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Abstract

Designing polymers for targeted applications
and accurately predicting their properties is a
key challenge in materials science owing to
the vast and complex polymer chemical space.
While molecular language models have proven
effective in solving analogous problems for
molecular discovery, similar advancements for
polymers are limited. To address this gap, we
propose polyBART, a language model-driven
polymer discovery capability that enables rapid
and accurate exploration of the polymer de-
sign space. Central to our approach is Pseudo-
polymer SELFIES (PSELFIES), a novel repre-
sentation that allows for the transfer of molec-
ular language models to the polymer space.
polyBART is, to the best of our knowledge,
the first language model capable of bidirec-
tional translation between polymer structures
and properties, achieving state-of-the-art re-
sults in property prediction and design of novel
polymers for electrostatic energy storage. Fur-
ther, polyBART is validated through a combi-
nation of both computational and laboratory
experiments. We report what we believe is the
first successful synthesis and validation of a
polymer designed by a language model, pre-
dicted to exhibit high thermal degradation tem-
perature and confirmed by our laboratory mea-
surements. Our work presents a generalizable
strategy for adapting molecular language mod-
els to the polymer space and introduces a poly-
mer foundation model, advancing generative
polymer design that may be adapted for a vari-
ety of applications.

1 Introduction

Polymers play a crucial role in our daily lives, serv-
ing as essential constituents of countless materials
and products that we rely on. Designing novel
application-specific polymers, however, continues
to pose a significant challenge owing to the vast
polymer chemical space. The application of Ma-
chine Learning (ML) in this space (Jørgensen et al.,

2018; Batra et al., 2021; Tran et al., 2024) has made
significant strides in addressing the forward prob-
lem of predicting material properties from polymer
structures (Doan Tran et al., 2020; Andraju et al.,
2022). In contrast, progress on the inverse prob-
lem, namely, rapidly designing polymers that meet
target property requirements, has been far more
limited, largely due to the inherent difficulty of gen-
erating chemically valid polymer structures with
traditional ML.

Language models, owing to their generative ca-
pabilities, have emerged as an effective strategy
for addressing both forward and inverse problems
in the molecular space. Drawing inspiration from
foundation models in Natural Language Process-
ing (NLP), molecular foundation models (Edwards
et al., 2022; Bagal et al., 2022) are pretrained on
the ’language’ of molecules, typically represented
as SMILES (Weininger, 1988), SMARTS (Day-
light Chemical Information Systems), or SELFIES
(Krenn et al., 2020) strings. These models are sub-
sequently fine-tuned on downstream tasks, such
as property prediction, hence solving the forward
problem. The problem of generative design is of-
ten achieved by navigating the latent space learned
during pretraining. The achievements of language
models for molecules highlight a key opportunity
for extending similar methodologies to polymers.
Particularly, the structural and representational par-
allels between the molecular and polymer domains
present a unique possibility of adapting existing
molecular foundation models to the polymer space.

Recognizing this, we develop polyBART by
strategically leveraging the chemical priors learned
by existing molecular foundation models. To ac-
complish this, we introduce a novel representation,
Pseudo-polymer SELFIES (PSELFIES), an exten-
sion of SELFIES (Krenn et al., 2020) adapted for
polymers. SELFIES (Self-Referencing Embedded
Strings) is a robust molecular string representa-
tion that guarantees 100% syntactic validity, mean-
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ing every SELFIES string corresponds to a valid
molecule. From a chemical standpoint, PSELFIES
allow us to represent polymers in a format that
mirrors molecular syntax, enabling direct compati-
bility with existing molecular language models and
facilitating seamless continued pretraining. Fur-
ther details on this representation is found in Sec-
tion 3.1.

We develop polyBART through the continued
pretraining of SELFIES-TED (IBM Research), an
encoder-decoder model based on BART (Lewis
et al., 2019) and designed for molecular represen-
tations. PolyBART is a unique unifying model
capable of solving both forward and inverse prob-
lems in polymer informatics. Our work makes the
following key contributions:

• We introduce PSELFIES and develop poly-
BART, a polymer foundation model that is,
to our knowledge, the first application of lan-
guage models to generative polymer design.

• We provide comprehensive computational val-
idation of polyBART, demonstrating strong
performance in both polymer property predic-
tion and generation.

• We report laboratory synthesis and testing of
a polymer predicted by polyBART, which, to
our knowledge, is the first successfully vali-
dated polymer design guided by a language
model. Notably, upon thermal property test-
ing, we find that the experimental measure-
ments align with the model’s predictions.

2 Related Work

2.1 Chemical Foundation Models
Recent work has successfully adapted transformer
architectures (Vaswani et al., 2017) to the molec-
ular domain, achieving impressive results (Ross
et al., 2022). Early work has focused on adapt-
ing well-established transformer backbones, origi-
nally developed for natural language understanding,
to molecule tasks by training them on molecular
string representations. BERT (Devlin et al., 2019)
has been widely used for this purpose, forming the
foundation for models like SMILES-BERT (Wang
et al., 2019) and Mol-BERT (Li and Jiang, 2021).
Similarly, ChemBERTa (Chithrananda et al., 2020)
builds on the RoBERTa architecture (Liu et al.,
2019) and is pretrained on millions of SMILES
strings. Later works have explored the applica-
tion of Large Language Models (LLMs) to these

tasks. Unlike the earlier transformer-based meth-
ods, LLMs benefit from their exposure to vast
amounts of data, eliminating the need for the pre-
training step. For instance, Gruver et al. (2024)
demonstrated that instruction fine-tuned LLaMA
models (Touvron et al., 2023) can effectively gen-
erate crystal structures. Similarly, Jablonka et al.
(2024) showed that GPT-3 (Brown et al., 2020) can
be fine-tuned using natural language to perform
a wide range of tasks in chemistry and materials
science.

Alongside these developments, other works have
shown that transformer models can also be used to
generate molecular structures and not just to pre-
dict their properties. Models like MolT5 (Edwards
et al., 2022) and MolGPT (Bagal et al., 2022) en-
able de novo molecule generation, MolT5 from
textual descriptions, and MolGPT through next-
token prediction. The SELFIES-TED model gen-
erates molecules by exploring its learned latent
space. Diffusion methods have also emerged as
a strong candidate for molecular generation, as
demonstrated by GenMol (Lee et al., 2025) and
TGM-DLM (Gong et al., 2024). Our polymer
foundation model builds upon SELFIES-TED and
hence adopts a parallel strategy for property predic-
tion and generation.

2.2 Polymer Informatics via NLP
ML algorithms have been applied in the polymer
space for quite some time (Chen et al., 2021). Sim-
ilar to molecules, a common approach in polymer
informatics is to represent polymers numerically
and use ML to connect these representations to
points in the property space. A range of approaches,
including regression algorithms (Doan Tran et al.,
2020; Tao et al., 2021) and neural networks (Kuen-
neth et al., 2021b; Kuenneth et al., 2022) have been
explored for this purpose. Graph neural networks
(GNNs) are also widely used in polymer model-
ing due to their ability to capture both local and
global topological features of polymer graphs. Gur-
nani et al. (2023) developed polyGNN, a multitask
polymer GNN model for polymer property predic-
tion, demonstrating strong performance across nu-
merous properties. While the application of NLP
in this space is relatively nascent, it has already
seen significant success. In property prediction
tasks, language models are typically used to gener-
ate numerical embeddings of polymer representa-
tions, which are then mapped to properties using
approaches similar to traditional polymer informat-
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Figure 1: Overview of the polyBART pipeline. (a) The encoder-decoder model is pretrained using a Masked
Language Modeling (MLM) objective to learn the language of PSELFIES and construct the latent space. (b) For
property prediction, the trained encoder generates embeddings for polymers with known properties, which are then
mapped to target values using Gaussian Process Regressor (GPR). (c) For generating new structures, Gaussian noise
is added to the learned embeddings, and the decoder generates candidate polymers, which are subsequently filtered
based on property and synthesizability criteria.

ics pipelines (Agarwal et al., 2025). Kuenneth and
Ramprasad (2023) developed polyBERT by pre-
training deBERTA (He et al., 2021) on millions of
SMILES strings. Similar polymer language models
have also been developed using alternative archi-
tectures, such as RoBERTa in TransPolymer (Xu
et al., 2023) and T5 (Raffel et al., 2023) in PolyNC
(Qiu et al., 2024).

For the inverse problem of generating polymer
structures, early efforts have leveraged Variational
Autoencoders (VAEs) (Batra et al., 2020). How-
ever, the lack of explicit chemical syntax in VAE
architectures leads to invalid generations. Trans-
formers can learn context-aware representations of
molecular structures (Dollar et al., 2021), with each
attention head learning to focus on distinct sub-
structures. By leveraging SELFIES (or PSELFIES
in the present case), which guarantee validity, and
language models that can capture structured se-
quences and syntactic patterns, we achieve state-of-
the-art results in the generation of novel, valid, and
property-aligned polymers.

3 polyBART: A Polymer Foundation
Model

In this section we detail the PSELFIES representa-
tion and introduce polyBART. The overall model

pipeline is shown in Figure 1.

3.1 PSELFIES

To ensure compatibility with molecular language
models, we introduce PSELFIES, a novel represen-
tation of polymers. PSELFIES builds upon several
representations used in cheminformatics. SMILES
(Simplified Molecular Input Line Entry System)
(Weininger, 1988) is a widely adopted notation for
encoding molecules as strings. Polymer SMILES
(PSMILES) extends SMILES to polymers by repre-
senting the two terminal endpoints of homopolymer
repeat units with asterisks ([*]) to indicate open-
chain ends. However, [*] is commonly used as
a placeholder atom in molecular representations
rather than specifically denoting polymer termini,
and it is not yet incorporated into the SELFIES
representation.

To address this limitation, we first convert
PSMILES into Molecule SMILES (MSMILES),
replacing [*] with actual atomic representations.
The conversion begins by identifying the terminal
atoms and bond types associated with [*], then
joining the polymer ends to form a cyclic structure,
followed by eliminating the [*]s. To ensure consis-
tency and to remove biases arising from multiple
valid PSMILES representations, we canonicalize
the cyclic structure. Next, we strategically cleave a
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Figure 2: (a) PSMILES containing terminal [*] groups are first transformed into a cyclic structure. (b) The cyclic
structure is canonicalized, and a chemically valid bond is cleaved to linearize the molecule. The resulting termini
are tagged with At atoms, yielding MSMILES. (c) The MSMILES is then transformed to PSELFIES.

chemically valid, preferably single (non-ring) bond
within the cyclic structure. Astatine (At) atoms are
introduced at the newly formed termini, chosen due
to their rarity in polymer chemistry, single valence
character, and absence in our dataset. The resulting
MSMILES representation is a linearized, chemi-
cally valid pseudo-molecular SMILES string that
preserves the essential connectivity of the polymer.
Finally, MSMILES is transformed into PSELFIES
using the SELFIES encoder. The complete con-
version pipeline is illustrated in Figure 2. Further
details on the representations described in this sec-
tion are provided in Appendix A.

3.2 Model Configuration and Details
To develop polyBART, we construct a large-scale
dataset comprising over 200 million PSELFIES
strings for polymers, including 12,473 known poly-
mers, with the remainder representing hypothetical
polymers (Ohno et al., 2023; Kim et al., 2023). The
dataset spans a diverse range of polymer classes, in-
cluding ethers, esters, amides, amines, and imides
to name a few. The hypothetical polymers are gen-
erated by applying various known polymerization
reactions for polyamides, polyesters, polyethers,
polyurea, and polyurethane, and popular named
reactions, such as Ring-Opening Metathesis Poly-
merization (ROMP) (Young and Lovell, 2011).
We also use popular click reactions like copper-
catalyzed azide-alkyne cycloaddition (CuAAC),
thiol-ene/yne reactions, thiol-bromo, Diels-Alder,
and SuFEx reactions, generating a diverse space of
polymers while ensuring their synthetic feasibility

(Kolb et al., 2001, Geng et al., 2021). Additional
details regarding the dataset can be found in Ap-
pendix B.

We choose to focus exclusively on encoder-
decoder architectures, as polymer representations
exhibit bidirectional dependencies, meaning each
token’s presence is influenced by both its preceding
and succeeding context. This necessitates bidirec-
tional attention and the use of Masked Language
Modeling (MLM) rather than Causal Language
Modeling (CLM), ruling out decoder-only mod-
els in our case. Given its architectural compatibil-
ity and vocabulary aligned with our input format,
SELFIES-TED is the most suitable molecular foun-
dation model for transfer learning to our task.

The SELFIES-TED model, based on the BART
architecture, comes in two variants, SELFIES-
TEDsmall with 2.2 million parameters (2 encoder-
decoder layers, 4 attention heads) and SELFIES-
TEDlarge with 358 million parameters (12 encoder-
decoder layers, 16 attention heads), both trained
on SELFIES molecular representations. We ex-
tend both variants of SELFIES-TED to the poly-
mer space via continued pretraining on our poly-
mer dataset, with polyBARTsmall trained on ~200
million polymers and polyBARTlarge trained on a
subset of 25 million samples. Prior to training, we
found that the SELFIES-TEDsmall tokenizer did not
include [At] in its vocabulary, which we add with
a randomly initialized embedding.

We adopt the same training strategy as SELFIES-
TED, using a denoising objective with 15% of the
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Model Tg (K) Td (K) Tm (K) Egc (eV) Egb (eV) Eea (eV) Ei (eV)

SELFIES-TEDlarge 62.58 ± 1.94 96.98 ± 2.14 73.77 ± 2.97 0.95 ± 0.04 0.78 ± 0.09 0.37 ± 0.06 0.50 ± 0.06
polyBERT 38.41 ± 1.92 67.45 ± 2.06 56.25 ± 3.09 0.55 ± 0.02 0.72 ± 0.06 0.35 ± 0.05 0.49 ± 0.04
polyBARTsmall 39.92 ± 1.27 71.56 ± 1.64 57.71 ± 2.36 0.60 ± 0.02 0.68 ± 0.08 0.35 ± 0.05 0.51 ± 0.06
polyBARTlarge 40.32 ± 1.16 71.44 ± 1.93 58.02 ± 2.36 0.61 ± 0.02 0.73 ± 0.07 0.33 ± 0.04 0.49 ± 0.08

BARTsmall 43.35 ± 1.25 73.35 ± 1.94 62.03 ± 2.83 - - - -

LLaMA-3-8B 58.13 95.28 71.91 - - - -

Table 1: Performance on the property prediction tasks. The best results are highlighted in bold and second-best are
underlined.

tokens in the input sequence randomly masked. De-
tailed descriptions of the model architecture and
training setup can be found in Appendix C. Ul-
timately, our approach allows us to leverage the
extensive chemical knowledge encoded in the base
models, pretrained on billions of molecules, while
progressively specializing the models to learn the
representations of polymers. Through further train-
ing on millions of PSELFIES strings, polyBART
thus obtains a deep understanding of the grammar
and syntax that govern the polymer chemical lan-
guage.

4 Computational Experiments

In this section, we present results demonstrating the
effectiveness of polyBART on: (i) property predic-
tion, (ii) hypothetical polymer generation, and (iii)
property-guided never-seen-before polymer gener-
ation. We also highlight the ability of PSELFIES
in leveraging pretrained knowledge through a com-
parative study.

4.1 Property Prediction
Task: Polymer property prediction is formulated
as a supervised learning task in our pipeline and
accomplished as follows: first, all the PSMILES
strings from the property datasets are converted to
their PSELFIES representations. These are then
passed through the polyBART encoder to generate
numerical embeddings. To reduce dimensionality,
we apply Principal Component Analysis (PCA) to
the resulting PSELFIES embeddings. The reduced
representations are then used to train a supervised
learning model, specifically, Gaussian Process Re-
gression (GPR) with a Radial Basis Function (RBF)
kernel. We use a 5-fold Cross-Validation (CV) strat-
egy to assess the performance and generalizability
of our GPR models.

Datasets: We evaluate polyBART on critical

thermal properties of polymers, namely, the glass
transition temperature (Tg), thermal degradation
temperature (Td), and melting temperature (Tm)
(Kuenneth et al., 2021a). Thermal property data
is collected from the PolyInfo repository (Otsuka
et al., 2011) and is derived from experimental mea-
surements reported in the existing literature. We
also assess performance on electronic properties,
including linear chain bandgap (Egc), bulk polymer
bandgap (Egb), electron affinity (Eea), and ioniza-
tion energy (Ei) values computed using Density
Functional Theory (DFT). Additional information
on the datasets is detailed in Appendix D.

Baselines: We compare the performance of poly-
BART to the baseline SELFIES-TED model. Due
to the absence of the [At] token in SELFIES-
TEDsmall, our comparison is restricted to SELFIES-
TEDlarge. In addition, we benchmark poly-
BART with polyBERT, current state-of-the-art
transformer-based model for polymer property pre-
diction. It is important to note that, given the novel
bidirectional capabilities of polyBART, we are lim-
ited in comparison to unidirectional models devel-
oped for property prediction. To ensure a fair com-
parison of embedding quality, we use GPR across
all models. We additionally compare polyBART
with LLaMA, with details regarding the fine-tuning
experiment given in Appendix E.

Results: Table 1 presents the performance of
polyBARTsmall and polyBARTlarge, reporting the
average RMSE across five CV test sets along with
the corresponding standard deviations. We observe
that our bidirectional polyBART performs on par
with, and in many cases surpasses, polyBERT. No-
tably, while matching the predictive accuracy of the
unidirectional polyBERT, the bidirectional poly-
BART offers the added advantage of generating
entirely new polymer candidates not present in the
training data. Additionally, polyBARTsmall and
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polyBARTlarge outperform the baseline SELFIES-
TEDlarge, achieving average RMSE reductions of
19.4% and 19.7%, respectively. These consis-
tent performance gains underscore the ability of
PSELFIES to specialize molecular language mod-
els to the polymer domain. We also notice that poly-
BART outperforms LLaMA-3 on thermal property
prediction. Overall, our results confirm the capabil-
ity of polyBART as a powerful polymer property
predictor.

4.2 Impact of Transfer Learning
To further demonstrate the importance of
PSELFIES in adapting molecular foundation
models to the polymer space, we perform a
comparative study. Specifically, we develop
a model, BARTsmall, which shares the same
architecture, training data, and configuration as
polyBARTsmall, but is trained from scratch rather
than initialized from SELFIES-TED. This setup
allows us to isolate the effect of transfer learning
using PSELFIES.

We compare the performance of BARTsmall
against polyBARTsmall on property prediction
tasks across the three thermal properties, with
results summarized in Table 1. We ob-
serve that polyBARTsmall consistently outperforms
BARTsmall in all tasks. These performance gains
highlight the critical role of our PSELFIES frame-
work. By leveraging pretrained knowledge from
SELFIES-TED, polyBART benefits from a strong
initialization, leading to significant improvements
over training from scratch. Overall, we confirm
that rather than starting from random weights, ini-
tializing with a pretrained molecular model via
PSELFIES provides an effective foundation for de-
veloping polymer language models.

4.3 Hypothetical Polymer Generation
polyBART’s generative capability, enabled by its
decoder, is a key innovation of our work, setting
it apart from existing polymer language models
(Agarwal et al., 2025), which have been limited
to unidirectional property prediction. To generate
novel polymer structures, the PSELFIES sequence
is first passed through the encoder to obtain a latent
embedding. To explore the latent space, we apply
Gaussian noise to this embedding using an n-fold
sampling strategy: noise is added n times to gener-
ate n noised embeddings. These noisy embeddings
are then decoded one by one using the polyBART
decoder, and if a valid polymer is generated within

these samples, it is retained. A grid search is used
to tune the noise level for novelty and validity, de-
tails of which can be found in Appendix F.

We evaluate the generative capabilities of poly-
BART using a test set of 10,000 PSELFIES, all
of which are unseen during the pretraining phase.
We begin by examining the validity of the gen-
erated polymer structures. Specifically, we intro-
duce two measures of validity: (i) molecule validity
and (ii) polymer validity. Molecule validity checks
whether the generated PSELFIES correspond to a
chemically valid molecule, and is determined us-
ing RDKit. Polymer validity assesses whether the
generated PSELFIES represent a structurally valid
polymer by examining the placement and single-
bond character of the [At] tokens. Since the [At]
tokens denote the endpoints of the polymer repeat
unit, a valid polymer must contain exactly two such
tokens, each with a valency of one. The polymer
validity metric enforces this requirement. Next, we
assess the novelty of the valid generated structures,
where a structure is considered novel if it passes
both validity tests and is different from all input
examples. Finally, we assess the quality of the gen-
erated structures using Fréchet ChemNet Distance
(FCD) (Preuer et al., 2018) and Internal Diversity
(IntDivp) metrics (Benhenda, 2017). FCD quan-
tifies the similarity between the distributions of
the generated and input structures based on the
Euclidian distance between their respective em-
beddings. A higher FCD score indicates a greater
divergence between the two distributions, suggest-
ing that the generated structures differ from the
input set. IntDivp evaluates the internal diversity
of the generated structures, capturing the model’s
tendency to produce structurally distinct outputs.
We report both IntDiv1 (p = 1) and IntDiv2 (p =
2) scores, where higher values of these scores re-
flect greater diversity in the generated structures.
Although these metrics were originally designed
for molecules, by representing polymers as pseudo-
molecules using PSELFIES, we can extend them to
our case. See Appendix G for a detailed description
of the metrics.

Results for the generation task are provided
in Table 2. We find that polyBARTsmall and
polyBARTlarge generate valid molecules in 100%
of cases, and valid polymers in 91% and 98% of
cases, respectively, demonstrating that the models
have effectively learned the underlying grammar
and structural rules in writing polymers. High nov-
elty scores demonstrate polyBART’s ability to ex-
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Figure 3: Representative chemical structures generated by (a) polyBARTsmall and (b) polyBARTlarge, selected for
their high Tg, high Eg, and ease of synthesizability. The selected examples highlight polyBART’s ability to generate
thermally and electronically robust polymers.

Model Molecule Validity Polymer Validity Novelty FCD IntDiv1 IntDiv2

polyBARTsmall 1.000 0.913 0.867 3.968 0.878 0.875
polyBARTlarge 1.000 0.985 0.793 1.833 0.872 0.868

Table 2: Generative performance of polyBARTsmall and polyBARTlarge across key evaluation metrics.

plore the latent space and generate thousands of
never-seen-before structures. The FCD and IntDivp
scores of the generated distributions confirm the
models’ capabilities to generate a broad and diverse
range of polymer structures.

4.4 Property-conditioned Polymer Generation

Beyond general structure generation, a key capa-
bility of polyBART is its ability to generate novel
polymers conditioned on desired target properties.
At a high level, our approach enables property-
guided generation by mapping the latent space of
polymer embeddings to the property space and ex-
ploring regions with desired property values. We
begin by identifying polymers that fall within a
specified target range for a given property. These
polymers are then passed through polyBART’s en-
coder to obtain embeddings. As in the general gen-
eration setting, we apply an n-fold Gaussian noise
sampling strategy: each embedding is perturbed n
times to generate n candidate embeddings, which
are subsequently decoded and checked for validity.

In this way, we are able to effectively explore neigh-
borhoods in the latent space with desirable property
values. The resulting candidate polymers are sub-
jected to two filtering steps: (i) property filtering
and (ii) Synthetic Accessibility (SA) score (Ertl
and Schuffenhauer, 2009) filtering. To filter based
on property, the generated candidates are passed
through the GPR models developed for property
prediction, and only those within a threshold range
of the target property are retained. To assess syn-
thesizability, we compute the SA score, a measure
ranging from 1 (easy to make) to 10 (very difficult
to make). For this, PSELFIES strings are converted
to MSMILES, with the At atom replaced by hy-
drogen (H). The SA score is then calculated, and
candidates with a score of 6 or lower are retained as
viable candidates. Additional details are provided
in Appendix H.

We use polyBART to generate novel polymer
structures under two extreme conditions: (i) high
temperatures and (ii) high electric fields. We make
the assumption that these behaviors correlate with
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Metric Tg Egc
polyBARTsmall polyBARTlarge polyBARTsmall polyBARTlarge

# Valid Generations 743 1131 739 1514
# Novel 715 933 558 660

# Property Filtered 396 543 168 190
# SA Score Filtered 353 511 160 189

Table 3: Performance of polyBARTsmall and polyBARTlarge on Tg and Egc guided generation of novel polymer
candidates, based on 183 and 200 reference polymers, respectively.

two critical polymer properties, specifically, Tg
and Egc. Accordingly, we define our target prop-
erty thresholds as (i) Tg > 600 K and (ii) Egc > 4
eV. High Tg polymers are sought for their thermal
integrity at elevated temperatures, while polymers
with high Egc values provide broad electrical sta-
bility with minimal dielectric loss, making them
promising candidates for high-energy density ca-
pacitor dielectric applications (Tan et al., 2014;
Zhou et al., 2018; Gurnani et al., 2024).

As shown in Table 3, polyBARTsmall and
polyBARTlarge are able to successfully generate
hundreds of novel polymers that not only meet
the desired property criteria but are also predicted
to be synthetically accessible. Examples of novel
structures generated by our models are illustrated
in Figure 3. Additionally, visualizations of the
property-conditioned latent space can be found in
Appendix I.

Figure 4: A high Tg polymer structure generated by
polyBART and synthesized in the lab.

5 Validation of Design via Laboratory
Synthesis and Testing

Given the real-world implications of our work, it
is important to extend our evaluation of polyBART
beyond computational benchmarks. Thus, we per-
form experimental synthesis and characterization
of a polymer candidate predicted by polyBARTsmall.
We select one polymer with a high predicted Tg and

a favorable SA score and successfully synthesize it
in the lab. Following synthesis, we perform Tg mea-
surements to evaluate its thermal properties. The
experimental protocol is detailed in Appendix J.
Figure 4 presents the chemical structure of the syn-
thesized polymer, along with the predicted and ex-
perimentally measured Tg values. We confirm that
the experimentally observed Tg aligns well with the
prediction. This successful synthesis of a high-Tg
polymer firmly establishes polyBART’s ability to
guide real-world polymer design.

6 Conclusion

In this work, we propose PSELFIES, a novel rep-
resentation of polymers that enables the trans-
fer of learned knowledge from molecular lan-
guage models to the polymer space. We develop
polyBARTsmall and polyBARTlarge, two polymer
foundation models created through the continued
pretraining of SELFIES-TEDsmall and SELFIES-
TEDlarge, respectively. Our results show that poly-
BART performs comparably to state-of-the-art ap-
proaches in property prediction. Moreover, poly-
BART uniquely combines property prediction with
generative design in a single unified framework
and consistently produces numerous novel polymer
structures. Generated candidates not only satisfy
target property criteria but also exhibit synthetic ac-
cessibility. By successfully synthesizing one such
predicted polymer and experimentally confirming
our predictions, we illustrate that language models
can reliably drive real-world advances in polymer
design. Our work enables true bidirectional trans-
lation between polymer structures and properties
and highlights the potential of language models in
advancing polymer informatics.

7 Limitations

While PSELFIES successfully enables the adap-
tation of the SELFIES-TED molecular language
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model to the polymer space, its generalizability to
other molecular foundation models, based on differ-
ent architectures and pretraining strategies remains
yet to be seen. Future work is needed to evalu-
ate how well PSELFIES integrates with alternative
models and whether similar performance gains can
be achieved across methods.

Additionally, while polyBART demonstrates
strong performance on thermal and electronic prop-
erties, its applicability to a broader range of poly-
mer properties and simultaneous optimization of
multiple properties must be explored to fully deter-
mine its predictive and generative power. Finally,
polyBART is currently limited to homopolymers
and does not yet support the representation or gen-
eration of copolymers, polymer blends, or polymer
composites/formulations. These aspects will be the
subject of future inquiry.
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Appendix

A Representations

Representation Description

SMILES Simplified Molecu-
lar Input Line Entry
System is a popular
notation for encoding
molecules as strings.

PSMILES Polymer SMILES is an
extension of SMILES
for polymers that
uses asterisks ([*]) to
indicate endpoints of
homopolymer repeat
units.

MSMILES Molecule SMILES is
a pseudo-molecular
SMILES derived from
PSMILES by ring clo-
sure, canonicalization,
and bond cleavage.

SELFIES Self-Referencing Em-
bedded Strings is a ro-
bust representation of
molecules that guaran-
tees the validity of every
generation.

PSELFIES Polymer SELFIES is a
novel polymer-specific
extension of SELFIES
that is introduced in this
work and used to de-
velop polyBART.

Table 4: Overview of molecular and polymer represen-
tations referenced in this work.

B Pre-training Dataset

We characterize the chemical diversity of our
dataset of approximately 210 million polymers
(total count = 210,645,750) that we use for pre-
training polyBART. Polymers are categorized
based on the presence of 40 functional groups.
Classification is performed by analyzing the en-
tire polymer structure, allowing a single polymer
to be assigned to multiple categories.

Reaction Class Percentage

Ether 97.2
Amide 72.5
Amine 67.1
Acetal 34.5
Halogenated 33.8
Ester 23.7
Thioether 23.6
Allyl 21.2
Hydroxyl 17.7
Sulfoxide 16
Urea 11.4
Imide 8.3
Nitrile 6
Carboxylic acid 5.2
Urethane 4.9

Table 5: Top 15 polymer classes in the pretraining data.

C Architecture and Training Setup

Configuration Parameter polyBARTsmall polyBARTlarge

dmodel 256 1024
Encoder Layers 2 12
Decoder Layers 2 12
Encoder FFN Dim. 256 4096
Decoder FFN Dim. 256 4096
Encoder Attention Heads 4 16
Decoder Attention Heads 4 16

Table 6: Model architecture configurations for
polyBARTsmall and polyBARTlarge as following
SELFIES-TEDsmall and SELFIES-TEDlarge.

The loss function for training is given by:

Ldenoise = −
T∑

t=1

logP (yt | y<t, x̃; θ)

where yt is the t-th token in the output sequence y,
y<t is the sequence of tokens before position t, x̃ is
the corrupted version of the original input, x, θ rep-
resents the model parameters, and P (yt | y<t, x̃; θ)
is the model’s predicted probability of the token
yt conditioned on the previously generated tokens
and the corrupted input.

polyBARTsmall is trained on ~200 million
PSELFIES for 6 epochs using a per-device batch
size of 128. Due to computational limitations,
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polyBARTlarge is trained on 25 million samples
for 5 epochs with a per-device batch size of 64. All
training runs are conducted on 2 NVIDIA L40S
GPUs.

D Property Datasets

We evaluate polyBART on Tg, Td, Tm, Egc, Egb,
Eea, and Ei. Histograms of the value distribu-
tions for each property are shown below. Thermal
properties are obtained from PolyInfo at https:
//polymer.nims.go.jp/. Electronic properties
are accessible through the polyVERSE repos-
itory (https://github.com/Ramprasad-Group/
polyVERSE/tree/main) and the Khazana poly-
mer database (https://khazana.gatech.edu/
dataset/).

D.1 Thermal Properties

Figure 5: Distribution of thermal properties.

D.2 Electronic Properties

Figure 6: Distribution of electronic properties.

E Comparison with LLaMA

To enable a comparison between polyBART and
an LLM, we evaluate both approaches on the
task of thermal property prediction, using the 8B-
parameter LLaMA-3 model as the representative
LLM baseline. Because the available electronic-
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property datasets are comparatively small, we limit
this comparison to thermal properties.

We fine-tune LLaMA to follow a simple ques-
tion–answer protocol that maps SELFIES to scalar
property values. Specifically, each training instance
is formatted as:

Prompt: What is the {property name} of the
polymer with SELFIES: {selfies}?
Response: {property value}

We fine-tune LLaMA with LoRA (r = 8, α = 8)
and early stopping. At inference time, we employ
deterministic decoding (temperature = 0, no sam-
pling) to produce a single numeric answer.

F Optimal Noise Level

To identify the optimal level of noise for property-
conditioned generation, we analyze the effect of
varying noise levels on two metrics: validity and
novelty. The following plots summarize these
metrics for polyBART across different noise lev-
els. Based on our observations we choose a
noise level of 0.75 for polyBARTsmall and 1.75
for polyBARTlarge.

(a) polyBARTsmall

(b) polyBARTlarge

Figure 7: Validity and novelty across noise levels.

G Metrics

G.1 FCD
FCD is computed using molecular representations
extracted from the penultimate layer activations
of the ChemNet model. Assuming these activa-
tions follow multivariate Gaussian distributions,
the mean and covariance is calculated for both gen-
erated and input molecules. If the generated distri-
bution G has mean µG and covariance ΣG, and the
input distribution I has mean µI and covariance
ΣI , FCD between these two is given by:

FCD(G, I) = ∥µG − µI∥22 +Tr
(
ΣG +ΣI − 2(ΣGΣI)

1/2
)

G.2 IntDivp

IntDivp is computed using T (m1,m2), which de-
notes the Tanimoto similarity between molecules
m1 and m2. The summation is performed over all
pairs of molecules in the set of generations G, and
the result is normalized by |G|2, the total number
of pairwise comparisons. The parameter p controls
the order of the mean. IntDivp is given by:

IntDivp(G) = 1−
(

1
|G|2

∑
m1,m2∈G T (m1,m2)

p
) 1

p

H Threshold Selection for SA Scores

We assess the distribution of SA scores within the
experimental Tg dataset. As shown in Figure 12,
majority of the polymers exhibit SA scores of 6
or lower, suggesting that a cutoff of 6 effectively
identifies polymers that are sufficiently easy to syn-
thesize. Hence, we adopt this threshold for our
computational experiments on chemical structure
generation.

Figure 8: SA score distribution.

I Latent Space Visualization

Figure 9 shows the property-conditioned la-
tent space visualizations for polyBARTsmall and
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polyBARTlarge, with each plot highlighting regions
in the embedding space associated with polymers
exhibiting high Tg and Egc values. The latent repre-
sentations are obtained by encoding polymer struc-
tures with each model’s encoder and projecting
the resulting embeddings into two dimensions us-
ing t-SNE. These visualizations reveal how differ-
ent models structure the latent space with respect
to property-relevant features. A gradient in prop-
erty values across the latent space suggests that the
model has learned a meaningful representation in
which polymer embeddings are aligned with their
associated properties.

J Experimental Procedure

To synthesize poly(amic acid) (PAA), 3,3′-
diaminodiphenylmethane (31 mg, 0.16 mmol) is
added to a three-necked round-bottom flask, fol-
lowed by the addition of N,N-dimethylacetamide
(DMAc, 250 µL) as the solvent. The mixture is
stirred until the diamine was completely dissolved.
Subsequently, an equimolar amount of 3,3′,4,4′-
benzophenonetetracarboxylic dianhydride (50 mg,
0.16 mmol) is slowly added to the solution under a
nitrogen atmosphere. The reaction temperature is
maintained between 40◦C and 50◦C, and the mix-
ture is stirred overnight to obtain a homogeneous
PAA solution. The resulting solution is slowly
poured into deionized water under vigorous stirring,
leading to the formation of a white to pale-yellow
precipitate. The precipitate is collected by filtration
and washed thoroughly with acetone multiple times
to remove residual solvent. The purified PAA is air-
dried at room temperature and then vacuum-dried
at 60◦C until a constant weight is achieved.

Thermal imidization of the obtained PAA is con-
ducted to afford the corresponding polyimide (PI).
The dried PAA is placed in a flask under vacuum,
and the temperature is gradually increased in a step-
wise manner to 150◦C, 200◦C, and finally 300◦C,
holding each temperature for approximately 1 hour.
After cooling to room temperature under vacuum,
the resulting PI (~54 mg, 71%) is collected for
further characterization.

Thermogravimetric analysis (TGA) was per-
formed using a Pyris 1 TGA (PerkinElmer) at a
heating rate of 10◦C/min. Differential Scanning
Calorimetry (DSC) was carried out on a DSC 3+
STARe system (Mettler Toledo), with both heating
and cooling rates set to 10◦C/min.

Figure 10: 1H NMR spectrum of PAA in d6-DMSO.

Figure 11: TGA curve of PI.

Figure 12: DSA curve of PI.
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Figure 9: Latent space projections for (a) polyBARTsmall and (b) polyBARTlarge highlighting polymers exhibiting
high Tg and Egc values.
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