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Abstract

Sentence embeddings are central to modern nat-
ural language processing, powering tasks such
as clustering, semantic search, and retrieval-
augmented generation. Yet, they remain largely
opaque: their internal features are not directly
interpretable, and users lack fine-grained con-
trol for downstream tasks. To address this issue,
we introduce a formal framework to character-
ize the organization of features in sentence em-
beddings through information-theoretic means.
Building on this foundation, we develop a
method to identify interpretable feature direc-
tions and show how they can be composed
to capture richer semantic structures. Experi-
ments on both synthetic and real-world datasets
confirm the presence of this semantic geome-
try and highlight the utility of our approach
for enhancing interpretability and fine-grained
control in sentence embeddings.
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1 Introduction

Sentence embeddings have become a cornerstone
of modern AI applications and form the foundation
for tasks involving sentence similarity and retrieval
(Han et al., 2023). They are essential to semantic
search engines, power retrieval-augmented gener-
ation, and are core to a wide range of traditional
natural language processing tasks, ranging from
clustering to paraphrasing (Lewis et al., 2020; Gao
et al., 2023). Yet, despite their ability to capture
rich semantic relationships, tasks on sentence em-
beddings are typically reduced to a single scalar
similarity score (Chandrasekaran and Mago, 2021;
Opitz et al., 2025a). This practice obscures the
internal structure of embeddings: the features and
components that drive similarity remain hidden.
This limits both performance and interpretability.

Figure 1: Geometric–information correspondence. (Left)
On the hypersphere Sd−1, sentence embeddings f(x), f(y)
encode semantic relations through their inner product
⟨f(x), f(y)⟩ ≈ PMI(x, y). These embeddings encode latent
features. These latent features F1, F2 correspond to regions
MF1 ,MF2 ⊆ Sd−1, with probability mass P (Fi). (Right)
These regions induce random variables F1, F2, whose en-
tropies decompose as H(F1), H(F2), with conditional parts
H(F1 | F2), H(F2 | F1) and overlap MI(F1, F2).

Users lack fine-grained control over operations and
cannot interpret why two sentences are considered
similar or dissimilar. Understanding this internal
structure is not only key to improve performance
on downstream tasks, but also to enhance trans-
parency, safety, and alignment with human values
(May et al., 2019; Zou et al., 2023).

The internal structure of sentences has long been
a central topic in semantics, with a focus on how
meaning arises from constituent parts. At the core
of this tradition is the principle of compositional-
ity, which holds that the meaning of a sentence
is a function of the meanings of its components
and their syntactic combination (Partee et al., 1984;
Mitchell and Lapata, 2010). Early approaches to
sentence representations reflected this idea through
additive or compositional models of features (Liu
et al., 2023). More recently, distributional seman-
tics has shifted this inquiry into vector spaces,
where sentence embedding models capture emer-
gent semantic structures consistent with hypotheses
such as distributional inclusion (Geffet and Dagan,
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2005). Modern sentence embedding models have
been based on transformer models, whose strength
been the learning of intermediate representations,
which encode deeper features (Bengio et al., 2014;
Goodfellow, 2016). The complexity of these spaces
however, as led to difficulties in identifying these
features at scale (Opitz et al., 2025b). It is also not
sure if these features are interpretable or map to
compositional units which emerge as by-products
of training. Although a semantic geometry and or-
ganization of features has been clearly identified
with word vectors, such as not yet been the case for
sentences(Mikolov et al., 2013; Pennington et al.,
2014; Ethayarajh et al., 2019).

In this paper, we propose a framework to charac-
terize the semantic organisation of sentence repre-
sentations and its interpretability. On this basis, we
make the following contributions:

1. First, we provide a formal framework to de-
scribe the semantic organization of features in
sentence embeddings.

2. Based on the above, we provide a tractable
method to identify features and their composi-
tions.

3. We empirically validate our approach across
both synthetic and real-world datasets.

2 Background

In this section, we provide background on mod-
ern sentence embedding models, their training and
interpretability.

2.1 Representing Sentence Similarity
Modern sentence embedding models aim to gen-
erate representations that encapsulate the seman-
tic meaning of sentences (Wieting et al., 2015; Li
et al., 2020). Within computational linguistics, this
is typically grounded in distributional semantics,
where the meaning of a sentence is defined by the
sentences with which it is similar. In this con-
text, learning the meaning of a sentence can be
reframed as modeling sentence similarity across a
representative corpus. Importantly, similarity can
take multiple forms (Liu et al., 2020; Kashyap
et al., 2023). Sentences may exhibit similarity
through paraphrase, translation, or entailment rela-
tions. Contemporary models capture these diverse
forms of similarity within a unified representation
space, enabling them to represent meaning more
comprehensively and to generalize more effectively
across linguistic tasks.

Despite reflecting different kinds of relation-
ships, these similarities are typically reduced to
a single similarity score. This score is most often
computed using cosine similarity (Deerwester et al.,
1990; Lin et al., 1998), a geometric formulation that
aligns with graded human judgments of semantic
relatedness, where similarity scores range from -
1 (maximally dissimilar) to 1 (maximally similar)
(Tversky, 1977; Chandrasekaran and Mago, 2021).
In other words, higher similarity score reflects a
greater degree of shared meaning.To enable con-
sistent comparison within a space that naturally
supports the cosine similarity metric, sentence em-
beddings are typically normalized to unit length
(Kashyap et al., 2023; Gao et al., 2021). This con-
strains them to the surface of a unit hypersphere
Sd−1 ⊂ Rd, where d is the dimensionality of the
embedding space. Under this normalization, the
cosine similarity between two embeddings u and
v simplifies to their dot product, allowing the simi-
larity measure to depend solely on the direction of
the vectors rather than their magnitude.

2.2 Training Sentence Embeddings

To effectively model sentence similarity, contem-
porary sentence embedding models rely on pre-
trained transformers, which are then fine-tuned on
sentence-level data (Conneau et al., 2017; Reimers,
2019; Gao et al., 2021). Given an input sentence
composed of N tokens, these models produce
contextualized token embeddings h1, h2, . . . , hN ,
where each hi ∈ Rd and d is the dimensionality
of the embedding space (Kashyap et al., 2023). To
derive a fixed-size sentence embedding, a pool-
ing operation such as averaging, or attention-based
weighting is applied over these token embeddings
(Reimers, 2019; Gao et al., 2021). The contextual
nature of the embeddings, combined with token po-
sitional information, already gives strong baseline
results on sentence similarity tasks (Arora et al.,
2017). While this captures an approximate mean-
ing of a sentence, it does not inherently reflect
syntactic structure, logical form, or semantic impli-
cations. To address these limitations, a fine-tuning
step is commonly applied to the pooled sentence
embeddings (Gao et al., 2021; Chuang et al., 2022;
Kashyap et al., 2023). Most modern frameworks
take a variant of Information Noise Contrastive
Estimation (InfoNCE). The objective minimizes a
variant of the following loss over batches of size
N , where xi is an anchor, x+i its positive pair, xj a
negative sample, and τ the temperature parameter:
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L = − 1

N

N∑

i=1

log
exp(sim(xi, x

+
i )/τ)∑N

j=1 exp(sim(xi, xj)/τ)
(1)

The goal is to refine the sentence embedding
space such that semantically similar sentences form
tight clusters, while unrelated or contradictory sen-
tences are mapped further apart (Kashyap et al.,
2023). To account for the various senses of similar-
ity mentioned above, these models are trained on
various sentence level datasets such as paraphrase,
similarity or NLI (Conneau and Kiela, 2018; Bow-
man et al., 2015; Williams et al., 2017).

2.3 Interpretability
Once trained, sentence embedding models acquire
a rich representational capacity, yet the internal
structure of these representations remains opaque
(Opitz et al., 2025a). Early approaches constructed
sentence embeddings by summing or averaging
word vectors (Mitchell and Lapata, 2010), with ex-
tensions such as Doc2Vec introducing paragraph-
level vectors learned alongside words (Le and
Mikolov, 2014). While more directly interpretable,
these methods lacked expressive power.

The use of modern transformer architectures
proved a considerable step forward, but at the cost
of opaque representations (Reimers, 2019). Early
approaches at interpretability have relied on prob-
ing, testing whether specific features (e.g., syn-
tax, part-of-speech, entailment) can be linearly re-
covered from embeddings (Conneau et al., 2017;
Hewitt and Manning, 2019; Nikolaev and Padó,
2023b,a). While probing demonstrates the pres-
ence of information, it does not explain how these
features are organized within the embedding space.
Other lines of work attempt to disentangle embed-
dings into more interpretable components, using
techniques such as variational methods or feature
decomposition (Opitz and Frank, 2022; Sun et al.,
2024) . These approaches can recover partial struc-
ture but are often limited to small feature sets and
do not scale reliably to the full sentence meaning
(Huang et al., 2021). Despite these efforts, there is
still no clear account of the representational geom-
etry of sentence embeddings and how features are
organized and compose.

3 The Structure of Sentence Embeddings

In the previous section, we saw how sentence rep-
resentation models aimed at capturing semantic

similarities. In the following section, we will study
the emergent spaces that emerge from this objec-
tive.

3.1 Overview
We begin by formalizing the link between con-
trastive learning and mutual information. Sentence
embedding models trained with the contrastive loss
L optimize similarities that approximate a PMI
kernel.

Proposition 3.1 Let L be the contrastive objec-
tive and let f : S → Sd−1 denote the embed-
ding function of a model trained with L. For any
two sentences x, y ∈ S, the inner product be-
tween their embeddings satisfies ⟨f(x), f(y)⟩ ∝
PMI(x, y) + c for some additive constant c.

This result shows that inner products in the em-
bedding space can be rewritten in terms of informa-
tion content. When negatives are sampled correctly,
the embedding space provides a low-rank approx-
imation of the true PMI distribution, constrained
to lie on the unit hypersphere. Thus, the inner
product between two embeddings corresponds to
the strength of their statistical association in the
data distribution. Rewriting the inner product al-
lows us to understand the representational space of
sentence embeddings.

Definition 3.2 We define the sentence repre-
sentation space as the kernel space (Sd−1, ⟨·, ·⟩)
induced by the mapping f : S → Sd−1,
where sentence embeddings satisfy ⟨f(x), f(y)⟩ ≈
PMI(x, y).

Proposition 1 and Definition 1 together imply
that the sentence representation space is, up to scal-
ing and shift, an inner product space whose kernel
approximates pointwise mutual information. For-
mally, the embeddings f(x) ∈ Sd−1 inhabit a vec-
tor space (Rd, ⟨·, ·⟩), so all algebraic operations are
inherited from the ambient space. Since inner prod-
ucts correspond to PMI values, these vector space
operations (e.g. scalar multiplication or addition)
can be interpreted as acting on statistical quantities.
addition of embeddings aggregates. This in turn
helps us reinterpret a single embedding x as below.

Observation 3.3 Fix x ∈ S . The PMI kernel satis-
fies PMI(x, y) ≈ ⟨f(x), f(y)⟩ ∀y ∈ S.

Thus the embedding f(x) is a finite-dimensional
code for the function PMI(x, ·), i.e. the entire row
of PMI values indexed by x. In this sense, a single
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embedding can be interpreted as a compressed rep-
resentation of all information-theoretic associations
of x with the rest of the space.

3.2 Decomposition

We now move from the PMI kernel to its internal
decomposition into features. Intuitively, pointwise
mutual information is additive under the chain rule
of mutual information, and this additive structure
carries over to the kernel formulation.

Definition 3.4 A feature F is a latent factor that
recurs across sentences and captures a recognizable
semantic or structural aspect (e.g., concepts, tenses,
or higher level semantic structures).

Proposition 3.5. Let x ∈ S be a sentence with
embedding f(x), and let (F1, . . . , Fn) denote the
latent features that compose f(x). Then for any
y ∈ S, PMI(x, y) =

∑n
i=1 PMI(Fi, y | F<i)

with F<i = (F1, . . . , Fi−1).

Being shared across sentences, latent features
can be understood as conditional contributions to
pointwise mutual information. In particular, the
PMI between two sentences x and y decomposes
additively into the contributions of the features
{Fi} that compose x. Each term PMI(Fi, y | F<i)
quantifies the incremental information carried by
feature Fi about y, given the previous features.
Thus, the PMI kernel admits a structured additive
factorization in terms of latent feature contribu-
tions.

Observation 3.6 The embedding f(x) admits
a structured decomposition into latent features.
Specifically, each coordinate fi(x) reflects the
strength of feature Fi in sentence x, and the sim-
ilarity with another sentence y decomposes as
⟨f(x), f(y)⟩ =

∑d
i=1 fi(x) fi(y). Thus, a single

embedding f(x) can be interpreted as a weighted
combination of latent features {Fi}, whose align-
ment with another embedding determines their
PMI.

3.3 Points and Regions

So far, we have treated embeddings as points: each
embedding f(x) encodes a weighted decomposi-
tion of PMI values with all other sentences. We
now extend this view from individual points to
regions of the embedding hypersphere Sd−1, corre-
sponding to sets of sentences that share a common
latent feature. We thereby transition from indi-

vidual point measurements to mutual information
between regions.

Definition 3.8 (semantic region). Let p(x) de-
note the global data distribution over sentences
on the hypersphere Sd−1. For a latent feature Fi,
let pFi(x) denote the conditional distribution of
embeddings given that feature Fi is active. For
a threshold τ ∈ (0, 1), the associated semantic
region is defined as
MFi(τ) = {x ∈ Sd−1 : pFi(x) ≥ τ }.

Thus MFi(τ) is the subset of the hypersphere
where the feature Fi is active with probability
at least τ . The probability mass of this region
under the global distribution is P (MFi(τ)) =∫
MFi

(τ) p(x) dx,i.e. the probability that a random
sentence sampled from p(x) instantiates feature Fi

above the chosen threshold. This construction al-
lows us to quantify mutual information between
two latent features Fi, Fj in terms of their joint and
marginal regions MFi(τ),MFj (τ).

This allows us to quantify the mutual informa-
tion between two latent features Fi, Fj , which
is determined by the joint and marginal regions
MFi ,MFj . As a consequence, the collection of
semantic regions {MFi} admits set-theoretic re-
lations encoding information-theoretic dependen-
cies. Amongst these, we can identify inclusion:
MFi ⊆ MFj when the presence of feature Fi en-
tails Fj (e.g., “corgi” ⊆ “dog”); exclusion: MFi ∩
MFj = when features never co-occur; overlap:
MFi ∩MFj ̸= when sentences instantiate both fea-
tures simultaneously.

In practice, estimating these probability masses
is challenging: the regions are high-dimensional,
sample sizes are limited, and many features ap-
pear entangled rather than cleanly separated. In
this sense, the learned PMI kernel defines not only
pairwise similarities but also an organized geom-
etry of semantic sets based on mutual informa-
tion. The challenge is to reliably identify these
regions and disentangle overlapping features in
high-dimensional space.

4 Identifying Features

The previous section established that the PMI ker-
nel induces a structured decomposition of sentence
embeddings into latent features. We now turn to the
problem of identifying these features in a tractable
and interpretable way.
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4.1 Identifying Features

If we collect a set SF ⊂ S of sentences that in-
stantiate a semantic feature F (e.g., all sentences
containing the feature “dog as subject”), their em-
beddings {f(x) : x ∈ SF } form a semantic region
MF ⊆ Sd−1, representing the distribution of that
feature on the hypersphere. By Proposition 3.1,
embeddings satisfy ⟨f(x), f(y)⟩ ≈ PMI(x, y). If
two sentences x, y ∈ SF share feature F , their PMI
is high, which forces their embeddings to lie close
together on the hypersphere. Even if each sentence
contains other features, the set {f(x) : x ∈ SF } is
still expected to cluster around a common direction.

A natural idealization is therefore that embed-
dings associated with F are distributed according
to a von Mises–Fisher (vMF) distribution, the ana-
logue of a Gaussian distribution for directional data
on the hypersphere. Under this assumption, the
maximum-likelihood estimator of the feature direc-
tion is simply the normalized sample mean (Mardia
and Jupp, 2009).

Proposition 4.1 Let F be a latent feature and let
SF ⊂ S be a set of sentences instantiating F . If em-
beddings in SF follow a vMF distribution, then the
normalized centroid µ̂F is the maximum-likelihood
estimator of the true mean direction µF of feature
F .

The estimator µ̂F converges to the true direction
µF as |SF | → ∞. While this provides a point
estimate, the underlying distribution can also be
modeled more richly.

Observation 4.2 Let pF denote the distribution of
feature F on the unit hypersphere. The distribu-
tion pF may be further approximated by incorpo-
rating measures of concentration or local density
estimates around µ̂F .

Observation 4.3 Each feature corresponds to a di-
rection µFi on the hypersphere, and a sentence
embedding can be decomposed with respect to
these directions. Geometrically, the projection
⟨f(x), µFi⟩ reflects the degree to which sentence
x expresses feature Fi. Thus, embeddings f(x)
can be interpreted as structured combinations of
latent features {Fi}, and similarity between sen-
tences arises from the alignment of their feature
projections.

4.2 Compositionality of Features
The identification of feature directions (Proposi-
tion 4.1) provides a basis for identifying desired
features in the representation space. Beyond iden-
tification, the inner product structure of the PMI
kernel endows the space with algebraic operations
that naturally support compositionality. That is,
new features can be constructed from existing ones
through vector-space operations, which can reflect
the way linguistic meaning arises from the compo-
sition of semantic parts.

Proposition 4.4 Let {µ̂Fi}ki=1 be the maximum-
likelihood feature directions estimated for a set of
features. Because the representation space is an
inner product space, any linear combination µ̂G =∑k

i=1 αiµ̂Fi defines a new direction corresponding
to a composed feature G.

Geometrically, this operation corresponds to the
additive structure of the PMI kernel, where the
contribution of a composite feature is expressed as
the sum of its constituent PMI terms. In practice,
this allows, for instance, the combination of fea-
ture directions corresponding to “South America”
and “North America” into a more general feature
direction “America.”

Observation 4.5 The additive structure of PMI,
well established in word embeddings, then extends
to sentence embeddings (Pennington et al., 2014;
Arora et al., 2016; Allen and Hospedales, 2019;
Ethayarajh et al., 2019). This provides a foundation
for the linguistic regularities observed in sentence-
level representations (Zhu and de Melo, 2020). In
particular, analogical reasoning could arise directly
from the linear geometry of feature directions. If F1

and F2 are related features (e.g., dog and puppy),
their difference µ̂F1 − µ̂F2 encodes the information
difference between them, which can be transferred
to other contexts.

4.3 Composition of Feature Distributions
Feature identification characterizes individual fea-
tures as directions on the hypersphere. In practice,
however, we are often interested not only in single
directions but in the semantic regions of the embed-
ding space where such features are expressed with
high likelihood. We will then focus on composi-
tional feature distributions.

Observation 4.6 As discussed above, each feature
F induces a probability distribution pF on the hy-
persphere, with an associated region MF (τ) =
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{x ∈ Sd−1 : pF (x) ≥ τ } where τ is a threshold
of activation. Composed features can then be mod-
eled by combining distributions; mixtures approxi-
mate unions of regions (MG ≈ ⋃

iMFi) and prod-
ucts approximate intersections (MG ≈ ⋂

iMFi).

These operations on distributions extend the lin-
ear operations on feature directions to full semantic
regions. Thus, addition, subtraction, or scaling
of feature directions corresponds to unions, dif-
ferences, or rescalings of their semantic regions,
capturing relations such as inclusion (corgi ⊂ dog
⊂ animal) or contrast (South America vs. North
America). This allows the construction of complex
features as sequences of operations on more basic
ones. This allows one to localize subsets of the hy-
persphere where specified combinations of features
are present (or absent) with the desired probability.
As a semantic region on a subspace is by nature of
the ambient space constrained on a subspace, we
can also represent these regions as a subspace if
easier for downstream tasks.

5 Experiments

We now present experiments to empirically test the
properties introduced above. Our full code can be
found on GitHub, and the dataset can be accessed
on Hugging Face. Additional implementation de-
tails are provided in Appendix B and further results
in Appendix C .

5.1 Setup
We evaluate our approach using a selection of high-
performing sentence embedding models and two
datasets.

Models To ensure robust evaluation,
we experiment with four widely used
sentence embedding models available
on Hugging Face: gte-large-en-v1.5
(Alibaba-NLP), all-mpnet-base-v2 and
all-MiniLM-L6-v2 (Sentence-Transformers), and
multilingual-e5-large-instruct (IntFloat).
These models were chosen for their strong
performance on retrieval tasks (Muennighoff et al.,
2022), as well as their widespread adoption in both
academic research and industry applications.

Datasets We evaluate our method on two
datasets: a controlled synthetic dataset based on
WordNet, and a real-world dataset, TREC. (1)
WordNet: We construct a dataset by generating

sentence variants in which a target word is system-
atically replaced with its hypernyms and hyponyms
in Wordnet (Miller, 1995). This controlled manip-
ulation allows us to isolate and assess the impact
of semantic abstraction on the representation space.
(2) TREC: For evaluation on real-world data, we
use the TREC question classification dataset (Dietz
et al., 2017), which organizes questions into coarse
and fine-grained conceptual categories. This hierar-
chical labeling enables us to analyze how semantic
structure and granularity are reflected in the embed-
ding space.

5.2 Existence of Semantic Regions

Experiments. We begin with the hypothesis that
concepts are organized within semantic regions. To
empirically assess this statement, we test whether
the prototype representation of a feature F is clos-
est to its peripherals than the peripherals amongst
themselves. In other words, an order relation
holds on the set, where a hyperonym A embed-
ding is more similar to its hyponyms Bi than the
hyponyms are to each other. We perform this test
across both of our datasets. In the WordNet hier-
archy, we would expect that the sentence "There
is a corgi" should be more similar to the prototype
sentence "There is a dog" than to the more specific
"There is a German Shepherd".

Results Table 2 summarizes these findings for
our WordNet dataset, showing consistency across
different models and sentence embeddings. The
prototype embedding is consistently closer to its
hypernyms than the hyponyms are to each other
and is also positioned nearer to the centroid of the
data. Figure 2 and Figure 3 illustrates that the pro-
totype sentence embedding for the synset "dogs"
is typically centrally located and exhibits the low-
est pairwise similarity variance within the synset.
Despite variations in cosine similarity with the hy-
ponyms, the hypernym consistently maintains a
higher position in the hierarchy. Similar to the
trends observed in Table 2, we find that sentence
clusters exhibit meaningful structure: the category
centroid consistently ranks among the top 5% clos-
est embeddings, but rarely amongst the top 0.5%.
This is expected given the presence of a large va-
riety of hypernyms in each sentence. The noise
could then be explained by the intersection of over-
lapping semantic sets. We also note that the small-
est models, such as all-MiniLM-L6-v2, exhibit
lower representational capacity compared to the
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gte-large-en-v1.5 all-mpnet-base-v2

Feature N+1 N+2 N+3 N+1 N+2 N+3

mammal.n.01 0.7050 0.6800 0.6500 0.6100 0.5900 0.5700
food.n.01 0.7150 0.6700 0.6450 0.6050 0.5800 0.5500
plant.n.02 0.7200 0.7000 0.6700 0.6000 0.5900 0.5700
institution.n.01 0.7350 0.6900 0.6750 0.6200 0.6000 0.5800
cognition.n.01 0.7100 0.6650 0.6400 0.5900 0.5700 0.5400

all-MiniLM-L6-v2 multilingual-e5-large-instruct

Feature N+1 N+2 N+3 N+1 N+2 N+3

mammal.n.01 0.6050 0.5800 0.5600 0.6150 0.5900 0.5700
food.n.01 0.5950 0.5700 0.5400 0.6100 0.5800 0.5500
plant.n.02 0.6000 0.5800 0.5600 0.6200 0.6000 0.5700
institution.n.01 0.6150 0.5900 0.5800 0.6050 0.5900 0.5650
cognition.n.01 0.6000 0.5700 0.5500 0.6100 0.5800 0.5600

Table 1: Comparison of hierarchical levels N + 1 to N + 3 for our selected sentence embedding models. The order
relation is broadly preserved across the model.

gte-large-en-v1.5 all-mpnet-base-v2 all-MiniLM-L6-v2 multilingual-e5-large-instruct

Feature Closest Centroid Closest Centroid Closest Centroid Closest Centroid

mammal.n.01 80.84 75.00 66.93 62.50 68.98 75.00 71.00 75.00
food.n.01 72.56 100.00 69.32 87.50 67.79 87.50 69.38 87.50
plant.n.02 72.84 62.50 60.49 87.50 69.69 75.00 74.49 75.00
cognition.n.01 73.21 37.50 49.23 25.00 51.73 25.00 43.81 25.00

Table 2: Comparison of closest-match and centroid-based similarity scores across sentence embedding models for various
synsets. The "Closest" column reports the percentage of cases in which a hyponym sentence (e.g., The corgi is running) is most
similar to one of its hypernyms (e.g., The dog is running). The "Centroid" column reports the percentage of cases in which the
hypernym sentence is closest to the centroid of all sentences in its semantic category. Note that the hypernym sentence is not
necessarily the centroid. Higher percentages indicate stronger alignment with the expected hierarchical semantic structure.

Figure 2: Heatmap of cosine similarity between the WordNet
hypernym sentence in row 19 ("dog") and its corresponding
hyponyms in the synset "dog", computed using the gte-large-
en-v1.5 model. "Dog" is not a semantic region for this set of
embeddings.

gte-large-en-v1.5. This disparity likely reflects
differences in their ability to encode and structure
information, with smaller models constrained by a
more compressed geometric representation.

Figure 3: Heatmap of cosine similarity between the WordNet
hypernym sentence in row 10 ("dairy products") and its corre-
sponding hyponyms, computed using the all-mpnet-base-v2
model.

5.3 Hierarchy of Semantic Regions

Experimental Setup. In this section, we empir-
ically evaluate the set-theoretic operations intro-
duced earlier. When an embedding belongs to
multiple semantic regions, it participates in sev-
eral independent ordering structures defined by the
centroids of these regions. A notable example is
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TREC Coarse Class gte-large-en-v1.5 all-mpnet-base-v2 all-MiniLM-L6-v2 multilingual-e5-large-instruct

ABBR 0.74 0.72 0.68 0.76
DESC 0.72 0.70 0.66 0.74
ENTY 0.68 0.66 0.61 0.71
HUM 0.78 0.75 0.70 0.80
LOC 0.77 0.74 0.69 0.79
NUM 0.69 0.67 0.62 0.72

Table 3: TREC hierarchy preservation across our four sentence-embedding models. Each value is the mean accuracy
with which the expected order holds, i.e. that is, a sentence is more similar to its own fine-grained centroid than to
its coarse parent.

Figure 4: Cosine similarity to fine and coarse centroids
for the Human class in the TREC dataset.

Figure 5: Cosine similarity to fine and coarse centroids
for the Entity class in the TREC dataset.

lexical hierarchy, where a hyperonym (e.g., A, A′)
encompasses a set of hyponyms (Bi). In such cases,
for hyponyms A and its associated hyponyms Bi,
we expect: Bi ⪯ A ⪯ A′ ⪯ A′′ where each hy-
peronym A is positioned above its hyponyms and
below more abstract categories in the hierarchy. To
test this hypothesis, we analyze three levels within
the WordNet hierarchy and calculate the percent-
age of decreasing pairs. We do the same on the
TREC dataset between coarse and fine categories.

Results. Table 1 presents the proportion of cases
where this decreasing trend holds. While the ex-
pected pattern is observed, there are exceptions.
For instance, "animal" is often more similar to
related words than "mammal," reflecting the im-
pact of co-occurrence frequencies in the dataset.
Additionally, words with low co-occurrence prob-
abilities tend to deviate from the expected order,
suggesting that embeddings capture intersecting
semantic structures rather than a strict hierarchy.
Nevertheless, the transitive ordering among hyper-
onyms remains present across models. In our real
world dataset, the structure is partially preserved,
as seen in Table 3. As shown in Figure 4 and Fig-
ure 5, sentence embeddings tend to cluster more
tightly around their fine-level centroids than their
coarse-level counterparts, as evidenced by a right-
ward shift in the blue distribution (fine centroid)
compared to the orange (coarse centroid). This
indicates that fine classes are embedded more pre-
cisely, likely due to their narrower semantic scope.
However, we also observe substantial overlap be-
tween the distributions, especially in regions where
fine and coarse labels are densely populated. This
suggests interference effects from semantically ad-
jacent classes.

5.4 Method Comparison and Baseline

Experimental Setup. To assess the effectiveness
of our method, we compare it against a widely used
baseline -linear probing (Belinkov and Glass, 2019;
Hewitt and Manning, 2019). Specifically, we imple-
ment a multi-prototype extension of our centroid-
based interpretability framework. For each class
(coarse and fine), we compute k = 3 cluster cen-
troids over the normalized sentence embeddings
using KMeans. If our hypothesis holds, these cen-
troids represent a more general, common represen-
tation of the set. Each centroid is ℓ2-normalized
and stored in a prototype bank. Zero-shot classifi-
cation is then performed by assigning each sample
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to the label of its nearest prototype based on cosine
similarity. In parallel, we train a multinomial lo-
gistic regression classifier on the same embeddings
using an 80/20 stratified train-test split. Accuracy
is evaluated on the held-out set for both coarse- and
fine-grained classification.

Results. The multi-prototype approach achieves
0.792 accuracy on coarse labels and 0.714 on fine
labels. In comparison, the linear probe yields 0.885
accuracy on coarse labels and 0.712 on fine la-
bels. While the probe performs slightly better on
coarse classification, our method matches it on fine-
grained prediction despite requiring no parameter
training. Importantly, the entire pipeline executes
in under 5% of the time required to train the prob-
ing classifier. Appendix D discusses the computa-
tional requirements of our method.

6 Discussion and Conclusion

A central insight of this work is that even simple
operations, i.e. identifying a prototype of a feautre
F , can reveal meaningful structure in sentence em-
beddings. Our results suggest that sentence em-
beddings are not uniformly dispersed but rather
organize into latent semantic regions, with mean-
ingful ordering and overlap. If such structure can
be identified reliably, it opens the door to scalable,
per-model interpretability: semantic clusters could
be extracted automatically, visualized on the hy-
persphere, and used to explain similarity, entail-
ment, or category membership in embedding-based
systems. Understanding the internal geometry of
sentence embeddings is critical for modern infor-
mation retrieval and NLP pipelines, particularly
as AI-augmented applications, such as semantic
search, retrieval-augmented generation, and recom-
mendation, where safety and ethical applications.
are paramount. The uncovered representational
geometry could also be relevant across other disci-
plines. It notably bears a striking resemblance to
cognitive theories of similarity, reflecting Tversky’s
work on feature-based similarity (Tversky, 1977) or
conceptual spaces (Gardenfors, 2004; Osta-Vélez
and Gärdenfors, 2020; Douven et al., 2023; Douven
and Verheyen, 2024).

Limitations

While our study studies the foundations of embed-
ding representational geometry, it is not without
limitations. The number of semantic sets within

the dataset poses a challenge. A truly comprehen-
sive analysis would require identifying a core set of
dominant clusters that encapsulate the majority of
the structural variance in the embeddings. Future
work should aim to map these principal sets, as they
are likely to drive both the overall structure and the
interpretability of the embedding space. This im-
plies that a simple model may be insufficient to
capture the nuances of the embedding space. We
suggest for future research to explore models that
can more accurately represent the variability and
uncertainty intrinsic in these regions.
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A Model Information and License

We utilized the following pretrained sentence em-
bedding models, all available on Hugging Face:

• GTE-large-en-v1.5: https://
huggingface.co/Alibaba-NLP/
gte-large-en-v1.5
(Alibaba-NLP)
License: Apache 2.0

• all-mpnet-base-v2: https://huggingface.
co/sentence-transformers/
all-mpnet-base-v2
(Sentence-Transformers)
License: Apache 2.0

• all-MiniLM-L6-v2: https://huggingface.
co/sentence-transformers/
all-MiniLM-L6-v2
(Sentence-Transformers)
License: Apache 2.0

• multilingual-e5-large-instruct:
https://huggingface.co/intfloat/
multilingual-e5-large-instruct
(IntFloat)
License: MIT

B Experimental Details

B.1 Hardware Setup
All experiments were conducted on NVIDIA A100
GPUs. The training and evaluation were carried
out using PyTorch on a machine hosted on RunPod.

B.2 Preprocessing
Text data used in this study were preprocessed as
follows:

• Tokenization was performed using the Hug-
ging Face tokenizer for each pretrained model.

• Sentences were embedded using the sentence
transformers model for clustering and similar-
ity tasks.

B.3 Evaluation Metrics
For our evaluation, we used the following metrics:

• Cosine Similarity: To measure the closeness
between embeddings generated by different
models.
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• Clustering Accuracy: For evaluating the
quality of semantic grouping using K-means
clustering on sentence embeddings.

B.4 Confidence Intervals.

To ensure robustness of our results, we compute
95% confidence intervals using bootstrapping with
1,000 resamples. This allows us to quantify the
variability of the probing performance and deter-
mine whether observed differences across models
or configurations are statistically significant.

C Datasets

WordNet: To investigate the existence of seman-
tic regions, we construct a structured dataset de-
rived from WordNet, a large-scale lexical database
that encodes hierarchical relationships between
concepts (Miller, 1995). Specifically, we define
a set of four root concepts— mammal, food, plant
and cognition—which serve as central semantic
anchors, unifying their respective hyponym sets.
To generate meaningful linguistic contexts, we con-
struct a diverse set of sentences incorporating these
terms in varying syntactic and semantic configura-
tions. Following the criteria outlined in Section 3.3,
we select a subset of hyperonyms where the fre-
quency of the hyperonym exceeds that of its hy-
ponyms. We then systematically create sentence
pairs using these terms. Our data can be found on
our Huggingface link https://huggingface.co.

D Computational Complexity

Let N be the number of samples, d the embedding
dimension, and C the number of classes.

Centroid Method. Class centroids are computed
as:

µc =
1

|Sc|
∑

i∈Sc

Ei

with a cost of O(Nd). Label assignment is per-
formed by computing cosine similarity to each
class centroid, costing O(NCd). Total complex-
ity: O(Nd+NCd).

Linear Probing. A weight matrix W ∈ RC×d is
trained using gradient descent over T epochs and N
samples, resulting in a training cost of O(T ·NCd).
Inference similarly requires O(NCd). Total com-
plexity: O(T ·NCd).

Summary. Centroid-based inference is 1–2 or-
ders of magnitude more efficient than linear prob-
ing methods (Belinkov and Glass, 2019; Hewitt and
Manning, 2019). It requires no parameter training
and only a single forward pass through the data,
making it viable for zero-shot interpretability with
minimal computational cost.
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