EATD datasets, random over-
sampling was strictly applied to the training set to
ensure realistic validation and to prevent any data
leakage. The Androids corpus was originally con-
structed in a balanced manner, so oversampling
was not applied.

Given the limited size of the datasets, we use
LLM (GPT-40) (Hurst et al., 2024) to synthesize
additional text data for training, following simi-
lar approaches as in previous studies (Chen et al.,
2024). Synthetic data are based on each training
set from the DAIC-WOZ dataset (referred to as
DAIC-Synthetic) due to its size and common use
in this field for research and benchmarking chal-
lenges. For each interview in the training set, the
interviewer’s questions remain unchanged, and the
LLM is instructed to generate alternatives of par-

4https://github.com/speechandlanguageprocessing/

ICASSP2022-Depression
5https://github.com/androidscorpus/data

ticipant responses in text form. These responses
are rephrased to maintain the original content and
the usage of the vocabulary. We create new sam-
ples of participants’ audio based on the original
audio by random frame-swapping. Since raw video
data are not available in the DAIC-WOZ dataset,
we duplicated the existing low-level visual features
for each interview when implementing the baseline
models that utilized the visual modality. Detailed
instructions and the prompts provided to the LLM
can be found in Appendix B.

4.2 Implementation Details

The proposed framework was implemented using
PyTorch. The model was trained and evaluated on
Google Colab Pro using an NVIDIA A100 GPU
with driver version 550.90.12, CUDA version 12.4,
system RAM of 83.5 GB, and GPU RAM of 40 GB.
The model was trained with a batch size of 8 for
20 epochs. using the AdamW optimizer (Kingma,
2014) with an initial learning rate of 1 x 1073,

Most hyperparameters for each module are dis-
cussed in Section 3. A comprehensive list of all
hyperparameters and their explored ranges for each
module can be found in Appendix F.

4.3 Evaluation

To maintain consistency and allow for a fair com-
parison with baselines in each dataset, we used
five-fold stratified cross-validation for evaluation.
For each dataset, all data points are divided into five
folds using stratified splitting to ensure that each
fold maintains the same class distribution (i.e., the
proportion of depressed and healthy participants)
as the original dataset. In each training round,
one fold is used as the test set, and the remain-
ing four folds are used for training. This process is
repeated five times, each fold serving as a test set
once. For each training set, we applied the oversam-
pling strategies discussed in Section 4.1 to balance
the class distributions. The final performance is
reported as the average across the five independent
train-test evaluations.

We evaluate the model using four metrics to as-
sess both its classification and regression perfor-
mance. For the binary classification task of deter-
mining whether a participant belongs to the positive
class (depressed), we report the F1 score, which
balances precision and recall, as well as the AUC-
ROC score to evaluate the model’s ability to distin-
guish between the classes across different decision
thresholds. For the regression task of predicting
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Model Modality DAIC-WOZ EATD Androids DAIC-Synthetic
F1 RMSE Fl1 RMSE Fl RMSE Fl RMSE
GCN-PE (Burdisso et al., 2024) 1 084 451 055 594 059 - 0.84 4.45
WU (Wu et al., 2023) A+T 0.80 436 0.67 421 0.71 - 0.81 4.29
MMPF (Yang et al., 2024) A+T 0.76 511 0.66 446 0.70 - 0.78 5.02
ACMA (Iyortsuun et al., 2024) A+ T 0.69 515 0.61 512 0.68 - 0.72 4.80
LLM (Zhang et al., 2024) A+T 076 504 064 468 0.69 - 0.79 4.61
CAMFM (Xue et al., 2024) A+T 080 471 070 4.10 0.72 - 0.81 451
DAI (Dai et al., 2021) I+A+T+V 081 467 067 433 0.71 - 0.80 4.65
HCAG (Niu et al., 2021) I+A+T 0.80 479 0.65 554 0.69 - 0.81 443
SHEN (Shen et al., 2022) I+A+T+V 077 525 068 459 0.70 - 0.77 5.14
MILI (Milintsevich et al., 2023) 1+ T 075 511 062 597 0.68 - 0.76 4.96
SEGA (Chen et al., 2024) I+A+T+V 071 504 070 493 0.70 - 0.74 4.90
GCN (Burdisso et al., 2023) I+T 079 495 061 552 0.69 - 0.80 4.87
AGAR (Agarwal et al., 2024) I+T 072 596 058 553 0.67 - 0.72 5.91
Dialogue Transformer (ours) I+A+T 082 386 072 4.04 0.73 - 0.83 3.84

Table 1: Results from training and testing on each dataset individually. A, 7, and V refer to participant audio,
transcribed text, and visual features; / denotes interviewer prompts (text). Best results are in bold, second-best are
underlined, and — indicates unavailable data. Higher F1 and lower RMSE indicate better performance.

PHQ-8 scores, we use Root Mean Squared Error
(RMSE) to measure the magnitude of prediction
errors, and Mean Absolute Error (MAE) to offer a
complementary measure of average deviations be-
tween the predicted and actual scores that accounts
for the scale of the values. A detailed calculation
for each metric is provided in Appendix D.

4.4 Baseline and Ablations

We compare our method with baselines from three
perspectives. First, we include multimodal models
that explicitly incorporate interviewer questions,
as these questions provide essential context for
interpreting participant responses. Second, we
consider strong multimodal baselines that exclude
interviewer input. Third, we include one study
that, to our knowledge, achieves state-of-the-art
performance using only interviewer questions on
the DAIC-WOZ benchmark. All baselines follow
the same training and evaluation setup described in
Section 4.3, and each baseline model is discussed
in detail in Appendix G.

Our ablation studies are divided into two cate-
gories. The first focuses on ablating key modules
in our model for the depression detection task, and
the second assesses the contributions of each indi-
vidual data modality.

5 Results and Discussion

5.1 Opverall Performance

We compared our method with three baseline
groups, as described in Section 4.4, and we present
the results in Table 1. Our observations indicate
that GCN-PE, a method specifically designed to
use cues from interviewer questions, achieves the
highest F1 scores in the DAIC-WOZ and DAIC-
Synthetic datasets. However, its performance sig-
nificantly declines on the Androids dataset and
even more on the EATD dataset. These two datasets
consist of shorter interviews with more generic
and less structured prompts from the interviewer,
suggesting that GCN-PE lacks generalizability in
diverse interview settings.

We found that multimodal approaches that in-
clude the interviewer’s questions (modality /) gen-
erally perform well on the DAIC-WOZ and DAIC-
Synthetic datasets. However, their performance de-
creases—sometimes significantly—when applied
to EATD and Androids. This indicates that the in-
terviewer’s questions in DAIC-WOZ provide more
informative and consistent cues than those in the
other datasets. Consequently, models that depend
on this modality tend to struggle in scenarios where
the interviewer’s behavior is more generic or varied.
This trend is also reflected in our proposed method,
where performance noticeably drops on EATD and
Androids compared to DAIC-WOZ.

For methods that do not use interviewer prompts,
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Model Variant Modality DAIC-WOZ EATD Androids DAIC-Synthetic
F1 RMSE F1 RMSE Fl1 RMSE Fl RMSE

D-CoPE + QF + GRL

(Full Model) I+A+T 082 386 072 4.04 0.73 - 0.83 3.84
D-CoPE + QF I+A+T 089 381 071 412 0.70 - 0.90 3.82
D-CoPE + GRL I+A+T 083 38 072 4.01 0.73 - 0.84 3.74
QF + GRL I+A+T 065 541 054 490 0.58 - 0.63 5.37
Base Model I+A+T 065 557 053 495 057 - 0.67 5.40
Full Model I+A 070 452 061 538 0.63 - 0.74 4.31
Full Model I+T 077 434 065 499 0.66 - 0.79 4.19
Full Model A+T 070 450 070 417 0.65 - 0.72 4.56

Table 2: Ablation study results for depression detection across four datasets. D-CoPE refers to our proposed
Dialogue-based Contextual Positional Encoding. QF indicates the use of Interviewer Question Function labels as
targets for the adversarial classifier, and GRL refers to the Gradient Reversal Layer used in the adversarial training.
‘Base Model’ lacks all three of these components but uses the same underlying multimodal architecture. I, A, and T
represent the interviewer’s prompt in text format , the participant’s response in audio, participant’s response in text,

respectively.

we observe slightly better performance on the
DAIC-Synthetic dataset. This improvement is ex-
pected due to the more balanced training data and
the increased number of samples available. How-
ever, for models that use interviewer prompts (/)
and visual cues (V), there is no significant improve-
ment in performance in DAIC-Synthetic. This sug-
gests that the synthesized (i.e., duplicated) visual
features provide minimal benefit and may even hin-
der performance. Therefore, more effective tech-
niques are needed to synthesize low-level visual
features.

Regarding the Androids corpus, since it uses
DSM-5 for diagnosing depression, it only provides
binary labels (depressed or not) (as discussed in
Section 4.1). As aresult, regression analysis cannot
be conducted, as continuous target values are not
available. Appendix E contains additional experi-
mental results of the model’s performance on the
AUC-ROC and MAE metrics. To further assess the
performance of the model across varied interviewer
styles, domains, and language variations, we per-
formed a comprehensive cross-dataset validation.
The results are reported in Table 4 in Appendix E.

5.2 Ablation Studies

The ablation results are summarized in Table 2.
D-CoPE plays a critical role: Eliminating it led
to sharp declines in both F1 and RMSE, partic-
ularly on structured interview datasets such as
DAIC-WOZ and Androids. This confirms that

D-CoPE effectively encodes both sequential and
question-level semantics for the Dialogue-Level
Transformer.

Removing the GRL allowed the model to exploit
correlations with QFs, resulting in the highest F1
and near-best RMSE scores on DAIC-WOZ and
DAIC-Synthetic, surpassing even the full model.
This suggests that QFs act as strong shortcut fea-
tures in these datasets. While removing GRL im-
proves performance on test sets sharing these bi-
ases, our full model, by including GRL, intention-
ally reduces the reliance on such shortcuts. Al-
though this comes at a modest cost in raw per-
formance, it promotes generalization and fairness,
which are not fully reflected in the test metrics.

Interestingly, the variant CoPE + GRL (No QF),
which omits the adversarial loss against QF labels,
performs similarly or slightly better than the full
model. This implies that adversarial training intro-
duces useful regularization but may slightly reduce
in-distribution accuracy in favor of debiasing.

Modality ablations further demonstrate the con-
tribution of each input stream. Removing either par-
ticipant text or audio reduced performance across
all datasets, with text generally being more criti-
cal. Eliminating interviewer questions notably de-
graded performance on DAIC-WOZ and Androids,
highlighting their role in contextualizing partici-
pant responses and supporting D-CoPE. On the
EATD dataset, which uses generic prompts, remov-
ing interviewer input had a less pronounced effect.
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6 Conclusion

In this work, we developed a multimodal frame-
work to enhance the detection of depression from
clinical speech interview data. The primary goal
was to ensure that the model learns meaningful
representations of depression from the participants’
responses, rather than relying on superficial cues
from the interviewers’ questions or overfitting to
specific, manually-probed question-answer pairs,
which can lead to misleading performance improve-
ments. The results highlight the importance of ex-
plicitly modeling and addressing potential biases
that may arise during the collection of clinical data.
We hope that our work contributes to building a
more reliable solution for developing fair and gen-
eralizable Al systems in mental health assessment.

Limitations

We discuss the limitations of our work from two
perspectives: one related to the data used and the
other to the model architecture.

* Data. There are two main limitations from
a data point of view. The first is the size of
the available datasets. Labeled clinical speech
datasets are often small and constrained by pri-
vacy regulations, limiting public access. This
challenge extends beyond depression research
to other mental and neurodegenerative disor-
ders. To address this, we applied oversam-
pling and used synthetically generated data to
improve generalization. However, future work
would benefit from larger, more diverse, and
publicly available datasets, either collected in
real-world settings or generated via advanced
models.

The second limitation is the scope of the
modality. Our study focuses on text and au-
dio due to availability constraints. The EATD
and Androids datasets lack video data entirely,
and while DAIC-WOZ includes some visual
features, the original videos are not accessible.
Thus, implementing a visual pipeline compa-
rable to our text/audio design was infeasible.
Moreover, our work centers on mitigating in-
terviewer bias in audio-textual data, making
additional modalities beyond our scope. How-
ever, we acknowledge the value of integrating
visual (e.g., facial expressions, medical imag-
ing) and physiological signals (e.g., heart rate,

skin conductance) to enrich multimodal mod-
els for depression detection. This remains a
promising direction as more comprehensive
datasets emerge.

* Model. Our framework is tailored to dyadic
clinical interviews, leveraging Dialogue-
based Contextual Positional Encoding and ad-
versarial regularization targeting Interviewer
Question Functions (IQFs). While effective
for structured interviews, the model may not
generalize to non-interactive contexts like
monologues or self-reports, where key compo-
nents lose functionality. Adapting our design
to such formats presents a separate research
challenge.

IQF definitions are central to our bias mitiga-
tion strategy. We grounded these categories
in clinical interviewing and dialogue act tax-
onomies, using LLMs to label questions in
context. While this approach enables scal-
able annotation, it may not fully capture the
nuance of real interviewer behavior. LLM
outputs also depend on the underlying model
and prompting strategy, which may limit pre-
cision. Future work can use human annotators
to cover a broader range of interviewer be-
havior labels and help verify the accuracy of
the labels produced by LLM, using available
resources.
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Appendix

A  Overview

The appendix is organized as follows. Section B
provides details on how we used LLM to synthesize
additional data (DAIC-Synthetic) for training and
evaluation purposes. Section C presents more infor-
mation about each real-world dataset used in this
work. Section D lists the main evaluation metrics
employed in this study. Section E includes experi-
ments conducted on two additional metrics, as well

as cross-dataset validation across the four datasets.
Section F outlines the detailed hyperparameters
for general training and each module within the
framework. Section G describes the implemen-
tation details of the baseline models. Section H
discusses how we used the LLM to annotate the
question functions, and Section I presents the ra-
tionale behind the foundational models used for
feature extraction in this work.

B Synthetic Data

In Figure 3, we present the prompt template used to
instruct the LLM through GPT-4 API calls to syn-
thesize participant responses based on interviews
from the DAIC-WOZ dataset. Each interview con-
sists of multiple QA pairs. For each QA pair, we
prompt the LLM to generate three alternative text
responses.

For model training and evaluation (as discussed
in Section 4.1), we use a 5-fold cross-validation
strategy with stratified splitting to ensure that each
fold retains the original class distribution. During
each fold, the training set, which comprises 80% of
the data, is augmented by synthesizing additional
samples. This augmentation not only increases
the size of the training set but also improves class
balance, ultimately enhancing the model’s ability
to generalize. After augmentation, the size of each
training set increases from 152 to 396 samples.

C Details of Data Collection and
Preprocessing

The Distress Analysis Interview Corpus/Wizard-of-
Oz (DAIC-WOZ) dataset (Gratch et al., 2014) is
one of the most widely used datasets for depression
studies. This English-language dataset includes
189 interviews conducted with 189 participants and
collects 16 kHz audio recordings, transcribed text,
and visual data. It was collected from two groups of
participants in the Greater Los Angeles area. One
group consists of veterans of the U.S. armed forces,
while the other includes individuals from the gen-
eral public. Each interview involves a participant
and a human-controlled agent named Ellie. Each
participant is labeled with a Patient Health Ques-
tionnaire of 8 items (PHQ-8) (Kroenke et al., 2009)
score, which ranges from 0 to 24. Participants who
score 10 or more are classified as depressed, while
those with scores below 10 are classified as healthy
controls. Of the 189 interviews, 57 participants are
labeled depressed, and 132 are classified as healthy
controls.
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Prompt Template

@o speakers are having a conversation during an interviQ
The interviewer is [Ellie], and the participant is[Participant].
Please rephrase each statement made by[Participant] using
different words while maintaining the same meaning.

Directly output the results without any explanations. Provide

three distinct rephrased sentences.

o D%

Input Conversation

[fEllie] What are some things that make you really mad?
[Participant] The situation with my life right now. I can’t
find a job.

[Ellie] It can be tough to find a good job these days.

[Participant] I don't even care about a good job I just need a

%that pays. /

\’
/ >
\

LLM
(GPT-40)

Output Rephrased Sentences

@late of my lifeat the moment. I'm struggli%
get employed.

What's happening in my life currently: I haven’t
been able to land a job.

My current life situation. I’ve been unsuccessful in
finding any work.

I’m not even asking for something amazing—I just
need any job that pays.

I don’t care if the job is great, I just want something
that gives me a paycheck.

I’m not looking for the perfect position—I just need

@ income. J

Figure 3: Use LLM to generate synthetic data by rephrasing responses from participants for each question-answer

pair.

The Emotional Audio-Textual Depression
(EATD) corpus (Shen et al., 2022) is a Chinese
dataset consisting of interviews with 162 student
volunteers. One motivation for its development is
to detect depression by studying responses from
participants to random, less specifically designed
mental health assessment questions. The interviews
were recorded as audio at a frequency of 16 kHz
and transcribed into text using Kaldi (Povey et al.,
2014), which are then manually checked and cor-
rected. The interview questions were not recorded
in audio format and were developed based on the
participants’ responses. Participants were asked
to respond to three randomly selected questions
from a large pool of questions and to complete
a Self-Rating Depression Scale (SDS) question-
naire (Zung, 1965). This questionnaire consists of
20 items, with total raw scores ranging from 20
to 80. In clinical practice, these scores are often
converted into an SDS index (raw score multiplied
by 1.25) for standardized interpretation, resulting
in a range of 25 to 100. For binary classification
purposes, a cutoff score of 63 is used; scores of
63 or higher indicate depression. Among the 162
participants, 132 were classified as non-depressed,
while 30 were classified as depressed.

The Androids Corpus was collected through the
ANDROIDS project (Tao et al., 2023) to study de-

pression from participants’ speech. It includes 118
native Italian speakers, and 116 of them have un-
dergone clinical interviews. There are 116 audio
files available, and we resampled them from 44.1
to 16 kHz. We used Whisper (Radford et al., 2023)
to transcribe the audio recordings, capturing both
the interviewer’s questions and the participants’ re-
sponses for each interview. Among these 116 indi-
viduals, 64 were diagnosed with depression, while
52 were healthy controls. Participants were labeled
as depressed or not by medical professionals based
on the fifth edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) (Association
et al., 2013). A detailed description of the reported
symptoms is not available.

Each interview consists of a varying number
of Question-Answer (QA) pairs, and the duration
of each participant’s spoken response (A;‘) within
these pairs also differs. Our audio processing
pipeline first segments each interview into indi-
vidual QA turns. For each participant’s spoken
response within a QA turn, which is sampled at 16
kHz, the audio is fed into the Wav2Vec2-XLSR-
53 audio encoder. This model features a convolu-
tional layer that processes the audio, outputting a
sequence of local acoustic feature vectors every 20
milliseconds. These features are then processed by
the model’s Transformer layers, resulting in a se-
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quence of frame-level embeddings, each with 1024
dimensions. The number of frames in this sequence
corresponds directly to the duration of the specific
audio utterance.

To create a fixed-size representation for each
variable-length audio utterance, we apply tempo-
ral mean pooling across all frame-level embed-
dings for A;?. This process aggregates the entire
sequence of 1024-dimensional embeddings into
a single fixed-dimensional vector. This vector is
then linearly projected to 768 dimensions to en-
sure alignment with our text feature dimensionality
before performing multimodal fusion.

After modality fusion and D-CoPE enhancement,
we obtain a sequence of fixed-size representations
for all question-answer (QA) turns in an interview,
denoted as {z1, 25, ..., z;.}. To manage the vary-
ing number of QA pairs (k) across different inter-
views when batching for the Dialogue-Level Trans-
former, these sequences are zero-padded to a uni-
form maximum sequence length. This maximum
length is determined based on the 95th percentile
of interview lengths, measured by the number of
QA pairs. Specifically, this maximum length is set
to 35 for the DAIC and DAIC-Synthetic datasets,
3 for the EATD dataset, and 26 for the Androdis
Corpus.

D Evaluation Metrics

For binary classification tasks, we primarily use the
F1 score. True positives (TP) refer to participants
correctly predicted as depressed. False positives
(FP) refer to participants incorrectly predicted as
depressed. False negatives (FN) refer to partici-
pants who are actually depressed but incorrectly
classified as non-depressed by the model.
The metrics are defined as follows:

* Precision measures the proportion of true pos-
itive predictions among all positive predic-
tions made by the model. It is defined as:

TP

Precision = ————
TP + FP

(15)

* Recall (also known as sensitivity) measures
the proportion of true positive predictions
among all actual positive instances. It is de-
fined as:

TP

Recall = ———
TP + FN

(16)

* F1 Score is the harmonic mean of precision
and recall, providing a balanced measure of
both. It is defined as:

Precision x Recall

F1 Score = 2 x — 17)
Precision + Recall

* AUC-ROC (Area Under the Receiver Op-
erating Characteristic Curve) evaluates the
model’s ability to discriminate between the
positive and negative classes across all possi-
ble classification thresholds. A higher AUC
indicates stronger overall separability.

For regression tasks, we report error-based met-
rics that capture the magnitude of prediction devia-
tions from the ground truth:

* Root Mean Squared Error (RMSE) is a
widely used metric that measures the average
magnitude of prediction errors. It is calculated
as:

N
1
RMSE = , | — ;)2 18
N;(y ¥i) (18)

where y; represents the ground truth value,
7; 1s the predicted value, and N is the total
number of samples in the test set. A lower
RMSE indicates higher predictive accuracy.

¢ Mean Absolute Error (MAE) measures the
average absolute difference between predicted
and actual values, offering an interpretable
metric in the same units as the target variable.
It is defined as:

N
1 .
MAE = N E 1 lyi — Uil (19)
1=

Compared to RMSE, MAE is less sensitive
to large errors and provides a complementary
view of model performance.

E Additional Experimental Results

Table 3 shows the experimental results for each
dataset, focusing on AUC-ROC and MAE.

The cross-dataset validation results presented in
Table 4 indicate several key observations. First, the
model trained on the DAIC-WOQOZ dataset transfers
reasonably well to the Androids dataset and per-
forms acceptably on the EATD dataset. However,
when the model is trained on EATD, its perfor-
mance is consistently poor across all other datasets.
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Model Modality DAIC-WOZ EATD Androids DAIC-Synthetic
AUC-ROC MAE AUC-ROC MAE AUC-ROC MAE AUC-ROC MAE
GCN-PE (Burdisso et al., 2024) 1 0.89 4.06 0.60 5.35 0.64 - 0.88 4.00
WU (Wu et al., 2023) A+T 0.84 3.90 0.71 3.79 0.77 - 0.85 3.86
MMPF (Yang et al., 2024) A+T 0.81 4.60 0.73 4.01 0.76 - 0.82 4.52
ACMA (Iyortsuun et al., 2024) A +T 0.76 4.64 0.69 4.61 0.72 - 0.74 4.32
LLM (Zhang et al., 2024) A+T 0.80 4.54 0.70 4.21 0.74 - 0.83 4.15
CAMFM (Xue et al., 2024) A+T 0.84 4.24 0.77 3.69 0.76 - 0.85 4.06
DAI (Dai et al., 2021) I+A+T+V 0.84 4.20 0.72 3.90 0.77 - 0.83 4.18
HCAG (Niu et al., 2021) I+A+T 0.85 431 0.70 4.98 0.75 - 0.79 3.99
SHEN (Shen et al., 2022) I+A+T+V 0.80 4.72 0.77 4.13 0.72 - 0.80 4.63
MILI (Milintsevich et al., 2023) 1+ T 0.82 4.60 0.65 5.37 0.70 - 0.79 4.46
SEGA (Chen et al., 2024) I+A+T+V 0.80 4.54 0.77 4.44 0.74 - 0.79 441
GCN (Burdisso et al., 2023) I+T 0.84 4.46 0.69 4.97 0.72 - 0.82 4.38
AGAR (Agarwal et al., 2024) I1+T 0.80 5.36 0.66 4.98 0.75 - 0.80 5.32
Dialogue Transformer (ours) I+A+T 0.89 3.47 0.75 3.64 0.80 - 0.90 3.46

Table 3: Best results are in bold, and — indicates unavailable data. Higher AUC-ROC and lower MAE indicate better

performance.
Train \ Test DAIC-WOZ EATD Androids DAIC-Synthetic
FI  RMSE AUC-ROC MAE FlI RMSE AUC-ROC MAE FlI RMSE AUC-ROC MAE FlI RMSE AUC-ROC MAE
DAIC-WOZ 0.82 3.86 0.89 347 0.67 447 0.74 4.10  0.72 4.20 0.79 3.87 - - - -
EATD 0.61  5.22 0.69 478 072 4.04 0.75 364 059 510 0.65 4.59  0.61 5.25 0.68 4.97

0.66 -
0.68 4.40

Androids 0.70 - 0.77 -

DAIC-Synthetic - - - 0.74

0.72 -
3.96

0.73 -
0.74 4.10

0.80 -
0.78 3.66

0.69 -
0.83 3.84

0.76 -
0.90 3.46

Table 4: Cross-dataset validation results.

Additionally, the model trained on Androids gen-
eralizes effectively to both DAIC-WOZ and DAIC-
Synthetic, although there is a slight performance de-
cline when tested on EATD. Conversely, the model
trained on DAIC-Synthetic performs reasonably
well on EATD and achieves even better results on
Androids.

These findings suggest that the Androids dataset
shares a more similar semi-structured interview
format with DAIC-WOZ, while the limited ques-
tion diversity and shorter session lengths of EATD
hinder the model’s ability to learn generalizable
features from other datasets.

Since the synthetic data was primarily used
to augment the dataset for training purposes, we
did not perform cross-dataset validation between
DAIC-WOZ and DAIC-Synthetic to avoid the risk
of overfitting and biases.

F Details of Hyperparameters

In Table 5, we present the hyperparameters for
general training and all other modules in our frame-
work.

G Baseline Implementation

In this section, we provide implementation details
for all baseline models, as listed in Table 1.
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* GCN-PE (Burdisso et al., 2024): This study
builds LongBERT (Beltagy et al., 2020) and
Graph Convolutional Network (GCN)-based
models to analyze participant responses and
interviewer prompts. They demonstrated
that models that use interviewer prompts can
achieve high accuracy, even reaching state-of-
the-art performance. A qualitative analysis
revealed that these models tend to focus on
specific, localized segments of the interview,
particularly when interviewer asks targeted
questions about the participant’s mental health
history. This suggests that models learn to use
these prompts as shortcuts for differentiation,
rather than truly understanding the patient’s
depressive state through their own language.

* WU (Wu et al., 2023): In this study, foun-
dation models were pre-trained using self-
supervised learning (SSL) to address data
sparsity in speech-based depression detection
(SDD). The primary method involves analyz-
ing SSL representations from various layers
of foundation models such as wav2vec 2.0,
HuBERT, and WavLM to identify indicators
of depression. Subsequently, these models
are fine-tuned on tasks related to Automatic
Speech Recognition (ASR) and Automatic



Component Hyperparameter Values Explored
General Training optimizer Adam, AdamW
learning rate {1x1073,5x107% 1 x 1074}
batch size {4,8, 16}
epochs {10, 20, 30}
early stopping patience {5, 10}

weight decay

{0, 0.01, 0.05, 0.1}

Gated Fusion (MLP) number of layers

hidden units

D-CoPE number of layers

hidden units
Dialogue-Transformer number of layers

number of attention heads
feedforward network dimension
dropout rate

Adbversarial Classifier (MLP) | number of layers

hidden units

lambda A

{1,2}

(512, 768}

{1, 2}

{256,512}

(1,2,3)

(4,8, 12}

{1536, 2048}

{0.1, 0.15,0.2, 0.25}
(1,2,3)

(64, 128, 256}
{0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 5}

Table 5: The list of hyperparameters explored for the proposed multimodal depression detection framework is
presented. The optimal set, highlighted in bold, gives the best average performance across the validation folds.

Emotion Recognition (AER) to facilitate the
transfer of knowledge to SDD.

* MMPF (Yang et al., 2024): Proposed a multi-
modal fusion framework for analyzing depres-
sion using audio, video, and text streams from
clinical interviews. The system extracts fea-
tures from each modality, including innova-
tive text descriptors from Paragraph Vector
for selected responses and a video descriptor .
from facial landmarks. These features are pro-
cessed through a Deep Convolutional Neural
Network (DCNN) to learn high-level represen-
tations. The learned features are then inputted
into a Deep Neural Network (DNN) to pre-
dict initial PHQ-8 depression scores for each
modality. Finally, the scores from the individ-
ual pipelines are combined in a fusion DNN
to produce the final multimodal PHQ-8 score
prediction.

* ACMA (Iyortsuun et al., 2024): This work
processes audio data into Mel spectrograms
and text data, represented by participant re- .
sponses encoded using the Universal Sentence
Encoder. Two separate Bidirectional Long
Short-Term Memory (BiLSTM) networks are
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used for this, each followed by an attention
layer that captures important unimodal fea-
tures. These processed unimodal represen-
tations are then input into the ACMA net-
work, which utilizes an additive attention
mechanism to weigh and combine the cross-
modal interactions, learning the relationships
between speech and text cues.

LLM-acoustic (Zhang et al., 2024): The work
focuses on three main steps: First, extract dis-
crete acoustic landmarks from speech signals.
Second, fine-tuning the model through cross-
modal instruction using Low-Rank Adapta-
tion (LoRA). This step teaches the LLM to
understand these landmarks and their relation-
ship with text, while incorporating “hints” re-
garding the speaker’s depression status. Fi-
nally, we employ P-tuning to train the LLM
to integrate both the text and the learned land-
mark representations for the final task of de-
pression detection.

CAMFM (Xue et al., 2024): This work
presents a multi-modal model for detecting de-
pression that integrates audio features at mul-
tiple levels with textual sentence embeddings.



For the audio component, we extracted Low-
Level Descriptors (LLDs), mel-spectrograms,
and features from the wav2vec model. These
features are then combined using a Multi-level
Audio Features Interaction Module (MAFIM)
to form a comprehensive audio representa-
tion. In the text domain, we utilize pre-trained
BERT to obtain sentence-level embeddings.
These distinct audio and text representations
are then fused together using a novel Channel
Attention-based Multi-modal Fusion Module,
allowing for the integration of heterogeneous
data.

DAI (Dai et al., 2021): This work begins by
constructing a high-dimensional feature vec-
tor obtained from audio, video, and seman-
tic data through context-aware analysis based
on the topics extracted. The core of the pro-
posed method involves a two-stage feature se-
lection algorithm. First, a filter method ranks
high-dimensional features to identify an in-
formative subset of candidates. Next, a wrap-
per method refines this subset by sequentially
adding features and utilizing a Support Vector
Machine (SVM) model to retain only those
features that enhance prediction accuracy.

HCAG (Niu et al., 2021): This paper presents
a Hierarchical Context-Aware Graph Atten-
tion Model for depression detection. The
model begins by utilizing a Sequential En-
coder with Gated Recurrent Units (GRUs) and
an additive attention mechanism to generate
representations for each question-answer pair
from text (using GloVe embeddings) or audio
(utilizing MFCCs and eGeMAPS features).
Following this, a Subject-Level Context En-
coder constructs a graph in which the question-
answer pairs act as nodes. A Graph Attention
Network (GAT) is then used to aggregate con-
textual information and learn the relationships
among these question-answer pairs within a
defined context window.

SHEN (Shen et al., 2022): Mel spectrograms
are extracted from audio recordings and con-
verted into fixed-length audio embeddings
using NetVLAD (Arandjelovic et al., 2016).
These embeddings are then input into a Gated
Recurrent Unit (GRU) network. Meanwhile,
sentence embeddings generated from inter-
view transcripts using ELMo are processed
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by a Bidirectional LSTM (BiLSTM) network
that is equipped with an attention mechanism
to capture important linguistic cues. The fea-
ture representations of the text (BiLSTM) and
audio (GRU) branches are concatenated, and
a “modal attention” mechanism is applied to
weigh their respective contributions. The re-
sulting fused representation is then passed to
a fully connected network for the final binary
classification of depression.

MILI (Milintsevich et al., 2023): This work
proposes a model that uses a hierarchical ar-
chitecture to process textual transcripts for
the detection of depression. First, a Sentence-
RoBERTa model encodes individual dialogue
turns. Then, a Bidirectional LSTM (BiL-
STM) with an additive attention mechanism
processes these turn embeddings to create a
comprehensive representation of the interview
for prediction.

SEGA (Chen et al., 2024): This work focuses
on using expert knowledge in the assessment
of depression by constructing a structural ele-
ment graph. It establishes a directed acyclic
graph in which information flows from aux-
iliary nodes (audio, video, and questions) to
a central node (the answer transcript) within
each interview round. Central transcript nodes
are linked to capture temporal dependencies,
and all central nodes connect to a summary
node that represents the semantics of the en-
tire interview. Ultimately, a graph attention
network is built to learn from the constructed
graph.

GCN (Burdisso et al., 2023): This work uses
Graph Convolutional Networks (GCNs) to
classify interview transcripts. The modified
GCN features a new weighting scheme for
edges, particularly for self-connections, where
weights are determined by the PageRank algo-
rithm to reflect the importance of each node
(word or document). A heterogeneous graph
is created from word nodes (one-hot vectors)
and document nodes (TF-IDF features). Con-
nections are based on Point-wise Mutual Infor-
mation for word-word links and TF-IDF for
word-document links. This approach enables
modeling of long-distance semantics and ef-
fectively classifies subjects as either depressed
or in the control group.



Question Function | Definition Example Source

‘open-ended’ Questions that encourage participants to express | ‘What activities do youen- | MI  (Miller  and
themselves freely and broadly about a topic, in- | joy for fun?’ Rollnick, 2012),
cluding their experiences, thoughts, or feelings, CI (Sommers-
typically inviting more than just short or specific Flanagan and

‘change talk’

‘neutral information

gathering’

‘transitional’

‘specific probing’

‘supportive’

‘other’

answers.

Questions directed at helping the participant ex-
press their motivations, reasons, desires, abili-
ties, or needs related to making behavioral, cog-
nitive, or situational changes.

Questions seeking specific factual details, clar-
ification of objective information, or direct an-
swers to concrete inquiries, often expecting a
constrained or brief response.

Utterances (questions or statements) used by the
interviewer to organize the conversation, manage
transitions between topics, introduce or close
segments, summarize points, or manage inter-
view logistics.

Follow-up questions designed to elicit more de-
tailed information, elaboration, or specific exam-
ples regarding a topic or statement previously
introduced by the participant, generally in a neu-
tral, non-leading manner.

Statements or questions that primarily convey
empathy, understanding, validation of the partic-
ipant’s feelings or experiences, offer encourage-
ment, build rapport, or affirm their strengths.

Utterances that do not clearly fit into any of the
other defined functional categories. This can
include very short backchannels, incomplete or
interrupted sentences, unintelligible speech, or

‘What got you to seek
help?’

‘How easy is it for you to
get a good night’s sleep?’

‘Do you feel that way of-
ten?’

‘Have you being diagnosed
with depression?’

‘That sounds incredibly dif-
ficult’

“Yeah.”; ‘hmm.’

Sommers-Flanagan,
2012)

MI  (Miller and
Rollnick, 2012),
TMC (Prochaska and
Velicer, 1997)

DAMSL (Core
and Allen, 1997),
CI (Sommers-
Flanagan and

Sommers-Flanagan,
2012)

MI (Miller and Roll-

nick, 2012)
CI (Sommers-
Flanagan and

Sommers-Flanagan,
2012)

MI (Miller and Roll-
nick, 2012), ERT (We-
livita and Pu, 2020)

DAMSL (Core and
Allen, 1997)

off-topic remarks not related to structuring.

Table 6: A complete list of all the Interview Question Functions (IQF) we defined based on established theories.
MI stands for Motivational Interviewing, CI stands for Clinical Interviewing Techniques, TMC represents the
Transtheoretical Model of Change, DAMSL refers to Dialog Act Markup in Several Layers, and ERT stands for

Empathetic Response Taxonomies.

* AGAR (Agarwal et al., 2024): This work
proposes a multi-view architecture aimed
at improving automated depression estima-
tion from transcripts of patient-therapist in-
terviews by explicitly considering the struc-
ture of the discourse. The central method
involves dividing the transcript into two dis-
tinct “view”—one for therapist questions and
the other for patient answers. Each view is
processed by a dedicated View Encoder that
utilizes multi-head attention to learn specific
representations from sentence-level encodings
generated by sentence transformers. Impor-
tantly, these View Encoders interact through
a cross-attention mechanism, enabling them
to learn in a co-dependent manner by sharing
attention scores.

H Prompt Labeling

In Table 6, we present a list of all the question
functions (QFs) we defined based on established
methods and theories in communication research
and clinical psychotherapy.

Due to limited resources, we employed three
LLMs for annotation: GPT-3.5 Turbo, GPT-40, and
LLaMA3-70B. Along with the prompt template
summarized in Table 7, each LLM was provided
with the definition and example of each QF, along
with the relevant context. The ‘context’ for the
current sentence that needs annotation consists of
the preceding conversation, with a context length
carefully defined to accommodate our resource lim-
itations; in our study, the context length is set to
5. Therefore, for each interviewer’s utterance from
each QA pair, the LLM considers information from
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Prompt Template

Two speakers, the interviewer and the participant, are engaged in a clinical interview. The conversation
is {context}. Now interviewer {interviewer} says: {current sentence}. Predict the question function of
the sentence {current sentence} from the options [open-ended, change talk, neutral information gathering,
transitional, specific probing, supportive, other], consider the conversation context, do not explain, only output
the label in [open-ended, change talk, neutral information gathering, transitional, specific probing, supportive,

other].

Table 7: The prompt used to annotate the question function of each utterance expressed by the interviewer.

a maximum of 5 preceding utterances to annotate
the current utterance.

To determine the final label, we used a majority
vote from the outputs of the three models. If there
was no consensus among the models, we labeled
the utterance as “Other.”

I Foundation Models

The success of our multimodal depression detection
framework is heavily reliant on the quality of the
initial feature representations obtained from both
textual and audio modalities. This section outlines
the reasoning behind our selection of encoders.

I.1 Textual Feature Extraction

For processing interviewer questions (Q'™*") and
participant transcribed responses (A;e’“), we use
XLM-RoBERTa (XLMR) (Conneau et al., 2019;
Liu et al., 2019) as our text encoder. The key
reason is its strong multilingual capability. Our
datasets span multiple languages, including En-
glish (DAIC-WOZ, DAIC-Synthetic), Mandarin
Chinese (EATD), and Italian (Androids). XLMR
is pre-trained on 100 languages using a mas-
sive multilingual corpus and builds upon the ro-
bust ROBERTa architecture, enabling it to pro-
duce high-quality, cross-lingually consistent em-
beddings. This choice allows us to maintain
methodological consistency across datasets without
resorting to separate language-specific models.
We considered several alternatives:

* Monolingual models (for example, BERT-
base (Devlin et al., 2018) for English) would
require different encoders per language, com-
plicating the system design and potentially
introducing cross-lingual inconsistencies.

¢ Older multilingual models such as
mBERT (Devlin et al., 2018) are generally
outperformed by XLM-R due to its superior
pre-training strategy and corpus scale.

» Large generative language models (for ex-
ample, GPT-series) demonstrate excellent lan-
guage understanding (Hurst et al., 2024), but
using them as feature encoders—especially
with fine-tuning—would be computationally
expensive and impractical for processing nu-
merous short textual segments in our sequen-
tial pipeline.

Therefore, XLMR offers a favorable trade-off
between multilingual representational power and
computational efficiency, making it well suited for
sentence-level embedding extraction in our down-
stream modules.

1.2 Audio Feature Extraction

To encode participant spoken responses (A?-), we
use Wav2Vec2-XLSR-53 (XLSR-53) (Conneau
et al., 2020; Baevski et al., 2020). This choice
is based on several factors:

* Multilingual capability. XLSR-53 is pre-
trained on speech from 53 languages, includ-
ing English, Mandarin Chinese, and Italian. It
uses a self-supervised learning approach on
raw audio waveforms, making it particularly
effective at generating consistent and com-
parable audio representations across diverse
linguistic datasets without language-specific
fine-tuning.

Learning from raw audio. Unlike traditional
acoustic methods that rely on hand-crafted
features such as MFCCs or eGeMAPS (Ey-
ben et al., 2010, 2015), models based on
Wav2Vec?2 learn representations directly from
the raw waveform. This approach aligns with
our goal of developing a data-driven, end-to-
end trainable system wherever possible.

* Performance. Wav2Vec2 and its multilingual
variant, XLLSR-53, have shown outstanding
results across a wide range of speech process-
ing benchmarks, emphasizing the quality and
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generalizability of the learned audio represen-
tations. Other self-supervised speech mod-
els, such as HuBER (Hsu et al., 2021) and
WavLM (Chen et al., 2022), are strong candi-
dates as well. However, XLSR-53’s explicit
focus on cross-lingual capabilities and its em-
pirical success in multilingual speech tasks
make it particularly suitable for our multilin-
gual setup.
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