Do What? Teaching Vision-Language-Action Models to Reject the Impossible
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Abstract

Recently, Vision-Language-Action (VLA) mod-
els have demonstrated strong performance on
arange of robotic tasks. These models rely on
multimodal inputs, with language instructions
playing a crucial role-not only in predicting
actions, but also in robustly interpreting user
intent, even when the requests are impossible
to fulfill. In this work, we investigate how
VLAs can recognize, interpret, and respond to
false-premise instructions—natural language
commands that reference objects or conditions
absent from the environment. We propose
—Instruct-Verify-and-Act (IVA) — a unified
framework that (i) detects when an instruction
cannot be executed due to a false premise,
(i) engages in language-based clarification
or correction, and (iii) grounds plausible
alternatives in perception and action. Towards
this end, we construct a large-scale instruction
tuning setup with structured language prompts
and train a VLA model capable of handling both
accurate and erroneous requests. Our approach
leverages a contextually augmented, semi-
synthetic dataset containing paired positive
and false-premise instructions, enabling robust
detection and natural language correction.
Our experiments show that IVA can improves
false premise detection accuracy by 97.56%
over baselines, while increasing successful
responses in false-premise scenarios by 50.78%.

1 Introduction

Vision-Language-Action (VLA) models (Niu et al.,
2024; Kim et al., 2024; Li et al., 2024; Niu
et al., 2025) represent a significant advancement
in robotics, enabling agents to perform tasks using
multimodal inputs by integrating visual perception,
natural language understanding, and action gener-
ation. However, as these models are increasingly
deployed in open-ended, real-world environments,
they must handle diverse and often ambiguous in-
structions issued by users. Consider a household

* Equal contribution

You are a Franka robot using end-effector control.

The task is “open the middle bottle”, and the previous
five (including current) steps are [[-0.1060,0.1280,-0.0767,...]].
Can you predict the 2-D visual trace of the end effector
and the action of the next 1step?

o

I couldn’tfind a bottle in the current scene.
Do you mean the middle drawer instead?

Figure 1: Our Instruct-Verify-and-Act (IVA) frame-
work is designed to handle false-premise instructions.
When the robot receives a command referencing a
non-existent object (a bottle), it detects the false premise,
and generates a clarifying response that corrects the
instruction, suggesting a valid alternative (a drawer).

robot presented with the command, “Bring me the
red mug on the kitchen table,” when no such mug
exists. In this scenario, the robot’s ability to rec-
ognize the impossibility of the request, explain the
issue, and suggest plausible alternatives is essential
for safe and effective human-robot interaction. Yet,
most existing VLAs lack mechanisms to detect or
respond appropriately to instructions grounded in
false premises - commands that reference objects, at-
tributes, or relations not present in the environment.

While large multimodal models have made sig-
nificant strides in visual grounding and instruction
following, prior research in both natural language
processing and robotics has typically assumed
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that user instructions are feasible and contextually
grounded. In domains such as visual question an-
swering and dialogue, models have been studied for
their robustness to unanswerable or contradictory
queries have been developed which can evaluate
and correct for false premises in the case of question
answering (Johnson et al., 2017; Suhr et al., 2017;
Liuetal., 2019; Hudson and Manning, 2019; Gurari
et al., 2018; Mahendru et al., 2017; Whitehead
et al., 2022; Mashrur et al., 2023, 2022; Li et al.,
2020; Prabhakar et al., 2018; Mahendru et al., 2017;
Karnik et al., 2024; Ren et al., 2023). However, in
the context of embodied agents and robotics, the
issue of handling false-premise instructions - recog-
nizing unfulfillable commands and producing help-
ful language-based corrections - remains largely un-
explored. Existing robotics benchmarks and VL As
focus on execution success given correct instruc-
tions, without testing how these systems respond
when user intent is unattainable or ambiguous.

To address this gap, we develop a unified VLA
model capable of interpreting and correcting
false-premise instructions in robotic settings.
Our framework combines large-scale instruction
tuning with contextually-augmented datasets,
enabling the model to detect unfulfillable requests,
provide natural language feedback, and suggest
alternative courses of action. See Figure 1. We
evaluate our approach across eight robotic tasks,
measuring false premise detection accuracy and
the rate of successful responses in false-premise
scenarios. Our method achieves an improvement of
97.56% in false premise detection over established
baselines, and increases success in false-premise
handling by 50.78%. These results demonstrate that
language-aware robots can move beyond simple
execution - reasoning about user intent, clarifying
ambiguity, and interacting naturally even when
confronted with the impossible.

2 Related Work

Vision-Language-Action Models (VLAs). VLAs
integrate visual perception, language understanding,
and action generation to produce robot control
sequences from visual observations and language
instructions. Models such as LLARVA (Niu
etal., 2024),  (Physical Intelligence et al., 2025),
Gemini Robotics (Gemini Robotics et al., 2025),
OpenVLA (Kim et al., 2024), RT-2 (Brohan
et al.,, 2023b), PaLM-E embodied multimodal
model (Driess et al., 2023), and LLaRA (Liet al.,

2024) fine-tune pretrained large multimodal models
(LMMs) to predict actions, often using special
tokens to represent the action space. These models
share the goal of adapting LMMs for robotic
control as they differ in the choice of LMM and
action encoding methods. While existing VLAs
typically leverage language decoders pretrained
for high-level tasks (e.g., image captioning (Kim
et al., 2024) and VQA (Brohan et al., 2023a)),
when deployed in diverse, real-world environments,
they exhibit a critical limitation: the inability to
handle instructions grounded in false premises. Our
work addresses this gap by explicitly training VLA
models to recognize when referenced objects or
conditions are absent and to respond appropriately.
False Premises. The problem of detecting false
premises has long been studied in NLP, particularly
in QA benchmarks such as SQUAD 2.0 (Rajpurkar
et al., 2018) and False QA (Hu et al., 2023), with
research primarily focused on model uncertainty
for unanswerable questions (Raina and Gales, 2022;
Sulem et al., 2022). This concept of false premises
has recently spread from NLP to other areas of
interest, including visual question answering
(Ray et al., 2016), image/text matching (Feng and
Lapata, 2012; Xu et al., 2015; Ordonez et al., 2011;
Karpathy and Fei-Fei, 2015; Fang et al., 2015),
image-grounded conversation (Mostafazadeh
et al., 2017), tool usage (Toor et al., 2019) and
hallucination detection (Rohrbach et al., 2018).
Research in human-robot interaction has explored
handling imperfect instructions and clarifying
ambiguous instructions (Deits et al., 2013; Park
et al., 2024; Prabhakar et al., 2018; Shi et al., 2024,
Tellex et al., 2014), however this short paper is the
first to explore false premise tasks in the context of
vision-language-action models (VLAS).

3 A VLA that Instructs, Verifies, and Acts

Our method builds upon the LLARVA model (Niu
et al., 2024), a VLA architecture designed for
robotic instruction following. LLARVA leverages
instruction-tuned large multimodal models (LMM:s)
to jointly interpret visual observations, natural
language instructions, and robot proprioception,
outputting robot actions along with intermediate
visual representations called visual traces.

Input. LLARVA takes a visual observation oy,
an RGB image at timestep ¢, and a structured
natural-language instruction [; as input. The
language instruction encodes the robot type (e.g.,
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Franka Panda), control mode (e.g., end-effector
or joint control), task description (e.g., “close the
drawer”), proprioceptive states (internally-sensed
joint-angle vectors that indicate the robot’s current
position before it plans the next move) from the
previous h timesteps, and the number of future
actions (n) to predict, the instruction tuning
template is shown as follows:

“You are a [Robot] robot using [Control
Mode] control. The task is [Task
Description], and the previous [h]
steps are [Proprioceptive States]. Can
you predict the trajectory of the
end-effector and the action of the next
[n] steps?”

Model. LLARVA integrates three main compo-
nents as follows:

* Vision Encoder: A frozen pretrained visual
encoder (CLIP ViT-L/14) encodes image
observations o; into visual tokens.

* Language Encoder: Tokenizes and embeds
the language instruction /;, forming language
tokens.

¢ Multimodal Decoder: An autoregressive
transformer decoder combines visual and
language tokens, generating predictions for
robotic actions Ay;1,—1 and future visual
traces P, formally:

m(ot,lt) = Aptin—1,Pen

where Ay;yn,—1 represents predicted robot
actions for the next n steps, and P;.y indicates
predicted 2-D visual trajectories of the robot’s
end-effector from timestep ¢ to episode end V.

LLARVA is initially pretrained on large-scale
vision-action instruction data from Open X-
Embodiment (OXE) and subsequently fine-tuned
for specific robotic tasks, enabling strong general-
ization across diverse tasks and environments.
False Premise Instruction Dataset. Following
Niu et al. (2024), we utilize image-action pairs from
the OXE dataset (Vuong et al., 2023), providing
rich visual, language, and action representations.
However, prior work did not explicitly address
reasoning about the feasibility of user instructions.
To address this gap, we constructed a dedicated
dataset explicitly curated to handle false premise
scenarios and their corresponding corrections.

Our false-premise instruction dataset is generated
from robotic trajectories available in RLBench

(James et al., 2019). Each task in our dataset in-
cludes two categories of false premise instructions:
In-Domain False Premise. These instructions
involve geometrically similar and contextually
plausible objects derived from related tasks, making
the intended correction relatively intuitive. For
instance, in the task of closing a jar, if the user
prompt is “The task is close the blue safe”, the
model is expected to respond, “I don’t see a safe in
the current scene. Do you mean jar?”.
Out-of-Domain False Premise. These instructions
contain clearly infeasible or nonsensical requests
involving objects or scenarios impossible within the
given context. For example, during the open drawer
task, if the user prompts "The task is open the top
elephant," the model should identify the absurdity
and respond appropriately, such as "I couldn’t
find a elephant in the current scene," subsequently
terminating the interaction since the request is
fundamentally invalid.

For training purposes, our dataset composition

strategically includes approximately 20% of
episodes containing Out-of-Domain false premises,
and 65% of episodes containing In-Domain false
premises injected into 10% of their respective steps.
This deliberate distribution ensures comprehensive
exposure and training of the model in recog-
nizing and handling various types of erroneous
instructions.
IVA Training. We adopt an end-to-end instruction-
tuning approach, closely following LLARVA’s
training methodology, to train our model using the
newly curated false-premise dataset. While keeping
both the vision and language encoders frozen, we
fine-tune the auto-regressive transformer decoder
using standard LoRA adapters.

Specifically, our training procedure utilizes 800
episodes per task, with each episode containing
image observations o;, language instructions I,
ground-truth robotic actions At:t+n_1, and visual
traces ﬁt; ~- The training data includes a mixture
of true-premise and false-premise instructions, with
roughly 20% of episodes containing Out-of-Domain
false premises and approximately 65% containing
In-Domain false premises, introduced at 10% of
steps within each episode. Given o, and [;, the model
predicts actions and visual traces auto-regressively:

|R|
P(Aptin-1,Pen lonle) =] [poei|orl)
i=1

where 0 denotes trainable parameters, x; is the
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Table 1: Comparison of IVA and LLaRVA across RLBench tasks: overall success rate, FP (false premise) detection
rate (In-Domain/Out-of-Domain), and TP (true premise) success rate. The overall success rate is computed as the

average of true and false premises success rates.

IVA LLaRVA
Task
Overall FP TP Success Overall FP TP Success
Success Detection (In- Success Detection (In-
Domain/Out- Domain/Out-
of-Domain) of-Domain)
meat off grill 58% 100% / 100% 16% 2% 0% / 0% 4%
open drawer 61% 100% / 80% 32% 20% 0% / 0% 40%
push buttons 68% 100% / 100% 36% 16% 0% / 0% 32%
put money in safe 64% 100% / 100% 28% 20% 0% / 0% 40%
reach and drag 80% 100% / 100% 60% 22% 0% / 0% 44%
slide block 96% 100% / 100% 92% 44% 0% / 0% 88%
sweep to dustpan 94% 100% / 100% 88% 30% 0% /0% 60%
turn tap 61% 100% / 80% 32% 20% 0% / 0% 40%
close jar 50% 100% / 100% 0% 0% 0% / 0% 0%

predicted token at timestep ¢, and R represents
the full response sequence. We compute the
training loss as the standard cross-entropy between
predicted tokens and ground-truth annotations.
Unlike LLARVA’s two-stage procedure (pre-
training and fine-tuning), we train our model
end-to-end on our unified dataset, ensuring
simultaneous learning of accurate robotic action
prediction, robust false-premise detection, and
appropriate language-based correction responses.

4 Results

We evaluated IVA on two aspects: its ability to detect
and correct false-premise (FP) instructions, and its
performance on standard, true-premise (TP) tasks.

Experiment Setup. We conducted experiments
on 9 RLBench tasks, generating 25 episodes per task
with randomly varied object positions. Each episode
was paired with two type of user prompts: one stan-
dard and one containing a false premise. The model
was fine-tuned for 8 hours on 8 A100 GPUs. During
fine-tuning, the model received the front camera
view and the previous 5 joint positions as input, and
predicted both the visual trace and the next action
step, represented as an 8-dimensional vector (7 joint
velocities plus a binary gripper state). We report
the success/failure rates for one fixed seed per task
on the validation set, comparing with LLARVA as
a baseline. The results are shown in Table 1.

Evaluation Procedure. We evaluate IVA in a
single-pass, end-to-end setting on all 225 episodes
(25 episodes x 9 RLBench tasks) with randomized
object poses. For each episode, we generate a true-
or false-premise instruction and score IVA’s full

response as follows:

(1) Detection Stage. IVA first outputs a textual
response, which we parse to classify the instruction
as either Accept (True-Premise) or Clarify/Refuse
(False-Premise).

* Accept (True-Premise): Scored 1 if the
subsequent executed trajectory exactly
matches the ground-truth; otherwise 0.

* Clarify/Refuse (False-Premise): Scored 1
for an explicit out-of-domain refusal (e.g.,
“I’'m sorry, that object isn’t here...”). For
in-domain false premises, scored 1 if the
object is correctly re-targeted, and O if any
impossible action is attempted.

For multi-step episodes, we average the per-step De-
tection scores to yield a single FP score per episode.
(2) Execution Stage. Whenever IVA “Accepts,” we
execute the predicted 8D joint-velocity sequence.
Each RLBench task’s built-in success detector then
labels the outcome as success (1) or failure (0).

(3) Overall Accuracy. We average the 225 episode
scores (Detection + Execution) to yield a single
accuracy metric that jointly rewards correct task
execution and safe refusal/clarification behavior.
False Premise Detection and Correction. A
major challenge in real-world robotics is handling
instructions that reference unavailable objects or im-
possible actions. To address this, we fine-tuned IVA
on a curated false-premise dataset and evaluated it
alongside the true-premise-trained baseline. Test
prompts included both “In-Domain” false premises
(plausible but absent objects, e.g., “open the middle
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block” when only a drawer is present) and “Out-of-
Domain” false premises (impossible requests, e.g.,
“open the top chicken” for drawer task).

IVA achieved perfect detection (100%) on In-

Domain false-premise instructions, consistently
identifying and correcting these cases. For Out-
of-Domain false premises, IVA reached a detection
accuracy of 97.78%. In both scenarios, IVA gener-
ated contextually appropriate clarifications—such
as “I don’t see a tree in the current scene. Do you
mean jar?”—for In-Domain false premise and termi-
nate the interaction when face the Out-of-Domain
false premise.
Performance on True-Premise Tasks. To ensure
that enhanced false-premise reasoning does not com-
promise standard performance, we tested IVA on
tasks with only true-premise instructions. IVA main-
tained a success rate of 42.67% +8.34% compared
to the baseline’s 38.67% =+ 8.55%. The observed
difference lies well within the variance range,
suggesting that the slight drop in performance is sta-
tistically insignificant. Action prediction accuracy
and overall task completion remained fairly stable,
confirming that robust false-premise handling does
not significantly degrade general competence.

5 Conclusion

In this work, we introduced the Instruct-Verify-and-
Act framework, enabling VLA models to robustly
detect, clarify, and correct false-premise instruc-
tions in robotic settings. Our approach achieves
strong performance in both false-premise detection
and standard task execution, demonstrating the
value of explicit false-premise reasoning in VLA
models. We hope these results demonstrate the
potential of language-aware robots to engage more
naturally and safely with users, even when faced
with ambiguous or impossible commands. Future
work will focus on extending IVA’s capabilities
to more complex environments and real-world
deployments. Finally, we do not anticipate a specific
negative impact, but, as with any machine learning
method, we recommend exercising caution.

Limitations

While our IVA framework demonstrates strong per-
formance in detecting and correcting false-premise
instructions within vision-language-action (VLA)
models, several limitations remain that should be
addressed in future work:

Dataset Scope and Realism. Our false-premise
instruction dataset is primarily generated from the
RLBench environment, which, despite its diversity,
remains a simulated domain with a constrained
set of objects, scenes, and tasks. Consequently,
the distribution and complexity of false-premise
instructions may not fully capture the ambiguity and
diversity encountered in real-world human-robot
interaction. Moreover, the proportion of In-Domain
and Out-of-Domain false premises is artificially
balanced to facilitate training and evaluation,
and may not reflect the true incidence of such
instructions in open-world settings.

Generalization to Real-World Deployment.
Although IVA achieves high detection rates in
simulation, its robustness in real-world deploy-
ments is not yet validated. Domain shift—such
as differences in visual appearance, sensor noise,
or language usage—could degrade performance.
Additionally, our framework assumes that visual
observations and proprioceptive data are accurately
and reliably captured, which may not always hold
in practical robotics scenarios.

Correction and Clarification Strategies. The
natural language responses generated by IVA are
limited to clarifications and suggestions based on
the specific types of false premises represented in
the training data. The model’s ability to propose
truly creative or contextually appropriate alterna-
tives remains limited, especially for Out-of-Domain
or out-of-distribution instructions. In more complex
environments, nuanced reasoning about task
feasibility, user intent, and multi-turn clarification
dialogues may be necessary.

Instruction and Environment Complexity. The
instructions used for evaluation are relatively short
and structured, and the environments contain a
modest number of distractor objects. Real human
instructions can be longer, more ambiguous, and
embedded in broader conversational contexts. Our
current framework does not explicitly handle multi-
turn dialogues, implicit user intent, or ambiguous
references beyond the immediate instruction.

Scalability and Efficiency. Our approach lever-
ages instruction-tuned large multimodal models
with frozen vision and language encoders, which,
while effective, may impose computational and
memory overhead unsuitable for some real-time or
resource-constrained robotic applications.
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Appendix

The appendix consists of the following further
discussion:

* Appendix A provides information on the code
release, including links to the code bases and
datasets used in the project.

* Appendix B details the use of Al in the
creation of this manuscript.

» Appendix C visualizes examples of tasks used
for training and evaluation.

* Appendix D shows the example training
dataset of In-Domain false premise, Out-of-
Domain false premise, and true premise.

* Appendix E provides the generation process
of infeasible instructions.

A Code Release

‘We make the code and data for our analysis available
in our project page. We release both under the MIT
license.

B Disclosure of AI Usage

The authors acknowledge the use of artificial
intelligence (Al) tools in the preparation of this
manuscript. Specifically, Microsoft Copilot, Ope-
nAI ChatGPT, and Google Gemini Pro were utilized
for general editing and code generation / completion
purposes. All generated code and text was verified
for correctness by one or more of the authors.

C Qualitative examples

We visualize qualitative examples of 9 tasks from
RLBench in Figure C.2.

D Example Data

* In-Domain false premise:

human: “<image>\You are a Franka
robot using joint control. The task
is "take the drawer off the grill”,
and the previous five (including
current) steps are [[0, 0, 0, 0, O,
o, 01, [0, 0, 0, o, 0, 0, 0], [0, o,
0, 0,0,0,0], [0,0,0,0,0,0, 0],
[0.0098, ©.1741, -0.0053, -0.8438,
-0.0026, 1.2311, 0.7985]]1. Can you
predict action of the next 1 step?”

gpt: “I don’t see drawer in the
current scene. Do you mean chicken?”

human: “Yes, You are a Franka robot
using the joint control. The task
is "take the chicken off the grill”,
and the previous five (including
current) steps are [[0, 0, 0, 0, O,
o, 01, [0, 0, 0, o, 0, 0, 0], [0, o,
0, 0,0,0,0], [0,0,0,0,0, 0, 0],
[0.0098, ©.1741, -0.0053, -0.8438,
-0.0026, 1.2311, 0.7985]]1. Can you
predict action of the next 1 step?”

gpt: “2D visual trace: [[61, 51],
[61, 511, [61, 517, [61, 51], [62,
511, [6e, 111, [59, 131, [57, 161,
[57, 211, [55, 28], [55, 351, [56,
371, [57, 391, [59, 461, [60, 511,
[58, 461, [56, 401, [57, 371, [57,
351, [61, 371, [65, 371, [72, 351,
[78, 341, [8e, 34], [78, 37], [76,

457, [79, 511]1. The next action
step: [-0.0004, -0.0204, -0.0007,
-0.0588, -0.0004, 0.0213, 0.0058,
1.01”

* Out-of-Domain false premise:

human: “<image>\nYou are a Franka
robot using joint control. The task
is "take the elephant off the grill”,
and the previous five (including
current) steps are [[0, 0, 0, 0, 0,
o, o1, [0, 0, 0, 0, 0, 0, 0], [0, o,
0, 0,0,0,0], [0, 0,0,0,0,0, 0],
[-0.0152, 0.1717, -0.0032, -0.8589,
0.0182, 1.2171, 0.7744]]1. Can you
predict action of the next 1 step?”

gpt: “I couldn’t find an elephant
in the current scene.”

* True premise:

human: “<image>\nYou are a Franka
robot using joint control. The task
is "take the chicken off the grill”,
and the previous five (including
current) steps are [[0, 0, 0, 0, O,
o, 01, [0, 0, 0, o, 0, 0, 0], [0, o,
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Figure C.2: Qualitative examples of 9 tasks.

0,0,0,0,0],[0,0,0, 00,0, 0],
[0.0115, 0.1585, -0.0003, -0.8588,
0.0045, 1.2363, 0.8086]]. Can you
predict action of the next 1 step?”

gpt: “2D visual trace: [[73, 101,
[78, 91, [83, 111, [90, 131, [96,
161, [1ee, 211, [1e3, 241, [1086,
291, [1e07, 321, [109, 351, [110,
381, [109, 4], [108, 491, [1e8,
511, [1e8, 471, [11e, 391, [109,
38], [1ee, 371, [87, 341, [71, 321,
[59, 321, [57, 321, [58, 421, [57,
48]]. The next action step: [0.0173,
0.0007, -0.0033, -0.0291, -0.0006,
0.0108, -0.056, 1.01”

E Infeasible Instruction Generation

To generate “infeasible” instructions, we first curate
two distractor pools of nouns:

1. In-Domain: objects that appear in our
RLBench scenes (e.g., “blue safe”, “drawer”,
6£mug”)'

2. Out-of-Domain: objects never seen in the
scenes (e.g., “sofa”, “durian”, “elephant”),
drawn from a list generated by GPT.

We then rewrite 85% of the original true-premise
prompts using one of two LLM-based rewriters:

1. In-Domain FP (65% overall): replace the tar-
get OBJECT by sampling from the In-Domain
pool, ensuring the new noun is absent from
that episode’s scene.

2. Out-of-Domain FP (20% overall): replace the
target OBJECT with a noun sampled from the
Out-of-Domain pool.

Finally, we manually reviewed 200 randomly
selected rewritten prompts to verify grammaticality
and correctness.
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