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Abstract

Event argument extraction identifies arguments
for predefined event roles in text. Existing
work evaluates this task with exact match (EM),
where predicted arguments must align exactly
with annotated spans. While suitable for span-
based models, this approach falls short for large
language models (LLMs), which often gen-
erate diverse yet semantically accurate argu-
ments. EM severely underestimates perfor-
mance by disregarding valid variations. Fur-
thermore, EM evaluation fails to capture im-
plicit arguments (unstated but inferable) and
scattered arguments (distributed across a docu-
ment). These limitations underscore the need
for an evaluation framework that better captures
models’ actual performance.

To bridge this gap, we introduce REGen, a
Reliable Evaluation framework for Generative
event argument extraction. REGen combines
the strengths of exact, relaxed, and LLM-based
matching to better align with human judgment.
Experiments on six datasets show that REGen
reveals an average performance gain of +23.93
F1 over EM, reflecting capabilities overlooked
by prior evaluation. Human validation fur-
ther confirms REGen’s effectiveness, achieving
87.67% alignment with human assessments of
argument correctness.

1 Introduction

Information extraction is a key area in natural lan-
guage processing (Gaizauskas and Wilks, 1998).
Event argument extraction (EAE) is a core informa-
tion extraction task that transforms text into struc-
tured information. As EAE identifies and extracts
event-specific arguments from texts, it is essential
for a wide range of applications such as document
understanding (Tong et al., 2022), misinformation
detection (Wu et al., 2022), discourse understand-
ing (Sharif et al., 2024), pharmacovigilance (Sun
et al., 2022). With the emergence of generative
models (e.g., LLMs), EAE has gained significant

sarah.masud. preum}@dartmouth.edu

©

o
~
~
~

AN

N EM
7/ REGen

(=
o
vl
o

w
w
o
u
w
N

F1 Score
[
o
N
o
=

N
o

!L\\\

36.

Y/

GENEVA

=

N\

w
o

NN\
AN

_!!
!g

DiscourseEE PHEE DocEE WikiEvents

Figure 1: Performance comparison of the best-
performing EAE model across six datasets under Exact
Match (EM) and the REGen framework. The results
highlight that, on average, EM underestimates model
performance by 54.8%, which is captured by REGen.

attention in recent years (Zhang et al., 2024, 2025).
However, previous studies (Gao et al., 2023; Sun
et al., 2024) indicate that LLMs perform poorly on
EAE tasks. This is largely due to the disconnect
between the nature of generative predictions and
the exact span-based evaluation method commonly
used for EAE (Huang et al., 2024).

Span-based exact matching (EM) significantly
underestimates the performance of LLMs as they
often predict accurate arguments in surface forms
that differ from the ground truth. For exam-
ple, if the ground truth annotation for a role is
‘pain relief’, the model might output terms
like [alleviates pain, reducing discomfort,
analgesia]. Depending on the context, all or mul-
tiple of these outputs are correct, but none would
be accepted by EM. Even minor variations would
result in no match. Authors in (Sharif et al., 2024)
highlighted that this problem is even more pro-
nounced when evaluating the arguments composed
of information from different parts of the text (scat-
tered arguments) or the arguments that are not di-
rectly mentioned (implicit arguments).

Previous works have attempted to address these
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issues using embedding-based relaxed matching,
which considers two arguments similar if they have
high embedding similarity (Han et al., 2024). How-
ever, this approach fails to capture semantically
similar arguments with different lexical forms and
wrongly classifies arguments with high token over-
lap as similar (Sharif et al., 2024). For exam-
ple, in Figure 2 for the role ‘patient concerns’,
the ground-truth argument ‘limited insurance
coverage’ and the predicted argument ‘ coverage
limitations for FLA and cryotherapy’ refer
to the same issue. Due to lexical variation, relaxed
matching fails to capture this. In contrast, consider
arole ‘date’ for which ground-truth and predicted
arguments are ‘18 April 2024’ and ‘20 April
2024’ , respectively. These two arguments are dif-
ferent, but relaxed matching considers them the
same due to high token overlap. Context is needed
when evaluating these arguments. Recent work by
Lu et al. (2024) used LLMs as judges to identify
similar arguments. This approach requires a large
number of inferences, adding significant computa-
tional costs. Additionally, without human valida-
tion, LLM-based judgments can produce unreliable
results. Relying solely on relaxed match or judge-
based approaches can overestimate performance
by incorrectly classifying non-match arguments as
matches, leading to inflated and unreliable model
assessments. A detailed analysis of argument cor-
rectness by each method is shown in Table 6.

To address these limitations, we introduce RE-
Gen, a reliable evaluation framework for event
argument extraction. REGen systematically com-
bines the strengths of exact, relaxed, and LLM-
based matching by maximizing the evaluation re-
liability while minimizing the computation costs.
Figure 2 illustrates the framework, and it is struc-
tured into four sequential phases: Exact Match
(EM), Relaxed Match (RM), Complex Match (CM),
and Alignment with Human Judgments.

The EM level filters arguments that match ex-
actly, reducing computational costs for subsequent
stages by eliminating obvious matches. This level
does not require human evaluation as exact matches
indicate perfect agreement with humans. The RM
stage identifies arguments that are semantically
similar, making evaluation robust to minor syntac-
tic variations. This matching is performed based on
the contextual embedding of the arguments. Setting
up a high embedding similarity threshold ensures
higher reliability and minimizes human evaluation.

After filtering out exact and relaxed matches,

unmatched arguments are carried forward for com-
plex matching. The CM stage captures semanti-
cally similar arguments based on context despite
lexical and/or syntactic differences. We leverage
LLM as a judge (Zheng et al., 2023) to determine
argument similarity. Finally, in the judgment align-
ment stage, we propose a novel Judgment Aligned
Match (JAM) score to factor in the scores from
each level to account for misjudgments based on hu-
man validation. This framework ensures evaluation
accuracy, cost-effectiveness, and better alignment
with human judgments.

To the best of our knowledge, this is the first
systematic evaluation of LLMs on popular EAE
datasets. Unlike prior studies (Lu et al., 2024;
Huang et al., 2024) that experimented on small test
subsets sampled and merged from multiple datasets,
we evaluate the complete test sets of the original
datasets. This provides a more reliable assessment
of LLMs’ performances on these benchmarks and
highlights their potential in solving the EAE task,
which has been previously underestimated. Our
key contributions are as follows.

* We present REGen, a Reliable Evaluation
framework for Generative event argument ex-
traction, minimizing inference costs and the
need for human validation. REGen yields
87.67% alignment with humans thus ensuring
higher reliability. We also introduce a scor-
ing mechanism to systematically measure how
well REGen’s evaluation aligns with human
judgments. Finally, we curate a novel, human-
annotated dataset with 900 samples to select
LLM models as judges for EAE evaluation.

* We demonstrate the generalizability of RE-
Gen through extensive evaluation using mul-
tiple LLMs on six widely-used EAE datasets,
including DiscourseEE (Sharif et al., 2024),
PHEE (Sun et al., 2022), RAMS (Ebner et al.,
2020), GENEVA (Parekh et al., 2023), DocEE
(Tong et al., 2022), and WikiEvents (Li et al.,
2021). The results show an average improve-
ment of 23.93 F1 points across all datasets
while reducing inference costs by 41.2% than
the LLM-as-judge-only approach (Lu et al.,
2024).

Reproducibility: Our code, evaluation framework,
the judge and alignment datasets, and other relevant
resources are available at https://github.com/Omar-
Sharif/REGen.
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Generative Event Argument Extraction

@ Sample document

I'm 46 years old and recently diagnosed with prostate
cancer, which my doctor described as moderately
aggressive. The doctor recommended robotic surgery using
the da Vinci system due to its precision and faster recovery,
but I'm hesitant because of possible long-term side effects.
I'm more inclined to try alternatives like Focal Laser
Ablation (FLA) or cryotherapy, but insurance only partially
covers those treatments. Unfortunately, my cancer has
already spread to nearby lymph nodes, which makes me
feel like my options are shrinking. Have any of you dealt
with multi-focal prostate cancer and had long-term success
with radiation or a combination of treatments? How did you
handle the side effects?

Generative models *

Roles Ground-truth Arguments ‘ Predicted Arguments
. . prostate cancer; prostate cancer;
Diagnosis . N .
moderately aggressive moderately invasive
Age 46 ‘ 46 years
Treatment | da Vinci robotic surgery; robotic-assisted surgery;
. Focal Laser Ablation;
Options FLA; cryotherapy

cryotherapy

cancer has spread;

Cancer Status X
multifocal

metastasized; multifocal
limited insurance

coverage; shrinking
treatment options

coverage limitations for
FLA and cryotherapy;
limited treatment options

Patient
Concerns

-

REGen Framework

Exact Match (EM) (Human evaluation not required)

-- Include argument pairs that exactly match

EM Pairs: [ (prostate cancer, prostate cancer), (cryotherapy,
cryotherapy), (multifocal, multifocal)]

-- Include pairs where embedding similarity is higher than the
specified threshold (Tr).

RM Pairs: [ (46, 46 years), (moderately aggressive, moderately
invasive), (da Vinci robotic surgery, robotic-assisted surgery)]

Complex Match (CM) ' (Requires human evaluation )

-- Include pairs which a LLM-based judge model labelled as
match

CM Pairs: [ (cancer has spread, metastasized), (FLA, Focal
Laser Ablation), (limited insurance coverage, coverage
limitations for FLA and cryotherapy)]

ﬁlignment with Human Judgements

( Validate a subset of predictions at each level by \
A humans and calculate alignment score 4
®/ Compute judgment aligned matching score by factoring \:
A\ the alignment at each level )

\

Figure 2: Proposed REGen evaluation framework for event argument extraction. Left: An example of getting
role-specific arguments from documents using generative models. Different colors indicate arguments for different
roles. Semicolons separate multiple arguments for a role. Right: Illustration of the REGen’s sequential evaluation
process: Exact Match (2.2), Relaxed Match (2.3), and Complex Match (2.4) and Alignment with Human Judgments
(2.5). Only the arguments that do not match at the previous level are carried forward to the next level. Due to space
constraints, the mathematical illustration of the framework is provided in the Appendix Figure 4.

2 REGen Framework

2.1 Preliminaries

Document: A document D is a piece of text, which
can be a sentence, a paragraph, or a full document.
Events, Roles and Arguments: Events (F) refer
to occurrences or actions described in document D.
A document can have multiple events. Each event
is characterized by its roles (R), which define the
participants or entities involved. Arguments (A)
are specific details or attributes associated with
these roles, providing context such as specific time,
location, and other information. For example, con-
sider the sentence: ‘Alice sent a package to Bob on
Monday’. The event here is ‘Send’, with potential
roles such as sender, recipient, and time. The corre-
sponding arguments for these roles are Alice, Bob,
and Monday, respectively.

Generative Event Argument Extraction: This ap-
proach leverages generative models such as LLMs
to extract arguments from the source document D.
Given the source document, along with informa-

tion about events and roles, the model generates a
structured list of associated arguments.

2.2 Level-1: Exact Match

Let’s assume we have a list of predicted and ground-
truth argument strings for each role R; ina D.

P:[pla"'vpacl]a G:[gla"'agyl]

An exact match (EM) pair is defined when
pi = gj, forming a list of EM pairs such as
[(plagQ)a (p3vg5)a ) (va gy)] Precision and re-

call for the EM level are computed as:

_ NP,
Pl

NG,

EM, el

EM..

Here, NP, and NG, represent the number of cor-
rectly predicted arguments from the predicted (P)
and ground-truth () argument lists, respectively.
Note that NP, = NG, under exact match.

12148



2.3 Level 2: Relaxed Match

Predicted and ground-truth argument lists are up-
dated by removing arguments matched in Level-1.
Grm = [917 v ang]

P’r"m = [p17"'7p2?2]7

We compute the embedding-based similarity for all
possible argument pairs of P,,,, and G,,,. A pair is
considered a relaxed match (RM) if its similarity
score exceeds the predefined threshold 7).. The
threshold selection method is described in section
3.1. The resulting list of RM pairs is a subset of
all possible pairs. Precision and recall for relaxed
matching are computed as:

_ NP, + NP,

RM,, = RM, = NG + NG,

Pl I

Here, NP, and NG, represent the arguments
matched under relaxed conditions form FP,,, and
Grm, while NP, and NA_ are taken from Level 1.
Relaxed matching allows an argument (p,. or g,)
to appear in multiple pairs where the similarity ex-
ceeds T,.. To avoid overcounting, separate counts
(NP,., NG,.) are maintained for the number of ar-
guments correctly matched from the prediction list
and the ground-truth list.

2.4 Level 3: Complex Match

After exact and relaxed matching, unmatched argu-
ments are carried forward for complex matching.
Pcm:[plv--- agy?)]

’pz3]7 Gcm: [917*"

For the possible pairs from these lists, a preselected
judge model determines similarity based on con-
text. Details on how a judge model is selected for
complex matching are discussed in section 3.2. If
a pair is predicted as similar, it is added to the com-
plex match (CM) pair list. Precision and recall for
complex matching are computed as:

_ NP. + NP, + NP.

NG + NG + NG
CM, = 7] , =

CM, =
|G

Here, NP, and NG, represent arguments correctly
matched by the judge model. Similar to relaxed
match, separate counts ensure that arguments are
not overcounted when they appear in multiple
matches. NP., NG,, NP,, and NG, are precom-
puted values from previous levels.

Generic Equation: We define three match lev-
els L = [EM,RM, CM]. NP, NP, and NP, de-
note the number of correctly predicted arguments

from the prediction list (P), while NG, NG,, and
NG, represent the number of correctly matched
arguments from the ground-truth list (G) at each
level. Finally, precision, recall, and F1-score for a
given level are calculated using the Equations 1-2.

Zl'—1 NP; Zl'—l NG;
Pl = 1—77 Rl = ==L (l)
|P| (€]
2x P xRy
Fl, = —— 2
! P IR, (2

2.5 Alignment with Human Judgments

In Levels 2 (Relaxed Match) and 3 (Complex
Match), the performance can be overestimated if
the relaxed matching model or the complex match
judge incorrectly classifies a non-match pair as a
match. To account for this overestimation, we intro-
duced a novel Judgment Aligned Match (JAM)
Score, which penalizes the counts on each level
based on the deviation from human judgment.

We first calculate the deviation rate of a match-
ing model (M) on a dataset (DT') by measuring
the number of disagreements between the model
and the human evaluator. The deviation rate is
computed using equation 3. Addition details on
the deviation rate or the alignment calculation are
provided in Appendix B.

N
Ewm,pr) = N*d 3)

o
Here, N; and N, denote the number of disagree-
ments and the total number of observations, respec-
tively. We calculate the JAM Score for a dataset
factoring the model’s score at each matching level
(EM, RM, CM) by the deviation rate of that level
following equations 4-6.

S (1 —E;) *NP;)

JAM,, = 4
? |P|
L
L ((1 — E;) * NG;
Jam, - Zica (1= Ei) + NG )
|G
M1 — 2 % JAM,, * JAM,. ©)

JAM,, + JAM,

The JAM Score improves the alignment with hu-
man judgment, providing a more reliable reflection
of the model’s true performance.

3 REGen Implementation Details
3.1 Threshold Selection for Relaxed Match

Usually, the model-predicted arguments contain the
core words from the corresponding ground-truth
arguments (Sharif et al., 2024; Lu et al., 2024).
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While these predictions may have redundant words
or miss some surrounding words, such discrepan-
cies do not alter the overall semantics. We can
identify these variations by using a high threshold
relaxed match for accurate evaluation. We consider
two arguments similar if their semantic similarity
score exceeds 0.85, calculated using SBERT em-
beddings (Reimers and Gurevych, 2019).

This threshold is determined as follows. We
tested three thresholds: 0.95, 0.85, and 0.75, across
500 argument pairs sourced from the six EAE
datasets evaluated. The disagreement (error) rates
were 0.0%, 1.78%, and 8.33% for these thresholds,
respectively. Although the 0.95 threshold yielded
perfect agreement with human assessments, it al-
lowed us to filter only a limited number of argu-
ments. Conversely, the 0.75 threshold led to many
incorrect matches. Therefore, we selected 0.85 as
the optimal threshold. Our judgment alignment
step ensures that our results are reliable and not
inflated due to misjudgments.

3.2 Judge Selection for Complex Match

Studies show that LL.Ms achieve a strong corre-
lation with human judgment across various tasks
(Fu et al., 2024; Liu et al., 2023). We also used
LLMs to determine whether the ground truth and
predicted arguments match. This approach makes
the evaluation scalable across datasets and models.

Judge data annotation: We construct a judge
dataset comprising 900 argument pairs (150 pairs
per dataset) to select the best judge model. Specifi-
cally, we randomly select pairs not matched under
exact or relaxed criteria, meaning they inherently
represent challenging or ambiguous cases. Each
pair is annotated as ‘match’ or ‘non-match’ by a hu-
man annotator. A second human verifies the labels,
and disagreements are resolved through discussion
to finalize the annotations.

Judge LLM selection: We evaluate both open-
source (Llama3.1-70B) and closed-source (GPT-
40, GPT-40-mini, GPT-3.5) models as potential
judges, assessing their performance in zero-shot
and chain-of-thought settings. GPT-40, with a zero-
shot prompt, achieves the highest agreement with
human judgments, scoring 86.17. Therefore, we
selected GPT-40 as the judge model for complex
match evaluation. Note that the choice of judge
is orthogonal to our proposed framework. The se-
lected judge model can easily be swapped with
newer or better alternatives without further modifi-
cations. Appendix E provides additional details on

judge selection and relevant prompts.

3.3 Judgment Alignment

Deviation Rate (%) Alignment (%)

Datasets EM RM CM | (1-3 deviation)
DiscourseEE | 0.0 2.67 13.33 84.0
PHEE 0.0 00 7.33 92.67
RAMS 0.0 133 8.66 90.0
GENEVA 00 20 8.0 90.0
DocEE 0.0 333 160 80.67
WikiEvents 00 00 1133 88.67
| Avg. Alignment (%) 87.67

Table 1: Alignment and judgment deviation rate from
humans at different matching levels on the evaluated
EAE datasets.

We manually evaluated a subset of predictions
from each matching level to determine the align-
ment with human judgments. In total, we analyzed
2,700 arguments (900 for each level) to quantify the
frequency of disagreements with humans. To en-
sure unbiased judgments, we randomly selected
150 outputs from each level for each evaluated
dataset. Table 1 presents the alignment and de-
viation rates. The EM consistently showed per-
fect alignment with human judgments, while RM
exhibited minimal disagreement. However, CM
demonstrated the highest deviation rates.

Among the datasets, the PHEE dataset showed
the highest alignment (92.67%) with human judg-
ments, while DocEE had the lowest (80.67%). On
average, the REGen framework achieved 87.67 %
alignment with human evaluators. Our analy-
sis reveals primary reasons for judgment disagree-
ments are (1) Numerical nuances: the model often
failed to distinguish numerical differences. Such
as for a role ‘drug-dosage,’ it incorrectly treated
‘14 mg’ and ‘6 mg’ as equivalent. (2) Temporal
variations: dates such as ‘18 April’ versus ‘20
April’ or days like ‘Thursday’ versus ‘Friday’
were incorrectly judged as similar. (3) Coreference
handling: datasets like RAMS and WikiEvents
frequently used pronouns (e.g., ‘he’, ‘they’) in
the ground truth, while models predicted specific
names (e.g., ‘John’). This mismatch led to judg-
ment errors, especially when documents contained
multiple names, confusing the model. We iden-
tified a total of 111 disagreements. Of these, 15
cases were due to numerical nuances, 10 cases in-
volved temporal variations, 57 cases were related
to coreference handling, and 29 cases were due to
other issues, such as the model incorrectly match-
ing unrelated arguments. A detailed breakdown of
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Disagreement category
Datasets Numer- Tempo-  Coref-
ical ral erence
DiscourseEE 7 1 15 1
PHEE 1 1 4 5
RAMS 0 0 10 5
GENEVA 0 0 8 7
DocEE 6 8 12 3
WikiEvents 1 0 8 8
Total | 15 10 57 29

Table 2: Detailed breakdown of disagreement cases
between human and judge model in evaluated EAE
datasets.

these disagreement categories for each dataset is
provided in Table 2. Additional error analysis is
provided in Appendix A.

The proposed JAM score accounts for these judg-
ment errors. The score for each dataset is calculated
based on alignment, providing a more reliable es-
timate of a model’s true performance when using
relaxed matching and LLM as judge models instead
of human evaluators.

4 Experiments

4.1 Datasets and Experimental Setup

We used six standard EAE datasets from diverse do-
mains to evaluate REGen. These datasets include:
RAMS (Ebner et al., 2020) (news), GENEVA
(Parekh et al., 2023) (book, news, journal articles),
DocEE (Tong et al., 2022) (long news documents),
WikiEvents (Li et al., 2021) (Wikipedia texts), Dis-
courseEE (Sharif et al., 2024) (online health dis-
course), and PHEE (Sun et al., 2022) (pharma-
covigilance texts). Prior works, such as Huang
et al. (2024) and Lu et al. (2024) have evaluated
LLMs using small test subsets sampled and merged
from multiple datasets. Thus not reflecting actual
performance of LLMs on these datasets. We con-
duct evaluations using the complete official test sets
of the selected datasets to provide a more reliable
assessment of LLMs’ performance on these bench-
marks. Detailed statistics for these test datasets
are presented in Table 4. Appendix C contains
additional details on the data preparation steps.
Performance Metrics: We report the precision,
recall, and F1-score at each evaluation phase: exact
match, relaxed match, complex match, and post-
judgment alignment. Scores are computed follow-
ing prior works (Peng et al., 2023) and calculation
details are discussed in Section 2.

4.2 EAE Models

Baselines: Following prior works (Sharif et al.,
2024; Lu et al., 2023), we implement question-
answering-based baselines. We use two models:
BERT and FLAN-TS. Both models are fine-tuned
on SQuUAD (Rajpurkar et al., 2016) data to extract
arguments from context based on the question.
LLM Based Models: We perform comprehensive
experiments using open-source and closed-source
LLMs from different model families of various
parameter sizes, including Phi-3.5 (3.8B), Gemma-
1.1 (7B), Mixtral (8x7B), Llama-3.1 (70B), and
GPT-40. We evaluate all the models in two prompt
settings: zero-shot and chain-of-thought. We
employed question-guided prompting as previous
works achieved SOTA performance using this ap-
proach (Lu et al., 2023; Hsu et al., 2022; Du and
Cardie, 2020). Specifically, models are prompted
with (Instruction, Document, Question) to
generate — (Arguments), where each question is
tailored to extract specific role'. Sample questions
for the datasets are presented in Table 18.

Different LLMs require prompts and in-context
samples tailored to each model and dataset. In prac-
tice, users select the optimal prompt using a trial-
and-error approach (Ziems et al., 2024; Zamfirescu-
Pereira et al., 2023). However, in our experiments,
iterating over various prompts to find the optimal
prompt for each model and dataset is impractical.
Instead, we opted to use a consistent prompt across
all models and datasets to (i) ensure a fair com-
parison among the models and (ii) eliminate the
confounding factors related to prompt optimiza-
tion. Generic templates for zero-shot and chain-
of-thought prompts for argument extraction are
illustrated in Figures 8 and 9, respectively. Ad-
ditional descriptions of the models are provided in
Appendix D.

5 Results

Significant improvement in F1-score across all
datasets: Table 5 illustrates performance of vari-
ous models using REGen framework. We observed
a notable performance boost when models transi-
tioned from the EM to the JAM score. For instance,
the F1-score for the top-performing GPT-40 model
increased from 16.82 with EM to 46.16 with JAM
in the DiscourseEE dataset. Additionally, the av-
erage F1-scores of all the LLMs shown in Table 3

'Role-specific questions for each dataset can be found here:
https://tinyurl.com/38en8e94
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Avg. Avg.

Datasets EM-FI REGen-F1 AF1 Gain (%)
DiscourseEE | 10.74 37.45 +26.71  +248.69
PHEE 39.26 62.34 +23.08 +58.79

RAMS 13.38 28.27 +14.89 +111.25
GENEVA 13.62 46.12 +32.49 +238.52
DocEE 17.33 41.65 +24.32  +140.36
WikiEvents 8.93 31.02 +22.08 +247.18

| Avg. A F1 +23.93

Table 3: Average F1-scores of LLMs in zero-shot and
chain-of-thought settings, comparing Exact Match (EM)
and REGen evaluation frameworks. Additional compar-
isons with Relaxed Match (RM) and Complex Match
(CM) are reported in Table 9.

exhibit that all evaluated datasets achieved consid-
erable performance gains, averaging 23.93 points.
The increase in F1 score for the GENEVA dataset
was 32.49, representing a 238.52% improvement
over the standard EM evaluation. Similar substan-
tial gains were noted in other datasets, such as 26.71
for DiscourseEE and 24.32 for DocEE.

On average, 41.20% of inferences are reduced
under the REGen framework: Our results in Fig-
ure 3 and Table 11 demonstrate that the REGen
framework significantly lowers the number of infer-
ences needed for evaluation compared to solely us-
ing the LLMs-as-judge approach (Lu et al., 2024).
For example, in the PHEE dataset, the inference
count drops dramatically from 12,206 to 4,436, re-
sulting in a reduction of 63.6%. Similarly, the Do-
cEE dataset sees a decrease from 24,166 to 12,624,
corresponding to a 47.7% reduction. These results
highlight the efficiency of the REGen framework
in streamlining the inference process. It enables
effective evaluation by significantly decreasing the
computational burden. Moreover, the systematic
reduction in judgment errors through the REGen
framework lessens the need for human validation
without compromising reliability.

REGen framework is more reliable (87.67 %
alignment): REGen shows no/minimal errors in
the performance under exact match and relaxed
match scoring. While there is some overestimation
due to misjudgments in the complex match step,
our extensive validation indicates an 87.67% align-
ment with human judgments (see Table 1). The
JAM score incorporates this human alignment, en-
suring the overall reliability of the framework. Ad-
ditionally, the reported scores are more explainable,
as they include a clear breakdown of performance
gains at each matching level (EM, RM, CM, and
JAM).

100
LLM-as-Judge
25k mmm REGen

/7 Reduction(%)

24.2k

80

[N}
=}
=]

60

-
o
~

12.2k
12.6k
47.76

40

Inference Counts
-
o
~

Reduction in Inferences (%)

6.8k
N\ 3397
7.4k
N\ 3419

4.5k

20

3.6k

.<4k\ \\ 32.99

5k q

3.4k

Klk\ N\ 3468

e S NN

Ok

DiscourseEE  PHEE RAMS GENEVA DocEE  WikiEvents

Figure 3: Comparison of required inference counts and
reduction in inferences when using LLM-as-Judge ver-
sus the REGen framework for the GPT-40 prediction
model. Additional statistics are presented in Table 11.

Recall is on average higher than precision in
all settings: Our fine-grained analysis (see Tables
12 to 17) reveals LLMs achieve higher recall than
precision. Such as the GPT-40 model in the DocEE
dataset achieved a JAM recall of 68.41 compared
to a precision of only 42.12. This indicates while
the models are effective in identifying ground-truth
arguments, they tend to over-predict, impacting the
overall Fl-score. In this work, we used a single
prompt for all the models and datasets, which might
have contributed to this overprediction. Future re-
search should focus on pushing the performance
through dataset- and model-specific prompting to
enhance precision without sacrificing recall.

6 Related Work

Generative Event Argument Extraction: Early
studies on event argument extraction (EAE) treated
it as an extractive or token-level classification task
(Doddington et al., 2004; Du and Cardie, 2020).
These efforts primarily focused on identifying ar-
gument spans directly found in the text (Sun et al.,
2022). Recently, EAE has been formulated as a
generative task where pre-trained language models
are guided with natural language to fill templates
or generate arguments (Hsu et al., 2022). Sharif
et al. (2024) argue that this generative formulation
better suits real-world applications as it can capture
implicit and scattered arguments better. With the
emergence of LLMs, generative model-based argu-
ment extraction gained more traction (Sun et al.,
2024; He et al., 2024; Gatto et al., 2025). So, we fo-
cus on generative extraction covering diverse mod-
els and datasets.

Evaluations for Generative EAE: Existing works
for generative EAE primarily rely on exact match-
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Datasets #Events #Roles #Docs #Arguments Doc-length Argument Domain

(words) Density
DiscourseEE 3 34 98 997 121.21 10.17 Online health discourse
PHEE 2 14 968 4952 20.12 5.11 Pharmacovigilance
RAMS 129 63 754 2023 133.70 2.68 News
GENEVA 115 196 899 3078 29.74 3.42 General (book, news, journal)
DocEE 57 266 500 3453 635.60 6.90 News
WikiEvents 33 44 19 473 653.87 24.89 Wikipedia

Table 4: Test set statistics of the six datasets used for evaluation show broad variability among these datasets.
The columns #Events, #Roles, #Docs, and #Args represent the number of unique event types, unique role types,
unique documents, and number of arguments, respectively. The average document length is measured in words, and
argument density reflects the average number of arguments per document.

| DiscourseEE PHEE RAMS
Model | EM RM CM JAM | EM RM CM JAM | EM RM CM JAM
Baselines
BERT 5.88 8.66 3356 30.18 | 27.78 3498 52.61 5133 | 1463 18.14 33.61 3224
Flan-T5 6.74 10.16 3646 32.87 | 42.34 5044 6698 65.77 | 12.61 15.13 28.62 27.43
LLMs with Zero-Shot Prompt
% Phi-3.5 3.40 5.00 1473 1339 | 43.03 5046 67.67 6642 | 1534 1792 3419 32.76
G Gemma-1.1 | 11.87 15.86 = 50.14 4548 | 4500 5434 7693 7528 | 1487 17.50 3243 31.11
[l Mixtral 13.10 17.74 4859 4438 | 36.58 4255 59.19 5798 | 1297 1546 2993 28.65
00 Llama-3.1 13.38 1873 4357 40.13 | 39.17 4695 6396 62.72 | 1195 1456 2544 2447
® GPT-40 16.82 23.08 49.87 46.16 | 53.67 6192 7896 77.72 | 19.44 23.15 3742 36.15
LLMs with Chain-of-thought Prompt
% Phi-3.5 7.08 1242 4141 3743 | 32.09 38.01 54.03 5286 | 1553 18.65 34.54 33.13
G Gemma-1.1 | 935 13.06 4327 39.16 | 34.14 4228 6146 60.06 | 10.71 13.57 2628 25.15
il Mixtral 4.99 7.00 2639 2376 | 2946 37.28 50.75 49.77 | 6.85 828 17.00 16.23
0 Llama-3.1 12.65 1731 4475 4098 | 31.29 3993 5251 51.59 | 10.66 1276 23.72 22.75
® GPT-40 1477 20.86 47.33 43.66 | 48.14 55.66 70.01 6896 | 1550 19.58 33.56 32.30
\ GENEVA DocEE WikiEvents
Baselines
BERT 1524 2658 53.09 50.74 | 18.66 25774 47.81 4405 | 6.46 9.55 2944 272
Flan-T5 18.34  30.85 57.76 5536 | 18.55 2497 454 4192 | 9.27 11.8 294 2741
LLMs with Zero-Shot Prompt
% Phi-3.5 1320 2546 49.80 47.61 | 1426 1995 3839 3525 | 9.08 1090 34.53 31.86
G Gemma-1.1 | 11.69 24.40 50.73 4837 | 17.99 2678 46.77 4328 | 6.22 731 3437 3132
[l Mixtral 1331 2486 4844 4632 | 2291 3255 58.16 53.74 | 989 1236 3824 3531
0 Llama-3.1 16.36  29.62 55.09 5279 | 17.56 25.14 46.44 4280 | 12.81 1548 3894 36.29
® GPT-40 19.16 3335 5830 56.02 | 2191 31.65 5640 52.14 | 13.80 17.00 41.85 39.04
LLMs with Chain-of-thought Prompt
i Phi-3.5 10.76  21.76 4631 44.12 | 19.84 27.79 4851 4493 | 6.87 853 3197 2932
G Gemma-1.1 | 938 2121 4551 4333 | 987 1471 2602 2405 | 3.25 4.61 17.63  16.16
[l Mixtral 16.37 26.77 47.07 4524 | 6.90 9.63 19.28 17.65 | 4.49 6.07 19.58 18.06
X Llama-3.1 946 17.29 3205 30.72 | 19.79 29.68 5399 49.78 | 10.78 13.11 36.56 33.91
® GPT-40 16.54 28.50 48.48 46.65 | 22.26 3192 5727 5290 | 12.15 15.10 @ 41.93 38.90

Table 5: Evaluation results using the REGen framework for event argument extraction across the six datasets. The
table reports F1-scores for models assessed at different evaluation levels: Exact Match (EM), Relaxed Match (RM),
Complex Match (CM), and Judgment-Aligned Match (JAM). Due to space constraints, detailed precision, recall,
F1-scores, and additional results are provided in Appendix Tables 10-17. The highest and the second-highest values
in a column are highlighted using a dark shade and light shade, respectively.
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ing for evaluation (Huang et al., 2024). This strict
approach unfairly penalizes models, even when the
generated output is correct (Fane et al., 2025). To
address this, Han et al. (2024) adopts a relaxed
matching approach, considering arguments simi-
lar if their embedding-based similarly exceeds a
threshold of 0.5. Similarly, Sharif et al. (2024) used
a threshold of 0.75. However, this approach has
limitations. It fails to capture semantically similar
arguments with different lexical or syntactic forms
and wrongly classifies arguments with high token
overlap as similar. Thus, performance reported
solely on relaxed matching is unreliable. More
recently, Lu et al. (2024) employed LLMs to de-
termine argument similarity. Nonetheless, this ap-
proach incurs significant computational overhead
and demands extensive human validation. Our RE-
Gen framework combines the strengths of exact,
relaxed, and LLM-based matching. It systemati-
cally reduces misjudgments, computational costs,
and the need for human validation.

7 Conclusion

This paper presents REGen, a novel evaluation
framework for EAE. Our extensive experiments
and human validation demonstrate its effectiveness,
with a 23.93-point gain in average F1 score across
six EAE datasets, and reliability, with 87.67%
alignment with human judgments. We highlight
the limitations of current evaluation approaches and
illustrate how REGen addresses these issues. Fur-
thermore, our analysis reveals that previous studies
have underestimated the true performance of LLMs.
We believe that REGen fills a critical gap in EAE
research and motivates future work to explore the
generative model’s capability in solving other in-
formation extraction tasks, e.g., relation extraction,
entity extraction, and beyond.

8 Limitations

One limitation of this work is that we did not con-
duct statistical significance testing on the reported
results. We chose not to conduct statistical testing
for two reasons. First, our goal is not to conclude
which model is best but to highlight performance
gaps and show how existing evaluation approaches
underestimate model performance. The results
clearly demonstrate a significant performance gap
with exact match evaluation, which is not dimin-
ished by the lack of statistical testing. Second,
performing statistical tests across all datasets and

models with multiple runs is time-consuming and
prohibitively expensive. For example, averaging
over 3 runs would require an additional 320k infer-
ences.

Another limitation is that we did not optimize
prompts for each model. Performance could be
improved with dataset- and model-specific prompt-
ing. However, we chose to focus on benchmark-
ing a wide range of datasets using model-agnostic
prompting. Conducting a thorough, prompt engi-
neering for every model and dataset in a single
study is not feasible. Our results show significant
performance gains and future work can explore
dataset- and model-specific prompts to further en-
hance performance. Additionally, future work can
explore few-shot experiments and find optimal
prompting strategies for different datasets, such as
self-consistency (Wang et al., 2023b) or plan-and-
solve (Wang et al., 2023a). We exclude few-shot
experiments as they require selecting demonstra-
tion examples through trial and error, finding the
optimal order of demonstration, and running mul-
tiple iterations, which significantly increases the
experimental cost and complexity.

Ethical Considerations

Intended Use: We released our judge and align-
ment datasets to facilitate future research on gener-
ative argument extraction evaluation.

Annotation: Judge and alignment data annotation
were conducted by trained NLP researchers. All
annotators were compensated as per the standard
paying rate of the author’s institution. Key char-
acteristics of our annotators include: (a) graduate
students, (b) 3-6 years of research experience, and
(c) a mix of native and non-native English speakers.
We provided annotators detailed annotation guide-
lines, including argument extraction, semantical
similarity, and the type of information we wanted
to compare to mitigate potential biases.
Reproducibility Details on models and dataset
processing are provided in Appendices C and D.
The evaluation framework, code, and processed
datasets are available at https://github.com/Omar-
Sharif/REGen..
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Appendix
A Error Analysis

Table 6 presents examples of generative models’
prediction variations from the ground-truth argu-
ments for a specific role. It also demonstrates how
these argument pairs are evaluated under exact-
match, relaxed-match, and complex-match eval-
uation schemes. For instance, consider the role
Cancer status for which the ground-truth and pre-
dicted arguments are ‘cancer has spread’ and
‘metastasized’. The SBERT similarity score of
these two arguments is 0.1597. But based on the
context (document, event, role), these two argu-
ments should be considered a match, and both ex-
act and relaxed-match fail to recognize this. This
causes severe underestimation of model perfor-
mance and unfair evaluation. As shown in the
table, complex matching performs well in such
cases. However, the complex match can sometimes
fail to distinguish differences. Such as for the role
Place, itincorrectly treated ‘Chelsea, New York’
and ‘Manhattan’ as similar. The complex match
model might consider them as similar because Man-
hattan is part of New York, and Chelsea is part of
Manbhattan. We further discuss these errors in Sec-
tion 3.3. The REGen framework hierarchically
combines complex matching with exact, relaxed
matching, and judgment alignment, helping cap-
ture true model performance. We illustrate the need
for a context-grounded evaluation approach and the
effectiveness of the REGen framework through ex-
amples in Table 7.

B Alignment Calculation Details

In the judgment alignment calculation (section 2.5)
we count disagreement (/V;) only when the judge
model marks a prediction as a match, but the hu-
man annotator marks it as a non-match. This choice
helps mitigate issues of over-penalization and over-
estimation.

* Over-penalization issue: The precision and
recall for argument evaluation are calculated
differently than in standard classification tasks.
Specifically, there are no true negative cases
because the total number of negative argu-
ments is unknown (Sharif et al., 2024; Sun
et al., 2022). Instead, precision measures how
many predicted arguments are correct, and
recall measures how many ground-truth argu-
ments were correctly identified by the model
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. i Exact Relaxed Complex
Role Ground-truth Prediction [variations] Match Match Match
Date 20 April 2024 20 April 2024 Ml MI MI
18 April 2024 NM | MI© NM |
17 December 2022 NM | NM | NM |
Cancer status Cancer has spread Patient cancer has spread NM | © MI MI
Metastasized NM | © NM | © MI
lC_ancer spread from lung to NM | © NM | @ MI
iver
Occasion July 4th US Independence Day NM | © NM | © M
Fourth of July NM | © MI M|
Participant John Kerry Senator John Kerry NM | © Ml M|
US secretary of state in 2014 ~ NM | @ NM | © MI
Drug dosage 6 mg 6 mg M| Ml M|
14 mg NM MO MO
6 milligram NM | © NM | © MI
take 6 mg drug NM | © NM | © M@
Duration 1 month from July 30 to August 30 NM | © NM | © M
30 days NM | © NM | © M2
One month NM | © M| @ M| @
Medl(.:a} Chronic kidney disease ~ Long term kidney disease NM | © NM | © Ml
condition
long term heart disease NM | NM | NM |
CKD NM | © NM | © M| ©
Causalities 7 dead in central 18 died in central provinces v
and losses provinces flooding due to flood NMI MI© Nmi &
Flooghng m.the central NM | © M M
provinces killed seven people
Place Chelsea, New York Iil;{e(ljs ca neighborhood in NM | © NM | © Ml
Chelsea, NYC NM | © MI MI
Manhattan NM | NM | MI©®

Table 6: Illustration of how predicted arguments may differ from ground-truth arguments for a specific role and
how they are evaluated under different approaches—exact match, relaxed match, and complex match. Each cell
shows whether the argument pair is classified as a match (M) or not a match (NM) under the respective method.
Green checkmarks (v”) indicate correct evaluations, while red crosses (X) indicate errors. Our analysis shows that
relying on a single evaluation method results in inaccurate assessments. REGen addresses this by systematically
combining the strengths of each approach, enhancing evaluation accuracy while reducing computational cost.

(Sections 2.2-2.4). These two numbers can
vary because multiple predicted arguments
can be matched with a single ground-truth ar-
gument and vice versa. Because the score is
computed only based on matches, any argu-
ment pairs predicted as non-matches do not
contribute to the final score. Therefore, cases
where the judge model predicts a non-match
but a human annotator marks it as a match do
not affect the evaluation score. Including such
cases in the disagreement count will increase
the deviation rate and would unfairly penalize
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the model’s performance during JAM score
calculation. To prevent over-penalization, we
exclude these cases from our disagreement
rate.

Ensuring no overestimation: To obtain the
most accurate evaluation score, all evaluations
were made by the relaxed match model, and
the complex match judge needs to be evalu-
ated by humans. It is not feasible to conduct
all the reevaluations manually. Deviation rate
helps us obtain a reliable estimate of model
performance. There is a trade-off — if relaxed



Role Query Ground-truth

Prediction Observations

Example 1

I’'m 46 years old and recently diagnosed with prostate cancer, which my doctor described as moderately aggressive. The

doctor recommended robotic surgery using the da Vinci system due to its precision and faster recovery, but I’'m hesitant

because of possible long-term side effects. [...]. My cancer has already spread to nearby lymph nodes, which makes me

feel like my options are shrinking. [..]

Treatment E)Vltlie(l)tntsrea;?;rit da Vinci robotic robotic assisted Scattered arguments; Arguments
options hgveq P surgery surgery refer to the same treatment options.
What is the age of Here, 46 refers to patient age. Exact
Age . 46 years 46 and relaxed match approach fails to
the patient?
correlate.
. . Semantically similar arguments
Cancer Whatis patient Cancer has spread ~ Metastasized based on context despite lexical and
status cancer status? S
syntactic differences.
Example 2

On March 15, a group of militants launched a coordinated assault on a military outpost in northern Mali. The surprise

attack, believed to be conducted by a terrorist group linked to al-Qaeda (AQ) , involved several trucks and heavy gunfire .

The attack resulted in the deaths of 17 military personnel . Government officials reported that the AQ seized control of the

outpost before reinforcements could arrive.

Example of subjective annotation.

Attack type What type of attack coordinated assault  surprise attack Both arguments can be accurate
occurred?
based on the role.
Attacker Who carried out the A AQ Coreference: referring to same
attack? entity
Attack What weapons several trucks and . .
were used in the trucks, guns Difference in span boundary
Weapon guns
attack?
Causalities How many were Lty 17 militants Lexical variation

killed? personnel

Table 7: Examples illustrating the effectiveness of REGen framework. In these cases, existing evaluation approaches
(Exact match, Relaxed match, Head noun phrase match) fail to capture the semantic similarity between ground-truth
and predicted arguments. For each example, representative argument roles are shown. Highlighted colors indicate

the source segment of the ground-truth annotation.

and complex match criteria are too strict, we
risk underestimation; if they are too lenient,
we risk overestimation. To address this, we
prioritize precision: when our framework says
there is a match, we want to be confident it is
indeed a true match. By factoring the score
with the deviation rate, the final score we re-
port is intentionally conservative — it serves
as a lower bound on the model’s true perfor-
mance, avoiding inflated scores due to unveri-
fied matches.

C Dataset Details

We transform all datasets into a unified format as
explained in Section 2.1. Each document includes a
set of predefined roles based on the event, with each

role having a list of ground-truth argument strings.
In this work, we use a trigger-free approach for
argument extraction (Tong et al., 2022). We adopt
this formulation because many datasets lack trigger
annotations or include implicit or scattered argu-
ments that can not be tied to trigger phrases (Sharif
et al., 2024). We use the official test split of all the
datasets. Table 4 exhibits the detailed statistics of
the datasets. We will release our processed datasets
and associated scripts upon acceptance of the paper.
Detailed descriptions of each dataset are provided
in the following.

* DiscourseEE (Sharif et al., 2024) dataset
is annotated from online health discus-
sions and includes explicit, implicit, and
scattered arguments. This dataset is hi-
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~ : . N . .
Generative Event !.?\fe_l _1_.E_x_a_cE I_VI_aEc_h_(_E_IV!)_ Most reliable 4 Aligning with Human Judgements
Argument Extraction (Human evaluation not required ) Dataset
G =[ground-truth (GT) arguments] 1, Normalization: remove white
P = [ predicted (PD) arguments]  SPace punctuation and convert
Document. D arguments to lower-case.
’ EM ={(p,g)|lpeP,gcG,p=g —
(sentence/ paragraph/ {®.9) t 2. EM include pairs that exactly e
document) match. e
_________________________________________ [l
l Instruction l
Level 2: Relaxed Match (RM Reliabl l l l
Concisely extract the N\ | [hevel2: Refaxed Haich (RM) CIESD <
arguments for the following | Minimal human evaluation required Judgment deviation
| .
eelicmitheldectnent J : G = [ GT arguments after EM | 1. Remove argument from P and with humans
G matched under EM.
Document: $ document $ 1 »m = [ PD arguments after EM ] @ @ @
Role: e ipti ! . .
ole: $ role description $ ' RM = {(p9) | p € Prm, 9 € Grm, 2. RM include pairs where
- . , Sim(p,g) >=T, } semantic similarity is higher than l
Output: ['t's‘ of predicted ! Py g) >=tr the specified threshold (Tr). — 5
arguments] ) v ____ i 2
~ s
@ Generative Level 3: Complex Match (CM) * Less reliable = =
models oo C : ion ) s s
, : Requires human evaluation ) = =
4 N | Gm =[GT arguments after M | 1. Remove argument from the
\) P = [p1,p3,.--,P4] | P, =[PD arguments after RM | lists matched under RM.
1
G=lg1,9---,9l ! CM={(p,9) | P € Pem, g€ Gem, 2. CM includes pairs when the
: " | .
List of predicted (P) and A Judge(p, g) = match } judge model labels as match. (JAM Score (P, R, F1))
¥ ground-truth (G) arguments/‘ L:

Figure 4: Illustration of REGen evaluation framework. Left: Example showing getting role-specific arguments
from documents using generative models. Middle: Evaluation process at different levels: Exact Match, Relaxed
Match, and Complex Match. Right: Judgment Aligned Match (JAM) score calculation process on a specific dataset,
where E1, E2, and E3 represent the deviation rates from human judgments at different matching levels. Typically,
El equals zero for a dataset, as an exact match indicates a perfect agreement with humans. P, R, and FI denote
Precision, Recall, and F1-score, respectively. JAM score ensures that reported scores are reliable and not inflated

due to misjudgments.

erarchical, with each role further classi-
fied into four types: core, type-specific,
subject-specific, and effect-specific argu-
ments. We sourced the test set from the
official repository https://github.com/omar-
sharifO3/DiscourseEE. It features 34 unique
roles across 3 event types, with all arguments
annotated as strings. In this work, we do not
use the argument types or hierarchical struc-
ture, as they are not essential. We process the
dataset using the author’s provided code.

¢ PHEE (Sun et al., 2022) is an event extraction
dataset sourced from the pharmacovigilance
domain. It contains 14 unique roles across
2 event types. We obtain the dataset from
https://github.com/ ZhaoyueSun/PHEE. The
dataset includes annotations for both trigger
and argument spans. Following our formu-
lation, we discard the trigger and only take
the argument strings. We combine multiple
arguments under the same role into a single ar-
gument list, separating them with semicolons.
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* RAMS (Ebner et al., 2020) is an event
extraction dataset from the news do-
main. We downloaded the dataset from
https://nlp.jhu.edu/rams/ and processed it
leveraging the script provided by TextEE
(Huang et al., 2024). We ignored the trigger
annotation and used the argument string to
map the dataset into our formulation. The test
set contains 129 unique events and 63 roles.

* GENEVA (Parekh et al., 2023) is a general-
domain event extraction dataset developed
using FrameNet. This dataset includes
samples from books, articles, journals, and
Wikipedia. We used the provided test set from
https://github.com/PlusLabNLP/GENEVA.
The test set includes 115 events and 196
unique roles. We applied the preprocessing
script from TextEE (Huang et al., 2024) to
convert the dataset to our format.

* DocEE (Tong et al., 2022) is a trigger-free
document-level event extraction dataset
with very long documents. We obtained the


https://github.com/omar-sharif03/DiscourseEE/tree/main/Data
https://github.com/omar-sharif03/DiscourseEE/tree/main/Data
https://github.com/ZhaoyueSun/PHEE
https://nlp.jhu.edu/rams/
https://github.com/PlusLabNLP/GENEVA/tree/main/data

test set from the official GitHub repository
https://github.com/tongmeihan1995/DocEE.
The official test set contains 2,771 documents.
Due to high inference time, we selected 500
random samples to reduce complexity. Our
test set includes 57 unique events and 266
unique roles.

* WikiEvents: (Li et al., 2021) is a document-
level event extraction dataset based on
Wikipedia texts. We sourced the dataset from
https://github.com/raspberryice/gen-arg and
processed it using the TextEE (Huang et al.,
2024) preprocessing script. We retained only
the argument annotations and discarded the
rest. The test set includes 33 event types
and 44 roles. WikiEvents is highly argument-
dense compared to other datasets, with a den-
sity of 24.89. It also has longer documents,
averaging 654 words per document.

D Model Details

Baselines: As baselines, we used transformer-
based BERT (110M parameters) and instruction-
fine-tuned FLAN-T5 (250M parameters) models.
Both models were implemented using the Hugging-
Face pipeline and fine-tuned on the SQuAD (Ra-
jpurkar et al., 2016) dataset. BERT was fine-tuned
with a learning rate of 2 x 1075, a batch size of
8, and trained for 3 epochs. FLAN-TS5 was fine-
tuned for 4 epochs with a batch size of 16 and the
same learning rate. During prediction, we provide
a role-specific question and the associated docu-
ment as context. The input is formatted as [CLS]
Question [SEP] Document [SEP]. The output
span is then decoded as the argument for the spe-
cific role. Arguments for each role are extracted
independently.

LLMs: To investigate the feasibility of our pro-
posed evaluation framework, we experimented with
various LLMs used in previous studies on event ar-
gument extraction (Sharif et al., 2024; Lu et al.,
2024). We evaluated open-source models ranging
from 4B to 70B parameters and the closed-source
GPT-40 model. This diverse selection allowed us
to assess performance across different scales. We
used five LLMs for the experimentation.

¢ Phi-3.5 : We used the Phi-3.5-mini, a 3.8 bil-
lion parameter model trained on 3.3 trillion
tokens (Microsoft, 2024). It achieves compa-
rable performance to Mixtral 8x7B and GPT-

3.5 models on academic benchmarks despite
being a very small model.

* Gemma-1.1 model trained on 6T tokens with
novel RLHF method, based on the architec-
ture and training recipe of Gemini models
(Gemma-Team, 2024). It performs better than
similar open-source models in 11 out of 18
text tasks. Gemma is available in two ver-
sions, with 2 billion and 7 billion parameters.
We use the 7 billion parameter version for our
experiments.

* Mixtral (8x7B) is a sparse mixture of expert
language designed with an architecture similar
to Mistral 7B (Jiang et al., 2024). It has a total
of 47 billion parameters, with only 13 billion
being active at a time. These architectural
changes allow Mixtral to outperform models
with more parameters (e.g., Llama-2, GPT-
3.5) across several benchmarks.

* Llama-3.1 is a state-of-the-art open-source
language model pretrained and instruction-
fined with 8B, 70B, and 405B parameters. It
builds upon the Llama-3 model (Llama Team,
2024), incorporating grouped query attention
(GQA) and RLHF. We use the 70B version of
the model.

* GPT-40 (OpenAl, 2024) is one of the best-
performing models that can reason across au-
dio, vision, and text. It achieved state-of-the-
art performance across most benchmarks?.

We utilized the instruction-tuned versions
of all the models. The HuggingFace inference
strings for the open-source LLMs are Phi-
3.5 (microsoft/ Phi-3.5-mini-instruct),
Gemma-1.1 (google/ gemma-1.1-7b-it),
Mixtral (mistralai/ Mixtral-8x7B-Instruct-
vo.1), and Llama-3.1 (meta-1llama/
Llama-3.1-70B-Instruct). We assess the
performance of the GPT-40 model through API
calls, using version (gpt-40-2024-11-20).

E Judge Selection Process

There is a growing trend to leverage LLM as a
judge to reduce the high cost of human evalua-
tion (Zheng et al., 2023; Mao et al., 2024; Gu
et al., 2025). Following this approach, we em-
ployed LLMs to mimic human evaluation and auto-
matically determine whether the ground truth and

2https://Imarena.ai/
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Figure 5: Schematic diagram of the judge selection
process.

predicted arguments match. Figure 5 shows the
schematic diagram of the judge selection process.

First, we create a judge dataset through man-
ual annotation. We then use this dataset to exper-
iment with multiple models and select the most
suitable judge. Specifically, we evaluate four mod-
els: Llama3.1-70B, GPT-3.5, GPT-40-mini, and
GPT-40. Each model is tested using both zero-shot
and chain-of-thought prompts, with a single prompt
uniformly applied across all the evaluated datasets
and models. Figures 6 and 7 show the prompts for
zero-shot and chain-of-thought, respectively. Table
8 presents the agreement rate between the judge
models and human evaluations.

GPT-40- Llama3-

GPT-
‘ 35 mini 05 OFTo
Zs | 7305 8427 5152 8617
COT | 7991 6811 7395 7839

Table 8: Agreement percentage of different LLMs with
human judgments. ZS and COT indicate zero-shot and
chain-of-thought prompting approaches, respectively.

While prompt optimization and alternative tech-
niques (e.g., self-consistency) could further im-
prove agreement, we refrain from such experiments
due to the high cost and time requirements. Iter-
ating to find optimal prompts for each model and
dataset is impractical. These aspects, along with ex-
ploring the applicability of small fine-tuned judge
models, are better suited for a separate study.

F Additional Results

F.1 Comparison with Head Noun Phrase
Match Approach

Following prior work (Du and Cardie, 2020; Tong
et al., 2022), we also evaluate model performance
using the Head Noun Phrase Match (HM) approach
for comprehensiveness. The results, shown in Ta-
ble 10, indicate that on average models achieve
19% higher F1 score with REGen than the HM
approach across all datasets. This is consistent

Avg.
Avg. Avg. Avg.
Dataset REGen-F1
EM-F1 RM-F1 CM-F1 (JAM-F1)
DiscourseEE | 10.74 15.11 41.01 37.45
PHEE 39.25 46.94 63.55 62.34
RAMS 13.38 16.14 29.45 28.27
GENEVA 13.62 25.32 48.18 46.12
DocEE 17.33 24.98 45.12 41.65
WikiEvents 8.93 11.05 33.56 31.02

Table 9: Comparison of average F1-scores of LLMs
under different evaluation frameworks: Exact Match
(EM), Relaxed Match (RM), Complex Match (CM),
and REGen.

Avg. Avg.

Datasets HM-FI REGen-Fl AF1 Gain (%)
DiscourseEE | 13.09 37.45 +24.36  +186.09
PHEE 38.94 62.34 +23.40  +60.10
RAMS 16.45 28.27 +11.82  +71.85
GENEVA 25.50 46.12 +20.62  +80.86
DocEE 22.20 41.65 +19.45 +87.61
WikiEvents 16.53 31.02 +14.49  +87.66
| Avg. AF1 +19.02

Table 10: Comparison of average F1-scores of the LLMs
between Head Noun Phrase Match (HM) and REGen
evaluation framework.

with the performance gain compared with the exact
match approach (Table 3). We emphasize that, sim-
ilar to exact and relaxed match strategies, the HM
approach can result in inaccurate and misleading
evaluations. This is because it only compares the
head noun phrases in arguments, ignoring critical
contextual information. For examples, for the role
date, if the ground-truth is ‘18 April 2024’ and
predicted output is ‘20 April 2018, the HM ap-
proach would consider them a match, as their noun
phrase is ‘April’, despite being semantically and
factually different. Moreover, HM fails to assess
arguments that do not contain noun phrases at all,
resulting in unreliable evaluations.
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Datasets | DiscourseEE PHEE RAMS GENEVA DocEE  WikiEvents |

Inference count and reduction in inference only for zero-shot approach Re du?t‘ilgﬁ (%)
#Inference (LLM as Judge) 1822 6215 3718 3897 12655 1852
#Inference (REGen) 1201 2077 2318 2465 6513 1158
Reduction count 621 4138 1400 1432 6142 694
Reduction (%) | 34.08 66.58  37.65 36.74 48.53 37.47 | 43.51
Inference count and reduction in inference only for only for chain-of-thought approach
#Inference (LLM as Judge) 1740 5991 3124 3549 11511 1588
#Inference (REGen) 1186 2359 2200 2435 6111 1089
Reduction count 554 3632 924 1114 5400 499
Reduction (%) | 31.83 60.62  29.57 31.38 46.91 31.42 38.62
Total inference count and reduction in inference (zero-shot + chain-of-thought)
#Inference (LLM as Judge) 3562 12206 6842 7446 24166 3440
#Inference (REGen) 2387 4436 4518 4900 12624 2247
Reduction count 1175 7770 2324 2546 11542 1193
Reduction (%) | 32.98 63.65 3396 34.19 47.76 34.68 | 41.20

Table 11: Detailed comparison of inference counts and reductions when using LLMs as Judge versus the proposed
REGen framework for the GPT-40 prediction model. Results for both zero-shot and chain-of-thought approaches
are presented, illustrating total inference counts, achieved reductions, and corresponding percentage reductions
across the evaluated datasets.

\ Exact-Match Relaxed-Match Complex-Match JAM-Score
Model \ P R F1 \ P R F1 \ P R F1 \ P R F1
Baselines
BERT 6.3 5.52 5.88 9.28 8.12 8.66 | 35.17 32.1 3356 | 31.65 28.84 30.18
Flan-T5 7.22 6.32 6.74 | 10.88 9.53 10.16 | 37.8 3521 36.46 | 34.13 31.71 32.87

LLMs with Zero-Shot Prompt

i* Phi-3.5 3.21 3.61 3.40 4.73 532 500 | 14.81 14.64 1473 | 1343 1336 13.39
G Gemma-1.1 | 1045 13.74 11.87 | 13.96 1836 15.86 | 45.61 55.67 50.14 | 41.31 50.58 4548
I Mixtral 10.59 1715 13.10 | 1437 23.17 17.74 | 41.82 5797 4859 | 38.07 53.19 4438
O Llama-3.1 11.05 1695 1338 | 1549 23.67 1873 | 37.52 51.96 43.57 | 3447 48.02 40.13
® GPT-40 14.14  20.76 16.82 | 19.40 2849 23.08 | 43.99 57.57 49.87 | 40.58 53.50 46.16

LLMs with Chain-of-thought Prompt

#* Phi-3.5 5.53 9.83 7.08 976 17.05 1242 | 3426 5236 41.41 | 30.89 4747 3743
G Gemma-1.1 | 7.60 12.14 935 | 10.62 1695 13.06 | 37.44 5125 4327 | 33.79 4657 39.16
I Mixtral 4.78 522 499 6.71 732 7.00 | 26.01 2678 2639 | 23.39 24.14 23776
X Llama-3.1 10.81 1525 12.65 | 1479 20.86 17.31 | 39.83 51.05 4475 | 36.40 46.89 40.98
® GPT-40 1264 1775 1477 | 17.86 25.08 20.86 | 42.71 53.06 4733 | 39.27 49.15 43.66

Table 12: DiscourseEE evaluation results using REGen framework.
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| Exact-Match Relaxed-Match Complex-Match JAM-Score
Model | P R FI | P R FI | P R Fl P R Fl
Baselines
BERT 29.09 266 27.78 | 36.62 3348 3498 | 54.88 50.53 52.61 | 53.55 49.28 51.33
Flan-T5 4432 40.53 4234 | 52.8 4828 5044 | 69.96 6424 6698 | 68.71 63.07 65.77
LLMs with Zero-Shot Prompt
i Phi-3.5 39.07 47.88 43.03 | 4584 56.12 5046 | 62.61 73.63 67.67 | 6139 7235 66.42
G Gemma-1.1 | 44.10 4594 4500 | 5323 5549 5434 | 7591 7799 7693 | 7425 7635 7528
kil Mixtral 33.68 40.02 36.58 | 39.16 46.59 42.55 | 5539 63.55 59.19 | 5420 6231 57.98
X Llama-3.1 36.49 4229 39.17 | 4377 50.63 4695 | 61.53 66.60 6396 | 60.23 6543 62.72
® GPT-40 51.38  56.18 53.67 | 5934 64.74 6192 | 7736 80.63 78.96 | 76.04 79.47 77.72
LLMs with Chain-of-thought Prompt
i* Phi-3.5 30.57 3376  32.09 | 36.24 3996 38.01 | 52.68 5545 54.03 | 51.48 5432 52.86
G Gemma-1.1 | 3339 34.92 34.14 | 41.35 4326 4228 | 60.99 6193 61.46 | 59.56 60.57 60.06
Il Mixtral 29.12  29.81 29.46 | 36.87 37.70 37.28 | 5090 50.61 50.75 | 49.87 49.66 49.77
O Llama-3.1 3044 3219 31.29 | 38.87 41.05 3993 | 5220 52.83 5251 | 51.22 5197 51.59
® GPT-40 4691 4943 48.14 | 5427 57.13 55.66 | 69.68 70.34 70.01 | 68.56 69.37 68.96
Table 13: PHEE evaluation results using REGen framework.
‘ Exact-Match Relaxed-Match Complex-Match JAM-Score
Model ‘ P R F1 P R F1 P R F1 P R Fl1
Baselines
BERT 14.63 14.63 14.63 | 18.14 18.14 18.14 | 33.61 33.61 33.61 | 3224 3224 3224
Flan-T5 1261 12.61 1261 | 1513 15.13 15.13 | 28.62 28.62 28.62 | 27.43 2743 2743
LLMs with Zero-Shot Prompt
i Phi-3.5 13.75 1735 1534 | 16.07 2027 1792 | 31.23 37.77 34.19 | 2990 36.22 32.76
G Gemma-1.1 | 1440 1537 14.87 | 1695 18.09 17.50 | 31.45 3347 3243 | 30.17 32.11 31.11
Il Mixtral 11.30 1522 1297 | 1347 18.14 1546 | 2642 3450 2993 | 2528 33.06 28.65
X Llama-3.1 998 1488 11.95 | 1220 18.04 14.56 | 21.82 30.50 25.44 | 20.96 29.39 2447
® GPT-40 15.01 2758 1944 | 17.89 32.82 23.15 | 2991 4998 3742 | 28.84 4843 36.15
LLMs with Chain-of-thought Prompt
% Phi-3.5 14.15 1720 1553 | 17.00 20.66 18.65 | 31.96 37.57 34.54 | 30.64 36.07 33.13
G Gemma-1.1 | 10.17 1132 1071 | 12.88 14.34 1357 | 2513 27.53 2628 | 24.04 2636 25.15
kil Mixtral 6.08 7.86  6.85 7.34 9.49 828 | 1533 19.08 17.00 | 14.63 18.23 16.23
X Llama-3.1 9.28 1251 10.66 | 11.12 1498 12.76 | 21.21 26.89 23.72 | 20.32 2583 22.75
® GPT-40 1277 1972 1550 | 16.13 2491 19.58 | 28.55 40.68 33.56 | 27.44 39.26 32.30

Table 14: RAMS evaluation results using REGen framework.
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Exact-Match Relaxed-Match Complex-Match

JAM-Score

Model P R F1 P R FI | P R FI | P R F1
Baselines
BERT 15.81 1472 1524 | 2756 25.67 26.58 | 54.64 51.62 53.09 | 5224 4933 50.74
Flan-T5 19.02 17.71 1834 | 32.0 29.79 30.85 | 59.63 56.01 57.76 | 57.16 53.67 55.36
LLMs with Zero-Shot Prompt
i° Phi-3.5 1221 1436 1320 | 23.56 27.68 2546 | 47.65 52.14 49.80 | 4550 49.92 47.61
G Gemma-1.1 | 11.75 11.63 11.69 | 24.52 2427 2440 | 5141 50.06 50.73 | 49.01 47.75 48.37
I Mixtral 1220 14.65 1331 | 22.80 27.32 24.86 | 4598 51.17 4844 | 4392 49.01 46.32
® Llama-3.1 15.04 1793 1636 | 27.24 3246 29.62 | 52.74 57.67 55.09 | 5045 5536 52.79
® GPT-40 17.72  20.86 19.16 | 30.86 36.29 33.35 | 56.25 60.49 5830 | 53.96 5825 56.02
LLMs with Chain-of-thought Prompt
i Phi-3.5 998 11.66 10.76 | 20.22 23.55 21.76 | 4422 48.60 46.31 | 42.09 4636 44.12
G Gemma-1.1 | 9.21 9.55 9.38 | 20.83 21.60 21.21 | 45.69 4532 4551 | 43.47 43.18 43.33
Il Mixtral 1539 1748 1637 | 25.17 28.59 26.77 | 45.08 49.25 47.07 | 4329 4738 4524
0 Llama-3.1 9.29 9.65 946 | 1698 17.61 17.29 | 33.15 31.03 32.05 | 31.70 29.79 30.72
® GPT-40 16.00 17.12 16.54 | 27.57 29.50 28.50 | 48.50 48.47 4848 | 4659 46.71 46.65
Table 15: GENEVA evaluation results using REGen framework.
| Exact-Match Relaxed-Match Complex-Match JAM-Score
Model P R F1 | P R F1 | P R F1 | P R Fl1
Baselines
BERT 2293 1573 18.66 | 31.59 21.72 2574 | 57.09 41.12 47.81 | 52.73 37.82 44.05
Flan-T5 22.8 1564 1855 | 30.62 21.08 2497 | 5435 3898 454 | 5029 3594 4192
LLMs with Zero-Shot Prompt
i° Phi-3.5 1416 1436 1426 | 19.86 20.04 1995 | 39.18 37.62 3839 | 3590 34.62 3525
G Gemma-1.1 | 2047 16.04 17.99 | 30.38 23.95 26.78 | 51.92 4254 46.77 | 48.15 3931 4328
Il Mixtral 21.84 24.09 2291 | 31.06 3420 3255 | 5650 5992 58.16 | 52.12 5547 53.74
O Llama-3.1 15.03 21.11 1756 | 21.65 2997 25.14 | 42.51 51.17 4644 | 3895 4749 42.80
® GPT-40 16.82 3142 2191 | 2445 4489 31.65 | 45.79 7341 5640 | 42.12 6841 52.14
LLMs with Chain-of-thought Prompt

i* Phi-3.5 1895 20.82 19.84 | 26,57 29.13 27.79 | 46.94 50.19 4851 | 4343 46.55 4493
G Gemma-1.1 | 10.90 9.01 9.87 | 1620 1347 14.71 | 2844 2398 26.02 | 26.30 22.15 24.05
Il Mixtral 7.84 6.17 690 | 1093  8.60 9.63 | 22.38 1694 19.28 | 2044 15.53 17.65
O Llama-3.1 16.81 24.07 19.79 | 2526 3597 29.68 | 48.02 61.66 53.99 | 44.10 57.15 49.78
® GPT-40 17.78 29.77 2226 | 2556 4248 3192 | 4790 71.18 57.27 | 44.07 66.17 52.90

Table 16: DocEE evaluation results using REGen framework.
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Exact-Match Relaxed-Match Complex-Match JAM-Score
Model P R F1 ‘ P R F1 P R F1 P R F1
Baselines
BERT 9.62 4.86 6.46 1423 7.19 9.55 3891 23.68 2944 | 36.12 21.82 272
Flan-T5 13.81 6.98 9.27 17.57 8.88 11.8 | 39.33 2347 294 | 36.87 21.82 27.41
LLMs with Zero-Shot Prompt
2% Phi-3.5 9.80 8.46 9.08 11.76  10.15 1090 | 36.76 32.56 34.53 | 33.94 30.03 31.86
G Gemma-1.1 8.65 4.86 6.22 | 10.15 5.71 731 | 4098 29.60 3437 | 3749 2690 31.32
k¥ Mixtral 10.55  9.30 9.89 13.19 11.63 12.36 | 39.09 3742 3824 | 36.16 3451 3531
X Llama-3.1 11.06 1522 12.81 | 13.36 1839 1548 | 3395 45.67 38.94 | 31.62 42.58 36.29
& GPT-40 11.47 1734 13.80 | 14.13 2135 17.00 | 3510 51.80 41.85 | 32.73 4836 39.04
LLMs with Chain-of-thought Prompt
2% Phi-3.5 7.82 6.13 6.87 9.70 7.61 8.53 | 35.04 2939 3197 | 32.18 2693 29.32
G Gemma-1.1 4.53 2.54 3.25 6.42 3.59 4.61 2226 1459 17.63 | 2047 1335 16.16
ki Mixtral 5.96 3.59 4.49 8.07 4.86 6.07 2456 1628 19.58 | 22.70 1499 18.06
X Llama-3.1 10.78 10.78 10.78 | 13.11 13.11 13.11 | 3594 37.21 36.56 | 33.36 3449 3391
& GPT-40 10.77 1395 12.15 | 13.38 1734 15.10 | 3736 47.78 41.93 | 34.65 4434 38.90
Table 17: WikiEvents evaluation results using REGen framework.
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Dataset

Event

Role

Question

Taking-MOUD

Tapering

Treatment

Side effects

What treatments the subject/patient prescribed
or undergoing?

What are the side effects the subject is
experiencing or expects to experience?

What measures are taken to address or reduce

DiscourseEE Return to Usage Intervention side effects?
. What is the current or previous dosage of the
Taking-MOUD Dosage Medications?
Tapering Age What is the age of the subject/patient?
s What are the Pre-existing or co-morbid
Return to Usage Conditions conditions of the subject/patient?
Potential therapeutic What is the therapy administered to the
Treatment .
event patients?
Adverse event Treatment drug Whare the the drugs used as therapy in the
event?
Potential therapeutic Treatment . .
9

PHEE event dosage What is the amount of drug is given?
Adverse event Treatment route  What is the route of drug administration?
Adverse event Effect What are the outcomes or side effects of the

treatments?

Potential therapeutic Treatment What is the target disorder of the medicine
event disorder administration?
Artifactexistence Place Where does this event occur?
Transaction Artifact What artifact is involved?
Contact.commandorder Communicator Who is the communicator?

RAMS Movement transportartifact  Origin Where does the movement originate?
Conflict.yield.retreat Retreater Who is the retreater?
transaction . Recipient Who is the recipient?
transferownership
Statement Message What is the message?
Collaboration Partners Who are the partners in this collaboration?

GENEVA Supply Supplier Who is the supplier?

Protest Content What is the content of the protest?
Killing Victim Who is the victim?
Research Topic What is the research topic?
Riot Location Where did the riot occur?
Regime change Date When did the change happen?

DocEE Earthquakes Affected area Which area was affected by the earthquake?
Military exercise Scale What was the scale of the exercise?
Diplomatic talks Participants Who are the participants?

Fire Location Where did the fire take place?
Conflict.attack Instrument What instrument is used?
Life.die Place Where did the death occur?
WikiEvents Conflict.detonateexplode Target Who or what is the target?
Movement.transportation Transporter Who is the transporter?
Justice.chargeindict Defendant Who is the defendant?

Transaction

Acquired entity

What entity is being acquired?

Table 18: Details of the argument roles for each event type in the evaluated datasets. Note: for RAMS and
WikiEvents datasets some event names are very long. For presentation convenience we use the first part of the event

name.
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/— Zero-Shot Judge Selection Prompt ﬁ

## Instruction ##
Find whether text-1 and text-2 are semantically
similar or not based on the context provided.

## Context ## \\ Document from where
{context} argument extracted

## Texts ##

text-1: {x} \\ Predicted argument
text-2: {y} \\ Ground-truth argument

Are text-1 and text-2 semantically similar even
though they are structurally different? Return "yes" if
they are similar and "no" otherwise. Do not provide
Qny extra description.

Figure 6: Zero-shot judge selection prompt

/— Chain-of-thought Judge Selection Prompt
Determine whether text-1 and text-2 are semantically similar bas;cb

the context provided.

Follow these steps to arrive at the answer:

1. Analyze the context and identify the key elements or criteria for
semantic similarity.

2. Compare text-1 and text-2 against the key elements from the
context.

3. Decide if text-1 and text-2 convey the same meaning even if they
are structurally different. We will also consider partial matches with
overlapping meanings as similar.

## Context ##

{context} \\ Document from where argument extracted
## Texts ## .

text-1: {x} \\ Predicted argument

text-2: {y} \\ Ground-truth argument

## Example ##
### Context ###
The context is about describing weather conditions.

### Texts ###
text-1: "It's sunny and warm outside."
text-2: "The sun is shining, and it feels warm."

### Reasoning ###

1. Key elements from the context: Describing weather conditions
involves mentions of sun, warmth, or similar indicators.

2. Comparing text-1 and text-2: Both mention sunny conditions and
warmth, using slightly different phrasing.

3. Conclusion: The texts are semantically similar since they convey
the same meaning about the weather.

### Answer ###
yes

## Task ##
Using the above steps, find whether text-1 and text-2 are similar.
Return "yes" if they are similar and "no" otherwise.

### Your Turn ###

)

After reasoning, provides the final output in JSON.
Qutput‘: 'yes or no' J

Figure 7: Chain-of-thought judge selection prompt

/—\’ Zero-Shot Argument Extraction Prompt \

## Instruction ##

Concisely extract the arguments for the
following role from the document. Return 'null' if
any argument is not present for a role. Separate
multiple arguments of role values by a
semicolon (;).

## Role Question ##
{role}: {role_question}

## Document ##
{document}

Extract and return the arguments for the role in
@e JSON format. j

Figure 8: Zero-shot event argument extraction prompt

Chain-of-thought Argument Extraction Prompt

Concisely extract the arguments for the following role from the
document.

Follow these steps:

1. Understand the role and the role-specific question.

2. Analyze the document to identify spans that answer the
question.

3. Extract relevant arguments, separating multiple arguments
with semicolons (;). Return 'null' if any argument is not
present for a role. Do not overgenerate arguments; be
thoughtful and precise.

4. Return the result in JSON format.

## Role Question ##
{role}: {role_question}

## Document ##
{document}

## Example ##

Responsibility: What are the responsibilities of an Event
Planner?

Document: "The Event Planner is responsible for booking
venues, coordinating schedules with vendors, and managing
budgets to ensure successful events."

##t# JSON ###
{{"Responsibility": "booking venues; coordinating schedules with
vendors; managing budgets"}}

\Extract and return the arguments for the role in the JSON format./

Figure 9: Chain-of-thought event argument extraction
prompt
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