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Abstract

State-of-the-art  vision-language  models
(VLMs) require massive scaling that limits
practical deployment. Small-scale VLMs offer
a practical alternative but face out-of-domain
(OOD) collapse when trained with traditional
supervised fine-tuning (SFT). Through
GeneralPoints experiments, we identify that
OOD collapse is due to SFT’s tendency to
induce visual hallucinations under distribution
shifts.  Although RL-based post-training
effectively mitigates OOD degradation, it
faces a critical dilemma with sparse rewards
in complex visual reasoning tasks. To this
end, we propose Curriculum Reinforcement
Finetuning (Curr-ReFT), comprising two
sequential stages: (1) Structured Curriculum
Reinforcement Learning, which progressively
evolves task formats and reward functions to
match models’ growing capabilities; and (2)
Rejected Sampling-based Self-improvement,
which maintains the fundamental capabilities
of VLMs through selective learning from
high-quality examples. Extensive experiments
demonstrate that Curr-ReFT achieves state-of-
the-art performance across various visual tasks
in both in- and out-of-domain settings and
benchmarks. Code and data are available at
https://github.com/ding523/Curr_REFT.

1 Introduction

Recent advances in multimodal understanding have
led to remarkable vision-language models (VLMs),
exemplified by OpenAl (Arrieta et al., 2025; Jaech
et al., 2024; Wainwright and Lowe, 2023), InterVL
(Chen et al., 2024b; Wang et al., 2022), and QWen
(Wang et al., 2024; Yang et al., 2024) series. How-
ever, these achievements predominantly rely on
massive model scaling (>32B parameters), cre-
ating substantial deployment barriers in resource-
constrained environments. This limitation moti-
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Figure 1: (a) Visual Task Performance: SFT vs. Vanilla
RL under in- and out-of-domain settings. (b) Illustration
of Vallina RL vs Curriculum RL. The “Training Bottle-
neck" in small-scale VLMs: suboptimal convergence
when facing complex visual reasoning tasks. Our Cur-
riculum RL ensures steady progression of model train-
ing through Phased Task Reframing and Hierarchical
Reward Design. (c) Structured Curriculum Reinforce-
ment Learning. Curr-RL systematically reformulates
input questions into three progressively complex for-
mats. Using multimodal math (OpenR1-8k) as the test
case, the pass@k(Cheng et al., 2024) curves reveal a fun-
damental trade-off between solution space constraints
and reasoning complexity.

vates the exploration of efficient training paradigms
for small-scale VLMs (<10B parameters).

While supervised fine-tuning (SFT) with high-
quality annotated data (Bai et al., 2022; Ziegler
et al., 2019) is the dominant training approach
for VLMs, it poses a critical challenge for small-
scale VLMs: generalization collapse (Abbas et al.,
2025; Srivastava et al., 2025; Yu et al., 2025b). As
evidenced in Fig. 1(a), SFI-trained models consis-
tently outperform base models on in-domain data
across detection, classification, and multimodal
math tasks. However, these gains are accompa-
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nied by significant performance degradation on
out-of-domain (OOD) distributions, underscoring
the challenge of “OOD degradation". This phe-
nomenon aligns with recent theoretical findings
(Fu et al., 2023; Srivastava et al., 2025) attributing
OOD degradation to SFT’s inherent bias toward
pattern memorization rather than systematic rea-
soning (Yu et al., 2025b).

DeepSeek R1-Zero’s (Guo et al., 2025) suc-
cess with Group Relative Policy Optimization
(GRPO) suggests a promising direction for enhanc-
ing reasoning through comparative response eval-
uation. Motivated by these advances, we inves-
tigate whether RL-based post-training can simi-
larly enhance OOD generalization in small-scale
vision-language models. Comprehensive experi-
ments reveal a consistent pattern: while SFT suffers
significant OOD degradation, RL-based methods
maintain robust generalization across diverse vi-
sual tasks (Fig. 1 (a)). Empirical analysis further
demonstrates that rule-based RL reduces SFT’s
susceptibility to visual hallucinations under distri-
bution shifts (more details in Sec. 4.2.1).

Although RL effectively mitigates OOD chal-
lenges, it encounters ‘Training Bottleneck’ in vi-
sual reasoning tasks, characterized by minimal pol-
icy updates, premature convergence to suboptimal
strategies, and repetitive generation of low-quality
responses (Fig. 1 (b)). This bottleneck arises from
sparse reward (Xi et al., 2024; Tec et al., 2025;
Wei et al., 2023)—tasks with complex solution
spaces provide rarely positive feedback, leading to
insufficient learning and suboptimal convergence.

To address this bottleneck, we propose a Struc-
tured Curriculum Reinforcement Learning (Curr-
RL) paradigm that progressively evolves task for-
mats to match models’ growing capabilities, in-
spired by curriculum learning (Kong et al., 2021;
Pentina et al., 2015; Lin et al., 2023; Ryu et al.,
2024). Our key insight is that the sparse reward
dilemma mainly arises from the vast solution
space, hindering the exploration of correct paths,
particularly in early-stage training. (Lin et al.,
2023). As illustrated in Fig. 1 (c¢), Curr-RL em-
ploys a three-phase task reframing and hierarchical
reward design, enabling smooth transitions from
structured to open-ended formats. This progres-
sion begins with binary decisions that reconstruct
complex visual reasoning into true/false questions,
reducing the solution space dimension for more
dense rewards. It then progresses to choice selec-
tion formats that introduce partially open elements,

and culminates in open-ended generation, devel-
oping robust vision-language associations before
confronting sparse reward scenarios.

While Curriculum RL effectively boosts domain-
specific visual reasoning, it often compromises
general-purpose language capabilities (e.g., com-
monsense and scientific reasoning), a known trade-
off in RL fine-tuning (Pan et al., 2024; Hafez and
Erekmen, 2024). To address this issue, we intro-
duce a rejection sampling-based self-improvement
mechanism that preserves general knowledge.
Built upon the Crescent framework (Team et al.,
2025), our method employs an LLM-as-judge (e.g.,
GPT-40 (Wainwright and Lowe, 2023)) to compare
the RL-trained model’s responses with reference
answers and retain the higher-quality responses.

To this end, we propose Curriculum Reinforce-

ment Finetuning (Curr-ReFT). Curr-ReFT com-
prises two sequential stages: Structured Curricu-
lum Reinforcement Learning and Rejected Sample-
based Self-improvement. Extensive experiments
demonstrate Curr-ReFT’s state-of-the-art perfor-
mance on both in- and out-of-domain visual tasks
and abundant public benchmarks, with our en-
hanced small-scale VLMs matching the capabil-
ities of much larger counterparts.
Contributions Summary. (1) Empirical Insight:
Our experiments reveal that rule-based RL coun-
teracts SFT-induced visual hallucinations, signif-
icantly improving OOD generalization in visual
tasks via iterative perception refinement.(2) Curr-
ReFT Framework: An adaptable two-stage post-
training paradigm that strengthens visual reason-
ing while preserving fundamental language capa-
bilities; (3) Curriculum Dataset: A newly con-
structed 12k-example dataset spanning detection,
classification, and multimodal math; (4) Empiri-
cal Results: Extensive experiments demonstrate
Curr-ReFT’s superior performance across multiple
benchmarks.

2 Related Work

2.1 Reasoning Vision-language models

Recent advancements in multimodal models have
evolved from LLaVA’s (Liu et al., 2023) projection-
based approach to Qwen-VL (Bai et al., 2023;
Wang et al., 2024; Yang et al., 2024) and InternVL
(Chen et al., 2024a; Luo et al., 2024) series fur-
ther advancing visual instruction tuning and ar-
chitectural efficiency. Concurrently, reasoning-
focused methods have progressed from Monte
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Figure 2: Overall framework of the proposed Curr-ReFT post-training paradigm. Curr-ReFT comprises two
sequential stages: (1) Curriculum Reinforcement Learning that progressively increases task complexity with aligned
reward mechanisms, and (2) Rejected Sample based Self-improvement that maintains fundamental capabilities
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Carlo Tree Search techniques (Browne et al., 2012;
Yao et al., 2023) to process-supervised learning
(Lu et al., 2024; Deng et al., 2025). OpenAl-
O1 (Wainwright and Lowe, 2023) established the
RL+SFT paradigm, while DeepSeek-R1-Zero’s
GRPO (Guo et al., 2025) demonstrated superior rea-
soning through group-wise response comparisons
without auxiliary networks (Schulman et al., 2017).
Despite these advances, current research primarily
targets math and coding tasks (Liu et al., 2024a),
leaving the intersection of visual perception and
reasoning largely unexplored. Our Curr-ReFT
framework addresses this through multi-stage RL
training.

3 Method

In this section, we elaborate Curr-ReFT, compris-
ing two sequential training stages: Curriculum Re-
inforcement Learning (Sec. 3.2), which achieves
task progression training through three stages of
reward mechanisms, and Rejected Sample based
Self-improvement (Sec. 3.3), which preserves fun-
damental capabilities via quality-guided learning.
The overall framework is illustrated in Fig. 2.

3.1 Preliminary

Reinforcement Learning with GRPO

DeepSeek R1-Zero (Guo et al., 2025) introduces
the GRPO framework, eliminating dependence
on additional critic networks (PPO-based meth-
ods(Schulman et al., 2017)). Specifically, GRPO
considers the relative performance of responses
rather than absolute reward values. For a given
input query g. The framework generates /V distinct
responses {01, 02, ..., on } from the current policy

7y and evaluates through group-wise comparison:

ri —mean({ry,...,rn})
std({r1,...,r~})

where A; represents the normalized relative quality
of the i-th response within its group.

A = ey

3.2 Structured Curriculum Reinforcement
Learning

The Structured Curriculum Reinforcement Learn-
ing employs a three-phase dynamic adjustment on
task formats and reward functions to address RL’s
sparse reward issue. We will elaborate Binary De-
cision Learning, Multiple Choice Learning, and
Open-ended Response on the task formats and re-
ward designs in Sec. 3.2.1, Sec. 3.2.2, and Sec.
3.2.3, respectively.

3.2.1 Stage 1: Binary Decision Learning

In the initial stage of reinforcement learning, we
adopt binary decision questions as the simplest
form of task format, as shown in Fig. 4 (a), which
significantly reduces the output freedom to binary
choices, making it easier to learn basic visual un-
derstanding and reasoning patterns. Models are
explicitly prompted to answer with ‘yes‘ or ‘no.*
The reward function for this stage is as follows:

1, if Ogtd — Ogt

2
0. 2

RBinary (Ostda Ogt) = .
otherwise

where og4 represents the model’s binary response
and oy, is the ground truth answer.
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3.2.2 Stage 2: Multiple Choice Learning

The second stage introduces choice questions,
which require more sophisticated decision-making
while maintaining structured response formats (as
displayed in Fig. 4 (a). We design different reward
mechanisms for single-choice and multiple-choice
scenarios to provide appropriate learning signals.
For single-choice questions, we maintain a binary
reward structure:

1, og4q= Ogt

3)

Rs (Ostda Ogt) = .
0, otherwise
For multiple-choice questions, we introduce a
more nuanced reward function that considers par-
tial correctness:

17 Ostd = Ogt
Rm(ostda Ogt) = Ostd C Ogt, ‘Ostd‘ >0

0, otherwise

C))

where 044 represents the model’s selected options
and o is the set of correct options. This graduated
reward structure encourages the model to identify
correct options while maintaining the incentive for
complete answers.

3.2.3 Stage 3: Open-ended Response Learning

Classification Prompt: )
"Given the following categories: [vehicle, kitchen, accessory, sports, | P G: [furniture,person kitchen]
outdoor, animal, person,..], please identify and classify all present PUG: [furniture,person,kitchen,food]
categories in the image. Multiple categories may be present. Output
the thinking process in <thinking><\thinking> tag and final answer in
<answer> <\answer>."

Reais = [P N GJ|P U GI=0.75
[furniture,person, kitchen]

10U_scores>0.5:
sentence describes: right bottom cut off cake. Output the thinking Ruet=1

process in <thinking><\thinking> tag and the final answer in JSON
[491.11, 208.07, 629.00, 391.02]

Goscrbaton it imago, e o Objecs
Figure 3: Verifiable Reward for visual tasks in the Open-
ended Response stage. We have listed the detection and
classification prompt with Verifiable Reward calculation
examples.

Ground truth: "<answer>[furniture,person kitchen,food]</answer>"

Detection Prompt:
"Please provide the bounding box coordinate of the region this

Ground truth: "<answer>[494.21, 212.07, 640.0, 394.36]</answer>"

Inspired by DeepSeek-R1’s success in reasoning
tasks, we extend its RL approach to visual domains
(Deng et al., 2024). Unlike math or code tasks with
clear ground truth, visual tasks require tailored re-
ward functions. We design verifiable, task-specific
rewards for open-ended multimodal RL.
Category Overlap Reward for Visual Classifi-
cation For classification, we propose a Category
Overlap Reward, computed as the intersection-over-
union (IoU) between predicted and ground-truth

categories. This continuous reward offers propor-
tional credit for partial correctness, providing richer
feedback than binary matching. Let the predicted
categories be P = ¢y, ¢, ..., ¢, and ground-truth
categories G' = g1, 92, ..., gn, Where ¢; and g; de-
note individual category labels. The reward is cal-
culated based on their set intersection and union:

R _|PNG]  Heile; € Pand ¢; € G}
acc_cls |[PUG|  [{e1y s em {01, ,gn%5|;

where | PNG| represents the number of correctly
predicted categories, and | PUG| represents the to-
tal number of unique categories in both sets com-
bined. This reward mechanism provides a continu-
ous value in [0,1], better reflecting partial correct-
ness in multi-label scenarios compared to binary
rewards. The classification reward R.;; combines
accuracy and format compliance.

IOU rewards for Visual Detection For object de-
tection tasks, we design a comprehensive reward
function that evaluates both localization accuracy.
The reward mechanism considers three key aspects:
spatial accuracy, prediction reliability, and response
format compliance.

Given a set of predicted bounding boxes
Bstudent = {b1,b2,...,b,} with corresponding
confidence scores f = { f1, fo, ..., fn}, and ground
truth boxes By = {b9',b%", ..., b}, we first estab-
lish box-level correspondences through IoU match-
ing. By applying a threshold 7, we filter out low-
quality matches where tou; < 7. The localization
accuracy reward Ry, is then computed as the mean
IoU of the remaining valid matches:

R[OU = Zz’oui, V = {Z‘ZOUZ Z T} (6)

1
Vs
where V denotes the set of valid matches and |V
represents the number of valid matches. To en-
courage accurate object localization, we further
discretize the IoU-based reward using a threshold
of 0.5:

1, if Ry, > 0.5
Racc,det = ou. @)
0, otherwise

The final detection reward R 4.; combines both
localization accuracy and format compliance:

Rdet = Racc_det + Rformat (8)
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where R 4e+ €valuates spatial localization accu-
racy and Rfopmq¢ verifies response format compli-
ance.

[e———

5 #6 =

stagel stage2 staged
(a) Curriculum Reinforcement Learning Phase Training Data

(b)Rejection Sampling Phase Training Data

Figure 4: Illustration of training data organization.
(a) Examples of 3-stage progressive response formats in
Curriculum Reinforcement Learning. (b) Data source in
Reject-sampling SFT phase (detailed Reject-sampling
pipeline in Sec. 3.3).

3.3 Rejected Sample based Self-improvement

To prevent degradation in general domain, we pro-
pose a Rejected Sample-based Self-improvement
mechanism. This framework comprises three
stages: (1) general-domain data construction; (2)
automatic refinement by GPT-4-O—guided selec-
tion between model and reference responses, en-
hancing data quality via self-improvement; and
(3) supervised fine-tuning on the curated dataset
to reinforce general vision-language competence.
Specifically, step (1) is detailed in Sec. 3.3.1, while
steps (2) and (3) are elaborated in Sec. 3.3.2.

3.3.1 General-domain data construction

The data preparation process involves systematic
sampling from a comprehensive dataset. Utiliz-
ing GPT-4-O as the reward model, we evaluate
generated responses against multiple criteria: accu-
racy, logical consistency, format compliance, and
linguistic fluency. Responses are quantitatively as-
sessed on a 0-100 scale, with those surpassing a
threshold of 85 being integrated into the enhanced
dataset alongside their corresponding queries. The
resultant curated dataset encompasses 1,520 high-
quality samples (12.7% selection rate) across sci-
ence, general knowledge and math (Fig. 4).

3.3.2 Self-Improvement Training

Following dataset construction, we refine the
data by selecting high-quality answers from ei-
ther the original references or model-generated re-
sponses, as determined by LLM-as-Judge (GPT-
40(Wainwright and Lowe, 2023)). As illustrated
in Algorithm 1, for each query in the dataset,
the model generates multiple candidate responses,

which are scored by LLM-as-Judge. The highest-
scoring response—regardless of whether it is
model-generated or a reference—is retained if it
surpasses a quality threshold. The resulting refined
dataset is then used to conduct further fine-tuning.
This self-improvement stage reinforces general-
domain competencies by enabling the model to
learn from its own superior outputs while maintain-
ing robust cross-domain capabilities.

Algorithm 1 Rejected Sample based Self-

improvement Algorithm

Input: Dataset D, Generative Model G, Reward
Model R, Number of samples per input N,
Threshold score 7 = 85

Output: Enhanced dataset Dy,

Initialize an empty enhanced dataset Dyey ¢ 0
foreach each question g € D do

Generate N responses using the genera-
tive model G: {ri,ro,...,rn} = G(q)
Score each response using the reward model
R: {81, 52,..., SN} = R({T‘l,TQ, PN ,T’N})
Find the index of the highest-scored response:

1" =; s; if s; > 7 then
L Add the highest-scored response to:

Dyew < Dpew U {(% ri*)}

return the enhanced dataset D,

4 Experiments

Aiming to answer the following questions, we
conduct extensive experiments and test on abun-
dant benchmarks:

* RQ1: How does RL perform compared to
traditional SFT in standard CV tasks?

* RQ2: How do models trained with Curr-ReFT
perform relative to mainstream VLMs?

* RQ3: How do curriculum strategies like or-
der rearrangement impact Curriculum RL per-
formance? How do curriculum learning and
rejection sampling contribute to performance
in general and visual tasks, respectively?

* RQ4: Does Curr-ReFT generalize effectively
across different backbone models, model
sizes, and application domains?

4.1 Experiment Settings

Visual Datasets. We built an Visual Dataset across
visual detection, classification, and multimodal
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mathematical reasoning—each with 5,000 train-
ing, 1,000 in-domain test and 1,000 out-domain
samples. Detection and classification data comes
from RefCOCO (Yu et al., 2016) and RefCOCOg
(Mao et al., 2016), while math data use Math360K
(Shi et al., 2024) and Geol70K (Gao et al., 2023).
All training samples are reformatted into binary
decision, choice for three-stage Curriculum RL.
Out-domain evaluation includes RefGTA (Tanaka
et al., 2019) for detection, Pascal-VOC (Evering-
ham et al., 2010) for classification, and CLEVR-
70k-Counting for math.
Metrics. We use accuracy as the unified metric.
For detection, a prediction is correct if IoU between
predicted and ground truth boxes exceeds 0.5.
Benchmarks. Following OpenCompass leader-
boards, we updated the LL.M-as-Judge to GPT-4-
Turbo (2024-04-09)(Wainwright and Lowe, 2023).
We evaluate trained models on the following bench-
marks: MathVista (Lu et al., 2023), MATH, AI2D
(Hiippala et al., 2021), MM Vet (Yu et al., 2023),
MMBench (Liu et al., 2024b), OCRBench (Liu
et al., 2024c), and LLaVABench (Liu et al., 2023).
Baselines. To comprehensively evaluate our ap-
proach, we conduct extensive experiments against
state-of-the-art VLMSs across various scales (3B
to 32B). Baseline models include the Qwen2.5-
VL(Yang et al., 2024), InternVL(Chen et al.,
2024b), and LLaVA(Liu et al., 2023) series. We
also compare with prominent methods including
Vison-R1(Huang et al., 2025), Perception-R1(Yu
et al., 2025a), VLM-R1(Shen et al., 2025), and
LISA(Lai et al., 2024).
Training Details All experiments use NVIDIA
A800 GPUs. We primarily train Qwen2.5-VL-3B
on 8 GPUs (batch size=8), with training Qwen2.5-
VL-7B across 16 GPUs. The hyperparameters are
set as follows: (1) Learning rates: 2e-5 for RL
(GRPO) training, 2e-7 for rejection sampling phase,
and le-6 for SFT experiments. (2) Maximum pixel
size: 401,408. (3) GRPO training steps: 2,500.
The training methods are described as follows:
(1)‘+SFT’ denotes supervised fine-tuning using 12k
multimodal data on open-ended response formats.
(2)‘+ReFT’ denotes rejection-sampling-based SFT;
the data and sampling strategy are detailed in Sec.
3.3. (3)“+RL’ refers to direct GRPO training us-
ing the same 12k samples, with reward functions
aligned with Stage 3 of Curr-RL in Sec. 3.2.3.
(4)‘+Curr-RL’ involves the three-stage curriculum
RL training as detailed in Sec. 3.2. (5)‘+RL-
ReFT’ and ‘+Curr-ReFT’ indicate applying rejection-

sampling-based fine-tuning after RL (GRPO) or
curriculum RL, respectively.

4.2 Main Results
4.2.1 Generalization Verification of RL (RQ1)

Methods In-domain Out-domain
Det Math Cls Det Math Cls
Base 61.8 713 39.6 | 553 40.8 793
+SFT 752 735 502 | 523 308 772
+RL 883 788 629 | 642 741 947
+Curr-RL | 90.6 828 66.8 | 67.1 784 96.6

Table 1: Performance Comparison: In/Out-domain Per-
formance (%). Base model is chosen as the Qwen2.5-
VL-3B. Notably, ‘Det’ and ‘Cls’ denote detection and
classification.

Changes|Training Data Test Data
Rule TrQ K =10 QK =11,12,13
Pattern |Black Cards (#, &)Red Cards (©, )

(a) Generalization rules (Numerical Rule and Visual Pattern).

Domain | Task Changes SFT | RL
In Target / 41.5% | 53.6%
Num_Rec |/ 70.5% | 73.6%
Target Rule 24.1% | 38.1%
Out Target Color 12.7% | 46.4%
Target Rule+Color | 9.2% |33.1%
Num_Rec | Color 41.3% | 71.3%
Num_Rec | Rule 63.3% | 69.2%
Num_Rec | Rule+Color |40.2% | 68.1%

(b) GeneralPoints results with Qwen2.5-VL-7B. General-
Points focus on two tasks: Target Calculation task (" Target’)
and Number Recognition task ("Num_Rec’). Color changes
means training on Black cards (#, &) and testing on Red
Cards (©, ). ’/’ denotes the default setting, training and
testing on Black cards (#, &). "Rule + Color’ indicates both
Rule and Color changes.

Table 2: GeneralPoints task. (a) Generalization rules
and (b) Experimental results.

Tab. 1 summarizes the in- and out-of-domain
performance of Qwen2.5-VL-3B under different
paradigms. Fig. 6 provides qualitative compar-
isons between SFT and our Curr-RL. Key obser-
vations are as follows: (1) While SFT improves
in-domain accuracy, it consistently fails on out-of-
domain tasks. (2) Curr-RL generates more accu-
rate localizations and comprehensive explanations
across diverse OOD settings. Fig. 5 further presents
the training dynamics. Curr-RL demonstrates more
stable training, faster convergence than RL.
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Table 3: Performance comparison on visual tasks.
‘In’ denotes in-domain while ‘out’ represents out-of-
domain testing. SFT" results are shown. Boldface and
underlines indicate the best and second-best results.

Methods Math Detection Classification
In Out In Out In Out
Qwen2.5-VL-3B 71.3 408 61.8 553 39.6 793
InternVL2.5-4B 694 363 60.2 545 415 789
Qwen2.5-VL-7B 779 54.6 767 63.6 62.5 813
InternVL2.5-8B  76.3 52.1 67.1 59.7 61.1 829
InterVL2-26B 83.7 774 789 68.3 68.1 91.5
LLaVA-32B 834 787 812 654 69.6 934
Vision-R1-7B 83.8 789 89.1 67.9 734 96.1
VLM-R1 80.2 688 87.9 63.1 656 89.7
Perception-R1 7719 70.1 863 629 70.1 819
LISA-7B 70.2 60.5 85.1 609 64.0 825
Curr-ReFT-3B 823 737 89.8 65.6 71.5 952
Curr-ReFT-7B 853 81.5 922 69.5 73.1 98.7

To further explore how RL affects the OOD
visual performance of VLMs, we conducted ad-
ditional experiments on Qwen2.5-VL-7B. Gener-
alPoints requires the model to use numbers from
4 cards (via image input) and combine them to
reach a target number. The generalization rules
are detailed in Tab. 2 (a). As shown in Tab. 2
(b), RL demonstrates superior performance in both
Rule and Visual Generalization tasks. Notably, SFT
shows severe degradation in Visual changs (41.5%
— 12.7%, -28.8%) compared to Rule changes (-
17.4%). RL also excels in OOD Number Recog-
nition (65.3% vs 41.3%, +21.0%) . Therefore, we
hypothesize that RL’s bidirectional feedback with
multi-round error correction can progressively re-
fine the visual perception. In contrast, SFT tends
to memorize training data and struggles with OOD
visual perception.

4.2.2 Performance Comparation (RQ2)

We report results on visual tasks (Tab. 3) and pub-
lic benchmarks (Tab. 4), using Curr-ReFT-3B/7B
initialized from Qwen2.5-VL-3B/7B. Our results
reveal Curr-ReFT’s strong improvements in Visual
Tasks and Public Benchmarks. In addition, we
observe two noteworthy findings: (1) OOD classi-
fication outperforms in-domain by +25.6%, likely
due to clearer semantics in OOD test data versus
more ambiguous in-domain labels. (2) SFT re-
mains strong on structured tasks like detection, but
underperforms in reasoning math tasks.

Public Benchmarks Curr-ReFT-7B performs com-
petitively with much larger models (26B/32B) on

Steps

(a) In-domain Classification  (b) Out-domain Classification
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Figure 5: Performance Dynamics: SFT vs. RL vs. Cur-
riculum RL on In-domain and Out-of-domain Tasks.
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Figure 6: Qualitative comparison between our method
and SFT baseline. Thinking process significantly im-
proves reasoning ability.

most benchmarks. On LLaVABench, it reaches
83.6% (Relative), 69.7% (VLM), and 84.5% (GPT-
40), surpassing LLaVA-32B (82.2%) and approach-
ing GPT-40’s level. This demonstrates the effec-
tiveness of our rejection-based self-improvement
in enhancing general vision-language capacity.

In addition, we observe two noteworthy findings:
(1) OOD classification outperforms in-domain by
+25.6%, likely due to clearer semantics in OOD
test data versus more ambiguous in-domain labels.
(2) SFT remains strong on structured tasks like
detection, but underperforms in reasoning math
tasks.

4.2.3 Ablation Study (RQ3)

Tab. 4(a) and Tab. 4(b) report ablation results
on visual tasks and benchmarks, respectively. We
compare Curr-ReFT-3B with the following vari-
ants: (1) +Curr-RL, without reject-sampling SFT;
(2) +RL, without curriculum learning. To examine
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Model AI2D MMVet MMBench LLaVABench MathVista MATH OCRBench
Relative VLM GPT4
Qwen2.5-VL-3B 81.4 61.8 76.8 74.3 63.3 81.1 61.2 55.1 797
InternVL2_5-4B 81.4 61.5 77.2 73.5 64.1 78.2 60.8 50.7 781
Qwen2-VL-7B 83.0 63.8 78.0 73.2 61.2 76.5 61.6 56.6 801
Qwen2.5-VL-7B 84.3 67.3 81.2 81.2 67.1 81.4 67.1 59.2 831
InternVL2_5-8B 84.9 62.8 80.5 81.1 63.7 80.1 64.5 58.1 810
InterVL2-26B 84.5 60.0 81.2 78.1 69.4 81.0 59.6 61.9 815
LLaVA-32b 75.5 69.0 76.8 79.2 68.3 82.2 68.1 59.3 784
LISA-7B 54.3 49.5 48.2 52.9 47.1 68.1 324 30.1 569
Perception-R1 71.8 48.9 71.8 58.2 48.2 67.8 67.1 42.1 707
VLM-R1 76.4 51.8 70.1 74.8 67.1 82.1 68.1 46.8 678
Vision-R1-7B 78.2 60.1 63.5 82.9 69.4 82.8 63.5 52.3 718
Curr-ReFT-3B 79.7 69.1 77.4 75.4 68.1 84.5 65.8 55.8 801
Curr-ReFT-7B 83.2 71.3 80.1 83.6 69.7 85.6 68.8 58.6 834

Table 4: Performance comparison against mainstream VLMs on public benchmarks. Background colors

denote benchmark categories:

for science (AI2D), cyan for general vision-language understanding (MM Vet,

MMBench, LLaVABench), green for math-related tasks (MathVista, MATH), and red for OCR (OCRBench).
Boldface and underlines indicate the best and second-best results, respectively.

Method Math Detection  Classification

In QOut In Qut In Out

Base 713 17.8 31.8 223 39.6 79.8
+SFT 73.5 30.8 752 523 502 77.2
+RLjudge 762 719 89.4 65.1 63.0 94.1
+RL Choice 77.1 732 88.1 635 649 94.5
+RL 78.8 74.1 883 642 629 93.8
+Curr-RLBeverse 724 724 802 66.1 609 94.3
+Curr-RLM* 778 754 856 67.1 618 946
+Curr-RL 828 784 90.6 67.1 66.8 96.6
+ReFT 69.5 525 257 49.7 392 724
+RL-ReFT 77.1 703 843 62.1 549 94.5
+Curr-ReFT 80.3 73.7 89.8 65.6 654 92.2

(a) Ablation study results on visual tasks Notably, color high-
lighting indicates different training strategies: Vision-specific
SFT results (green), RL training scheme (blue), General-
domain Reject-sampling SFT ( ), and proposed Curr-
ReFT (gray). Details of ‘“+RLjuage’, ‘“+RLcnoice’, ‘+Curr-
RLRr® and “+Curr-RLM** are provided in Sec. 4.2.3.

LLaVA

Method AI2D MMVet MathVista OCR MMBench _ — ——
VLM GPT4

Base 81.40 61.80 61.20 797 76.80 63.30 81.10
+SFT 78.45  62.02 61.90 802 73.65 64.30 84.10
+RL 7943  63.06 62.30 810 74.34 64.70 83.00
+Curr-RL  79.76  64.74 66.30 812 74.90 64.10 85.20
+ReFT 82.51 68.95 57.70 818 79.02 66.10 84.20
+Curr-ReFT 79.66 69.10 65.80 801 77.40 69.70 85.60

(b) Ablation study on standard benchmarks. Color coding
follows the same scheme as in Tab. 4a. ’OCR’ denotes
OCRBench.

Table 4: Ablation Study on major components.

task sensitivity of curriculum learning, we compare
+RLjygge and +RLchoice (purely judgment or choice
formats), +Curr-RLR"*™¢ (reverse curriculum, start-
ing with open-ended response with finally judg-

Method Math Detection Classification

In Out In Out In Out
InternVL2_5-4B  69.4 36.3 60.2 545 415 78.9
+Curr-ReFT 768174 4671104 684182 61.216.7 502187 87.3184
InternVL2_5-8B 76.3 52.1 67.1 59.7 61.1 829
+Curr-ReFT 83.116.8 60.218.1 76.819.7 70.4710.7 67.216.1 90.117.2
Qwen2-VL-7B 71.9 54.6 76.7 63.6 62.5 81.3
+Curr-ReFT 853174 626180 8487181 695159 69.617.1 87.576.2

Table 5: Scaling Up Experiment on visual dataset:
We evaluate the scalability of the proposed Curr-ReFT
framework on various vision-language base models.
Red 1 indicates the relative gain.

ment format +Curr-RLM* (a mixed strategy that uses
an equal proportion of the three formats). Our ab-
lation study reveals four key insights:

* Curr-RL consistently outperforms standard RL.
Progressive order yields better results than ran-
domized (Mix) or reversed (Reverse) curricula.

* Reject-sampling improves language-centric
benchmarks but compromises visual grounding,
suggesting that general-domain data weakens
alignment with fine-grained visual cues.

» SFT alone is insufficient for generalization under
distribution shift. Despite strong in-domain per-
formance, it performs poorly OOD, especially on
visual reasoning. The absence of feedback limits
its ability to generalize beyond training data.

e Combining Curr-RL with ReFT yields comple-
mentary benefits. Curr-ReFT unifies curriculum-
driven progression and rejection-based general-
ization, yielding balanced gains in perception and
reasoning.
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Table 6: Medical Imaging VQA Results. “VQA-R"
denotes VQA-RAD, “PathV" denotes PathVQA, “Om-
niV" represents OmniMedVQA, respectively.

In-Domain Out-Domain

Model

VQA-R PathV OmniV MMMU

LLAVA-v1.6-7B  52.6 47.9 49.5 414
+Curr-RL 57.7 54.1 57.9 49.8
Qwen2.5-VL-3B  58.7 58.1 58.1 54.5
+Curr-RL 67.1 68.9 63.2 66.1
Qwen2.5-VL-7B  60.1 58.9 57.8 56.6
+Curr-RL 71.3 69.3 62.5 57.2

Table 7: Code Generation Results on HumanEval.

Models Params HumanEval
(Pass@1)
DeepSeek-Coder-1.3B 1.3B 16.8%
+Curr-RL 1.3B 17.3%
Phi-2 2.7B 17.1%
+Curr-RL 2.7B 17.7%
Qwen-Code-7B 7B 26.8%
+Curr-RL 7B 28.0%

4.2.4 Scaling Analysis (RQ4)

To examine the scaling effectiveness of our Curr-
ReFT, we conduct extensive experiments on base
models of varying sizes and types. The results
in Tab. 4 and Tab. 5 indicate that the effective-
ness of Curr-ReFT scales effectively with model
size. Furthermore, we generalize Curr-ReFT to di-
verse domains such as medical imaging and code
generation. The design principles for curriculum
consistency and detailed experimental results are
discussed in the Appendix.

5 Conclusion

In this paper, we introduce Curr-ReFT, a novel
two-stage post-training paradigm that balances
domain-specific visual reasoning and general
vision-language capabilities. We provide theoreti-
cal insights that reinforcement learning improves
both reasoning and out-of-domain visual task gen-
eralization. We also release a 12k-example curricu-
lum benchmark spanning visual detection, classifi-
cation, and multimodal math. Curr-ReFT achieves
SOTA on abundant benchmarks, with +5.2% avg.
gain in OOD visual tasks.

Limitations and Future Works

While Curr-ReFT effectively improves reasoning
and generalization in small-scale VLMs, several
potential limitations merit consideration. First, the
constrained task formats used in early curriculum
stages (e.g., binary or multiple-choice) may bias the
model toward generating shorter or less diverse re-
sponses in open-ended tasks. Second, although the
progressive task transition facilitates stable learn-
ing, it may also risk catastrophic forgetting of early-
stage skills if not complemented by explicit reten-
tion mechanisms. Third, our three-stage curriculum
is manually designed, which may limit scalability
across domains or modalities.

We partially address the second concern through
a rejection-sampling-based self-improvement that
reinforces general capabilities. Nonetheless, fur-
ther exploration of automated curriculum schedul-
ing and lifelong learning strategies remains a
promising direction.
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