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Abstract

Deploying language models on resource-
constrained devices, such as mobile phones,
wearables, and on-device Al assistants, de-
mands compact, efficient models without sac-
rificing performance. Compressing Small Lan-
guage Models (SLMs) is particularly suited for
these scenarios, yet their compression dynam-
ics remain underexplored compared to Large
Language Models (LLMs). We systemati-
cally evaluate leading post-training pruning
(SparseGPT, Wanda) and quantization (GPTQ,
AWQ) methods across six SLMs from 0.5 to
3.8B, seven languages, and seven downstream
tasks. Our results show that quantization con-
sistently outperforms pruning in preserving
model fidelity, multilingual perplexity, and rea-
soning accuracy. However, quantization’s ad-
vantages diminish on complex knowledge and
reasoning tasks like OpenBookQA, highlight-
ing a disconnect between compression fidelity
and downstream task performance. Notably,
trends observed in LLMs (e.g., Wanda’s com-
petitive performance to SparseGPT) do not
generalize to SLMs. For practitioners, we
recommend prioritizing quantization (particu-
larly AWQ) for SLM compression and caution
against relying on a single metric.

1 Introduction

The pervasive demand for intelligent systems in
diverse applications, from resource-constrained
devices to privacy-sensitive offline deployments,
necessitates compact models and efficient infer-
ence (Al-Doghman et al., 2022; Meuser et al., 2024;
Gill et al., 2025). Small Language Models (SLMs)
offer distinct advantages through their efficiency,
faster inference, and lower memory footprint, mak-
ing them well-suited for deployment in constrained
environments (Wang et al., 2025; Lu et al., 2024).
Despite their smaller parameter count compared
to Large Language Models (LLMs), further com-
pression is crucial and beneficial to accommodate
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Figure 1: Layer-wise activation SNR for quantized and
pruned models. Higher SNR indicates better compres-
sion fidelity. Both pruning (left column) and quantiza-
tion (right column) exhibit noticeably reduced SNR at
similar layers, but quantization consistently achieves
higher SNR than pruning across models.

diverse hardware constraints and extend Al applica-
tions to edge devices (Hao et al., 2024; Pujari and
Pakina, 2024; Xu et al., 2024; Wang et al., 2025).
Compression techniques such as pruning and
quantization have been extensively explored for
LLMs; however, the effectiveness of these meth-
ods when directly applied to SLMs remains un-
clear. Particularly, advanced pruning methods
like SparseGPT (Frantar and Alistarh, 2023a) and
Wanda (Sun et al., 2024), and state-of-the-art quan-
tization methods like GPTQ (Frantar et al., 2023)
and AWQ (Lin et al., 2024), have not been thor-
oughly compared in the context of SLMs (Chrysos-
tomou et al., 2024; Kurz et al., 2024; Ramesh and
Zhao, 2024).! This gap motivates a principled
study to uncover generalizable patterns, which is
currently hindered by inconsistent benchmark us-
age and the lack of comprehensive evaluations in

Detailed related work in App. A.
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existing work.

We conduct extensive experiments across multi-
ple SLMs and compression ratios, evaluating three
dimensions: (1) compression fidelity to assess the
activation changes after compression, Fig 1 as an
example of layer-wise SNR comparison, (2) per-
plexity to evaluate language modeling capability
for multiple languages, and (3) downstream tasks
to investigate the reasoning capability. The re-
sults indicate that quantization consistently outper-
forms pruning across all three evaluation dimen-
sions, with particularly strong advantages under
high compression. It offers better preservation of
compression fidelity and language modeling perfor-
mance, while its superiority on downstream reason-
ing tasks is less consistent and varies across models
and task types.

2 Methodology

We conduct a comprehensive evaluation of two
state-of-the-art pruning and quantization methods
each, under two commonly used compression set-
tings (Sec. 2.1). We experiment with five popu-
lar SLMs (Sec. 2.3), spanning three-dimensional
evaluations: two compression fidelity metrics, per-
plexity across seven languages, and accuracy on
seven downstream tasks (Sec. 2.2). With the full-
size baseline, this comprehensive setup results in
a total of 710 evaluations across methods, models,
and languages.

2.1 Model Compression

Given the impracticality of evaluating all compres-
sion methods, we focus on four widely adopted
approaches, following the original setup unless
specified otherwise.”? We use FP16 as the standard
baseline, as it is commonly used for both training
and inference with negligible accuracy loss. Ac-
cordingly, we compare 50% pruning sparsity to
INTS8 quantization, and 75% sparsity to INT4.

Quantization. We consider GPTQ (Frantar
et al., 2023) and AWQ (Lin et al., 2024) for 4-
bit and 8-bit weight quantization. Since GPTQ was
proposed before the release of Llama, we use the
hyperparameters from the GPTQModel library.?

2Complete hyperparameters are provided in App. B. We
also assume no overhead on storing the sparsity mask for
pruning and relegate such hardware-specific implementations
to section 2.4.

Shttps://github.com/ModelCloud/GPTQModel

Pruning. We adopt SparseGPT (Frantar and Al-
istarh, 2023a) and Wanda (Sun et al., 2024), both
based on unstructured pruning, which is commonly
used in post-training compression studies.

2.2 Evaluation Metrics and Tasks

To comprehensively compare post-training prun-
ing and quantization, we evaluate compression
fidelity by measuring Signal-to-Noise Ratio (SNR)
and compression errors of layer outputs (App. C.1).
We further assess multilingual language modeling
and zero-shot downstream performance. For mul-
tilingual language modeling, we cover seven lan-
guages of different scripts and language families:
English (en), Arabic (ar), Hindi (hi), Chinese (zh),
Thai (th), German (de), and Spanish (es) (256 sam-
ples with 2048 tokens each, mc4). For zero-shot
natural language understanding tasks, we in-
clude zero-shot tasks used in the original work of
GPTQ, AWQ, SparseGPT, and Wanda. These are:
(1) ARC easy (ARC-e) and (2) ARC challenge
(ARC-c) sets (Clark et al., 2018); (3) BoolQ (Clark
et al., 2019); (4) HellaSwag (Zellers et al., 2019);
(5) WinoGrande (Sakaguchi et al., 2021); (6) Open-
BookQA (Banerjee et al., 2019); (7) RTE (Dagan
et al., 2005). These benchmarks collectively cover
multiple choice, Cloze, entailment, and Winograd-
style formats, and test a range of reasoning capabil-
ities from common sense to factual and linguistic
inference. We report the evaluation set sizes in the
Appendix. C.4.

2.3 Models

We use five popular open-source SLMs: Llama
3.2 1B Instruct (Llama3.2)*, DeepSeek R1
Distill Qwen 1.5B (R1)’, Qwen2.5 1.5B
Instruct (Qwen2.5)%, SmolLM2 1.7B Instruct
(SmolLM2)’, and Phi3.5 mini instruct
(Phi3.5)%.

2.4 Implementation Details

We follow Frantar et al. (2023) for hyperparameter
and calibration setup’. To create the calibration
sets, we use the publicly available version of each

“https://huggingface.co/meta-1lama/Llama-3.2-1B-
Instruct

Shttps://huggingface.co/deepseek-ai/R 1

®https://huggingface.co/Qwen/Qwen2.5

"https://huggingface.co/HuggingFace TB/SmolLM2

8https://huggingface.co/microsoft/Phi-3.5-mini-instruct

°For the sensitivity of the calibration dataset, we refer in-
terested readers to Williams and Aletras (2024) for a particular
investigation of the calibration dataset.
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Model Sparsity/Bit-width  Method SNR 1 Error(xio—% |
SparseGPT ~ 13.61 0.855

0.50 / 8-bit Wanda 11.11 1.59

AWQ 50.91 0.000

R1 GPTQ 43.61 0.001
SparseGPT 5.48 5.95

0.75 / 4-bit Wanda 0.58 22.39

AWQ 19.83 0.209

GPTQ 19.48 0.226

SparseGPT  15.12 2.79

0.50 / 8-bit Wanda 9.81 11.66

AWQ 53.34 0.000

Qwen2.5 GPTQ 49.05 0.001
SparseGPT 1.82 78.43

0.75 / 4-bit Wanda 0.56 104.12

AWQ 2291 0.399

GPTQ 18.22 1.495

SparseGPT ~ 17.61 0.915

0.50/ 8-bit Wanda 16.32 1.270

AWQ 51.09 0.001

Llama3.2 GPTQ 37.61 0.015
SparseGPT  12.59 2.850

0.75 / 4-bit Wanda 9.17 6.851

AWQ 22.55 0.303

GPTQ 15.39 2.281

Table 1: Layer-wise average activation SNR and com-
pression error (Error). Full results with the other four
models are in App. D. The best among the same com-
pression level are in bold per metric.

source dataset from Hugging Face Datasets (Lhoest
et al., 2021). Similarly, we use the weights and im-
plementation of each model from Hugging Face
Transformers (Wolf et al., 2020). To ensure that
our model evaluations are robust and reproducible,
we use the EleutherAl Language Model Evalua-
tion Harness (Gao et al., 2024). Each model is
compressed and evaluated using a single NVIDIA
A100 (SXM 80GB) GPU.

3 Results and Analysis

3.1 Fidelity: SNR and Compression Error

As shown in Table 1 (see full results in App. D),
quantization consistently preserves the origi-
nal signal more effectively than pruning, as ev-
idenced by both SNR and compression error met-
rics. At 50% sparsity, which corresponds to 8-bit
quantization, AWQ achieves an average SNR of
50.9 on R1, and GPTQ follows closely at 43.6. In
comparison, SparseGPT and Wanda drop signifi-
cantly to 13.6 and 11.1 , respectively. At a higher
sparsity level of 75%, pruning becomes increas-
ingly unstable. The average SNR of Qwen2.5 at
75% sparsity falls to around 1, indicating severe
degradation, while quantization continues to retain
moderate fidelity in the range of 18-23. We ob-
serve the consistent pattern on the other SLMs.
Interestingly, SparseGPT consistently outper-

forms Wanda in preserving activation fidelity,
which is in contrast to the previous findings
on LLMs in Sun et al. (2024). For instance, in
Qwen?2.5 at 50% sparsity, SparseGPT yields 15.12
average SNR compared to 9.81 with Wanda. Be-
tween quantization methods, AWQ outperforms
GPTQ across all models. The identical ranking
on five architectures suggests that the compression
method, rather than the backbone design, primarily
determines fidelity. We also observe strong correla-
tions between SNR degradation and model depth
for both pruning and quantization, where SNR ex-
hibits a roughly monotonic decline from the first
layer, except for Phi3.5.

3.2 Language Modeling: Perplexity

As shown in Fig. 2, quantization consistently out-
performs pruning on language modeling (full
details are in App. E), particularly under high com-
pression ratios. Quantization performance remains
remarkably low and stable across different com-
pression ratios, models and languages, while prun-
ing sensitivity varies significantly. For instance, on
the R1 model with 75% compression, AWQ yields
a PPL of 32.3 for English and 185 for Arabic, while
SparseGPT degrades sharply to 292.4 and 13,470,
respectively. The gap is less dramatic at lower
compression levels. On SLMs, SparseGPT consis-
tently surpasses Wanda in maintaining performance
across models and languages, which is also in con-
trast to previous findings on LLMs that Wanda
outperforms SpareseGPT Sun et al. (2024). Fur-
ther, similar to compression fidelity, AWQ achieves
slightly better results than GPTQ in most cases.
We also find that pruning disproportionately af-
fects long-tail or typologically distinct-to-English
languages (e.g., Arabic, Thai, Chinese) compared
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Figure 2: Comparing pruning and on down-

stream reasoning accuracy. Each point corresponds to
a specific model, method, and sparsity configuration.
Quantization methods consistently yield higher reten-
tion of accuracy across tasks compared to pruning.
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Figure 3: Comparing pruning and on

downstreams. Each point corresponds to a specific
model, method, and sparsity configuration. Quanti-
zation methods consistently yield higher retention of
accuracy across tasks compared to pruning. HS: Hel-
laSwag, WG: WinoGrande. Details in App. G.

to resource-rich languages (Kurita et al., 2020).
These languages tend to exhibit higher token-level
sparsity and longer tail distributions in vocabu-
lary usage, leading to pruning to disproportionately
eliminate rare but semantically critical rows in the
weight matrices (Pfeiffer et al., 2020). Quantiza-
tion, by contrast, retains the full parameter struc-
ture and only introduces bounded noise, resulting
in more stable performance across typologically
diverse languages (Dettmers et al., 2022c¢). For ex-
ample, under 50% sparsity in the Llama3.2 model,
SparseGPT achieves a perplexity of 27.96 on En-
glish, but this rises sharply to 77.16 on Chinese
and 129.15 on Arabic. In contrast, quantization
methods maintain perplexities between 16 and 30
across these same languages, highlighting their ro-
bustness in multilingual settings (Lauscher et al.,
2020; Dettmers et al., 2022c¢).

3.3 Downstream Tasks

As shown in Fig. 3 (full details are in App. G),
quantization consistently better preserves rea-
soning capabilities than pruning across most
tasks and models, especially at high compression
ratio. At 50% compression, quantization retains
near-original accuracy, with a maximum drop of
just 1.81%, while pruning incurs significant degra-
dation up to 16.61%. Deeper compression with
4-bit quantization only shows a maximum accu-
racy drop of 5.6% among all tasks, whereas 75%
sparsity pruning yields double-digit losses up to
48.07%. This supports the Junk DNA hypothesis
that pruning may irreversibly damage task-critical
knowledge representations (Yin et al., 2024).
Another observation at 50% compression ratio
is that on reading comprehension and textual en-
tailment tasks such as BoolQ, RTE, and ARC-e,
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Figure 4: Layer-wise averaged cosine similarity of quan-
tized and pruned models compared to the original model.
The higher the cosine similarity, the higher the match
between the compressed and the original model. Quan-
tization with different y-axis scales is in App. H.

pruning methods often perform better. For exam-
ple, in the R1 model, SparseGPT achieves 66.2%
accuracy on BoolQ, notably outperforming AWQ
at 50.1%. This may be attributed to pruning’s ten-
dency to retain high-magnitude weights, which
could better preserve syntactic alignment signals.
In contrast, on commonsense reasoning tasks such
as HellaSwag and ARC-c, quantization outper-
forms pruning. On HellaSwag, for instance, AWQ
yields 36.0% accuracy compared to 34.0% from
SparseGPT, suggesting that the more uniform noise
introduced by quantization may be more favorable
for long-range reasoning.

3.4 Cosine Similarity

We complement the feature magnitude driven SNR
and compression error analysis with an angular de-
viation study, which measures the average cosine
similarity between token-level hidden states in the
compressed and original model by layer, illustrated
in Fig. 4. Across all methods, except Llama3.2, the
angular similarity decreases along with layer depth
increases. Notable differences persist between com-
pression techniques: quantization more effectively
preserves angular information than pruning, with
AWQ performing best and Wanda worst. Deeper
compression further reduces similarity, particularly
for pruning-based methods.

3.5 Disentangling Scale vs. Compression
Effects

While our work focuses on compressing SLMs un-
der 3B parameters, it remains unclear whether the
observed performance—efficiency trade-offs arise
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Model en ar hi zh th de es
Uncompressed Qwen-0.5B 1521 16.29 6.66 22.62 6.24 20.89  18.99
Llama3.2-1B (0.5 Wanda) 3598 10694 2324 8530 26.08 5745 51.25
Llama3.2-1B (0.5 SparseGPT) 2796 129.15 2320 77.16 23.13 4528 41.38
Llama3.2-1B (AWQ 8) 16.20  30.31 9.70 2523  11.53  17.13  18.61
Llama3.2-1B (GPTQ 8) 1621 3034  9.73 2525 1154  17.14  18.61
SmolLM2-1.7B (0.75 Wanda) 953.00 8939.75 2999.34 5709.18 652.35 1629.46 1566.07
SmolLM2-1.7B (0.75 SparseGPT)  104.97 1597.66 159.86 833.10 68.74 342.06 348.52
SmolLM2-1.7B (AWQ 4) 9.87 4.95 442 4.48 3.25 12.09 10.38
SmolLM2-1.7B (GPTQ 4) 10.04 5.23 4.62 4.59 3.38 12.54  10.70

Table 2: Multilingual perplexity of models in comparable sizes. The column-wise best is highlighted in bold.

primarily from the effective model size or from
the compression techniques themselves. To investi-
gate this, we compare 50% compressed Llama 3.2
1B Instruct (Llama3.2-1B) and 75% compressed
SmolLM2 1.7B Instruct (SmolLM2-1.7B) with
the uncompressed Qwen2.5-0.5B-Instruct (Qwen-
0.5B) in Table 2 and Table 13 (the latter is provided
in the Appendix). These models have comparable
effective sizes. The results show that the 75% com-
pressed SmolLM2-1.7B consistently outperforms
the full-size small model Qwen-0.5B. Specifically,
AWQ yields clear gains in language modeling,
whereas GPTQ demonstrates greater robustness on
downstream tasks. For instance, SmolLM2-1.7B
quantized to 4-bit with AWQ consistently outper-
forms the uncompressed Qwen-0.5B across both
multilingual perplexity and downstream bench-
marks. We note that differences in pre-training
data and methodology between Qwen-0.5B and
SmollLM2-1.7B may act as potential confounders.
However, fully controlling for these factors would
require pre-training all models from scratch on
identical corpora and with identical procedures,
which is beyond the scope of this study.

Second, we compare model performance against
model size in Fig. 5, where each compressed model
is represented by its effective size. For example, if a
1B parameter model is pruned by 50%, it is plotted
as 0.5B. The result clearly shows that compressing
a larger model down to a smaller size yields better
performance than using an uncompressed small
model of the same size.

3.6 SLMs under 1B Parameters

To broaden the model size range, we include one
SLM under 1B parameters, Qwen2.5-0.5B. As
shown in Table 7, Table 8, and Table 9 in the
Appendix, the findings for the 0.5B model align
with our main conclusion: quantization, particu-
larly AWQ, consistently outperforms pruning.

Method Type
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Quantization ¢
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w B F w
& 5 & 3

®
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Figure 5: Comparing pruning and on Hel-
laSwag. The plot shows compressed model size (x-axis)
versus performance (y-axis) across all models and com-
pression setups.

4 Discussion

Our comprehensive comparison suggests the supe-
rior choice of quantization over pruning for SLMs.
Although the selected pruning and quantization
techniques follow a similar local activation re-
construction error minimization to retain perfor-
mance (Kuzmin et al., 2023), we empirically ob-
serve that by removing entire weights, pruning
impacts performance more severely than quanti-
zation. Quantization introduces small, uniform
perturbations (noise) to weights, preserving overall
model structure and learned representations (Jacob
et al., 2018; Stock et al., 2019). Pruning, however,
removes entire connections, significantly altering
neuron connectivity and functionality (LeCun et al.,
1989; Hassibi et al., 1993; Zhu and Gupta, 2017).
While quantization reduces numerical precision,
it keeps neuron connectivity intact, maintaining
higher activation SNR than pruning (Kuzmin et al.,
2023; Nagel et al., 2021), theoretically explaining
its empirical robustness (Meuser et al., 2024).
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Limitations

While this study provides a systematic and ex-
tensive comparison of leading post-training prun-
ing and quantization methods for Small Language
Models (SLMs), it is subject to two limitations.
Our empirical investigation focuses specifically on
six SLMs from 0.5B to 3.8B parameters. While our
findings clearly indicate the superiority of quantiza-
tion over pruning for these models under aggressive
compression, the direct applicability and general-
ization of these conclusions to other sizes of SLMs
are not evaluated and remain an open question, as
the dynamics of compression might differ. Ad-
ditionally, we concentrate on four state-of-the-art
post-training methods: SparseGPT and Wanda for
pruning, and GPTQ and AWQ for quantization.
This study does not cover other compression meth-
ods requiring full or partial retraining (training-
aware pruning/quantization).
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A Related Work

Pruning and quantization are two widely adopted
approaches for model compression (Gholami et al.,
2021; Hoefler et al., 2021; Zhu et al., 2024). With
origins in seminal work from Hassibi et al. (1993);
LeCun et al. (1989), quantization achieves compres-
sion by reducing the numerical precision of model
parameters, while pruning determines redundant
weights for removal (Han et al., 2016). Their appli-
cation to LLMs poses significant challenges, such
as the importance of retaining large-magnitude out-
lier features, interplay between weights and inputs,
and high computational requirements (Dettmers
et al., 2022a). Recently, advanced pruning meth-
ods like SparseGPT (Frantar and Alistarh, 2023a)
and Wanda (Sun et al., 2024), and sophisticated
quantization techniques such as GPTQ (Frantar
et al., 2023) and AWQ (Lin et al., 2024), have
significantly advanced LLLM compression in the
post-training and retraining-free setting.

While quantization and pruning achieve com-
pression through different means, they share the
common optimization goal of block-wise recon-
struction error minimization (Frantar and Alistarh,
2022; Li et al., 2021). That is, model weights get
compressed in a way that best preserves the origi-
nal outputs of a model block. More formally, given
layer ¢ with weights Wy and inputs X, the goal is
to minimize ||W X, — WngH% with respect to
the compressed weights W.

While pruning and quantization are now widely
used for compressing LLMs, early comparative
studies (Kuzmin et al., 2023) rely on outdated tech-
niques such as magnitude-based pruning and plain
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symmetric quantization. These approaches typi-
cally minimize weight reconstruction error without
accounting for activation dynamics, limiting their
relevance to current methods. Foundational the-
oretical publications (Frantar and Alistarh, 2022;
Dettmers et al., 2022b; Dettmers and Zettlemoyer,
2023) fostering later compression techniques em-
phasize the importance of preserving activations,
reflecting a broader shift in compression objectives.
This shift has yielded more effective methods. Pre-
vious work has compared pruning and quantization
for LLMs, but without focusing on compression er-
rors (Jaiswal et al., 2023). Moreover, SLMs remain
underexplored in this setting. As SLMs grow in
importance for efficient deployment, it is unclear
whether findings from LLMs carry over.

B Implementation Details

We follow the exact hyperparameter settings from
prior work for pruning and quantization. Specifi-
cally, for Wanda, SparseGPT, and GPTQ, we sam-
ple the calibration set from the initial shard of the
C4 dataset, following the methodology of Frantar
et al. (2023).

As previous studies have shown that the benefit
of increasing calibration samples saturates logarith-
mically (Frantar and Alistarh, 2023b; Sun et al.,
2024), we adopt the standard protocol of randomly
sampling 128 calibration examples, each contain-
ing 2,048 tokens, totaling 262,144 tokens. For fur-
ther discussion on calibration set sensitivity, we re-
fer to the analysis by Williams and Aletras (2024).

AWAQ uses a smaller calibration set: 128 samples
of 512 tokens each, drawn from The Pile, totaling
65,536 tokens. For AWQ, SparseGPT, and GPTQ,
we set the group size to 128 and prune for unstruc-
tured sparsity.

To evaluate pruning error, SNR, and cosine sim-
ilarity, we sample 128 sequences of 2,048 tokens
from the C4 validation set. Metrics are computed
token-wise at each layer output. For multilingual
perplexity evaluations, we use the corresponding
mC4 validation set for each language, maintaining
the same number of samples and tokens as in the
internal feature analysis.

All calibration datasets are sourced via public
versions on Hugging Face Datasets (Lhoest et al.,
2021), and all model architectures and configura-
tions are loaded from Hugging Face Transformers
(Wolf et al., 2020). For quantization, we use the Op-
timum library for GPTQ and AutoAWQ for AWQ.

SparseGPT and Wanda are implemented using the
official GitHub repositories provided by the respec-
tive paper authors.

For the construction of calibration corpora, we
employ the publicly accessible iterations of each
source dataset available through Hugging Face
Datasets (Lhoest et al., 2021). Similarity, we utilize
the parametric configurations and implementations
of each architectural model from Hugging Face
Transformers (Wolf et al., 2020).

C Evaluation

C.1 Quantization and Pruning Error

We refer to the definition of Kuzmin et al. (2023)
for computing the Pruning Error and SNR. How-
ever, both of them relate to model weights, which
does not reflect the current compression paradigm
of emphasizing the importance of features. There-
fore, we compute Pruning Error and SNR with
respect to the outputs of each layer, i.e. the hidden
states. To cope with different hidden state magni-
tudes per layer, all hidden states are normalized
layer-wise by their average vector norm, yielding
the following pruning error:

TREAN B0 _ 30 2
E[(H(l) _ f{r(l))2] = %1 ZZ (M)
(D

Lo~ 0
[ E

with H®) N> a5 the hidden states of all N to-
kens in layer k before compression and H(") ¢N*d
after compression. Individual elements of the hid-

@

den states are denoted as h; ;» referring to the hid-

den state of the j-th feature element of the i-th
token in H®.
C.2 Signal-to-noise ratio (SNR)

Following the same notation as for computing the
compression error, the SNR of a single layer [ is
computed as

E [HU))z}

5 [(mz) _ ﬁ(l)f]

SNRY). = 10l0gy

3
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The final model SNR and compression error is
the average over all layer-wise SN Rg])g or com-

pression errors respectively.

C.3 Practical Deployment Comparision

Given the growing need to deploy language mod-
els on resource-constrained edge devices, practical
deployment-relevant statistics such as memory foot-
print, latency and inference speed are crucial and
highly informative for practitioners. In response,
We have included theoretical inference speedup
from Wanda, SparseGPT, AWQ, and GPTQ pa-
pers, and also calculated FLOPs for comparison in
Table 3.

C.4 Datasets

Table 4 presents the number of examples across
the evaluation tasks, extracted from their respective
test or validation partitions.

D Fidelity: SNR and Compression Error

We report average activation-level SNR and com-
pression error across all models and configurations
as shown in Table 5. Quantization methods con-
sistently yield higher SNR and lower error than
pruning methods, particularly under higher com-
pression. AWQ achieves the strongest overall fi-
delity, followed by GPTQ. Among pruning meth-
ods, SparseGPT consistently outperforms Wanda.
Additionally, both SNR and error exhibit a depth-
wise trend, with deeper layers generally showing
greater degradation. Results on English are visual-
ized in Fig.6,Fig.7, Fig.8, Fig.9, and Fig.10.
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. . . Memory  FLOPs/
Method Models & Size Sparsity Device Footprint  Ops Performance (speed/latency)
Wand LLaMA (7B, 13B, 50% unstruc- GPU/CPU = 0.5% ~ 0.5% 0.54 s vs 203 s prune (7B, A6000);
anda  30B, 65B) tured; 2:4,4:8  (A6000)  (weights)  (ops) ~1.5-1.8% for 2:4
OPT/BLOOM (up - - Prunes 175B in ~ 4.5 h; negligible
SparseGPT to 175B; LLaMA flf)r-:(iooigznzt%uc- ((XDII(J)O) &/gij}is) E:) OS)S X accuracy loss up to 50-60% sparsity;
13B) e & p ~1.5-1.8x speedup for 2:4 sparsity
AWQ LLaMA-2/Vicuna/ INT4 weights GPU :Vglzﬁ ;; ~ 1x 3.2-3.9x speedup vs FP16;
MFM (up to 70B) (keep~1% FP16) (RTX4090) s Fg 16) (ops) 30 tok/s (13B on RTX4070-8GB)
GPT/OPT (upto  INT4/3 GPU ~ 0.25x -
GPTQ  175B;LLaMA 7B/ (layerwise; A1/ (weights (= 15 : zﬁux 5’:;%?’6%5}5512‘22%037 .
13B/30B/65B)  someINT2)  A6000)  vs FP16) P peedup » SIng
Table 3: Practical Deployment Metrics comparison summary
Dataset # Examples © M
ARC-Easy (Clark et al., 2018) 2,376 0
ARC-Challenge (Clark et al., 2018) 1,172 g |- aorenar o5
BoolQ (Clark et al., 2019) 3,270 | et
HellaSwag (Zellers et al., 2019) 10,042 20 Sooaan.n
LAMBADA (Paperno et al., 2016) 5,153 ol S B e T .
OpenBookQA (Banerjee et al., 2019) 500 3 : o = % A
PIQA (Bisk et al., 2020) 1,838 Layer
RTE (Dagan et al., 2005) 277
StoryCloze (Mostafazadeh et al., 2016) 1,511 Figure 6: Layer-wise activation SNR on English tokens
WinoGrande (Sakaguchi et al., 2021) 1,267 for R1.

Table 4: Number of examples for each evaluation task.

Model Sparsity/Bit-width Method SNR Error(xio—*%)
SparseGPT 11.75 1.31

0.50 / 8-bit Wanda 11.87 1.32

AWQ 44.78 0.00

SmolLM?2 GPTQ 41.71 0.00
SparseGPT 4.57 7.46

0.75 / 4-bit Wanda 2.65 12.51

AWQ 18.97 0.23

GPTQ 15.86 0.71

SparseGPT 10.53 4.82

0.50 / 8-bit Wanda 10.42 4.17

AWQ 37.47 0.02

Phi3.5 GPTQ 34.95 0.04
SparseGPT 5.28 11.17

0.75 / 4-bit Wanda 4.70 8.49

AWQ 15.97 1.47

GPTQ 14.86 1.50

Table 5: Full results of layer-wise average activation
SNR and compression error (Error).

E Multilingual Language Modeling

Table 6 presents token-level perplexity across seven
languages for all models and compression settings.
Quantization maintains stable performance across
languages and compression levels, while pruning
leads to greater degradation, especially at higher

so] 7

40

m*‘\\»

Wanda 0.5

@ SparseGPT 0.5
—&— AWQ 8-bit
GPTQ 8-bit

20

.........

.
10 L

Figure 7: Layer-wise activation SNR on English tokens
for Qwen2.5.

sparsity. The performance drop under pruning
varies across languages and models, reflecting the
interaction between compression sensitivity, tok-
enization, and pretraining distribution.

F Small models smaller than 1B
G Reasoning Tasks

To compare the downstream task performance, we
include a wide range of reasoning tasks for zero-
shot evaluation shown in Table 10. These tasks
primarily assess commonsense reasoning abilities,
using binary, multiple choice, Cloze, and Winograd
style questions, covering different difficulty levels:
OBQA (OpenBookQA) is the multi-hop reasoning
task, requiring combining multiple facts from the
“open book” knowledge base to answer questions.
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Model Sparsity Method en ar hi zh th de es

0.00 Full Precision 29.79 159.39 11.02 41.37 40.67 98.58 85.36
SparseGPT 44.41 379.12 16.26 117.87 30632 19378  162.97

0.50 Wanda 47.75 451.78 16.85 114.34 170.08  206.75  164.00

R1 ’ AWQ 29.80 159.51 11.03 41.38 40.46 98.73 85.48
GPTQ 29.83 159.32 11.03 41.38 40.87 98.66 85.59

SparseGPT 292.42  13469.27 996.42 5767.65 2922.67 5566.94 2966.31

075 Wanda 1180.82 201520.22  42817.80 9133.28  60985.34 26397.47 24978.16

’ AWQ 33.22 190.01 12.30 49.83 4897  112.98 96.45

GPTQ 32.28 185.16 12.29 49.08 46.54 11237 99.91

0.00 Full Precision 10.98 11.00 542 12.07 5.35 13.31 11.45
SparseGPT 15.54 41.40 11.02 33.20 15.11 27.49 22.64

0.50 Wanda 16.38 39.73 10.65 30.49 16.91 31.39 26.26

Qwen2.5 ’ AWQ 10.98 11.00 542 12.07 5.35 13.31 11.46
’ GPTQ 10.98 11.00 542 12.07 5.35 13.32 11.46
SparseGPT 155.99 1158.69 324.37 2424.02 961.63 1238.69 1102.33

075 Wanda 1436.60  26945.81 12328.96  69817.35  16434.86 7782.48 5573.80

’ AWQ 11.79 12.68 6.14 13.19 6.08 14.87 12.48

GPTQ 12.02 13.44 6.41 14.25 6.33 15.32 12.81

0.00 Full Precision 16.20 30.31 9.72 25.23 11.53 17.13 18.61
SparseGPT 27.96 129.15 23.2 77.16 23.13 45.28 41.38

0.50 Wanda 35.98 106.94 23.24 85.3 26.08 57.45 51.25

Llama3.2 ’ AWQ 16.2 30.31 9.7 25.23 11.53 17.13 18.61
’ GPTQ 16.21 30.34 9.73 25.25 11.54 17.14 18.61
SparseGPT 27395 14474247  53063.41  41727.27  40215.73 1429.28 1111.82

075 Wanda 10130.75 302363.66 116279.45 180397.61  189368.5 45676.04 22685.21

’ AWQ 17.53 36.64 10.95 29.96 12.94 19.46 20.72

GPTQ 18.9 46.59 13.22 37.00 15.44 22.84 23.29

0.00 Full Precision 9.27 4.50 4.00 4.11 2.94 10.86 9.57
SparseGPT 13.85 8.98 6.93 10.70 4.23 20.07 18.75

0.50 Wanda 13.63 7.97 6.48 10.37 4.22 20.80 18.78

SmolLM2 ’ AWQ 9.27 4.51 4.01 4.11 2.94 10.86 9.57
GPTQ 9.27 4.51 4.01 4.11 2.94 10.87 9.57

SparseGPT 104.97 1597.66 159.86 833.10 68.74  342.06  348.52

075 Wanda 953.00 8939.75 2999.34 5709.18 652.35 1629.46 1566.07

’ AWQ 9.87 4.95 4.42 4.48 3.25 12.09 10.38

GPTQ 10.04 5.23 4.62 4.59 3.38 12.54 10.70

0.00 Full Precision 7.75 3.20 3.71 5.04 3.85 8.61 8.64
SparseGPT 11.34 9.11 9.90 15.26 8.69 15.78 16.49

050 Wanda 11.08 7.71 8.32 13.05 7.69 14.60 1543

Phi3.5 ’ AWQ 7.75 3.20 3.71 5.04 3.85 8.61 8.64
GPTQ 7.75 3.20 3.71 5.04 3.85 8.61 8.65

SparseGPT 76.53 280.62 227.38 749.68 205.68  669.48 59491

075 Wanda 1068.58 1329864.75 2380391.50 3571925.75 9051510.00 14388.79 19762.86

’ AWQ 8.06 3.56 4.25 5.48 4.26 9.14 9.09

GPTQ 8.20 3.73 4.42 5.66 4.50 9.49 9.40

Table 6: Multilingual PPL results across models, sparsity levels, and compression methods. 4-bit quantization
corresponds to approximately 75% sparsity, 8-bit to 50%.
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Figure 8: Layer-wise activation SNR on English tokens
for Llama3.2.
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Figure 9: Layer-wise activation SNR on English tokens
for SmolLM2.

Other tasks (e.g., BoolQ, RTE, HellaSwag) primar-
ily assess single-step reasoning or commonsense
understanding.

H Cosine Similarity

We visualize layer-wise cosine similarity between
the hidden states of compressed and original mod-
els in Fig.4. Quantization methods preserve higher
similarity across layers and models. Pruning meth-
ods show lower similarity, particularly in deeper
layers. The similarity decreases with more aggres-
sive compression, but the relative advantage of
quantization remains consistent.

I Limitations of Wanda in SLMs

The contrast between our findings on SLMs and
prior work on LLMs (where Wanda typically out-

Model SNR Error

SparseGPT (unstructured 50%) 11.94 2.77e-4
Wanda (unstructured 50%) 11.66 2.76e-4
GPTQ INT8 43.16 1.86e-7
AWQ INTS8 48.85 5.56e-8
SparseGPT (unstructured 75%) 4.85 16.47e-4
Wanda (unstructured 75%) 1.56 25.29e-4
GPTQ INT4 18.91 0.49¢-4
AWQ INT4 18.59 0.53e-4

Table 7: Compression results for Qwen2.5-0.5B-

Instructure under different compression methods. The
column-wise best is highlighted in bold.
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Figure 10: Layer-wise activation SNR on English tokens
for Phi3.5.
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Figure 11: Layer-wise averaged cosine similarity of
quantized and pruned models compared to the original
model. Quantization is shown with different y-axis
scales.

performs SparseGPT) is noteworthy and merits fur-
ther discussion. We believe several factors might
contribute to this divergence.

First, LLMs have more redundant weights,
allowing pruning (even heuristic methods like
Wanda) to preserve performance. Wanda’s suc-
cess on LLMs, e.g. Llama 7B, attests that many
weights in a 7B+ model can be removed without
significant impact, the remaining weights can com-
pensate, and important features are preserved. In
smaller models, by contrast, there are fewer ex-
traneous weights. Every parameter likely has a
higher relative contribution to some facet of the
model’s knowledge or capacity. Therefore, prun-
ing 50% of a 1.5B model removes a much larger
fraction of the model’s “knowledge” than prun-
ing 50% of a 13B model. Wanda performs bet-
ter than magnitude, but it is still essentially ’a
heuristic selection of weights’; its design doesn’t
attempt to minimize the difference before and after
pruning, but rather removes weights with smaller
activations. On the other hand, SparseGPT uses
a second-order (Hessian-based) approximation to
measure the sensitivity of the model’s outputs to
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Model en hi zh th de ar es
Full Size 16.29 6.66 22.62 6.24 20.89 18.99 15.21
Sparsegpt (0.5) 22.21 67.18 14.88 45.19 16.01 46.40 36.92
Wanda (0.5) 25.62 50.39 14.12 4791 16.23 55.51 44.83
GPTQ (INT8) 14.92 16.90 7.09 16.64 7.22 20.57 16.69
AWQ (INTS) 14.92 16.89 7.09 16.63 7.22 20.56 16.68
Sparsegpt (0.75) 322.83 2026.32 975.30 2555.91 473.33 1964.03 2108.29
Wanda (0.75) 913.84 7710.46 2358.86 4268.96 2606.93 5548.94 5131.00
GPTQ (INT4) 16.97 22.84 9.47 21.13 9.59 26.00 19.93
AWQ (INT4) 17.38 22.40 9.09 20.62 8.93 26.10 20.08

Table 8: New multilingual perplexity results for Qwen2.5-0.5-Instructure under different compression methods. The

column-wise best is highlighted in bold.

Model BoolQ RTE HellaSwag  WinoGrande ARC-e ARC-c OBQA
Full Size 67.95 62.45 40.63 55.88 65.53 30.89 242
Sparsegpt (0.5) 41.22 51.62 35.76 54.06 57.03 24.83 20.2
Wanda (0.5) 58.29 53.43 34.44 52.64 57.79 25.09 19.4
GPTQ (INTS) 66.63 63.54 39.68 55.88 54.80 27.47 24.0
AWQ (INTS) 66.42 62.45 39.67 56.20 55.35 28.33 24.2
Sparsegpt (0.75) 43.33 56.32 27.00 49.57 33.67 18.69 16.0
Wanda (0.75) 37.83 52.71 26.53 49.57 28.96 18.43 12.6
GPTQ (INT4) 65.32 65.70 38.25 51.46 51.64 27.82 22.4
AWQ (INT4) 65.66 59.21 37.90 52.80 51.98 27.30 20.4

Table 9: New downstream tasks results for Qwen2.5-0.5-Instruct under different compression methods. The

column-wise best is highlighted in bold.

each weight, which can benefit SLMs more than
LLMs, as SLMs have fewer redundant weights.

Second, Wand lacks weight adjustment and error
compensation. In a small model with limited re-
dundancy, any one-shot removal of weights leaves
more unrecoverable damage. SparseGPT mitigates
this damage by reallocating some weight impor-
tance during its adjustment step. On the other hand,
Wanda’s design, which assumes large-model char-
acteristics (many dispensable weights and obvious
outlier features), is less suited to the small-model
regime. Its lack of any weight adjustment leaves
small models struggling to recover from pruning-
induced damage.

Third, Wanda’s core assumption leverages the
phenomenon of outlier features, a well-documented
effect in LLMs where a few dimensions in each
layer’s activation have disproportionately large vari-
ance or magnitude. These outlier dimensions of-
ten carry crucial semantic information (e.g. they
correlate with rare but important token patterns)
and must not be pruned aggressively. Wanda im-
plicitly protects those: even a small weight on an
outlier neuron won’t be pruned if the activation
norm is huge, because the weightxactivation score
would still be relatively large. In large models (like
13B, 70B), such outlier channels are prominent and

Wanda’s heuristic is very effective at avoiding the
truly important weights. However, outlier behavior
is less studied and potentially less pronounced in
SLMs. If outlier-driven structure is weaker or ab-
sent, Wanda’s assumptions may not hold, leading
to less effective pruning.

J 2:4 Structured Pruning

Table 11 and Table 12 report the results on 2:4
structured pruning using Wanda and SparseGPT.
Overall, unstructured pruning consistently outper-
forms structured pruning, in line with prior findings
in LLMs.

This finding has practical implications, espe-
cially for SLM practitioners: since SLMs are al-
ready small and require less compute, which low-
ers the barrier for applying unstructured pruning,
practitioners have the flexibility to choose between
structured and unstructured approaches. Our re-
sults suggest that unstructured pruning remains
preferable for optimal performance.

J.1 Models in comparable size
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Model Sparsity Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA

0.00 Full Precision 51.10 46.93 36.13 51.07 4293 2756 18.60
SparseGPT 66.21 55.96 33.95 55.72 5434 2944 19.80

05 Wanda 64.56 57.76 33.27 54.14 54.08 28.24 18.80

R1 ’ AWQ 50.06 48.74 36.03 50.99 4255 27.99 1840
GPTQ 54.16 47.65 36.20 50.67 43.10 27.73 18.80

SparseGPT 61.16 52.35 27.11 49.80 27.82 19.71 12.60

075 Wanda 59.76 52.71 26.36 49.01 28.16 2031 14.40

’ AWQ 61.07 52.35 35.81 50.51 4221 28.92 17.60

GPTQ 53.67 54.15 35.46 52.17 4289 2696 19.00

0.00 Full Precision 78.32 73.65 49.30 59.59 6839 3848 31.20
SparseGPT 76.36 7545 44.61 61.80 68.01 36.18 27.80

05 Wanda 69.39 67.51 42.28 60.06 66.88 34.38 24.40

Qwen2.5 AWQ 78.13 75.09 49.21 59.35 68.64 39.25 30.80
GPTQ 78.23 74.73 49.21 59.35 68.86 38.48 31.00

SparseGPT 56.48 50.18 27.35 49.57 2929 19.28 12.00

075 Wanda 51.13 51.99 26.11 51.07 27.65 19.71 11.60

’ AWQ 76.51 70.40 48.19 61.48 6637 36.60 29.40

GPTQ 77.49 70.76 48.26 57.85 6620 39.16 25.60

0.00 Full Precision 57.28 47.29 43.73 56.75 58.12 31.31 24.80
SparseGPT 64.68 54.15 38.27 55.72 58.00 28.33 21.60

05 Wanda 62.63 53.79 35.67 55.8 5476 2457 18.40

Llama3.2 ™ AWQ 55.26 48.38 43.64 56.27 57.58 31.57 23.80
GPTQ 57.22 46.93 43.8 56.99 58.12 3148 24.80

SparseGPT 55.05 53.07 26.75 50.2  32.24 19.2  14.20

075 Wanda 41.04 52.71 26.08 4949 2736 20.05 1240

’ AWQ 56.21 47.29 43.26 56.51 5821 30.89 24.60

GPTQ 66.76 54.87 42.62 547 5497 31.66 25.40

0.00 Full Precision 75.81 70.04 51.75 62.75 6629 3942 28.00
SparseGPT 69.85 53.43 44.92 62.27 68.14 37.03 26.80

05 Wanda 67.16 55.23 4291 59.83 67.76 32776 25.00

SmolLM2 ™ AWQ 75.78 69.31 51.71 63.14 6578 39.51 28.80
GPTQ 76.30 68.23 51.68 62.90 66.04 39.59 28.20

SparseGPT 38.56 51.99 27.16 49.64 3131 18.60 12.60

075 Wanda 37.80 53.79 26.10 49.72 2845 19.54 14.60

’ AWQ 75.93 70.40 50.80 62.19 67.85 38.14 2720

GPTQ 76.27 70.76 50.89 60.77 6494 38.74 29.00

0.00 Full Precision 85.84 80.87 56.32 68.59 76.14 50.68 33.60
SparseGPT 82.63 70.76 52.02 67.64 7458 46.16 35.80

05 Wanda 83.00 71.84 50.45 67.01 77.65 47.35 33.00

Phi3.5 ’ AWQ 85.72 81.23 56.34 68.11 75.63 5094 3420
GPTQ 86.09 80.87 56.37 68.11 7630 50.60 34.20

SparseGPT 62.26 55.6 29.12 51.38 30.89 20.65 11.60

075 Wanda 51.35 52.35 26.12 49.88 28.07 19.11 14.80

’ AWQ 85.63 79.78 54.96 66.85 75.04 50.17 31.80

GPTQ 85.63 80.87 54.69 66.61 76.56 49.74 34.80

Table 10: Performance (%) on English downstream benchmarks: BoolQ, RTE, HellaSwag, WinoGrande, ARC-e,
ARC-c, and OBQA, across models, sparsity levels, and pruning/quantization methods.
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Model SNR Error en ar hi zh th de es

(xle-4)
R1 Original - - 29.79  159.39  11.02 41.37 40.67 98.58 85.36
Wanda (Structured 2:4) 7.08 397 148.92 4864.43 5445 51427 66637 10244 738.42
Wanda (Unstructured 0.5) 11.11 1.59 4775 451.78 16.85 11434 170.08 206.75 164.00
SparseGPT (Structured 2:4) 9.64 2.19 61.14 66481 3096 23278 25891 367.24 254.92

SparseGPT (Unstructured 0.5) 13.61 0.86 441 37912 1626 117.87 306.32 193.78 162.97

Table 11: Compression performance and multilingual perplexity of DeepSeek R1 Distil Qwen 1.5B. The better
result between structured and unstructured is highlighted in bold. Due to rebuttal time constraints, results for the
other four models will be provided in the final version.

Model BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA
R1 Original 51.10 46.93 36.13 51.07 42.93 27.56 18.60
R1 Wanda (Structured 2:4) 62.05 51.62 29.89 52.09 43.48 23.46 15.60
R1 Wanda (Unstructured) 64.56 57.76 33.27 54.14 54.08 28.24 18.80
R1 SparseGPT (Structured 2:4) 62.75 52.71 32.01 52.88 49.45 24.40 16.60
R1 SparseGPT (Unstructured) 66.21 55.96 33.95 55.72 54.34 29.44 19.80

Table 12: Performance (%) of DeepSeek R1 Distill Qwen 1.5B on English downstream benchmarks. The better
result between structured and unstructured is highlighted in bold. Due to rebuttal time constraints, results for the
other four models will be provided in the final version.

Model BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA
Uncompressed Qwen-0.5B 67.95 62.45 40.63 55.88 65.53 30.89 24.20
Llama3.2-1B (0.5 Wanda) 62.63 53.79 35.67 55.80 54.76 24.57 18.40
Llama3.2-1B (0.5 SparseGPT) 64.68 54.15 38.27 55.72 58.00 28.33 21.60
Llama3.2-1B (AWQ 8) 55.26 48.38 43.64 56.27 57.58 31.57 23.80
Llama3.2-1B (GPTQ 8) 57.22 46.93 43.80 56.99 58.12 31.48 24.80
SmolLM2-1.7B (0.75 Wanda) 37.80 53.79 26.10 49.72 28.45 19.54 14.60
SmolLM2-1.7B (0.75 SparseGPT)  38.56 51.99 27.16 49.64 31.31 18.60 12.60
SmolLM2-1.7B (AWQ 4) 75.93 70.40 50.80 62.19 67.85 38.14 27.20
SmolLM2-1.7B (GPTQ 4) 76.27 70.76 50.89 60.77 64.94 38.74 29.00

Table 13: Downstream performance of models in comparable sizes. The column-wise best is highlighted in bold.
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