
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 12005–12020
November 4-9, 2025 ©2025 Association for Computational Linguistics

ReAlign: Structured Revision for Small Language Model Alignment

Ruijun Chen1, Jiajian Guo1, Hongzhan Chen1, Fanqi Wan1

Qifan Wang2, Xiaojun Quan1,3*

1School of Computer Science and Engineering, Sun Yat-sen University, China
2Meta AI

3Shenzhen Loop Area Institute
{chenrj8, guojj59, chenhzh59, wanfq}@mail2.sysu.edu.cn

wqfcr@fb.com, quanxj3@mail.sysu.edu.cn

Abstract

Aligning small language models with human
preferences remains a challenging problem:
weak policies often struggle to produce infor-
mative on-policy samples and exhibit unsta-
ble gradients when trained on off-policy sig-
nals from stronger models or human annota-
tors. In this work, we introduce ReAlign, a
training framework that combines the stabil-
ity of on-policy learning with the guidance
of reviser-assisted supervision. In ReAlign,
a lightweight external reviser is first trained
to improve policy-generated responses using
preference-based feedback, conditioned on
both the prompt and the initial output. The pol-
icy is then optimized using a hybrid approach
that leverages standard on-policy preference
pairs alongside reviser-enhanced pairs framed
as a structured revision task. These enhanced
pairs provide richer, more informative super-
vision, and facilitate more effective optimiza-
tion. Extensive experiments on AlpacaEval-2
and Arena-Hard demonstrate that ReAlign con-
sistently improves alignment performance for
small language models and outperforms strong
preference optimization baselines.

1 Introduction

Aligning small language models (SLMs) with hu-
man preferences is challenging, especially when us-
ing on-policy methods such as reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al.,
2022). These methods rely on model-generated
outputs; however, small models often produce uni-
formly low-quality responses in the early training,
resulting in weak and noisy supervision signals.

Two broad strategies have been explored to
address this problem. The first involves super-
vised fine-tuning (SFT) on high-quality, human-
annotated or model-generated data to bootstrap
the model’s performance, followed by on-policy

* Corresponding authors.

optimization (Ouyang et al., 2022). The second
strategy collects high-quality preference data from
stronger models and employs off-policy optimiza-
tion methods such as Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024; Teknium, 2023;
Zhu et al., 2023). However, since these responses
are sampled independently of the weak model, they
often exhibit a distributional mismatch. To miti-
gate this, an intermediate SFT step is commonly
applied to reduce the gap and enhance the effective-
ness of subsequent off-policy learning (Xu et al.,
2024; Tang et al., 2024). Figure 1a illustrates how
the two training routes interact with model scale.
For smaller models (e.g., 1B), off-policy training
accounts for the majority of performance gains,
while on-policy updates contribute only marginal
improvements. However, as model capacity in-
creases from 1B to 3B and then to 8B, the incre-
mental benefit of on-policy optimization becomes
more pronounced, with the largest gains ultimately
observed at 8B. In other words, off-policy data pro-
vide high-reward signals that weak models cannot
generate on their own, while on-policy optimiza-
tion grows increasingly effective and reinforces the
model’s existing strengths (Li and Khashabi, 2025).

These observations naturally raise the question:
Can we integrate the strengths of on-policy and off-
policy methods into a unified framework? Unfortu-
nately, directly combining on-policy and off-policy
supervision within a standard DPO objective can
lead to unstable optimization. As shown in Fig-
ure 1b, off-policy pairs often lie far outside the
policy’s current distribution and exhibit large neg-
ative log-probability margins and higher variance
than on-policy. The corresponding loss term there-
fore dominates the aggregate gradient, swamping
the on-policy signal and driving the model toward
regions it cannot reach (Zhou et al., 2024; Tajwar
et al., 2024). In contrast, on-policy training yields
small, positive margins that align more closely with
the model’s generation behavior (Yan et al., 2024).

12005

1.0 0.8 0.6 0.4
Avg Log-probability

0.12

0.13

0.14

0.15

0.16

0.17

Av
g

Re
wa

rd

1

2

3

4
5

6

7

8
9

1: On (1B)
2: On (W, 1B)
3: Off (1B)

4: On (3B)
5: On (W, 3B)
6: Off (3B)

7: On (8B)
8: On (W, 8B)
9: Off (8B)

20

30

40

50

LC
 w

in
 ra

te

(a) On-policy vs. off-policy

750 500 250 0 250
log P(ychosen|x) log P(yrejected|x)

0.000

0.002

0.004

0.006

De
ns

ity

DPO (Off) (=-81.7, =254.7)
DPO (On) (=8.0, =99.8)
ReAlign (Off) (=19.2, =135.1)

(b) Log-probability margin distribution

Llama (3B) Qwen (3B) Llama (1B)0%

10%

20%

30%

40%

50%

60%

70%

W
in

 R
at

e
on

 x

 y

+38.8

+28.6

+29.2

Base Model
Revision Task (x + y y')

(c) Revision task impact

Figure 1: (a) Comparison of on-policy and off-policy DPO training. X-axis shows the average log-probability
of chosen responses; Y-axis shows their average reward. Bubble size and color indicate the LC win rate on
AlpacaEval-2. “On (W)” denotes on-policy optimization initialized with SFT using strong model chosen responses.
(b) Distribution of log-probability margins under different training setups. We compute the log-probability margin
using each method’s reference model. For ReAlign, x denotes the prompt with initial response (x = x+ y0). (c)
Impact of training solely on revision task preference data. Blue bars show the AlpacaEval-2 win rate ranked by
ArmoRM after DPO training using only the revision task preference data; grey bars denote the original win rate.

To address this incompatibility, we introduce
a revision task into the policy training process.
Rather than forcing the policy to imitate responses
from strong models, which often lie outside the
policy model’s distribution, we train the policy to
revise its own responses toward improved alterna-
tives. Specifically, the policy takes both a prompt
and its self-generated response as input, and learns
to prefer stronger candidates over weaker ones. By
anchoring the learning signal to the model’s own
outputs, the revision task ensures distributional con-
sistency with on-policy data while enabling supervi-
sion from higher-quality responses (see Figure 1b).
This setup allows preference information to be in-
tegrated more smoothly, even when the initial gen-
erations are suboptimal. The revision task serves
two key purposes. First, it enables context-aware
preference learning by conditioning on the initial
response. Second, it provides more informative
supervision in early training, when the model’s out-
puts are weak and standard on-policy learning lacks
useful gradients. Our preliminary experiments (Fig-
ure 1c) show that training solely on the revision task
can yield substantial improvements, suggesting its
potential as an effective alignment objective.

Then the question becomes: How do we obtain
the improved responses required for the revision
task? A direct approach is to reuse high-quality
answers from a strong model. However, these re-
sponses are generated independently of the policy
and often diverge in style and structure. When
paired with self-generated outputs, they tend to pro-
duce inconsistent log-probability margins, which
destabilize training and reduce the effectiveness.

To mitigate this, we introduce a lightweight Re-
viser model that generates improved responses con-
ditioned on the policy’s initial output. Compared
to raw strong-model responses, these revisions are
closer to the original generation while maintain-
ing high quality. Empirically, preference pairs
constructed from such revisions exhibit smaller
and more consistent log-probability margins (Fig-
ure 1b), and resemble the low-gap, high-quality
pairs studied by Wu et al. (2024). Building on
this design, we propose ReAlign, a unified train-
ing framework that combines on-policy learning
with reviser-guided off-policy supervision. Re-
Align trains the policy using both self-sampled
preference pairs and revision-task pairs generated
by the reviser, enabling more stable and effective
alignment, especially for small language models.

We evaluate ReAlign on the UltraFeedback
dataset (Cui et al., 2023) by fine-tuning several
small policy models using alignment methods
such as SFT, DPO, SimPO (Meng et al., 2024),
WPO (Zhou et al., 2024), and SIMPLEMIX (Li
and Khashabi, 2025). The aligned models are then
assessed on the AlpacaEval-2 (Dubois et al., 2024)
and Arena-Hard (Li et al., 2024a) benchmarks. Ex-
perimental results demonstrate that ReAlign effec-
tively enhances the ability of SLMs to generate
high-quality responses, making it a promising ap-
proach for aligning SLMs with human preferences.

2 Methodology

We begin by outlining the preliminaries of
preference-based alignment. As shown in Figure 2,
we then introduce ReAlign, a unified framework

12006

SelectSample

Rank
� + �� → �1

{�1
�, �2

�, . . . , ��
�}

(��−1 | �, ��)

�1~��

Stage 1: Reviser Training

Preference Data

≻

SFT

DPO

Stage 2: Reviser-Enhanced Policy Optimization

{�1
ℛ, �2

ℛ, . . . , ��
ℛ}

Self-Sampling Data

��
� ��

�
Preference Learning

Revise

�

�

Prompt

Response Revision

RejectedChosen

Base Model

Prompt

≻ RejectedChosen

Response Revised
Response

(��+1 | �, ��)

Rank Select Rank Select

SFT Model

SFT Model Reviser

ReviserPolicy

PolicyAligned Policy

Reviser-Enhanced Data

≻ RejectedChosen

(��
ℛ | �, ��

�) (��
ℛ | �, ��

�)

Generate

Figure 2: Overview of the proposed ReAlign. ReAlign consists of two stages: reviser training and policy optimiza-
tion. The reviser is first trained to refine low-quality responses into high-quality ones using paired responses. In the
second stage, the policy is optimized using both its own responses and the revised outputs from the reviser. This dual
approach enables continuous improvement of the policy from both self-generated and reviser-enhanced responses.

that integrates on-policy and off-policy supervision
through a structured revision task. The core com-
ponents of ReAlign are described in the following
subsections: the reviser model and its training pro-
cedure (§ 2.2), and the integration of revision-based
supervision into policy optimization (§ 2.3).

2.1 Preliminaries
Preference-based alignment generally seeks a pol-
icy πθ(y | x) that maximizes expected preference
scores based on pairwise response comparisons.
Formally, this objective can be expressed as:

max
θ

E(x, yw, yl) ∼ D
[
s
(
x, yw, yl

)]
, (1)

where (x, yw, yl) denotes a prompt and a
preference-labeled response pair, and s is a scoring
function that evaluates the alignment of the pol-
icy with the preferences. Existing methods differ
mainly in how the preference data D is constructed.
On-policy methods generate response pairs from
the current policy, ensuring distributional consis-
tency but suffering from low sample quality in
small models. In contrast, off-policy methods rely
on responses from stronger sources, which offer
clearer supervision but often exhibit significant dis-
tributional mismatch with the target model. This
trade-off motivates the need for a unified approach

that can combine the stability of on-policy learning
with the signal quality of off-policy supervision.

2.2 Reviser Training
To mitigate the distributional mismatch introduced
by directly imitating stronger models, we introduce
a lightweight external reviser model Rθ. The re-
viser generates improved responses by refining the
policy’s initial outputs, thereby providing reward-
enhancing yet distribution-consistent supervision.

Motivation Given a prompt x, let y0 ∼ πθ(· |
x) be the response from the policy πθ, and ŷ ∼
πψ(· | x) be a response sampled from a strong
model πψ. Since the strong model response ŷ is
generated independently of y0, it often deviates
from the policy’s distribution, making direct off-
policy optimization unstable.

To alleviate this issue, the reviser Rθ is trained
to condition its generation on an initial response:

Rθ : (x, y
L) 7→ yH, r(x, yH) ≻ r(x, yL), (2)

where yL denotes a lower-quality response and yH

a higher-quality response, and r is a reward model.
Although the reviser’s output is not sampled from
the policy, its conditional nature ensures higher
overlap with the policy distribution than πs, provid-
ing a stronger yet learnable training signal.

12007

Phase 1: Warm-up Training Reviser training
begins by supervised fine-tuning (SFT) to estab-
lish a basic revision capability. Specifically, for
each prompt x, we first collect M responses ŷ1:M
from strong models, ranked in descending order of
reward, with ŷ1 receiving the highest reward and
ŷM the lowest. The reviser model is then trained
to maximize the likelihood of mapping the lowest-
ranked response to the highest-ranked response:

LSFT = −E(x,ŷ1,ŷM)

[
logPθ(ŷ1 | x, ŷM)

]
. (3)

Phase 2: Preference-Consistent Optimization
The reviser is further refined through a preference-
consistent optimization approach. Responses col-
lected from strong models are grouped into quan-
tiles according to their reward scores. Let k > 1
be the number of quantiles, and define the anchor
indices A = { aj = ⌊jM/k⌋ | j = 1, . . . , k−1}.
For each quantile-based anchor response {ŷa|a∈
A}, the reviser learns to generate a slightly bet-
ter response ŷa−1 rather than a worse one ŷa+1:(
x, ŷa

)
→ ŷ a−1 ≻

(
x, ŷa

)
→ ŷ a+1.

The reviser training then employs a Direct
Preference Optimization (DPO)-inspired objective
adapted explicitly for incremental improvements:

Lreviser(θ; θref) = −E
[
log σ

(
β log

Rθ(ŷa−1 | x, ŷa)
Rθref(ŷa−1 | x, ŷa)

− β log
Rθ(ŷa+1 | x, ŷa)
Rθref(ŷa+1 | x, ŷa)

)]
.

(4)

This formulation aligns the reviser’s training
objective with the intuitive goal of consistently
improving responses rather than degrading them,
thereby ensuring stable and incremental enhance-
ments to the policy’s response generation capability.
The training details are provided in Appendix B.

2.3 Policy Optimization
Having trained and fixed the parameters of the
reviser R, we now optimize the policy πθ using
two complementary types of preference supervi-
sion: on-policy pairs sampled directly from the
policy, and revision-based pairs constructed from
the reviser. These two sources of training data
are referred to as Self-Sampling Data and Reviser-
Enhanced Data, respectively, as shown in Figure 2.

Given a prompt x, the policy πθ first generated
a set of responses {yPj }nj=1∼πθ(· | x). These re-
sponses are ranked according to scores from an ex-
ternal reward model r, and we select the responses
with the highest and lowest scores, denoted as yPw
and yPl , to construct the on-policy preference pair

(yPw ≻ yPl | x). To obtain revision-based super-
vision, each policy response yPj is revised by the
trained reviser: yRj = R(x, yPj). These revised
outputs are similarly ranked, and we select the best
and worst revised responses yRw , yRl . Together with
the anchor yPw , we form a revision-task preference
pair (yRw ≻ yRl | x, yPw), which preserves the struc-
ture and context of the policy’s original outputs.

Reviser-Enhanced Policy Optimization To ef-
fectively utilize both types of training data, we for-
mulate a dual-objective optimization strategy. For
each prompt x, the model is trained on two types
of preference pairs: (1) an on-policy pair (yPw ≻
yPl |x) sampled directly from the policy distribu-
tion, and (2) a revision task pair (yRw ≻ yRl |x, yPw),
where the revised responses are both conditioned
on the policy responses. This setup reflects two
complementary learning signals: the first encour-
ages the policy to improve its own response ranking
based on internal variation, while the second pro-
vides additional supervision by leveraging the re-
viser’s structured improvements over a fixed policy
sample. Formally, each prompt contributes:

(x, yPw ≻ yPl)︸ ︷︷ ︸
Self-Sampling Data

and (x, yPw , y
R
w ≻ yRl)︸ ︷︷ ︸

Reviser-Enhanced Data

.

The final objective is the sum of both losses:

L(θ) = E(x,yPw ,y
P
l)

[
LO(θ;x, yPw , y

P
l)

]
+

E(x,yPw ,yRw ,y
R
l)

[
LO(θ;x, yPw , y

R
w , y

R
l)

]
,

(5)

where LO is a generic preference-based loss, which
can be instantiated by a specific preference opti-
mization algorithm (e.g., DPO or SimPO)

Rationale for the Revision Task Early on-policy
learning in SLMs yields limited progress: re-
sponses are often nearly indistinguishable, leading
to narrow preference margins and shallow updates
that offer weak learning signals.

To provide stronger supervision, higher-quality
responses are needed. While using outputs from a
strong model offers such quality, they often lie far
outside the weak model’s distribution, potentially
destabilizing training. In contrast, revision-task
pairs are conditioned on the policy’s own responses,
retaining margin scales similar to on-policy pairs
while offering clearly improved answers.

3 Experimental Setup

Training Datasets Following prior work (Meng
et al., 2024; Zhou et al., 2024), we conduct all

12008

experiments based on the UltraFeedback dataset
(Cui et al., 2023), which contains 64K diverse in-
struction prompts covering a wide range of real-
world tasks. To reflect current model capabilities,
we augment the dataset by re-sampling responses
from four strong open-source models1. Each model
generates five responses per prompt, the collected
responses are then pooled and ranked using the
ArmoRM-Llama3-8B-v0.1 reward model (Wang
et al., 2024). We select the top- and bottom-
ranked responses to construct high-quality prefer-
ence pairs, which are used to train both the reviser
and policy models following the procedure in § 2.2.

Training Setup The reviser is initialized from
LLaMA-3-8B-Instruct (Grattafiori et al., 2024)
and trained on preference pairs constructed from
re-ranked completions of strong models, as de-
scribed in Section 2.2. For policy training, we
consider three small policy backbones: Llama-3.2-
3B-Instruct, Llama-3.2-1B-Instruct, and Qwen2.5-
3B-Instruct (Yang et al., 2024). Policy training
proceeds in two stages. We first apply supervised
fine-tuning on 30% of the training prompts us-
ing top-ranked responses or the revised responses
from the reviser. The remaining 70% is used for
preference optimization based on self-sampled and
reviser-enhanced response pairs, as described in
Section 2.3. A comprehensive description of the
training procedure is available Appendix C.

Baselines and Evaluation We compare ReAlign
against several strong alignment baselines, includ-
ing: (i) SFT, supervised fine-tuning using top-
ranked responses from strong models; (ii) DPO-
On / SimPO-On, on-policy preference optimiza-
tion using self-sampled responses; (iii) DPO-Off /
SimPO-Off / WPO-Off, off-policy optimization
using strong-model responses after SFT warm-up;
and (iv) SIMPLEMIX (Li and Khashabi, 2025),
which randomly mixes on-policy and off-policy
data after SFT warm-up. We evaluate all methods
on two widely used instruction-following bench-
marks: (i) AlpacaEval-2 (Dubois et al., 2024),
which reports length-controlled (LC) and raw win
rates (WR) against GPT-4-Preview-1106; and (ii)
Arena-Hard (Li et al., 2024a), a curated set of
challenging reasoning tasks from Chatbot Arena.
GPT-4-Preview-1106 is used as the judge model,
and we report win rate (WR) and style-controlled

1Gemma-2-27B-It (Team et al., 2024), Mistral-Large-
Instruct-2407, Qwen-2.5-72B-Instruct (Yang et al., 2024), and
Llama-3.1-70B-Instruct (Dubey et al., 2024)

(SC) win rate against GPT-4-0314 as reference. Ad-
ditional results on domain-specific tasks (e.g., QA,
math, coding) are included in Appendix E.

4 Main Results

Table 1 presents the performance of our proposed
ReAlign method compared with several baselines
on AlpacaEval-2 and Arena-Hard.

On-policy vs. Off-policy Optimization We first
compare on-policy and off-policy optimization
across all policy models. On AlpacaEval-2, off-
policy optimization consistently outperform on-
policy alternatives. For example, DPO-Off im-
proves the LC win rate from 33.23% to 45.67% on
Llama-3.2-3B-Instruct, supporting the hypothesis
that weak models struggle to generate high-quality
on-policy data early in training. In contrast, off-
policy data provides stronger guidance with high-
quality responses from stronger models. However,
on Arena-Hard, Qwen2.5-3B-Instruct achieves bet-
ter performance with on-policy DPO (38.2%) than
with off-policy DPO (35.3%). This suggests that
on-policy optimization becomes more effective
when the policy is sufficiently capable or better
aligned with the target distribution, possibly as a
result of pretraining differences. This observation
aligns with the findings of Song et al. (2024).

Limits of Off-policy Learning Off-policy op-
timization provides strong supervision but often
fails to align with a weak model’s learning capacity.
For instance, on Llama-3.2-3B-Instruct, DPO-Off
achieves 45.67% LC win rate, whereas ReAlign fur-
ther improves it to 50.17%. This gap indicates that
stronger responses alone are insufficient, and effec-
tive supervision must also align with the model’s
learning capacity. Methods like WPO and SIM-
PLEMIX aim to alleviate this by weighting or mix-
ing on-policy and off-policy data, and they do offer
improved stability over DPO-Off. However, be-
cause they treat the two sources independently, the
off-policy signals may still fall outside the model’s
reachable distribution and thus remain underuti-
lized. This limitation is especially pronounced for
smaller models. On Llama-3.2-1B-Instruct, DPO-
Off reaches only 7.5% LC win rate on Arena-Hard,
lower than even the SFT baseline (7.9%). These
results highlight the need for approaches like Re-
Align, which anchor high-quality supervision in
the model’s own outputs to improve learnability.

12009

Method AlpacaEval-2 Arena-Hard

LC(%) WR(%) Avg. Len. SC(%) WR(%) Avg. Len.

Llama-3.2-3B-Instruct

SFT 27.59 27.09 1,965 20.40 21.10 2,826
WPO-Off 49.78 52.99 2,217 19.30 20.70 3,026
SIMPLEMIX 45.72 50.95 2,278 26.50 28.10 3,139
DPO/SimPO-On 33.23/31.00 32.86/32.16 1,967/2,025 22.90/20.20 23.70/21.40 2,732/2,652
DPO/SimPO-Off 45.67/43.88 47.09/30.38 2,120/1,423 23.10/16.10 23.30/16.80 2,871/2,326

ReAlign (DPO/SimPO) 50.17/47.50 51.26/49.26 2,073/2,100 28.50/26.30 29.20/26.60 2,933/2,955

Qwen2.5-3B-Instruct

SFT 20.89 18.45 1,874 22.80 23.00 2,933
WPO-Off 39.19 43.22 2,197 35.00 35.00 3,052
SIMPLEMIX 33.57 37.56 2,176 34.70 34.80 3,277
DPO/SimPO-On 24.81/28.26 34.10/31.27 2,468/2,138 38.20/36.50 38.40/36.60 3,441/3,347
DPO/SimPO-Off 37.72/37.81 39.92/27.99 2,144/1,552 35.30/30.60 35.70/30.90 3,167/2,310

ReAlign (DPO/SimPO) 44.04/45.30 44.95/43.40 2,086/1,999 35.50/36.60 35.20/37.00 2,866/3,160

Llama-3.2-1B-Instruct

SFT 12.28 11.62 1,841 7.90 8.10 2,890
WPO-Off 21.72 24.63 2,159 6.00 6.70 2,811
SIMPLEMIX 20.14 23.05 2,286 7.30 7.60 2,796
DPO/SimPO-On 15.95/18.61 19.06/15.04 2,191/1,696 7.00/7.20 7.70/8.80 3,125/2,129
DPO/SimPO-Off 20.36/17.55 22.06/12.84 2,076/1,567 7.50/7.40 7.70/7.50 2,822/2,618

ReAlign (DPO/SimPO) 25.36/25.53 29.06/27.35 2,185/2,066 9.30/8.90 9.70/9.40 2,949/2,804

Table 1: Performance comparison results of ReAlign with other baselines on AlpacaEval-2 and Arena-Hard.

Advantages of ReAlign As shown in Table 1,
ReAlign outperforms all baselines in most set-
tings across different model types and preference
optimization methods. On AlpacaEval-2, it im-
proves the LC win rate from 20.36% (DPO-Off)
to 25.36% on Llama-3.2-1B-Instruct, and from
17.55% (SimPO-Off) to 25.53%. On Arena-Hard,
it raises the SC win rate from 7.5% (DPO-Off)
to 9.3%, with similar trends observed for 3B and
Qwen models. Its effectiveness stems from two
core design choices. First, the reviser produces
responses that are not only higher quality but also
structurally similar to policy outputs, resulting
in preference pairs with moderate log-probability
gaps that are easier to learn from. Second, ReAlign
organizes these signals as a structured revision task,
grounding supervision in the model’s own gener-
ation process. Together, these features allow Re-
Align to combine the strength of off-policy super-
vision with the stability of on-policy optimization.

Evaluation of a Smaller Reviser We further as-
sess whether a reviser of the same scale as the
policy is sufficient. Concretely, we replace the 8B
reviser with a 3B reviser (Llama-3.2-3B-Instruct)
and train a Llama-3.2-3B-Instruct policy and the
results are measured by GPT-4o. As shown in Ta-
ble 2, ReAlign-DPO with a 3B reviser for a 3B

Method LC(%) WR(%) Avg. Len.

DPO-Off 33.51 33.94 2120
SimPO-Off 29.16 19.50 1423

WPO 35.56 37.70 2217
SIMPLEMIX 35.74 38.43 2278

ReAlign-DPO (8B reviser, 3B policy) 36.08 36.41 2073
ReAlign-DPO (3B reviser, 3B policy) 35.93 38.41 2129

Table 2: Same-scale setting: a 3B reviser guiding a 3B
policy. The 3B reviser yields competitive LC and higher
WR than the 8B-reviser variant, showing that a reviser
need not be larger than the policy to be effective.

policy attains performance comparable to the 8B-
reviser variant on LC and slightly higher WR, in-
dicating that the revision-task supervision remains
effective even when the reviser is not larger than
the policy.

5 Ablation Studies

To analyze the contributions of different compo-
nents in ReAlign, we conduct ablation experiments
along two orthogonal axes: (i) Pair format: Stan-
dard direct (D) format (yw ≻ yl | x) and revision-
task anchored (A) format (yw ≻ yl | x, yP) where
yP is the policy’s initial response. (ii) Response
source: Specifies where the preferred and dispre-
ferred responses (yw, yl) in each pair are sampled
from, including (P) policy self-sampled responses,

12010

Training Data LC(%) WR(%)

Llama-3.2-3B-Instruct 20.00 23.28

Stepwise Ablation
P-D 33.23 32.86

+ S-D → (P-D + S-D) 44.65 50.74
+ S-D → (P-D + S-A) 45.53 46.45
+ S-A → (P-D + R-D) 47.67 48.08
+ R-D → (P-D + R-A) 50.17 51.26

Individual or Alternative Variants
S-D only 45.67 47.09
R-D only 48.00 47.82
R-A only 47.57 48.07
R-D + R-A 46.06 53.72

Table 3: Ablation results for ReAlign (DPO) on
AlpacaEval-2. P-D means on-policy preference pairs.
S-D and S-A use strong responses in direct and an-
chored formats, respectively. R-D and R-A use reviser
responses in direct and anchored formats. ‘+’ denotes
an additive combination of preference data types used
jointly in a single training epoch.

(R) reviser outputs, and (S) responses from the
strong model. All experiments are using Llama-
3.2-3B-Instruct. The results of ablation studies are
presented in Table 3.

Impact of the Revision Task We evaluate
whether structuring supervision as a revision task
improves learning. Comparing P-D + R-D and
P-D + R-A, the latter achieves a higher LC win
rate (50.17% vs. 47.67%) using the same reviser
outputs. A similar gain is observed with strong-
model completions (P-D + S-A > P-D + S-D), con-
firming that conditioning on policy outputs yields
more learnable signals. Even without on-policy
data, revision-only training (R-A) performs com-
petitively, supporting our claim that grounding pref-
erence pairs in the model’s generation space im-
proves learnability, especially for weaker policies.

Impact of the Reviser Reviser outputs yield
better performance than strong-model responses.
For instance, R-D outperforms S-D (48.00%
vs. 45.67%), indicating that reviser-generated re-
sponses are both higher quality and more learn-
able for weak policies. Similarly, P-D + R-A sur-
passes P-D + S-A (50.17% vs. 45.53%), showing
that revision supervision is more effective when
conditioned on the policy’s own outputs. This
policy-awareness keeps the learning signal within
the model’s reachable distribution.

Model Version SFT ReAlign (DPO)

WR (%) Avg. L WR (%) Avg. L

Llama-3B
Initial 50.0 2137 84.2 2073
Revised 81.2 2058 83.9 2130

Qwen-3B
Initial 48.8 1872 74.9 2086
Revised 66.2 1981 75.8 2228

Llama-1B
Initial 20.6 2043 59.1 2186
Revised 44.6 2130 56.0 2149

Table 4: Self-revision performance of ReAlign (DPO)
on AlpacaEval-2. Each policy generates an initial re-
sponse and then performs a single self-revision. WR
against GPT-4-0314 is evaluated by ArmoRM score.

Low Medium High
Initial Score Group

0

5

10

15

20

25

30

M
ea

n
Im

pr
ov

em
en

t (
, ±

 S
EM

)

Llama-1B ReAlign(DPO)
Llama-1B ReAlign(SimPO)
Llama-3B ReAlign(DPO)

Llama-3B ReAlign(SimPO)
Qwen-3B ReAlign(DPO)
Qwen-3B ReAlign(SimPO)

Figure 3: Reward improvement from self-revision
across initial response quality. We collect 8 external
models 2responses to AlpacaEval prompts and group
them into low/medium/high bins based on ArmoRM
scores. Each ReAlign policy performs one-step re-
vision per response. Bars show mean reward gain
∆r = rrevised − rinitial in each bin (± SEM).

On-policy Learning with Revision Task Re-
moving on-policy pairs and training only on
revision-based data (R-D + R-A) leads to a no-
ticeable drop in performance compared to P-D +
R-A (46.06% vs. 50.17%), suggesting that decou-
pling supervision from current policy impairs learn-
ing. In P-D + R-A, revisions are grounded in pre-
ferred policy responses, ensuring alignment with
the model’s behavior. By contrast, R-D + R-A
combines two sources detached from the policy
inference, introducing conflicting signals. A sim-
ilar mismatch occurs when adding direct reviser
pairs to revision-only training (R-D + R-A vs. R-
A), where performance slightly degrades due to
incompatible optimization signals.

6 Discussion and Analysis

Diminishing Returns of Self-Revision Table 4
shows that self-revision substantially improves SFT

12011

0.00 0.25 0.50 0.75 1.00
Epoch

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

Hybrid (On)
Hybrid (Off)
ReAlign (On)
ReAlign (Off)

(a) Llama-3.2-1B-Instruct

0.00 0.25 0.50 0.75 1.00
Epoch

0.45

0.50

0.55

0.60

0.65

0.70

Tr
ai

ni
ng

 L
os

s

Hybrid (On)
Hybrid (Off)
ReAlign (On)
ReAlign (Off)

(b) Llama-3.2-3B-Instruct

0.00 0.25 0.50 0.75 1.00
Epoch

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

Hybrid (On)
Hybrid (Off)
ReAlign (On)
ReAlign (Off)

(c) Qwen2.5-3B-Instruct

Figure 4: Training loss under different strategies. We compare ReAlign and a hybrid baseline on three policy
models. ReAlign uses revision-task pairs (from the reviser) as off-policy data, while hybrid mixes on-policy data
with direct strong-model off-policy data. Loss is reported separately for on-policy (On) and off-policy (Off) data.

On-policy Off-policy

0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy Mean: 0.7557
On-policy Median: 0.8066
Off-policy Mean: 0.5784
Off-policy Median: 0.5698

(a) ReAlign

On-policy DPO Off-policy DPO

0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy DPO Mean: 0.7036
On-policy DPO Median: 0.7425
Off-policy DPO Mean: 0.7726
Off-policy DPO Median: 0.8492

(b) Hybrid

On-policy DPO Off-policy DPO

0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy DPO Mean: 0.6696
On-policy DPO Median: 0.6896
Off-policy DPO Mean: 0.6263
Off-policy DPO Median: 0.5974

(c) DPO

Figure 5: Distribution of λ = σ(β(∆ref −∆π)) values on on-policy and off-policy data after training. We visualize
the λ distributions induced by the final policy models trained under different schemes on Llama-3.2-1B. For ReAlign
(a), we separately compute λ values for on-policy and revision-task off-policy data. For hybrid (b), we compute λ
over on-policy and strong model’s off-policy data. For standard DPO (c), we report λ values under models trained
only on on-policy or off-policy data, respectively. Higher λ indicates more confident preference alignment.

models. For example, Llama-3B improves from
50.0% to 81.2% win rate, where the initial re-
sponses contain many fixable flaws. In contrast, the
same revision procedure yields little or no gain after
ReAlign training (e.g., 84.2% to 83.9% for Llama-
3B), suggesting that the initial outputs are already
near the policy’s upper bound. Figure 3 confirms
this interpretation. When responses from external
models are grouped by quality, ReAlign policies
deliver the largest reward gain ∆r on low-quality
inputs, and diminishing gains on medium and high-
quality ones. This indicates that the learned revi-
sion ability remains effective, but it naturally de-
clines as generation quality improves.

Training Behavior for ReAlign To investigate
learning behavior under different strategies, we an-
alyze training loss trajectories between ReAlign
and a hybrid baseline that combines on-policy su-
pervision with direct off-policy pairs from strong

2Qwen2.5-3B-Instruct, Llama-3.2-1B-Instruct, Llama-
3.2-3B-Instruct, Qwen2-72B-Instruct, Meta-Llama-3.1-405B-
Instruct-Turbo, Meta-Llama-3.1-70B-Instruct-Turbo, Meta-
Llama-3.1-8B-Instruct-Turbo, and GPT-4o-2024-05-13.

models. Figure 4 shows that ReAlign achieves
faster loss reduction on on-policy data, especially
in early training, indicating that its preference sig-
nals are better aligned with the model’s distribution
and easier to optimize. By conditioning off-policy
supervision on policy outputs through a revision
task, ReAlign avoids the gradient inconsistency
that can arise when directly mixing distributions.
In contrast, the hybrid baseline quickly reduces
off-policy loss due to large reward gaps but yields
slower improvements on on-policy data. This mis-
match suggests that such external data may offer
overly incompatible signals for weak policies.

We find that ReAlign’s off-policy loss decreases
more gradually because revision-task pairs, condi-
tioned on policy outputs, maintain distributional
proximity and exhibit smaller margins, similar to
on-policy data. These samples remain effective but
lead to slower learning. Overall, the training dy-
namics support our hypothesis that revision tasks
provide more compatible and effective guidance.
By structuring off-policy data around the model’s
generation space, ReAlign enables steady optimiza-

12012

tion without destabilizing gradients.

Analyzing λ Distributions We analyze the λ dis-
tributions (detailed in Appendix D) to understand
how different training schemes modulate prefer-
ence weighting. As shown in Figure 5, higher
λ values indicate stronger policy–reference agree-
ment and thus higher learning confidence. ReAlign
exhibits sharply peaked λ values on on-policy data
(mean = 0.76, median = 0.81), showing strong
agreement with its own generation space. In con-
trast, its off-policy revision pairs have lower mean
λ (0.58), suggesting these are harder but still infor-
mative examples. This reflects ReAlign’s ability to
guide learning without departing from the model’s
distribution. Hybrid, however, shows higher λ on
off-policy than on-policy (0.77 vs. 0.70), indicat-
ing that strong-model completions dominate learn-
ing. While this may speed up optimization, it risks
overwhelming the model with mismatched signals,
especially for weaker policies. Overall, ReAlign
adapts supervision strength to the model’s capacity,
promoting improvement without forcing imitation.
This selective weighting helps avoid overfitting and
supports more stable policy learning.

7 Conclusion

In this work, we presented ReAlign, a novel frame-
work for aligning small language models that com-
bines the stability of on-policy learning with the
guidance of reviser-assisted supervision. By intro-
ducing a revision task grounded in the model’s own
generations, ReAlign mitigates the distributional
mismatch issues commonly seen in off-policy pref-
erence optimization and provides richer, more sta-
ble learning signals during early training. The inte-
gration of a lightweight reviser enables the creation
of high-quality, preference-aligned revisions that
remain close to the policy’s distribution, allowing
small language models to benefit from stronger su-
pervision without destabilizing gradients. Our em-
pirical results on challenging benchmarks such as
AlpacaEval-2 and Arena-Hard demonstrate that Re-
Align consistently outperforms existing baselines
across various small model sizes. These results
highlight the importance of conditioning supervi-
sion on the model’s own behavior and suggest that
structured revision-based training offers a scalable
and effective strategy for preference alignment.

Limitations

In this paper, we propose ReAlign to address
the challenge of small language model alignment.
However, we do not explore the performance of Re-
Align when combined with online RL algorithms
such as PPO and REINFORCE. The reason lies
in the fact that ReAlign learns to refine responses
generated by the reviser, which are not sampled di-
rectly from the policy itself. This setting introduces
a certain inconsistency with online RL algorithms.
Nevertheless, we believe that the potential of Re-
Align can be further unlocked when integrated with
online RL algorithms. To achieve this, it is neces-
sary to first address this inconsistency and enable
ReAlign to better align with online RL algorithms.
This will be the focus of our future work.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (No. 62176270) and
the Guangdong Basic and Applied Basic Research
Foundation (No. 2023A1515012832).

References
Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-

lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447–4455.
PMLR.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and
1 others. 2022a. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. arXiv preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, and 1 others. 2022b. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Ruijun Chen, Jiehao Liang, Shiping Gao, Fanqi Wan,
and Xiaojun Quan. 2024. Self-evolution fine-
tuning for policy optimization. arXiv preprint
arXiv:2406.10813.

Jiale Cheng, Xiao Liu, Cunxiang Wang, Xiaotao Gu,
Yida Lu, Dan Zhang, Yuxiao Dong, Jie Tang, Hongn-
ing Wang, and Minlie Huang. 2024. Spar: Self-play
with tree-search refinement to improve instruction-
following in large language models. arXiv preprint
arXiv:2412.11605.

12013

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

Qingxiu Dong, Li Dong, Xingxing Zhang, Zhifang Sui,
and Furu Wei. 2024. Self-boosting large language
models with synthetic preference data. arXiv preprint
arXiv:2410.06961.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu,
Misha Khalman, Felipe Llinares, Alexandre Rame,
Thomas Mesnard, Yao Zhao, Bilal Piot, and 1 others.
2024. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong,
Borong Zhang, Xuehai Pan, Tianyi Qiu, Juntao Dai,
and Yaodong Yang. 2024. Aligner: Efficient align-
ment by learning to correct. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Tianjian Li and Daniel Khashabi. 2025. Simplemix:
Frustratingly simple mixing of off-and on-policy
data in language model preference learning. arXiv
preprint arXiv:2505.02363.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024a. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Yafu Li, Xuyang Hu, Xiaoye Qu, Linjie Li, and
Yu Cheng. 2025. Test-time preference optimization:
On-the-fly alignment via iterative textual feedback.
arXiv preprint arXiv:2501.12895.

Yixing Li, Yuxian Gu, Li Dong, Dequan Wang,
Yu Cheng, and Furu Wei. 2024b. Direct preference
knowledge distillation for large language models.
arXiv preprint arXiv:2406.19774.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J Liu, and Jialu Liu. 2023.
Statistical rejection sampling improves preference op-
timization. In The Twelfth International Conference
on Learning Representations.

Hantao Lou, Jiaming Ji, Kaile Wang, and Yaodong
Yang. 2025. Stream aligner: Efficient sentence-level
alignment via distribution induction. arXiv preprint
arXiv:2501.05336.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023. Self: Language-driven
self-evolution for large language model. arXiv
preprint arXiv:2310.00533.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. Simpo: Simple preference optimization
with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2023. Gpqa: A
graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

12014

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Yuda Song, Gokul Swamy, Aarti Singh, J Bagnell, and
Wen Sun. 2024. The importance of online data: Un-
derstanding preference fine-tuning via coverage. Ad-
vances in Neural Information Processing Systems,
37:12243–12270.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri,
and Greg Durrett. 2024. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning.
In Proceedings of the International Conference on
Learning Representations. International Conference
on Learning Representations.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and 1 others. 2023. Challenging big-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 13003–13051.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael
Rafailov, Jeff Schneider, Tengyang Xie, Stefano Er-
mon, Chelsea Finn, and Aviral Kumar. 2024. Prefer-
ence fine-tuning of llms should leverage suboptimal,
on-policy data. In International Conference on Ma-
chine Learning, pages 47441–47474. PMLR.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng,
Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Ávila Pires, Michal Valko,
Yong Cheng, and 1 others. 2024. Understanding the
performance gap between online and offline align-
ment algorithms. arXiv preprint arXiv:2405.08448.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, and 1 others. 2024.
Gemma 2: Improving open language models at a
practical size. arXiv preprint arXiv:2408.00118.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist llm assistants.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, and 1 others. 2023. Zephyr:
Direct distillation of lm alignment. arXiv preprint
arXiv:2310.16944.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao,
and Tong Zhang. 2024. Interpretable preferences
via multi-objective reward modeling and mixture-of-
experts. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 10582–
10592.

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu,
Jinyang Gao, Bolin Ding, Xiang Wang, and Xiangnan
He. 2024. β-dpo: Direct preference optimization
with dynamic β. Advances in Neural Information
Processing Systems, 37:129944–129966.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and
Yi Wu. 2024. Is dpo superior to ppo for llm align-
ment? a comprehensive study. arXiv preprint
arXiv:2404.10719.

Yuzi Yan, Yibo Miao, Jialian Li, Yipin Zhang, Jian Xie,
Zhijie Deng, and Dong Yan. 2024. 3d-properties:
Identifying challenges in dpo and charting a path
forward. arXiv preprint arXiv:2406.07327.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Eunseop Yoon, Hee Suk Yoon, SooHwan Eom, Gun-
soo Han, Daniel Nam, Daejin Jo, Kyoung-Woon
On, Mark Hasegawa-Johnson, Sungwoong Kim, and
Chang Yoo. 2024. Tlcr: Token-level continuous re-
ward for fine-grained reinforcement learning from
human feedback. In Findings of the Association for
Computational Linguistics ACL 2024, pages 14969–
14981.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. 2024. Self-rewarding language models. In
Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Haorui
Wang, Zhen Qin, Feng Han, Jialu Liu, Simon Baum-
gartner, Michael Bendersky, and Chao Zhang. 2024.
PLaD: Preference-based large language model distil-
lation with pseudo-preference pairs. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 15623–15636, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Wenxuan Zhou, Ravi Agrawal, Shujian Zhang,
Sathish Reddy Indurthi, Sanqiang Zhao, Kaiqiang
Song, Silei Xu, and Chenguang Zhu. 2024. Wpo:
Enhancing rlhf with weighted preference optimiza-
tion. arXiv preprint arXiv:2406.11827.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif.

12015

https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://doi.org/10.18653/v1/2024.findings-acl.923
https://doi.org/10.18653/v1/2024.findings-acl.923
https://starling.cs.berkeley.edu/
https://starling.cs.berkeley.edu/

A Related Work

Traditional Methods of Alignment Aligning
language models to human preferences often em-
ploys techniques like RLHF (Ouyang et al., 2022),
which incorporates human feedback into the train-
ing process. It relies on complex reinforcement
learning techniques such as Proximal Policy Op-
timization (Schulman et al., 2017), making it not
only difficult to implement but also unstable dur-
ing training. To overcome these issues, numerous
offline RLHF methods have emerged. Represen-
tative works include DPO (Rafailov et al., 2024),
which simplifies the alignment process by directly
optimizing the model using a preference dataset
without the need for an explicit reward model.

Further research has sought to address poten-
tial limitations of DPO. IPO (Azar et al., 2024)
mitigates the risk of overfitting by optimizing a
nonlinear preference function, thereby avoiding the
conversion of pairwise preferences into pointwise
rewards. KTO (Ethayarajh et al., 2024) introduced
a new alignment objective called human-aware loss
(HALO), which maximizes the utility of genera-
tions from a binary signal instead of maximizing
the likelihood of preferences. In SimPO (Meng
et al., 2024), the reward component in DPO is modi-
fied to utilize the average log probability of positive
or negative responses from the policy model. De-
spite these advances, off-policy methods still suffer
from a distributional mismatch between training
samples and the model, potentially leading to per-
formance degradation.

To resolve this issue, several on-policy pref-
erence alignment methods have been proposed.
For instance, Yuan et al. (2024) proposed a self-
rewarding language model, where the model pro-
vides rewards of its own responses via LLM-as-a-
Judge prompting. Meanwhile, OAIF (Guo et al.,
2024) samples two responses and employs an LLM
annotator to label the positive and negative samples.
RSO (Liu et al., 2023) uses rejection sampling to
sample preference data from the optimal policy, en-
abling a more accurate estimation of it. However,
the quality of on-policy samples is constrained by
the capability of the policy model, which in turn
limits training effectiveness.

The challenges mentioned above are particularly
pronounced for small models, which face inher-
ent limitations in parameter size and training data.
Their reduced capacity to capture complex human-
language patterns often results in weaker alignment

performance compared to larger LLMs (Bai et al.,
2022a). So in our work, we leverage responses
from strong models to enhance the upper limit of
the capabilities of weak models.

External Guidance for Alignment Considering
the high cost of manually collecting alignment data,
many current works use a different model to assist
in policy training. The most common approach is
distillation, which involves using a larger and more
powerful teacher model to provide feedback on
the preferences of responses. For instance, Zephyr
(Tunstall et al., 2023) employs GPT-4 to rank re-
sponses from multiple LLMs to obtain preference
data. In DPKD (Li et al., 2024b) and PLaD (Zhang
et al., 2024), the teacher’s outputs and the student’s
outputs are treated as preferred and dispreferred
responses seperately for preference learning.

Moreover, some recent works focus on incorpo-
rating refinement to the policy optimization stage.
For example, Constitutional AI (Bai et al., 2022b)
uses refinement data for reward models, while
SELF (Lu et al., 2023) enables the models to self-
evolve iteratively, equipping them with the ability
to self-refine during inference. Test-Time Prefer-
ence Optimization (TPO) (Li et al., 2025) translates
reward signals into textual critiques and utilizes
them as textual rewards to iteratively refine its re-
sponse. But these methods may bring interfering
factors since they directly use responses sampled
from the policy model. Regarding the introduction
of an external refiner, most previous works only uti-
lized it in the inference phase (Ji et al., 2024; Lou
et al., 2025). Recently, however, there have been
quite a few works that use it to assist in policy opti-
mization. Yoon et al. (2024) proposed Token-Level
Continuous Reward (TLCR), which uses GPT-4
as a reviser to refine responses then assign token-
wise preference labels for discriminator training.
SynPO (Dong et al., 2024) employs an iterative
mechanism wherein a self-prompt generator creates
diverse prompts, and a response improver refines
model responses progressively. SPAR (Cheng et al.,
2024) introduces a refiner to judge the generated
responses to collect negative data then employs a
tree-search algorithm to refine them, which are then
used for model training. Apart from that, in Self-
Evolution Fine-Tuning (SEFT) (Chen et al., 2024),
the policy undergoes internal and external evolu-
tion by being fine-tuned with enhanced responses
generated by a trained adaptive reviser. Compared
to the methods mentioned above, our method incor-

12016

porates revisions from the reviser for policy opti-
mization, enabling weak policies to learn from both
their own responses and externally refined outputs.

B Reviser Training

The process of training the reviser is illustrated in
Algorithm 1.

Algorithm 1 Reviser Training Pipeline

Require: initial reviser R, strong models M1 ∼
Mm, prompt dataset Dp = {xi}Ni=1 of size N ,
each strong model samples n responses per
prompt, number of quantiles k, and a reward
model r.

Ensure: Trained Reviser R′

1: Training Dataset Dr = ϕ
2: for x in Dp do
3: Initialize an empty list Responses
4: for i = 1 to m do
5: for j = 1 to n do
6: Sample a response r from model

Mi given prompt x
7: Append r to Responses
8: end for
9: end for

10: Score and rank the list Responses to get
ŷ1 ∼ ŷmn

11: Calculate the k-quantile of m ∗ n to select
positions a1 ∼ ak−1

12: for i = k − 1 downto 1 do
13: if i == k − 1 then
14: chosen = (x+ ŷak−1

, ŷak−2
)

15: rejected = (x+ ŷak−1
, ŷamn)

16: else if i > 1 then
17: chosen = (x+ ŷai , ŷai−1)
18: rejected = (x+ ŷai , ŷai+1)
19: else
20: chosen = (x+ ŷa1 , ŷa1)
21: rejected = (x+ ŷa1 , ŷa2)
22: end if
23: Append (chosen, rejected) to Dr

24: end for
25: end for
26: Optimize R with Dr according to Eq.(4) to

obtain the R′

27: return the trained reviser R′

C Implementation Details

All experiments are implemented using the TRL
library.3 We train both the reviser and policy mod-
els on the augmented UltraFeedback dataset from
Section 3, which is randomly split into 30% for
SFT and 70% for preference-based optimization.

Reviser Training The reviser is trained in two
stages In the SFT warm-up stage, it learns to re-
vise low-quality responses into higher-quality ones
using top-vs-bottom ranked responses from strong
models. In the second stage, we apply a preference-
consistent optimization strategy using quantile-
ranked response pairs (with k = 4 quantiles), as
detailed in Section 2.2.

Policy Training Policy optimization also follows
a two-stage procedure. First, SFT is performed
on 30% of prompts using either strong model re-
sponses or reviser outputs. The remaining 70% of
prompts are then used to construct two types of
preference pairs: (i) Self-sampling data, where
the policy samples 5 responses per prompt, and the
top vs. bottom-ranked responses (scored by the re-
ward model) form the on-policy pairs; (ii) Reviser-
enhanced data, where each policy response is re-
vised by the trained reviser, and the revisions are
ranked to form revision-based preference pairs.

Baselines We compare ReAlign against the fol-
lowing baselines: (i) SFT: Fully supervised tuning
using top-ranked strong model responses on all
prompts. (ii) DPO-On / SimPO-On: On-policy
preference optimization using responses sampled
from the current policy. (iii) DPO-Off / SimPO-
Off / WPO-Off: Off-policy preference optimiza-
tion using strong model responses. These methods
begin with 30% SFT warm-up and then train on
preference pairs from the remaining 70% prompts.
(iv) SIMPLEMIX: A hybrid approach that per-
forms 30% SFT warm-up, followed by preference
optimization on a random 50/50 mixture of on-
policy and off-policy pairs. On-policy samples are
drawn from the SFT model.

Hyperparameters Detailed hyperparameter set-
tings are provided in Table 5. We train all models
using a maximum sequence length of 2048 and
adopt the adam optimizer (adam_torch) with a co-
sine learning rate scheduler and a warm-up ratio
of 0.03. During the supervised fine-tuning (SFT)

3https://github.com/huggingface/trl

12017

https://github.com/huggingface/trl

Table 5: Hyperparameter configurations used for each
model and alignment method.

Method Batch Size Learning Rate β γ

Llama-3.2-3B-Instruct

SFT 128 5.0e-6 - -
DPO-On 128 5.0e-7 0.01 -
DPO-Off 64 5.0e-7 0.01 -
SimPO-On 128 1.0e-6 10 3
SimPO-Off 64 5.0e-7 10 3
WPO-Off 32 8.0e-7 0.03 -
SIMPLEMIX 64 5.0e-7 0.01 -
ReAlign (DPO) 128 5.0e-7 0.01 -
ReAlign (SimPO) 128 5.0e-7 10 3

Qwen2.5-3B-Instruct

SFT 128 5.0e-6 - -
DPO-On 128 5.0e-7 0.01 -
DPO-Off 128 5.0e-7 0.01 -
SimPO-On 128 1.0e-6 10 3
SimPO-Off 128 1.0e-6 10 3
WPO-Off 32 8.0e-7 0.03 -
SIMPLEMIX 128 5.0e-7 0.01 -
ReAlign (DPO) 64 1.0e-6 0.01 -
ReAlign (SimPO) 128 1.0e-6 10 3

Llama-3.2-1B-Instruct

SFT 128 5.0e-6 - -
DPO-On 32 5.0e-7 0.01 –
DPO-Off 128 5.0e-7 0.01 –
SimPO-On 32 5.0e-7 10 3
SimPO-Off 128 1.0e-6 10 3
WPO-Off 32 8.0e-7 0.03 -
SIMPLEMIX 128 5.0e-7 0.01 -
ReAlign (DPO) 32 1.0e-6 0.01 -
ReAlign (SimPO) 128 1.0e-6 10 3

stage, models are trained for 3 epochs. In con-
trast, all preference optimization stages, including
DPO, SimPO, WPO, SIMPLEMIX, and ReAlign,
are trained for 1 epoch.

D Derivation and Interpretation of the λ

D.1 From the DPO Objective to
Data-Dependent Weights

Most preference–based alignment objectives can
be written in the form

L = E(x,yw,yl)∼D[
− log σ

(
β
[
log πθ(yw | x)− log πθ(yl | x)

]

− β
[
log πref(yw | x)− log πref(yl | x)

])]
,

(6)
where πθ is the policy, πref the (frozen) refer-
ence model, β > 0 controls the strength of the
KL divergence term constrains the deviation of
the policy πθ from the reference model. Let-
ting ∆π := log πθ(yw | x) − log πθ(yl | x) and

∆ref := log πref(yw | x) − log πref(yl | x), one ob-
tains the gradient.

∇θL = −β ED
[
σ
(
β(∆ref −∆π)

)
︸ ︷︷ ︸

λ(x, yw, yl)

∇θ

(
∆π

)]
.

(7)

Hence every preference sample is re-weighted by

λ = σ
(
β(∆ref −∆π)

)
∈ (0, 1).

Intuitive meaning.

• If the reference already strongly prefers yw
over yl (∆ref ≫ ∆π), then λ → 1 and the
sample receives a large gradient step.

• If the policy is aligned with the reference
(∆ref ≈ ∆π), then λ ≈ 0.5, yielding a mod-
erate update.

• If the policy over-prefers yw relative to the ref-
erence (∆ref <∆π), λ becomes small, down-
weighting a potentially harmful sample.

Consequently, the distribution of λ after training re-
veals which subset of data the model finally learns
from the most.

D.2 Practical Computation in Our
Experiments

For every final checkpoint we recompute λ on all
training pairs with β=0.01:

• ReAlign: πref equals the warm-up SFT
model; we report λ separately for on-policy
pairs (x, yPw , y

P
l) and revision-task pairs

(x, yPw , y
R
w , y

R
l).

• Hybrid: πref also equals the warm-up SFT
model, but pairs are a direct mixture of on-
policy and strong-model off-policy data.

• DPO: two single-source baselines, trained on
only on-policy or only off-policy data and
evaluated on their respective training sets.

D.3 Empirical λ Distributions

Figure 5 and Figure 6 (Llama-3.2-3B-Instruct /
Qwen2.5-3B-Instruct) plot the resulting λ distri-
butions. Aggregate statistics for the 1B model are
shown in Table 6.

12018

On-policy DPO Off-policy DPO
0.0

0.2

0.4

0.6

0.8

1.0
=

(
(

re
f

))

On-policy DPO Mean: 0.6649
On-policy DPO Median: 0.6008
Off-policy DPO Mean: 0.5271
Off-policy DPO Median: 0.5216

(a) ReAlign (Llama-3.2-3B)

On-policy DPO Off-policy DPO
0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy DPO Mean: 0.5753
On-policy DPO Median: 0.5534
Off-policy DPO Mean: 0.6584
Off-policy DPO Median: 0.6379

(b) Hybrid (Llama-3.2-3B)

On-policy DPO Off-policy DPO

0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy DPO Mean: 0.5581
On-policy DPO Median: 0.5480
Off-policy DPO Mean: 0.7362
Off-policy DPO Median: 0.7834

(c) DPO (Llama-3.2-3B)

On-policy DPO Off-policy DPO

0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy DPO Mean: 0.6778
On-policy DPO Median: 0.6521
Off-policy DPO Mean: 0.5766
Off-policy DPO Median: 0.5706

(d) ReAlign (Qwen2.5-3B)

On-policy DPO Off-policy DPO

0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy DPO Mean: 0.6496
On-policy DPO Median: 0.6558
Off-policy DPO Mean: 0.7747
Off-policy DPO Median: 0.8486

(e) Hybrid (Qwen2.5-3B)

On-policy DPO Off-policy DPO
0.0

0.2

0.4

0.6

0.8

1.0

=
(

(
re

f
))

On-policy DPO Mean: 0.5577
On-policy DPO Median: 0.5422
Off-policy DPO Mean: 0.6297
Off-policy DPO Median: 0.5802

(f) DPO (Qwen2.5-3B)

Figure 6: Distribution of λ values on on-policy and off-policy data after training of Llama-3.2-3B-Instruct and
Qwen2.5-3B-Instruct.

Scheme Source Mean Median

ReAlign
On-policy 0.756 0.807

Revision-task 0.578 0.570

Hybrid
On-policy 0.704 0.743

Strong Off-policy 0.773 0.849

DPO
On-policy only 0.670 0.690
Off-policy only 0.626 0.597

Table 6: Mean and median λ on Llama-3.2-1B-Instruct.

ReAlign The on-policy density is sharply peaked
around µ = 0.756, median = 0.807, indicating
high reference–policy agreement. Revision-task
pairs are harder (µ=0.578) yet still centred well
above 0.5, showing that ReAlign retains informa-
tive off-policy signals without conflicting with its
own distribution.

Hybrid Hybrid assigns higher weight to strong-
model pairs (µ = 0.773) than to on-policy ones
(µ=0.704), confirming that the external comple-
tions dominate training. Coupled with the loss
curves in Section 6, this suggests a risk of distribu-
tional overstretch.

Standard DPO When trained solely on off-
policy data, the mean λ is µ = 0.626 (median
0.597), lower than the on-policy counterpart (µ=
0.670). This indicates that the weak policy does

obtain non-negligible gradients on external pairs,
yet these signals remain less aligned than on-policy
ones. Conversely, on-policy-only DPO maintains
moderate weights (≈ 0.67), confirming better refer-
ence–policy agreement within its own distribution.

These findings substantiate our claim that
revision-task off-policy supervision offers learn-
able yet non-conflicting guidance, yielding stable
improvement across model scales.

E Results of Downstream Benchmarks

To assess out work on downstream tasks, we con-
ducted experiments across eight tasks spanning
general knowledge, mathematics, and program-
ming domains. The tasks are described as follows:

MMLU (Hendrycks et al., 2021): A multiple-
choice dataset to evaluate knowledge capability,
which covers 57 tasks including elementary mathe-
matics, US history, computer science, and more.

HellaSwag (Zellers et al., 2019): A common-
sense reasoning benchmark requiring models to
choose the most plausible continuation.

GSM8K (Cobbe et al., 2021): A dataset of 8.5K
linguistically diverse grade-school math word prob-
lems to evaluate mathematical reasoning capability.

BBH (Suzgun et al., 2023): A subset of the BIG-
Bench benchmark comprising 23 challenging tasks

12019

Method
MMLU Hellaswag GSM8K BBH GPQA MuSR Winogrande TruthfulQA

Average5-shot 10-shot 8-shot, CoT 3-shot 0-shot 0-shot 5-shot 0-shot
Acc Acc Norm Acc Acc Norm Acc Norm Acc Norm Acc Acc

Llama-3.2-3B-Instruct

SFT 58.33 73.83 74.37 39.56 30.37 35.98 70.17 41.24 52.98
DPO-On 60.18 75.74 75.89 41.99 31.96 36.90 62.43 42.58 53.46
DPO-Off 58.94 75.73 74.22 42.04 29.70 39.29 67.72 36.24 52.99
SimPO-On 60.28 75.55 77.03 42.39 32.47 38.10 67.48 44.95 54.78
SimPO-Off 60.01 76.51 67.17 42.35 30.70 38.62 65.75 54.81 54.49
WPO-Off 59.18 76.01 74.37 42.74 30.54 35.05 67.09 42.58 53.45
SIMPLEMIX 59.64 75.49 73.39 41.12 31.63 35.32 67.72 44.04 53.54

ReAlign (DPO) 59.69 74.87 75.36 41.12 31.80 35.85 69.06 43.25 53.88
ReAlign (SimPO) 59.17 76.05 73.09 42.04 30.45 38.62 67.32 39.93 53.33

Qwen2.5-3B-Instruct

SFT 65.65 75.01 77.10 42.56 32.13 41.14 69.46 45.40 56.06
DPO-On 66.39 75.67 81.05 42.34 31.12 39.68 66.06 48.99 56.41
DPO-Off 65.68 76.40 79.38 43.69 31.80 41.53 67.64 44.92 56.38
SimPO-On 66.35 75.47 81.27 43.69 32.55 41.14 68.35 50.54 57.42
SimPO-Off 65.83 76.87 72.10 44.32 31.04 41.40 68.11 48.67 56.04
WPO-Off 65.67 76.69 79.83 42.84 31.29 40.48 65.27 42.03 55.51
SIMPLEMIX 66.39 75.64 81.35 44.56 30.45 39.02 62.27 45.54 55.65

ReAlign (DPO) 66.40 75.71 79.68 44.78 30.37 41.80 67.56 48.59 56.86
ReAlign (SimPO) 65.64 76.07 77.79 43.78 32.55 41.80 68.98 47.44 56.76

Llama-3.2-1B-Instruct

SFT 43.54 61.71 42.91 32.46 26.76 33.60 60.62 38.09 42.46
DPO-On 46.48 62.89 42.46 30.57 24.50 37.57 56.43 36.18 42.14
DPO-Off 45.28 62.75 42.76 32.96 25.92 32.01 60.46 31.96 41.76
SimPO-On 46.59 63.48 40.26 33.97 27.68 32.01 57.22 41.21 42.80
SimPO-Off 45.83 63.07 41.09 33.00 25.25 32.01 61.64 34.60 42.06
WPO-Off 45.03 64.57 39.12 31.56 25.50 33.20 60.46 32.44 41.49
SIMPLEMIX 45.81 63.64 44.35 32.77 26.51 30.29 59.04 37.99 42.55

ReAlign (DPO) 46.01 63.93 41.32 31.31 26.26 30.82 60.06 37.76 42.18
ReAlign (SimPO) 45.23 63.98 39.95 31.92 27.27 30.95 60.30 31.22 41.35

Table 7: Performance comparison results across multiple benchmarks.

where prior LLMs performed poorly. It tests emer-
gent abilities such as multistep reasoning, hierar-
chical planning, and nuanced understanding.

GPQA (Rein et al., 2023): A challenging knowl-
edge benchmark crafted by PhD-level domain ex-
perts in biology, physics, and chemistry.

MuSR (Sprague et al., 2024): A dataset compris-
ing algorithmically generated complex problems,
such as murder mysteries, object placement chal-
lenges, and team allocation optimizations.

Winogrande (Sakaguchi et al., 2021): A set of
adversarial and difficult Winograd benchmarks for
commonsense reasoning.

TruthfulQA (Lin et al., 2022): A benchmark
dataset for evaluating the truthfulness of LLMs and
their ability to avoid falsehoods.

The results summarized in Table 7 reveal several
trends regarding general task performance. Across
most benchmarks, on-policy methods such as DPO-
On and SimPO-On better preserve the model’s orig-
inal capabilities. This holds across model scales

and supports the intuition that on-policy optimiza-
tion maintains the model’s native behavior by train-
ing within its own generation distribution.

While ReAlign does not always surpass the
strongest on-policy baselines on every task, it con-
sistently delivers competitive results across models
and benchmarks. These outcomes suggest that the
revision-task supervision introduced by ReAlign
enables effective preference alignment without sub-
stantially degrading performance on broader rea-
soning and language tasks.

12020

