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Abstract

How does the natural evolution of context para-
graphs affect Question Answering (QA) in gen-
erative Large Language Models (LLMs)? To
address this, we propose a framework for cu-
rating naturally evolved, human-edited vari-
ants of reading passages from contemporary
QA benchmarks and for analysing LLM per-
formance across a range of semantic similarity
scores, which quantify how closely each vari-
ant aligns with Wikipedia content on the same
article topic that the LLM saw during pretrain-
ing. Using this framework, we evaluate 6 QA
datasets and 8 LLMs with publicly available
training data. Our experiments reveal that LLM
performance declines as reading passages nat-
urally diverge from the versions encountered
during pretraining—even when the question and
all necessary information remains present at
inference time. For instance, average accuracy
on BooLQ drops by over 30% from the highest
to lowest similarity bins. This finding suggests
that natural text evolution may pose a signifi-
cant challenge to the language understanding
capabilities of fully open-source LLMs.

1 Introduction

Large Language Models (LLMs), pre-trained on
massive web-scale corpora, have been shown to
be highly effective at Question Answering (QA)
over text passages (OpenAl et al., 2024; DeepSeek-
Al et al., 2025b,a; Yang et al., 2025; OLMo
et al., 2025), a task that has long served as a
testbed for evaluating natural language understand-
ing (NLU) (Chen, 2018). While such progress has
fostered the perception that LLMs possess strong
NLU capabilities already, much of this success
may stem from shortcut exploitation rather than
genuine language understanding (Wu et al., 2023;
Levy et al., 2023; Bhuiya et al., 2024), as revealed
by robustness probing—a commonly used evalua-
tion methodology that goes beyond surface-level
performance to assess authentic comprehension.

Existing QA robustness evaluation paradigms
typically operate statically: a perturbation function
is applied to the original benchmark test set, and
model performance is then measured on the result-
ing challenge set (Wang et al., 2022). Differentiat-
ing from previous work, this paper offers a novel
dynamic perspective on understanding the limita-
tions of generative LLMs by asking: what happens
when reading paragraphs continue to evolve and
diverge from their appearance during pretraining?
Such scenarios are prevalent in real-world applica-
tions, where textual data instances can evolve over
time due to ongoing human edits, content updates,
or contextual shifts (e.g., Wikipedia articles (Yang
et al., 2017)), thus requiring LLMs to demonstrate
genuine language understanding. To the best of our
knowledge, however, there has been no systematic
investigation of this phenomenon in QA.

To address this gap, we propose a framework
to analyse how LLM performance changes as the
reading paragraph semantically diverges from the
content of its source in the model’s training data.
Among various instances of evolving text corpora,
we focus on Wikipedia, as it serves as a primary
source of reading passages in many widely used
QA benchmark datasets (Rajpurkar et al., 2016,
2018; Clark et al., 2019; Wang, 2022; Ho et al.,
2023), is commonly included in LLMs pretraining
data (Soldaini et al., 2024; Zhao et al., 2025), and,
most importantly, provides clearly documented
revision histories that capture natural text evolu-
tion (Yang et al., 2017). This allows us to curate
human-edited variants of passages that reflect nat-
ural changes over time. Our approach adopts a
gradual perspective by computing continuous se-
mantic similarity scores at the paragraph level and
correlating them with LLMs QA accuracy.

Within the developed framework, we empirically
evaluate six QA datasets and eight LLMs with fully
open-source training corpora. Our study finds that,
across models with different training corpora and
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Figure 1: An overview of the analysis framework. Module Naturally evolved human-edited reading paragraphs
extraction is adapted from (Wu et al., 2025) with minor modifications. APC: Answers Preserving Checking.

architectural configurations, as context paragraphs
naturally evolve and become semantically distant
from the Wikipedia content sharing the same article
title seen during pretraining, the QA performance
of LLMs generally deteriorates. In contrast, human
annotators are less affected by such semantic drift
and maintain relatively stable accuracy regardless
of passage similarity, suggesting that the observed
performance drop is specific to LLMs and not due
to deficiencies in the edited passages themselves.

2 Methodology

In our framework (Figure 1), we extract revision
histories of paragraphs from QA benchmarks, or-
der them by semantic similarity to the version that
appears in an LLM’s training corpus, and correlate
the LLMs’ answer accuracy on those passages to
the similarity thus obtained. The framework con-
sists of two modules, described in detail below.

Naturally evolved human-edited reading para-
graphs extraction. To obtain edited versions of
original reading paragraphs from contemporary
QA benchmark datasets that genuinely reflect real-
world scenarios, we adopt the natural perturbation
pipeline proposed by Wu et al. (2025), with two
slight modifications: 1) we remove the constraint
of retaining only candidate passage pairs where
both paragraphs exceed 500 characters, allowing
broader dataset applicability and preservation of
diverse editing patterns; and 2) for the matched
original passages with multiple occurrences, we re-
tain all edited versions for each (see passage OP; in

Figure 1 as an example) to support subsequent cor-
relation analysis. Appendix A provides details on
Answers Preserving Checking and data statistics.

Semantic similarity-LLLM average accuracy cor-
relation analysis. For each naturally evolved,
human-edited reading paragraph and its associated
question, we generate predictions using an LLM
and label them as 1 (correct) or O (incorrect), based
on a selected evaluation metric. We also collect
predictions using the question alone to test whether
the LLM already possesses parametric knowledge
of the answer. Instances in which the LLM an-
swers correctly without access to the passage are
excluded, as they may call into question the para-
graph’s contribution to the answer (Glockner et al.,
2025) '. Meanwhile, we extract English Wikipedia
content from the LLM’s training corpora that shares
the same article title as the edited passage and com-
pute the semantic similarity between them. The
maximum similarity score is used as a proxy for
how closely the passage resembles the training data.
We then group the similarity scores into ten bins,
compute the average LLM accuracy within each
bin, and plot accuracy trends from highest to lowest
similarity. Uncertainty for the result in each bin
is estimated using the Wilson score interval with

! Appendix B shows that, within each generated dataset in
Module Naturally evolved human-edited reading paragraphs
extraction, the percentage of instances in which OLMo LLMs
succeed on context-free QA, and are thus filtered out. The
only exception is the BOOLQ dataset, where such instances
are not filtered due to its straightforward yes/no answer format,

which results in a significant proportion of questions being
correctly answered or guessed by LLMs.
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95% confidence (z = 1.96) (Wilson, 1927). Finally,
to validate the observed trend, we assess human
performance across the same bins.

3 Experiments Setup

Broadly, we address the following question: How
well do LLMs perform on QA as the reading para-
graphs naturally evolve from the versions present
in their training corpus? To this end, we select
QA benchmarks that feature context paragraphs
from Wikipedia, whose edit histories allow us to
trace naturally evolved versions of each paragraph,
and evaluate LLMs with an open-source training
corpus, as detailed below.

Datasets: We use the development set of six
English QA datasets spanning extractive, yes/no,
abstractive, cause-effect reasoning and multi-hop
reasoning challenge: SQUAD 1.1 (Rajpurkar et al.,
2016), SQUAD 2.0 (Rajpurkar et al., 2018), AD-
VERSARIALQA - D(ROBERTA) (Bartolo et al.,
2020), BooLQ (Clark et al., 2019), WIKIWHY (Ho
et al., 2023) (version 1.2) and HOTPOTQA (Yang
et al., 2018) (in the “distractor” setting). For HOT-
POTQA, which includes paragraphs from multiple
Wikipedia articles within a single context, we re-
tain only the edits applied to the gold passages, i.e.,
those containing supporting facts that determine
the answer, and disregard other distractors.

LLMs: We evaluate eight transparent
instruction-tuned LLMs across six model
families, all of which include Wikipedia in
their publicly available training data: OLMo
(OLMo-7B-0724-Instruct-hf) (Groeneveld et al.,
2024), OLMo 2 (OLMo-2-1124-7B-Instruct
and OLMo-2-1124-13B-Instruct) (OLMo et al.,

2025), OLMoE (OLMoE-1B-7B-0125-Instruct)
(Muennighoff et al, 2025), LLM360’s
AmberChat (Liu et al., 2024b), TinyLlama

(TinyLlama-1.1B-Chat-v1.0) (Zhang et al.,
2024), Databricks’ Dolly (dolly-v2-7b and
dolly-v2-12b) (Conover et al., 2023). To isolate
the potential impact of instruction tuning, we also
conduct experiments on the base (non-aligned)
versions of the same models. All LLMs are tested
in a zero-shot setting; the inference prompts are
provided in Appendix C. Model experimentation
is carried out using HuggingFace’s Transformers
library (Wolf et al., 2020), the vLLM (Kwon
et al., 2023), and two 80GB NVIDIA A100 GPUs.
LLM prediction correctness is determined using
Inclusion Match (IM), which considers a prediction

correct if it includes any ground truth answer (Levy
et al., 2023; Bhuiya et al., 2024). For WIKIWHY,
due to its free-form format, correctness is based on
semantic similarity (using the al1-MinilLM-L6-v2
model) between the LLM’s response and the
ground truth answer; predictions scoring above 0.6
are considered correct.

Semantic Similarity Measure: We measure
semantic-level textual similarity between the edited
Wikipedia paragraph and the versions found in the
Wikipedia subset of each LLM’s training corpus—
sourced from DOLMA V1.7% (Soldaini et al., 2024)
for OLMo, REDPAJAMA V13 (Computer, 2023) for
AmberChat, SLIMPAJAMA®* (Soboleva et al., 2023)
for TinyLlama and PILE® (Gao et al., 2020; Bi-
derman et al., 2022) for Dolly, using a Sentence
Transformers model al1-MinilM-L6-v2 (Reimers
and Gurevych, 2019). In addition, we employ
three alternative embedding models for the sim-
ilarity measure to enhance the generalisability of
our study: sentence-t5-base (Ni et al., 2022),
all-mpnet-base-v2 and bge-small-en-v1.5
(Xiao et al., 2024). In measuring semantic sim-
ilarity for HOTPOTQA, we consider only the para-
graphs in the edited context whose corresponding
Wikipedia article titles have matching content in
the Wikipedia subset of an LLM’s training corpus.

4 Results and Discussion

As a general trend, the QA performance of
instruction-finetuned OLMo LLMs deteriorates
as the reading paragraph semantically deviates
Jrom the training corpus. This is clearly vi-
sualized in Figure 2, where, across the evalu-
ated benchmark datasets, model average accu-
racy generally declines as the reading paragraphs
evolve and exhibit lower semantic similarity to
the versions found in the Wikipedia subset of
the training corpus. For example, on BOOLQ,
the accuracy of OLMo-2-1124-7B-Instruct de-
clines sharply from 71.1% in the highest simi-
larity bin 0.9-1.0 to 12.5% in the lowest 0.1-0.2.
Comparable drops are also observed, for instance,
for OLMo-7B-0724-Instruct on SQUAD 2.0 and

2ht’cps: //huggingface.co/datasets/allenai/dolma

Shttps://huggingface.co/datasets/togethercomp
uter/RedPajama-Data-1T

4ht’cps: //huggingface.co/datasets/cerebras/Sli
mPajama-627B

5As PILE is no longer officially hosted or distributed, we
use a publicly accessible replication of its original Wikipedia
component: https://github.com/noanabeshima/wikipe
dia-downloader.
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(a) SQUAD 1.1

(d) BooLQ

(b) SQUAD 2.0

(e) WIKIWHY

(c) D(ROBERTA)

(f) HoTPOTQA

Figure 2: Average accuracy of the instruction-finetuned OLMo LLMs across ten semantic similarity bins.

(a) SQUAD 2.0

(b) WIKIWHY

(c) HOTPOTQA

Figure 3: Average accuracy of other instruction-finetuned LLMs across ten semantic similarity bins.

WIKIWHY, and for OLMo-2-1124-13B-Instruct
on D(ROBERTA) and HOTPOTQA, illustrating
the broader impact of natural context drift in di-
verse QA challenges. To further substantiate the
observed trend, we perform a slope analysis as
shown in Appendix D Figure 5, where linear re-
gressions are fitted to each model’s accuracy tra-
jectory across semantic similarity bins. Aggre-
gated across all tasks and models, the mean slope
is 65.78 + 41.55, with a mean Pearson correla-
tion of 0.684 + 0.291, highlighting a consistent
and statistically grounded relationship between se-
mantic divergence and performance degradation.
Further, this downward trend is not exclusive to
the OLMo family. As shown in Figure 3, a com-
parable decline in average performance across
decreasing similarity ranges is likewise observed
in other instruction-finetuned LLMs, including
AmberChat, TinyLlama-1.1B-Chat-v1.0 and
dolly-v2-7b/12b, despite differences in model
size, architecture, training corpora and procedure.
To further investigate the generalisability of our
findings, we conduct an ablation study using alter-

native embedding models for semantic similarity
measurement (Figure 6 in Appendix E), evaluat-
ing the base pre-trained versions of the instruction-
finetuned LLMs (Figures 7 and 8 in Appendix F)
and prompting LLMs to perform chain-of-thought
(CoT) reasoning (Wei et al., 2022) when generat-
ing responses (Figures 9 and 10 in Appendix G).
Overall, the observed effects of context drift per-
sist under these alternative settings, supporting
the generalisability of our conclusions.

We find from Figures 2, 3 and 5 that the impact
of natural context drift is more pronounced in
benchmarks that emphasize surface-form align-
ment, whereas tasks requiring deeper reasoning
exhibit greater resilience. The downward trend
is less pronounced for datasets requiring advanced
reasoning, such as WIKIWHY and HOTPOTQA.
This may be because natural text evolution intro-
duces diverse linguistic cues and contextual varia-
tions that activate broader reasoning mechanisms
in LLMs, partially offsetting the impact of seman-
tic drift. In contrast, surface-level QA tasks such as
SQUAD rely more heavily on lexical or structural
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cues (Schlegel et al., 2020; Wu et al., 2021) and
therefore appear more sensitive to the text evolu-
tion. Dataset-level statistics support this contrast:
BooLQ and SQUAD 2.0 exhibit quite steep av-
erage slopes (67.23 and 83.50, respectively) and
strong Pearson correlations between average accu-
racy and semantic similarity (e.g., BOOLQ’s aver-
age correlation = 0.867 + 0.064). Meanwhile, HOT-
POTQA demonstrates a much shallower 23.94 aver-
age slope and lower correlation, indicating greater
robustness to textual edits.

Unlike LLMs, human performance in reading
comprehension is not influenced by deviations
in measured semantic similarity. To determine
whether the observed decline in LLMs’ accuracy
is due to reduced semantic similarity or the possi-
bility that the edited reading paragraphs became
degraded and unanswerable, we evaluate human
performance across semantic similarity bins within
the four investigated datasets. For each dataset, we
randomly sample an equal number of edited QA
instances from each bin, assign two annotators to
label the answers, and involve a third annotator to
resolve any disagreements. Details of the human
annotation protocol are provided in Appendix H.
As shown in Figure 4, across all QA benchmarks,
human performance does not consistently decline
with decreasing semantic similarity, supporting the
conclusion that the degradation in LLM accuracy
stems from semantic drift rather than a loss of ques-
tion answerability.

There may be little concern regarding the
impact of paragraph leakage from other data
sources beyond Wikipedia. A natural question
arises as to whether, given the vast scale of LLMs’
training corpora, the edited versions of the reading
paragraphs might also appear in sources beyond the

Wikipedia subset we focus on, potentially affecting
the findings. Therefore, using the infini-gram en-
gine (Liu et al., 2024a), we aim to estimate as accu-
rately as possible the percentage of edited reading
paragraphs that appear verbatim in the complete
training corpus of the evaluated LLMs across the
six examined QA benchmarks, as shown in Table 1.
Further details about the specific training corpora
queried for each LLM are provided in Appendix I.
As shown in Table 1, verbatim inclusion of the
edited paragraphs in the LLMs’ training corpora re-
mains negligible across the board. With additional
consideration that our analysis does not include
all the edited reading paragraphs, we believe that
the impact of these paragraphs appearing in other
data sources may not be significant. Finally, we
emphasise that our methodology focuses on mea-
suring the semantic similarity between the edited
reading paragraphs and the content from the same
source, i.e., Wikipedia. Therefore, extending the
analysis to other potential sources falls outside the
scope of this paper, and we leave this for future
investigation.

SQUAD I.I SQUAD2.0 D(ROBERTA) BOOLQ WIKIWHY HOTPOTQA

OLMo-78B 1.59 3.94 1.33 430 1.52
OLMo-2-7B/138 4.85 8.53 4.79 275 1.14
OLMoE-1B-7B 4.77 8.69 4.79 275 1.14
AmberChat&TinyLlama-1.18 1.04 2.40 2.13 4.47 1.14
dolly-v2-7b/12b 0.18 1.07 - 0.40 0.76

Table 1: Percentage (%) of edited reading paragraphs
that appear verbatim in the training corpora of the eval-
uated LLMs.

5 Conclusion

We introduce a novel methodology for examining
how real-world natural context evolution affects the
language understanding of LLMs when it deviates
semantically from their training data. Leveraging
Wikipedia revision histories, we curate naturally
human-edited variants of benchmark reading pas-
sages, compute their semantic similarity to versions
present in the models’ training corpus, and corre-
late these similarity scores with model performance.
Our empirical findings show that, while natural text
evolution has little to no effect on human QA per-
formance, recent fully open-source LLMs generally
exhibit a consistent downward trend in accuracy as
semantic similarity decreases. We hope this study
contributes to the growing body of research focused
on understanding and addressing the limitations of
LLMs in real-world, evolving textual contexts.
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Limitations

Our work has several limitations. First, we focus
exclusively on the QA task; extending these find-
ings to other downstream tasks remains an open
avenue for future research. Second, we evaluate
only transparent LLMs with fully open-access train-
ing corpora. While this constraint is necessary for
our methodology, some of these models still lag
behind state-of-the-art proprietary LLMs in perfor-
mance. Applying our framework to such propri-
etary models and investigating the generalisability
of our conclusions to them would be a valuable
extension, although it would require access to their
training data, which is currently unavailable. Fi-
nally, we note that the findings of this paper may be
influenced by the accuracy of semantic similarity
measurement, other implicit forms of benchmark
leakage, and the evaluation metrics used for LLMs,
all of which warrant further investigation in future
work.

Ethical Considerations

All datasets, the extracted edited versions of the
reading passages, and LLMs used in this work are
publicly available, used consistently with their in-
tended purpose and under the permitted license. A
very small proportion of the human-edited para-
graphs may contain offensive content, as they orig-
inate from reverted Wikipedia revisions that were
intentionally introduced to damage articles. We
retain these cases to enable a comprehensive study
of the potential impact of natural text evolution on
LLMs’ QA performance.
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Dataset Titles
(ext./total)

Passages  Edited  Avg. per Questions
Passages Passage

SQUAD 1.1 (Rajpurkar et al., 2016) 47/48 825 1,531 8.85 3,920
SQUAD 2.0 (Rajpurkar et al., 2018) 47/48 466 914 17.82 4,281
D(ROBERTA) (Bartolo et al., 2020) 47/48 135 249 5.56 376
BooLQ (Clark et al., 2019) 2,488/2,651 957 2,559 3.16 1,064
WIKIWHY (Ho et al., 2023) 833/873 193 251 1.36 193
10,971/13,783 2,948 7,350 2.79 2,970

HOTPOTQA (Yang et al., 2018)

Table 2: Summary of QA benchmarks with paragraph
evolution histories extracted from Wikipedia edits.

B Percentage of Instances where LLMs
Succeed on Context-Free Question
Answering

Dataset LLM OLMo-7B-0724-Instruct-hf OLMo-2-1124-7B-Instruct OLMo-2-1124-138-Instruct OLMoE-1B-78-0125-Instruct

SQUAD 1.1 2.63 5.1 581 2.2
SQUAD 2.0 53.55 52.07 56.48 55.43
D(ROBERTA) 213 12.52 8.66 626
BooLQ 36.35 18.69 61.40 15.85
WIKIWHY 0.00 3.42 0.00 266
HOTPOTQA 2.77 930 7.80 821

Table 3: Percentage (%) of instances with questions that
are correctly answered by an LLM without access to the
context paragraph.

C Inference Prompts for QA Tasks

This appendix provides the complete prompt tem-
plates used for zero-shot inference across all QA
datasets evaluated in this study.

SQUAD 1.1 & SQUAD 2.0 & D(ROBERTA)

Use the provided article delimited by
triple quotes to answer question. Pro-
vide only the shortest continuous span
from the context without any addi-
tional explanation. If the question is
unanswerable, return “unanswerable”.
"""nassage""" Question: question

Rationale: Explicitly requests the shortest continu-
ous span to encourage precise extraction for extrac-
tive reading comprehension tasks.

parametric knowledge testing: Provide
an answer to the given question. If the
question is unanswerable, return “unan-
swerable”. Do not provide any explana-
tion. Question: question

BooLQ

Use the provided article delimited by
triple quotes to answer question. Re-
turn only TRUE or FALSE. If the ques-
tion is unanswerable, return “unanswer-
able”. Do not provide any explanation.

"""nassage""" Question: question

Rationale: Constrains output format to TRUE/-
FALSE responses for binary classification tasks.

parametric knowledge testing: Provide
an answer to the given question. Return
only TRUE or FALSE. If the question is
unanswerable, return “unanswerable”.
Do not provide any explanation. Ques-
tion: question

WIKIWHY & HOTPOTQA

Use the provided article delimited by
triple quotes to answer question. If
the question is unanswerable, return
“unanswerable”. Do not provide any ex-
planation. """passage Question:
question

nnn

Rationale: Allows for more flexible answer gener-
ation while maintaining the unanswerable option
for cause-effect reasoning and multi-hop reasoning
tasks.

parametric knowledge testing: Provide
an answer to the given question. If the
question is unanswerable, return “unan-
swerable”. Do not provide any explana-
tion. Question: question

D Slope Analysis of Accuracy vs.
Semantic Similarity

The results of the slope analysis are shown in Fig-
ure 5.

E Consequences of Context Drift Persist
Across Other Embedding Models

Figure 6 demonstrates that the observed impact of
natural context drift persists when semantic simi-
larity is measured using other embedding models.

F Context Drift Effects Hold Without
Instruction Tuning

Figures 7 and 8 show that non-aligned base LLMs
are also susceptible to the harmful effects of natural
context drift.

G Chain-of-Thought Does Not Alleviate
Drift-Induced Degradation

Figures 9 and 10 reveal that natural context drift
occurs even when CoT prompting is applied.

1256



Mean Accuracy (%)

© OLMo.78.0724Instruct (data)
— = OLMo-7B.0724-Instruct (slope=77.09)
© OLMO21124-7Bnstruct (data)

20
o .
10 08 05 04 02 00
‘Semantic Similariy Bin (midpoint)
© OLMo78.0724Instruct (data)
120

Mean Accuracy (%)

== OLMGE18.78.0125-Instruct (slope=-18.90)

06 04
‘Semantic Similarity Bin (midpaint)

(c) D(ROBERTA)

® OLMo-78.0724Instruct (dota)
— = OLMo-7B-0724-Instruct (slope=106.83)
© OLMO-2.1124-7-Instruct (data)
~ = OLM0-2:1124.78-Instruct (slope=66.05)
® OLMO-2:1124-138-Instruct (data)
== OLM0-2-1124-13B-Instruct (slope=43.98)
©  OLMOE-15-78-0125-Instruct (data)
== OLMOE18.78.0125-Instruct (slope=117.13)

06 04
Semantic Similarty Bin (midpoint)

(b) SQUAD 2.0

© OLMo-78.0724Instruct (data)
== OLMo-7B-0724-Instruct (slope=74.63)
o OLMo2-1124.7BInstruct (data)

~ = OLM0-2-1124-7B-Instruct (slope=74.60)
© OLMO-21124138nstruct (data)

== OLM0-2:1124-13B-Instruct (slope=59.46)
@ OLMOE-18-78-0125-Instruct (data)

== OLMGE-18.78.0125-Instruct (slope=60.24)

o .
02 00 10 08 3 04 02 00
Semantic Similarty Bin (midpoint)
© OLMO-78.0724Instruct (data)
-~ . =~ OLMO-78.0724-Instruct (slope=14.92)

05 0
Semantic Similarty Bin (midpoint)

(e) HOTPOTQA

Figure 5: Average accuracy of instruction-finetuned OLMo LLMs across semantic similarity bins. Each point
represents the mean accuracy within a similarity bin, and the dashed lines are linear regression fits summarizing the
accuracy trend for each model. Slope values indicate how rapidly model accuracy changes with semantic divergence.
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Figure 6: Average accuracy of the instruction-finetuned OLMo LLMs across ten semantic similarity bins. The
first, second, and third rows show the results obtained using the embedding models sentence-t5-base,
all-mpnet-base-v2, and bge-small-en-v1.5, respectively.

(b) SQUAD 2.0 (c) D(ROBERTA)

Al| I| I| l| ,|I ||| I| ‘I

(d) BooLQ (e) WIKIWHY (f) HOTPOTQA

Figure 7: Average accuracy of the Base OLMo LLLMs across ten semantic similarity bins.

H Human Annotation Details participants possess strong English reading com-
prehension skills. Before beginning the main anno-
tation task, annotators are asked to label a small set
of instances and resolve any disagreements through
discussion until consensus is reached. During an-

We adopt the same instructions provided to human
annotators in (Wu et al., 2025) and recruit doc-
toral students from the university as annotators. All
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(a) SQUAD 2.0
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Figure 8: Average accuracy of other Base LLMs across ten semantic similarity bins.

(a) SQUAD 1.1

(d) BooLQ

(b) SQUAD 2.0

(e) WIKIWHY

(c) D(ROBERTA)
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Figure 9: Average accuracy of the instruction-finetuned OLMo LLMs across ten semantic similarity bins, with the
prompt encouraging elaborated answers and CoT reasoning.

(a) SQUAD 2.0

(b) WIKIWHY

(c) HOTPOTQA

Figure 10: Average accuracy of other instruction-finetuned LLMs across ten semantic similarity bins, with the
prompt encouraging elaborated answers and CoT reasoning.

notation, they are provided only with the edited
reading paragraph and the corresponding question,
without being informed that the paragraph has been
modified, in order to minimize potential bias.

I Training Corpora Queried for Each
LLM

Infini-gram enables efficient query-
ing over the whole training data of
OLMo-2-1124-13B-Instruct (whose
results are also used as a proxy for
OLMo-2-1124-7B-Instruct, given

the same training data shared) and
OLMoE-1B-7B-0125-Instruct. For the re-
maining LLMs, we are limited to query-
ing their pretraining corpora (which al-
ready account for a significant portion of
the overall training data): DoOLMA 1.7 for
OLMo-7B-0724-Instruct-hf, REDPAJAMA V1
for AmberChat and TinylLlama-1.1B-Chat-v1.0
(used as a proxy), PILE for dolly-v2-7b and
dolly-v2-12b.
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