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Abstract

Cardiovascular diseases are a leading cause
of death and disability worldwide. Electro-
cardiogram (ECG) is critical for diagnosing
and monitoring cardiac health, but obtaining
large-scale annotated ECG datasets is labor-
intensive and time-consuming. Recent ECG
Self-Supervised Learning (eSSL) methods mit-
igate this by learning features without extensive
labels but fail to capture fine-grained clinical
semantics and require extensive task-specific
fine-tuning. To address these challenges, we
propose SuPreME, a Supervised Pre-training
framework for Multimodal ECG representa-
tion learning. SuPreME is pre-trained using
structured diagnostic labels derived from ECG
report entities through a one-time offline ex-
traction with Large Language Models (LLMs),
which help denoise, standardize cardiac con-
cepts, and improve clinical representation learn-
ing. By fusing ECG signals with textual car-
diac queries instead of fixed labels, SuPreME
enables zero-shot classification of unseen con-
ditions without further fine-tuning. We evaluate
SuPreME on six downstream datasets cover-
ing 106 cardiac conditions, achieving superior
zero-shot AUC performance of 77.20%, sur-
passing state-of-the-art eSSLs by 4.98%1. Re-
sults demonstrate SuPreME’s effectiveness in
leveraging structured, clinically relevant knowl-
edge for high-quality ECG representations.

1 Introduction

Supervised learning methods have proven effective
in classifying cardiac conditions using Electrocar-
diogram (ECG), a widely utilized clinical tool for
monitoring the heart’s electrical activity (Huang
et al., 2023; Huang and Yen, 2022). However, these
methods typically rely on large-scale, high-quality
annotated datasets, which are costly to create and
difficult to scale.

*Correspondence: che.liu21@imperial.ac.uk
1All code and data are available at https://github.com/

mingscai/SuPreME.
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Figure 1: Overview including (a) ECG clinical entity
extraction with LLMs, (b) supervised pre-training with
SuPreME, and (c) zero-shot prompted evaluation.

To reduce dependence on annotations, recent
advancements in ECG self-supervised learning
(eSSL) have enabled the extraction of represen-
tative features from large-scale unannotated ECGs
using contrastive or generative tasks (Eldele et al.,
2021; Kiyasseh et al., 2021; Na et al., 2024). De-
spite their promise, these methods often rely on
strong signal-level augmentations that may distort
the semantic integrity of the signal and require com-
plex pretext task designs (Kiyasseh et al., 2021).
Multimodal learning approaches (Liu et al., 2024;
Li et al., 2024) have also been proposed to learn
ECG representations by leveraging free-text ECG
reports. However, these methods face challenges
due to noise in textual data and the complexities
of language grammar, which can hinder learning
efficiency (Wu et al., 2023).

To address these limitations and develop a scal-
able, simple, and effective ECG pre-training frame-
work, we propose SuPreME, a Supervised Pre-
training framework for Multimodal ECG represen-
tation learning. Our contributions are threefold:
(a) We introduce an automated pipeline that ex-
tracts high-quality clinical entities from raw ECG
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reports using an instruction-tuned LLM enriched
with domain-specific knowledge (Figure 1(a)). Ex-
tracted entities are deduplicated and mapped to
dataset-specific standardized diagnostic terms us-
ing clinician-validated resources (e.g., SNOMED
CT, UMLS, SCP-ECG2), forming a dataset-specific
global cardiac query list without manual annota-
tion. This process enables scalable, consistent la-
beling and captures richer semantics than coarse-
grained or free-text alternatives. (b) Leveraging
these standardized cardiac queries, we propose
SuPreME (Figure 1(b-c)), a multimodal frame-
work that directly fuses ECG signals with cardiac
queries through a lightweight Cardiac Fusion Net-
work (CFN). Unlike prior methods (e.g., MERL)
that rely on raw free-text inputs or handcrafted pre-
text tasks, SuPreME requires no signal-level aug-
mentation or contrastive loss design, offering an
efficient and interpretable multi-label supervision
strategy grounded in standardized cardiac queries.
(c) We pre-train SuPreME on 771,500 ECG sig-
nals paired with 295 global standardized cardiac
queries from MIMIC-IV-ECG (Gow et al., 2023)
(Appendix A.1.1). On six downstream datasets
(e.g., PTB-XL, CPSC-2018, Chapman-Shaoxing-
Ningbo; Appendix A.1.2), it achieves a new state-
of-the-art zero-shot AUC of 77.20%, significantly
outperforming existing eSSL and multimodal base-
lines, including those fine-tuned with 10–100% la-
beled data. SuPreME also shows strong data effi-
ciency and generalization, with zero-shot perfor-
mance under only 20% pre-training data surpassing
fully fine-tuned eSSLs.
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Figure 2: Current ECG representation learning meth-
ods, including (a) CNN-based supervised learning, (b)
Transformer-based supervised learning, (c) contrastive
learning, and (d) generative learning.

2 Related Work

ECG Supervised Learning. ECG supervised
learning (eSL) methods, using CNNs or Trans-

2SNOMED CT and UMLS are standardized clinical termi-
nology databases; SCP-ECG refers to the Standard Communi-
cation Protocol for Computer-Assisted Electrocardiography.

formers in Figure 2(a−b), achieve high accuracy
in cardiovascular disease diagnosis. CNNs excel
at capturing spatial and temporal patterns in 1D
ECG signals or 2D ECG images (Tesfai et al.,
2022; Degirmenci et al., 2022; Mashrur et al., 2019;
Huang et al., 2022), while Transformers use atten-
tion mechanisms to model global dependencies
(Natarajan et al., 2020; Jiang et al., 2021; He et al.,
2023). Despite their strengths, eSLs rely heavily
on large-scale datasets with expert-verified anno-
tations, making them costly and impractical for
pre-training tasks (Strodthoff et al., 2020). This de-
pendence limits their scalability and generalizabil-
ity, particularly when addressing diverse datasets
or unseen cardiac conditions.
ECG Self-supervised Learning. To overcome the
annotation bottleneck, ECG self-supervised learn-
ing (eSSL) methods have been introduced, enabling
representation learning from unannotated ECG sig-
nals in Figure 2(c−d). Contrastive learning frame-
works, such as CLOCS and ASTCL (Kiyasseh
et al., 2021; Wang et al., 2023), explore tempo-
ral and spatial invariance in ECG data (Eldele et al.,
2021; Chen et al., 2020, 2021). Generative eSSL
techniques reconstruct masked segments to capture
signal-level features (Zhang et al., 2022; Sawano
et al., 2022; Na et al., 2024; Jin et al.). Despite
their successes, eSSLs fail to incorporate clinical
semantics from associated medical reports and re-
quire fine-tuning for downstream tasks (Liu et al.,
2023d,c; He et al., 2022), limiting their utility in
zero-shot scenarios.
ECG-Text Multimodal Learning. Multimodal
learning has advanced significantly in biomedi-
cal applications, especially in vision-language pre-
training (VLP) frameworks for radiology (Liu et al.,
2023b,a; Wan et al., 2024; Zhang et al., 2023b; Wu
et al., 2023; Abbaspourazad et al., 2023), which
align radiology images with structured knowledge
from reports to reduce noise and improve robust-
ness. However, ECG-Text multimodal learning
holds substantial potential for further development.
Methods like MERL (Liu et al., 2024) and ECG-
LM (Yang et al.) integrate ECG signals and raw
text reports but struggle with noise and inconsisten-
cies in unstructured reports. Others, such as KED
(Tian et al., 2024), use structured labels and con-
trastive learning strategies but face challenges from
label noise and LLM-generated knowledge hallu-
cinations. Our approach addresses these issues by
structuring reports into meaningful entities, reduc-
ing noise, and aligning them with ECG signals
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without reliance on LLM-augmented content, min-
imizing hallucination risks while enabling efficient
representation learning and downstream flexibility.

3 Methodology

SuPreME extracts structured clinical entities from
ECG reports via an instruction-tuned LLM (Sec-
tion 3.1) to form cardiac queries, which are fused
with ECG signals via Cardiac Fusion Network
(CFN) in a shared latent space, enabling zero-shot
classification of unseen cardiac conditions without
fine-tuning (Section 3.3), thus yielding scalable,
clinically meaningful representations.

3.1 LLM-based Clinical Entity Extraction

Enrich LLM with Domain Knowledge. ECG re-
ports generated by 12-lead devices (Appendix A.2)
contain diverse and nuanced descriptions of car-
diac conditions. To contextualize these free-text re-
ports for clinical entity extraction, we first construct
a cardiac-specific vocabulary using GPT-4o-mini
(Appendix A.3.1), by filtering, normalizing, and
aggregating terminology from clinician-validated
resources such as SNOMED CT, UMLS, and SCP-
ECG (Bodenreider, 2004; Donnelly et al., 2006;
Rubel et al., 2016). The vocabulary covers both
complete diagnostic terms (e.g., sinus rhythm)
and commonly used abbreviations (e.g., LVH for
Left Ventricular Hypertrophy). This domain
knowledge is then integrated into the LLM prompt
design to guide the subsequent extraction process.
Knowledge-Guided Entity Extraction. We em-
ploy an instruction-tuned LLM to extract clinical
entities from unstructured ECG reports. The model
is prompted using structured instructions and few-
shot examples (Appendix A.3.2), incorporating the
curated cardiac vocabulary to enhance contextual
understanding. It extracts diagnostic expressions
(e.g., waveform patterns, cardiac abnormalities)
along with their associated certainty. Extracted
entities are categorized as Normal, Abnormal, or
Uncertain, as illustrated in Figure 3(a). Entities
marked with low certainty (e.g., containing “proba-
bly” or “cannot rule out”) are discarded to improve
diagnostic precision. Within each report, semanti-
cally similar expressions are merged to prepare for
cross-report alignment and standardization.
Entity Deduplication and Mapping. Although
the extraction is guided and structured, lexical vari-
ability due to differing physician writing styles
and device-specific formats still leads to redun-

dant or inconsistent entities. To resolve this, we
apply the curated cardiac vocabulary for entity stan-
dardization. Both extracted entities and reference
terms are encoded using MedCPT, a medical BERT
model pre-trained for clinical semantic similar-
ity (Jin et al., 2023). Cosine similarity between
embeddings is computed to perform soft matching.
Entities that exhibit high average similarity to a
reference term are aligned and deduplicated with a
threshold selected and clinically validated by expe-
rienced cardiologists with over ten years of practice.
Case study is provided in Appendix A.3.3.

3.2 Multimodal ECG Supervised Learning

ECG Embedding with Vision Transformer. The
Vision Transformer (ViT) (Dosovitskiy et al.,
2020), designed for 2D image processing, reshapes
images into sequences of flattened patches for
Transformer-based analysis. Similarly, ECG sig-
nals exhibit temporal and structural patterns analo-
gous to the spatial relationships in images. We then
adapt its architecture by dividing ECG time series
into fixed-size patches, as shown in Figure 3(b).

Multi-lead ECG signals are represented as x ∈
RB×L×T , where B is the batch size, L the num-
ber of leads, and T the number of time steps.
Each lead’s signal is independently segmented into
N = T/P non-overlapping patches of length P ,
resulting in xi,j ∈ RB×P for lead i and patch in-
dex j. Each patch is flattened and passed through
a shared linear projection layer Wp ∈ RP×D to
produce a token embedding zi,j ∈ RB×D:

zi,j = xi,jWp

z′i,j = zi,j + ei + pj

(1)

To preserve lead-specific features and spatial-
temporal information, we introduce a unique learn-
able lead embedding ei ∈ RD for each lead i, and
a positional embedding pj ∈ RD for each patch in-
dex j. These embeddings are element-wise added
to the projected patch token zi,j , forming the en-
riched representation z′i,j . All enriched tokens
from all leads and patches are then concatenated to
form the Transformer encoder input sequence:

Z = [z′1,1, . . . , z′1,N , . . . , z′L,N ]

FECG = MLPECG(Dropout(Z))
(2)

The final token sequence Z ∈ RB×(L·N)×D is
passed through Transformer encoders to extract
high-level ECG representations. Each block con-
sists of multi-head self-attention and feed-forward
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Constraints
- Format

Knowledge Few-shot Samples
- Example 0

- Report: "sinus rhythm likely normal ECG"
- Entites: {"Global": {"Normal": ["sinus rhythm"],
"Abnormal": [], "Uncertain": ["likely normal ECG"]}}

- Example 1
- Report: "sinus rhythm left-sided incomplete right 
bundle branch block otherwise normal ECG"
- Entites: {"Global": {"Normal": ["sinus rhythm"], "A-
bnormal": ["left-sided incomplete right bundle bran-
ch block"], "Uncertain": ["otherwise normal ECG"]}}

- Example ...

- Pathophysiology

- SCP & Abbreviation
NSR, PAC, PVC, AVNRT, AFL, VT, LAFB, 
LVCD, AMI, LVH, RVH, NSTEMI, AVB, ...

Ventricular tachycardia, Sinus Arrhythmia, 
Supraventricular Tachycardia, Myocardial 
Infarction, First-degree AV Block, ...

- Waveform Abnormalities
QRS Complex, ST Segment, T-Wave 
Inversion, Low Voltage QRS Amplitude, 
Prolonged QT Interval, ...

{"Global": {
    "Normal": [...],
    "Abnormal": [...],
    "Uncertain": [...],
}}

- Explanation
Normal
sinus rhythm, ...
Abnormal
atrial fibrillation, 
tachycardia,...
Uncertain
likely normal, ...- Instruction

1. Learn the ECG domain-specific knowledge
2. Extract all entities at first and then classify
3. Remove duplicated entity in the same report

Meta LLaMA-3.1 70B

Sinus bradycardia
with occasional PVCs.

Left ventricular hyp-
ertrophy, normal rhythm.

Extended QT inter-
val, possible MI.

Sinus bradycardia, 
otherwise normal ECG.

Prolonged QT inter-
val, inferior myocard-
ial infarction.

sinus
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premature ventricular
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left ventricular
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myocardial
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sinus
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(a) Design of ECG report entity extraction with (i) knowledge-enhanced
prompt engineering, and (ii) candidate entity deduplication and mapping.

Lead-specific Tokenization
Lead & Pos Embedding

...

Lead I

Lead II

Lead V6

...

...

...

...

Segment & Patchtify

Li
ne

ar
 P

ro
je

ct
io

n

R
ea

rr
an

ge
 &

 F
la

tte
rn

...

...

...
...

...

...

...
...

...

...

...
...

...

...
Lead

I
Embs

+

Tr
an

sf
or

m
er

 E
nc

od
er

Lead Signal

...+
Lead

II
Embs

...
Lead
V6

Embs
+

...

...

...

+

+

+

Pos
II

Embs

Pos
V6

Embs

Pos
I

Embs

... ...

Lead I
Tokens

Lead II
Tokens

Lead V6
Tokens

Tw
o-

la
ye

r M
LP

 w
ith

 A
ct

iv
at

io
n

(b) ECG 1D ViT encoder in the SuPreME,
with both lead-wise and position embedding.

PosEnc

Nx

Query Embeddings ECG Feature Map

Scale

.

Linear Linear Linear

Query Key Value

Softmax

Value Key Query

Multi-Head
Cross-Attention

Add & Norm

Feed Forward

Add & Norm

Dropout & Output

(c) Architecture of the Cardiac Fusion Net-
work (CFN) in the SuPreME.

Figure 3: Implementation of the supervised ECG-Text multimodal pre-training framework including (a) ECG report
entity extraction, (b) ECG 1D ViT encoder, and (c) architecture of the Cardiac Fusion Network.

sublayers, with residual connections and layer nor-
malization. To enhance generalization, we apply
stochastic depth dropout to the residual paths.

Before multimodal fusion, the output features
are passed through a modality-specific two-layer
multilayer perceptron (MLP) projection head with
an intermediate non-linear activation. This projec-
tion maps the ViT output from its internal width D
to a shared latent dimension D′ aligned with the
textual modality, forming representation FECG ∈
RB×(L·N)×D′

used as the CFN input. Implementa-
tion details are provided in Appendix A.4.1, A.4.2.

Cardiac Query Embedding with MedCPT. In-
stead of relying on fixed categorical labels, our
framework adopts a flexible and semantically mean-
ingful approach based on textual cardiac queries.
For the pre-training dataset, we construct fine-
grained diagnostic queries by applying the LLM-
based entity extraction pipeline described in Sec-
tion 3.1. Specifically, we generate a dataset-specific
global query list of size M , consisting of standard-
ized cardiac terms derived from the deduplicated
and mapped output of the extraction process.

Let Q = {q1, q2, . . . , qM} denote the global
query list. Each query qi is encoded into a dense
vector using the query encoder from MedCPT,
which applies a Transformer (Trm) to the input
sequence [CLS] qi [SEP]. The final-layer [CLS] to-
ken embedding is used as the query representation:

E[i, :] = Trm([CLS] qi [SEP])

FQuery = MLPQuery(Dropout(E))
(3)

All M query embeddings E ∈ RM×768 are
then passed through a modality-specific two-layer
MLP projection head with an intermediate acti-
vation function to obtain the final representations
FQuery ∈ RM×D′

in the shared D′-dimensional
latent space aligned with ECG token representa-
tions. Further implementations are provided in
Appendix A.4.3.
Alignment by Cardiac Fusion Network. The
Cardiac Fusion Network (CFN) fuses ECG signals
with textual cardiac queries using a multi-layer
Transformer decoder architecture, where query em-
beddings act as decoder inputs and ECG features
serve as the encoder memory, following a standard
cross-attention formulation (Figure 3(c)).

Given a batch of ECG features FECG ∈
RB×(L·N)×D′

and query embeddings FQuery ∈
RM×D′

, CFN fuses the two modalities through
cross-attention. During pre-training, each ECG
sample is paired with the same M cardiac query
embeddings, allowing CFN to learn a joint repre-
sentation that captures query-conditioned patterns
in the signal. The decoder attends to ECG patterns
while grounding the prediction in the semantics of
each diagnostic query, outputting H ∈ RB×M×D′

which is passed through a single MLP classification
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head shared across all queries, producing M binary
logits per ECG sample, where each logit indicates
the relevance of a specific query to the signal input:

Logits = MLPCFN(H) ∈ RB×M (4)

In pre-training, we supervise CFN using weak
binary labels derived from the entity extraction
pipeline. Each ECG report is matched against
the global query list of M standardized diagnostic
terms. A binary label of 1 is assigned if a mapped
report entity matches a query; otherwise 0. This
results in a sparse M -dimensional multi-label vec-
tor per ECG sample. To avoid data leakage and
ensure modality separation, raw ECG reports are
never used directly as input to the model. Instead,
diagnostic query list serves as input with queries
embedded independently and applied uniformly to
every ECG sample.

This formulation enables SuPreME to perform
open-set classification with a flexible, scalable
query interface, supporting multi-label learning
while maintaining clear supervision-query decou-
pling. CFN initialization is in Appendix A.4.4.

3.3 Zero-shot Prompted Classification

To enable zero-shot classification on unseen car-
diac conditions without fine-tuning, we construct
concise, clinically meaningful prompts (e.g., left
bundle branch block for LBBB) derived from
SCP-ECG codes in each downstream dataset.
These prompts form a dataset-specific query list
aligned with the pre-training query space and serve
as inputs to the textual modality of SuPreME.

We follow a simplified version of Clinical
Knowledge-Enhanced Prompt Engineering (CK-
EPE) (Liu et al., 2024), where SCP-ECG codes
are translated into discriminative phrases validated
by UMLS and SNOMED CT. Unlike full CKEPE
pipelines that retrieve verbose descriptions (e.g.,
a condition characterized by prolonged
QRS complex... for LBBB), our approach pro-
motes clarity and cross-modal fusion by avoiding
redundant or overly detailed textual artifacts. These
prompts are used exclusively during inference and
remain fixed for all ECG samples within a dataset.

During zero-shot evaluation, ECG signals and
textual prompts are encoded via the pre-trained
encoders into Feval

ECG and Feval
Query, then passed into

the Cardiac Fusion Network (CFN). The CFN per-
forms cross-modal attention to align features and
outputs one logit per query-ECG pair. The final
prediction scores are computed as:

Pred = σ(CFN(Feval
ECG,F

eval
Query)) ∈ RB×M ′

(5)

This setup decouples the prediction space from
any fixed label vocabulary, allowing the model
to generalize to arbitrary diagnostic queries. The
query list can vary across downstream datasets, and
the classifier is query-agnostic, meaning no struc-
tural change is required when adapting to new tasks.
Evaluation is conducted without fine-tuning using
AUROC (AUC) per class and mean AUC across all
prompts. Details about simplified-CKEPE, evalua-
tion metrics are in Appendix A.5.

4 Experiments

4.1 Configuration and Settings
Clinical Entity Extraction. Following Section 3.1,
we extract and normalize clinical entities from
MIMIC-IV-ECG using Llama3.1-70B-Instruct3

with structured prompts to ensure high-quality an-
notations. Entities are deduplicated via MedCPT
embeddings (cosine similarity > 0.8) and mapped
to UMLS/SNOMED CT (average cosine similarity
> 0.75)4. Experiments are run on 8 NVIDIA A100-
SMX4-80GB GPUs using vLLM (Kwon et al.,
2023). Statistics of extracted MIMIC-IV-ECG enti-
ties are in Appendix A.6.1.
Supervised ECG Pre-training. We use a 1D ViT-
tiny encoder (patch size = 125, i.e., 0.25s) and a
frozen MedCPT text encoder. Training employs
AdamW (LR=1× 10−3, weight decay=1× 10−8)
with cosine annealing (T0=5000, Tmult=1, min
LR=1× 10−8), for up to 50 epochs with early stop-
ping (patience=10, best AUC at 16). Batch size is
set to 256 on 4 NVIDIA A100-PCIE-40GB GPUs5.
Downstream Classification Task. SuPreME is
evaluated on six unseen datasets (e.g., PTB-XL,
CPSC-2018, and Chapman-Shaoxing-Ningbo) us-
ing dataset-specific prompts (Section 3.3). Abla-
tion studies assess the impact of different ECG/text
encoders and the CFN module as well as other
key procedures. Mainstream eSSLs are bench-
marked with linear probing by freezing ECG en-
coders and fine-tuning a linear layer on 1%, 10%,

3Used offline for one-time inference only; not required
during deployment. A large LLM ensures high-quality labels.
(Appendix A.10.1)

4Verified by cardiologists with 10+ years of experience;
Appendix A.10.3, A.10.4.

5Compact pre-trained checkpoint (ViT-tiny + frozen Med-
CPT) runs on single GPU with ≥24GB memory, mak-
ing it deployable in clinical or low-resource settings (Ap-
pendix A.10.2).
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Evaluation Zero-shot Linear Probing
Framework Approach 0% 1% 10% 100%

From Scratch

Random Init (CNN) L - 55.09 67.37 77.21
Random Init (Transformer) L - 53.53 65.54 75.52

ECG Only

SimCLR (Chen et al., 2020) L - 58.24 66.71 72.82
BYOL (Grill et al., 2020) L - 55.78 70.61 74.92
BarlowTwins (Zbontar et al., 2021) L - 58.92 70.85 75.39
MoCo-v3 (Chen et al., 2021) L - 57.92 72.04 75.59
SimSiam (Chen and He, 2021) L - 59.46 69.32 75.33
TS-TCC (Eldele et al., 2021) L - 54.66 69.37 76.95
CLOCS (Kiyasseh et al., 2021) L - 56.67 70.91 75.86
ASTCL (Wang et al., 2023) L - 57.53 71.15 75.98
CRT (Zhang et al., 2023a) L - 56.62 72.03 76.65
ST-MEM (Na et al., 2024) L - 56.42 63.39 69.60

Multimodal Learning

MERL (Liu et al., 2024) Z & L 73.54 63.57 78.35 83.68

SuPreME (Ours) Z & L 77.20 63.24 72.34 84.48

Table 1: Performance of SuPreME and eSSLs, with
’Z’ for zero-shot and ’L’ for linear probing. Best
results are bolded and second best gray -flagged.

Linear Classification Cardiac Fusion Network

Dataset ResNet ViT ResNet ViT

PTB-XL-Superclass 67.55 66.80 68.75 78.20
PTB-XL-Subclass 73.77 71.51 68.02 77.52
PTB-XL-Form 64.34 62.10 58.85 60.67
PTB-XL-Rhythm 75.68 75.34 68.69 86.79
CPSC-2018 83.35 79.13 60.38 79.83
CSN 72.61 72.32 65.07 80.17

Overall 72.88 71.23 64.96 77.20

Table 2: Performance of SuPreME and its variants
on downstream datasets. Best results are bolded.

PTB-XL
Form

PTB-XL
Subclass

PTB-XL
Superclass

CSNCPSC-2018

PTB-XL
Rhythm

60.67

PTB-XL
Form

PTB-XL
Subclass

PTB-XL
Superclass

CSN

PTB-XL
Rhythm

86.79

79.83 80.17

78.20

77.52
60.67

86.79

80.17

78.20

77.52

CPSC-2018
79.83

Figure 4: Comparison of SuPreME (zero-shot) and eSSLs
(linear probing with 1% data on the left and 10% data on
the right) across downstream datasets.

Average AUC axis folded for better visualization.

Figure 5: Data efficiency of SuPreME (zero-shot) and
eSSLs (MERL in zero-shot, others in linear probing).

PTB-XL-Superclass PTB-XL-Subclass PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN
Framework 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

From Scratch

Random Init (CNN) 70.45 77.09 81.61 55.82 67.60 77.91 55.82 62.54 73.00 46.26 62.36 79.29 54.96 71.47 78.33 47.22 63.17 73.13
Random Init (Transformer) 70.31 75.27 77.54 53.56 67.56 77.43 53.47 61.84 72.08 45.36 60.33 77.26 52.93 68.00 77.44 45.55 60.23 71.37

ECG Only

SimCLR 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
ST-MEM 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36

Multimodal Learning

MERL 78.64 83.90 85.27 61.41 77.55 82.98 56.32 69.11 77.66 52.16 78.07 81.83 69.25 82.82 89.44 63.66 78.67 84.87

SuPreME (Ours) 73.58 79.07 87.67 66.30 74.20 84.84 58.94 58.93 74.06 56.92 76.27 84.42 58.28 70.51 86.74 65.42 75.08 89.16

Table 3: Specific linear probing performance of SuPreME and eSSLs across six downstream datasets. Best results
are bolded and second best gray -flagged.

and 100% of labeled data from the six datasets. All
tasks are evaluated by average AUC across classes
and datasets, following the data splits in Appendix
A.7.1. Hyperparameters are provided in Appendix
A.7.2 and overlap analysis in Appendix A.6.2.

4.2 Evaluation with Mainstream eSSLs

We evaluate SuPreME against mainstream eSSL
frameworks across 106 classes in six downstream
ECG datasets, conducting linear probing with eSSL
ECG encoders across varying data proportions to
facilitate performance comparison. Table 1 demon-
strates AUC results of SuPreME and eSSLs under
different evaluation approaches.

Our results demonstrate that SuPreME achieves
superior performance compared to traditional eSSL
frameworks. With an overall zero-shot AUC of
77.20% (Details in Appendix A.8), SuPreME out-
performs all non-multimodal eSSLs, which require
linear probing even with 1% (best: 59.46%) or
10% (best: 72.04%) of labeled data, showcasing
its strong generalization capabilities and efficient
utilization of pre-trained knowledge. Even without
the CFN module, SuPreME remains highly com-
petitive (Table 3) using only the pre-trained ECG
encoder for linear probing. Its overall performance
consistently surpasses non-multimodal eSSL mod-
els across 1%, 10%, and 100% labeled data (also
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outperforms in 15/18 tasks with different datasets
and labelled data portion), and achieves compara-
ble performance to multimodal contrastive learning
frameworks like MERL (ViT backbone with ex-
plicit contrastive objectives, more comparisons in
Appendix A.10.5).

Since SuPreME’s ECG backbone is optimized
jointly with the CFN rather than via an explicit
contrastive loss, part of the diagnostic knowl-
edge is encoded within cross-modal interactions.
Linear probing on the ECG encoder alone thus
cannot fully utilize the rich alignment captured
during pre-training. This explains why the full
SuPreME pipeline including query prompts and
CFN achieves stronger zero-shot performance,
even compared to linear probing with more labeled
data. We highlight zero-shot performance as our
main evaluation objective, as it aligns with real-
world clinical settings where labeled ECG data is
scarce and fine-tuning is often impractical.

Figure 4 presents framework performance across
individual datasets. SuPreME’s advantage on the
PTB-XL-Superclass dataset is minimal, likely due
to the dataset’s simplicity, as it includes only 5
broad cardiac condition labels (e.g., NORM, STTC,
MI), making it difficult to differentiate model per-
formance. All frameworks perform poorly on the
PTB-XL-Form dataset, which focuses on 19 ECG
waveform types that do not directly correspond to
cardiac conditions, leading to ambiguous associa-
tions and reduced performance for all models.

To investigate SuPreME’s sensitivity to pre-
training scale, we evaluate its zero-shot per-
formance under varying data proportions (Fig-
ure 5). SuPreME consistently improves with more
data and maintains a clear advantage over non-
multimodal eSSLs. Remarkably, with only 20%
of pre-training data, SuPreME outperforms all
non-multimodal eSSLs using 1% or 10% labeled
data for linear probing, and matches the zero-shot
performance of the multimodal baseline MERL
trained on 100% of the pre-training data. More-
over, SuPreME’s zero-shot performance with just
20% of data also exceeds MERL’s linear probing
result with 1% labels, highlighting its superior gen-
eralization and efficiency under limited supervi-
sion. Notably, SuPreME achieves these results
with significantly fewer computational resources
and shorter training time6 (Appendix A.10.2).

6SuPreME: 4×A100-40GB GPUs for 16 epochs (∼90
minutes); MERL: 8×A100-40GB GPUs for 50 epochs (≥1
day).

4.3 Evaluation of SuPreME Architecture

Beyond comparisons with eSSLs, we assess the
contribution of core components in SuPreME by
varying its core modules, including the ECG back-
bone (ResNet vs. ViT) and (Linear vs. CFN) shown
in Table 2 and Figure 6. Overall, SuPreME (ViT +
CFN) achieves the highest average AUC of 77.20%,
with strong results on PTB-XL-Rhythm (86.79%)
and CSN (80.17%), demonstrating the effective-
ness of cross-modal fusion for temporally and spa-
tially complex signals.

Under linear classification, ResNet outperforms
ViT across most datasets, reflecting its inductive
bias toward local feature extraction. However, once
CFN is introduced, ViT significantly benefits from
its attention mechanisms and structured prompts,
outperforming all other variants. This suggests
that ViT’s global receptive field aligns well with
the query-driven fusion in CFN, while ResNet’s
local filters are less suited for attending over sparse
textual queries.

Notably, the performance of ResNet + CFN
is lower than ResNet + Linear across several
datasets. We attribute this to a mismatch between
ResNet’s hierarchical, spatially localized features
and CFN’s attention-based fusion, which bene-
fits more from globally contextualized inputs like
ViT. CFN is designed to interpret semantically
aligned queries over long-range dependencies, an
area where ResNet lacks representational flexibil-
ity. This highlights the importance of matching
the backbone’s encoding characteristics with the
fusion strategy. Details are in Appendix A.10.6.

Figure 7 further analyzes SuPreME’s perfor-
mance on individual cardiac conditions in PTB-
XL-Subclass (Complete results in Appendix A.9).
SuPreME consistently achieves high AUCs (many
> 90), especially for nuanced conditions like LAF-
B/LPFB, CRBBB, CLBBB, and RVH, where both
query semantics and signal patterns must be inte-
grated. In contrast, ResNet + CFN underperforms
in complex arrhythmias (e.g., ISCA, IRBBB), rein-
forcing our insight that strong multimodal fusion
requires compatible encoders.

Unlike linear classifiers with fixed output dimen-
sions, CFN enables flexible prompt-driven clas-
sification, aligning query semantics with signal
patterns in a shared latent space as specified in
Section 3.2, improving generalization to novel con-
ditions without fine-tuning and demonstrates its
strength especially when paired with ViT.
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Figure 6: Specific zero-shot performance of
SuPreME and its variants across downstream
datasets.

Figure 7: Specific zero-shot classification
AUC performance of SuPreME and its vari-
ants on selected detailed categories in PTB-
XL-Subclass.

LLM Size Zero-shot AUC

Llama3.1-8B-Instruct 72.89 ± 0.49

Llama3.1-70B-Instruct (Ours) 77.20 ± 0.21

Table 4: LLM for entity ex-
traction.

Uncertainty Filtering Zero-shot AUC

Not Filtered 63.96 ± 0.47

Filtered (Ours) 77.20 ± 0.21

Table 5: Uncertain entity fil-
tering.

Deduplication Zero-shot AUC

Not Deduplicated 65.94 ± 0.49

Deduplicated (Ours) 77.20 ± 0.21

Table 6: Entity deduplica-
tion.

Backbone Zero-shot AUC

ResNet 64.96 ± 0.20

ViT (Ours) 77.20 ± 0.21

Table 7: ECG backbone
encoders.

Language Model Zero-shot AUC

BioClinicalBERT 62.95 ± 0.53

PubMedBERT 62.51 ± 2.21

MedCPT (Ours) 77.20 ± 0.21

Table 8: Language model
encoders.

Module Zero-shot AUC

w/o CFN (Linear) 72.70 ± 0.42

CFN (Ours) 77.20 ± 0.21

Table 9: Cardiac Fusion
Network (CFN).

Prompt Strategy Zero-shot AUC

GPT-4o Generated 60.83 ± 0.26

CKEPE Detailed 69.16 ± 1.94

CKEPE Simplified (Ours) 77.20 ± 0.21

Table 10: Zero-shot cardiac
query prompts.

Dropout Ratio Zero-shot AUC

0.05 75.98 ± 0.56

0.10 (Ours) 77.20 ± 0.21

0.15 75.63 ± 0.63

Table 11: Pre-training
dropout ratios.

4.4 Ablation Analysis

Entity Extraction Model. Using Llama3.1-70B-
Instruct for NER improves zero-shot AUC by
4.31% over the 8B variant (Table 4), reflecting bet-
ter supervision quality. This step is offline and
serves to build a high-quality labeled dataset, not
for deployment.
Uncertain Entity Filtering. A cardiac-specific
vocabulary with synonym consolidation ensures
reliable alignment (Table 12). Removing the un-
certainty filtering step lowers zero-shot AUC from
77.20% to 63.96% (Table 5), confirming its impor-
tance.
Clinical Entity Mapping. Mapping to a standard-
ized 295-term vocabulary improves zero-shot AUC
from 65.94% to 77.20% (Table 6), likely by remov-
ing noise and resolving label redundancy to better
represent distinct cardiac conditions.
ECG Encoder Backbone. Replacing ViT-tiny
with ResNet18 drops zero-shot AUC by 12.24%
(Table 7), suggesting ResNet is less effective at
modeling long-range ECG dependencies than ViT
(Appendix A.10.6).
Clinical Text Encoder. Among BioClinicalBERT,
PubMedBERT, and MedCPT, the latter achieves
the highest AUC, outperforming the others by over
14.25% (Table 8), likely due to its contrastive train-
ing objective, which better captures fine-grained
clinical distinctions.
Cardiac Fusion Network Module. We compare
CFN-based fusion with a simple linear projection

(Table 9). CFN lifts the zero-shot AUC from
72.70% to 77.20%, highlighting the benefits of
cross-attention in capturing multimodal synergies
between ECG signals and text queries.
Customized Cardiac Prompts. Among three
strategies (GPT-4o, detailed CKEPE, and simpli-
fied CKEPE), the simplified CKEPE achieves the
best AUC (Table 10), with ≥ 8.04% improvement,
suggesting that concise, clinically focused prompts
enhance alignment and reduce noise.
Dropout Ratio. In pre-training, we compare
dropout rates of {0.05, 0.10, 0.15}. A rate of 0.10
yields the best AUC, striking a balance between
regularization and signal retention (Table 11).

5 Conclusion

We present a novel LLM-based method for ECG
clinical entity extraction and construct a high-
quality labeled dataset from MIMIC-IV-ECG.
Building on this, we propose SuPreME, a scalable
supervised pre-training framework for multimodal
ECG representation learning that fuses ECG sig-
nals with fine-grained, standardized medical ter-
minologies rather than free-text reports. Its Car-
diac Fusion Network (CFN) and simplified Clinical
Knowledge-Enhanced Prompt Engineering (CK-
EPE) eliminate the need for further fine-tuning, en-
abling robust zero-shot classification with concise
cardiac queries. Benchmarked on six downstream
datasets, SuPreME achieves superior zero-shot per-
formance against 11 eSSLs, underscoring both data
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efficiency and diagnostic precision. Our results
highlight the value of explicit entity-level supervi-
sion over raw text alignment in ECG multimodal
learning, providing a strong basis for clinically ori-
ented ECG representation learning.

Limitations

While SuPreME achieves strong zero-shot perfor-
mance, several limitations remain. First, the clin-
ical entity extraction relies on a large language
model not fine-tuned for cardiology, which may
miss rare or ambiguous terms and introduce noise.
Second, SuPreME assumes generalization across
clinical settings, but real-world data often involve
device variability, demographic shifts, and class
imbalance. Our experiments show lower perfor-
mance on rare conditions, indicating sensitivity to
distribution shift. Additionally, because the ECG
encoder is trained jointly with CFN rather than via
contrastive objectives, its features alone may not al-
ways outperform other baselines under linear prob-
ing. Lastly, most existing ECG baselines are single-
modal and few of them support open zero-shot
evaluation (e.g., MERL), underscoring the need
for clinically motivated zero-shot benchmarks that
better reflect practical deployment scenarios and
support fairer comparison across methods.
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A Appendix

A.1 Dataset and Model Overview
A.1.1 Pre-training Dataset
MIMIC-IV-ECG. MIMIC-IV-ECG7 is a compre-
hensive database containing 800,035 diagnostic
ECG samples from 161,352 unique patients, with
12-lead recordings in 10 second length and sam-
pled at 500 Hz (Gow et al., 2023). These data have
been matched with patient records in the MIMIC-
IV clinical database, allowing for the association
of waveforms with reports when a cardiologist’s
report is available through provided linking infor-
mation. To enhance the usability of the data, we
exclude empty reports as well as reports containing
fewer than 3 words, and replace ’NaN’ and ’Inf’
values in the ECG records with the average of 6
neighboring points. Ultimately, the dataset used
for clinical entity extraction tasks includes 771,500
samples, each comprising 18 machine-generated
ECG reports based on rules and the corresponding
ECG data. After clinical NER and deduplication
on the 18 ECG reports of each sample, the dataset
holds 295 labels of professional medical terminolo-
gies.

A.1.2 Downstream Dataset
PTB-XL. PTB-XL8 is a large open-source ECG
dataset, comprising 21,799 clinical ECG records
from 18,869 patients, with each lead sampled at a
rate of 500 Hz and a duration of 10 seconds (Wag-
ner et al., 2020). A total of 71 different ECG re-
ports are SCP-ECG compliant, covering diagnos-
tic, form and rhythm reports. PTB-XL also pro-
vides a recommended train-test split and includes
multi-level ECG annotations, covering Superclass
(5 categories), Subclass (23 categories), Form (19
categories), and Rhythm (12 categories). Notably
the 4 subsets have different sample sizes.
CPSC-2018. The CPSC-20189 dataset originates
from the China Physiological Signal Challenge
(CPSC) 2018, including 6,877 records from 9,458
patients, with durations ranging from 6 to 60 sec-
onds (Liu et al., 2018). The standard 12-lead ECG
data is sampled at a rate of 500 Hz, collected from
11 hospitals and categorized into 9 different labels:
1 normal type and 8 abnormal types.

7MIMIC-IV-ECG is available at
https://physionet.org/content/mimic-iv-ecg/1.0/.

8PTB-XL is available at https://physionet.org/content/ptb-
xl/1.0.3/.

9CPSC-2018 is available at
http://2018.icbeb.org/Challenge.html.

Chapman-Shaoxing-Ningbo (CSN). The CSN10

12-lead ECG dataset is created with the support of
Chapman University, Shaoxing People’s Hospital
and Ningbo First Hospital, which includes 12-lead
ECGs from 45,152 patients, with a sampling rate
of 500 Hz and a duration of 10 seconds (Zheng
et al., 2020, 2022). It contains expert annotated fea-
tures that cover variety of common heart rhythms
and other cardiovascular conditions. We exclude
ECG records with "unknown" annotations and get
23,026 ECG records with 38 different labels.

A.1.3 Llama3.1-70B-Instruct Model
Llama3.1-70B-Instruct11 is a 70-billion parameter
large language model released by Meta AI as part
of the Llama 3 family. Built on a transformer de-
coder architecture, it is optimized for instruction
following and few-shot generalization through ex-
tensive supervised fine-tuning and reinforcement
learning from human feedback (RLHF). Compared
to its predecessors, Llama3.1-70B-Instruct demon-
strates substantial improvements in reasoning, fac-
tuality, and alignment with user intent across a wide
range of NLP tasks.

In our framework, we leverage Llama3.1-70B-
Instruct to extract fine-grained diagnostic entities
from free-text ECG reports in the MIMIC-IV-ECG
dataset. The scale and instruction-tuning of this
model make it well suited for domain-specific
named entity recognition (NER) in noisy clinical
narratives. Our objective is to construct a high-
quality, large-scale set of cardiac entities and their
mapped terminologies, enabling robust supervision
for ECG-text multimodal learning and promoting
reproducibility in future research.

Although smaller models can provide acceptable
results (see Section 4.4), we adopt Llama3.1-70B-
Instruct to maximize annotation quality, particu-
larly for downstream applications in clinical and
low-resource settings that rely on precise structured
supervision.

A.2 Electrocardiogram (ECG)

In the medical field, electrocardiogram (ECG) is
an important tool for recording and analyzing pa-
tients’ cardiac activities, which helps healthcare
professionals identify various kinds of cardiac prob-
lems by detecting the electrical changes in different

10Chapman-Shaoxing-Ningbo is available at
https://physionet.org/content/ecg-arrhythmia/1.0.0/.

11Llama3.1-70B-Instruct is available at
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct.
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leads. The standard 12-lead ECG is the most com-
mon method of recording ECGs, and it can capture
relatively comprehensive range of cardiac signals
through placing electrodes at different locations
on the body, providing information of the heart’s
health conditions.

Figure 8: Standard 12-lead Electrocardiogram (ECG)
showing ’sinus rhythm’.

The basic components of the 12-lead ECG in-
clude the limb leads and the precordial leads. The
limb leads contain I, II, III, aVR, aVL, and aVF,
each of them consists of a combination of elec-
trodes located primarily in the right arm, left arm,
left leg, and right leg (as shown in Figure 8). The
precordial leads contain V1, V2, V3, V4, V5, and
V6, which all correspond to specific single elec-
trodes at different locations on the chest, and are
used to observe in detail the electrical activity of
the anterior, lateral, and posterior walls of the heart.

A.3 Clinical NER Prompts, Statistics and
Case Study

A.3.1 Prompt for Medical Database
Terminology Filtering

system_message = """\
You are a clinical NLP assistant

specializing in identifying ECG
related terminologies from medical
databases.

Your primary task is to serve as a
strict terminology filter that
judges whether the provided
terminology is related to ECG or not
, and output your judgement in a **
strictly formatted JSON object **
that conforms exactly to the
following schema:

{
"IS_ECG_TERM ": true/false

}

** Strict constraints **:
- Return **only** the JSON object. Do

not include any natural language
explanation or commentary.

- Do not hallucinate or invent fields
not specified above.

Your output will be used in real -life
clinical settings. Any deviation
from this format may cause serious
issues in downstream applications.
Be precise and compliant.

"""

def get_prompt(row):
return f"""\

Please read and give your judgement on
the following terminology.

Terminology:
\"{ row[" ENG_TERM "]}\"

A.3.2 Prompt for Report Entity Extraction

system_message = """\
You are a clinical NLP assistant

specializing in information
extraction from medical ECG (
electrocardiogram) reports. Your
role is to serve as a strict , schema
-aware entity extractor that
produces structured annotations for
downstream machine learning and
clinical data analysis tasks.

Please learn the knowledge including
common ECG terminologies and
abbreviations first:

** Common ECG terminologies **:
Normal: "normal sinus rhythm", "normal

ecg", "sinus rhythm", "within normal
limits", "no abnormalities detected

", ...
Abnormal: "atrial fibrillation", "

ventricular tachycardia", "left
ventricular hypertrophy", "right
bundle branch block", "ST elevation ,
"T wave inversion", "prolonged QT

interval", "first degree AV block",
"pacemaker rhythm", ...

Uncertain: "possible infarction", "
borderline ecg", "nonspecific ST-T
changes", "probable left ventricular
hypertrophy", "cannot rule out

ischemia", ...

**Demo Abbreviations **:
NSR: "Normal Sinus Rhythm",
AFIB: "Atrial Fibrillation",
AFL: "Atrial Flutter",
VT": "Ventricular Tachycardia",
PVC: "Premature Ventricular Contraction

",
PAC: "Premature Atrial Contraction",
LVH: "Left Ventricular Hypertrophy",
RVH: "Right Ventricular Hypertrophy",
RBBB: "Right Bundle Branch Block",
LBBB: "Left Bundle Branch Block",
AVB1: "First Degree AV Block",
AVB2: "Second Degree AV Block",
AVB3: "Third Degree AV Block",
STEMI: "ST-Elevation Myocardial

Infarction",
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NSTEMI: "Non -ST-Elevation Myocardial
Infarction",

TW": "T Wave Inversion",
QTc: "Corrected QT Interval",
BBB: "Bundle Branch Block",
LAD: "Left Axis Deviation",
RAD: "Right Axis Deviation",
SA: "Sinoatrial",
PVCs: "Premature Ventricular

Contractions",
PACs: "Premature Atrial Contractions"

Your primary task is to identify all
relevant entities in an ECG report
and then classify based on diagnosis
certainty , afterwards output them

in a ** strictly formatted JSON
object ** that conforms exactly to
the following schema:

‘‘‘json
{

"global ": [...], # All ECG
entities from the provided
report

"classification ": {
"normal ": [...], # Entities

confidently labeled as
clinically "normal" (e.g., "
normal ECG", "sinus rhythm ")

"abnormal ": [...], # Entities
labeled as clinically "
abnormal" (e.g., "atrial
fibrillation", "ST elevation
")

"uncertain ": [...] # Entities
with uncertainty or
ambiguity in the report
context (e.g., "possible LVH
", "undetermined ".)

}
}
‘‘‘

** Strict constraints **:

- Return **only** the JSON object. Do
not include any natural language
explanation or commentary.

- Do not hallucinate or invent fields
not specified above.

- Do not extract adjectives or modifiers
(e.g., "nonspecific", "mild", "

marked", "possibly", "likely ") as
standalone entities. If a
descriptive modifier qualifies an
entity (e.g., "nonspecific ST-T
changes", "likely normal ecg"),
include it in the full entity string
.

- Do not extract entire sentences or
diagnostic phrases as a single
entity. If a sentence contains
multiple medical concepts , extract
each as a separate entity.

- If an entity contains conjunctions (e.
g., "and", "or", "and/or"), causal
phrases (e.g., "due to", "with"), or
multiple anatomical locations (e.g

., "inferior/lateral "), you must

split it into separate entities.
- If there are entities with clinically

same meanings in the given report ,
only retain one with better
expression.

**Some examples **:

- [Modifier + Entity ]:
Input: "lateral st-t changes are

probably due to ventricular
hypertrophy"

Output: {" global ": [" lateral st-t
changes", "ventricular hypertrophy
"], "classification ": {" normal ":
[], "abnormal ": [" lateral st -t
changes", "ventricular hypertrophy
"], "uncertain ": []}}

- [Entity A with/and/or/’/’ Entity B]:
Input: "sinus rhythm with pacs.

hypertrophy and/or ischemia.
inferior/lateral st-t changes ."

Output: {" global ": ["sinus rhythm", "
pacs", "hypertrophy", "ischemia",
"inferior st -t changes", "lateral
st -t changes"], "classification ":
{" normal ": ["sinus rhythm"], "
abnormal ": ["pacs", "hypertrophy",
"ischemia", "inferior st-t

changes", "lateral st-t changes"],
"uncertain ": []}}

- [Entity + Further Description ]:
Input: "inferior infarct - age

undetermined. pacemaker rhythm -
no further analysis. poor r wave
progression - probable normal
variant ."

Output: {" global ": [" inferior infarct
", "age undetermined", "pacemaker
rhythm", "poor r wave progression
", "probable normal variant"], "
classification ": {" normal ": [], "
abnormal ": [" inferior infarct", "
pacemaker rhythm", "poor r wave
progression "], "uncertain ": ["age
undetermined", "probable normal
variant "]}} # "no further
analysis" is not a medical entity

Your output will be used in real -life
clinical settings. Any deviation
from this format may cause serious
issues in downstream applications.
Be precise and compliant.

"""

def get_prompt(row):
return f"""\

Please extract all relevant clinical
entities from the following ECG
report.

Return the output strictly in the JSON
format described in the system
prompt.

Do not include any explanation or
additional text.
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ECG report text:
\"{ row[" total_report "]}\"
"""

A.3.3 Case Study of Deduplication and
Mapping

To address concerns about how descriptive cardiac
queries are constructed and how they reduce noise
compared to raw NER outputs, we present a rep-
resentative case study from the MIMIC-IV-ECG
dataset.
Original Clinical Report:

“Sinus rhythm w/ PACs, QTc prolonged,
Left axis deviation, RBBB with left an-
terior fascicular block, Inferior/lateral T
changes may be due to myocardial is-
chemia, Low QRS voltages in precordial
leads.”

Extracted Raw Entities:

"sinus rhythm", "PACs",
"QTc prolonged", "Left axis
deviation", "RBBB", "Left
anterior fascicular block",
"Inferior/lateral T changes",
"Myocardial ischemia", "Low QRS
voltages in precordial leads"

Mapped and Standardized Queries (after Dedu-
plication and Mapping):

SCP Code Standardized Query Matched Raw Entities (Cosine Similarity)

SR sinus rhythm sinus rhythm (1.0000)
PAC premature atrial complex PACs (0.8976)
LNGQT prolonged QT interval QTc prolonged (0.9434)
ALS axis left shift Left axis deviation (0.8723)
RBBB right bundle branch block RBBB (1.0000)
LAFB left anterior fascicular block Left anterior fascicular block (1.0000)
NT non-specific T wave changes Inferior/lateral T changes (0.7751)
MI myocardial infarction Myocardial ischemia (0.9231)
LVOLT low QRS voltages Low QRS voltages in precordial leads (0.8919)

Table 12: Example mapping from raw NER entities to
standardized cardiac query labels.

This example illustrates how the same clinical
concept may be expressed in different lexical forms
(e.g., “PACs” vs. “premature atrial complex”) or
contain verbose phrasing (e.g., “Low QRS voltages
in precordial leads”), leading to noisy or redun-
dant supervision if used directly. By clustering and
mapping using MedCPT embeddings and similarity
thresholds (Table 12), these expressions are unified
under concise, standardized queries aligned with
SCP codes.

In Table 13 we show parts of the clustering
and deduplication results on the pre-train dataset

SCP Code Standard Cardiac Query Mapped Raw NER Entities (Cosine Similarity)

NORM normal Normal (1.000), of normal (0.995), Normal result (0.979),
Normal interest (0.953), percent of normal (0.942)

IMI inferior myocardial infarction Inferior myocardial ischemia (0.956), Inferior MI on ECG
(0.935), ECG shows inferior MI (0.928), Myocardial infarc-
tion (0.923), Old inferior MI (0.907)

LVH left ventricle hypertrophy Left ventricular hypertrophy (0.992), Severe LVH (0.967),
Hypertensive LVH (0.948), Acquired LVH (0.940), Con-
genital LVH (0.904)

Table 13: Example clusters of raw NER entities mapped
to standardized cardiac queries.

MIMIC-IV-ECG. This process prevents redundant
terms from introducing duplicate supervision, nor-
malizes entities with modifiers (e.g., “in precordial
leads”), and enforces semantic consistency across
ECG samples. These standardized queries form the
global label set used for training, enabling clean
multimodal supervision and robust generalization
in zero-shot settings.

A.4 Pre-training Framework Implementation

A.4.1 Transformer Block Structure.
The Transformer architecture (Vaswani, 2017) is
widely used for seq2seq modeling, learning global
dependencies via self-attention instead of recur-
rent or convolutional structures. It consists of an
encoder-decoder design, where both the encoder
and decoder utilize stacked self-attention and feed-
forward layers, as shown in Figure 9.

Figure 9: Encoder-decoder structure of Transformer,
quoted from (Vaswani, 2017).

Each encoder block applies a residual connec-
tion around its multi-head self-attention (MHA)
and position-wise feed-forward (FF) sublayers,
followed by layer normalization:
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Z(k,1) = Z(k−1) + Drop(MHA(Norm(Z(k−1))))

Z(k,2) = Z(k,1) + Drop(FF(Norm(Z(k,1))))

Znorm = Norm(Z(final))
(6)

where Z(k−1) is the input to the k-th Transformer
block, Z(k,1) represents the intermediate state after
multi-head attention and residual connection, and
Z(k,2) is the output after the feed-forward network.
The final normalized representation Znorm is used
for downstream ECG classification.

The decoder extends the encoder structure by
introducing an additional multi-head attention sub-
layer that attends to encoder outputs, while also
incorporating masked self-attention to ensure au-
toregressive sequence modeling. These layers col-
lectively enable flexible cardiac feature extraction
in SuPreME.

A.4.2 Projection of ECG Embeddings
Following the Transformer encoder stack in the
Vision Transformer (ViT) backbone, the resulting
ECG token sequence Z ∈ RB×(L·N)×D is passed
through a modality-specific projection head to align
its dimensionality with the shared multimodal la-
tent space used in fusion.

The projection head is implemented as a two-
layer multilayer perceptron (MLPECG), consisting
of:

• A linear transformation from the ViT output
width D to an intermediate hidden size Dh;

• A non-linear activation function (ReLU);

• A linear transformation from Dh to the final
projected dimension D′, shared with the text
modality.

Formally, the projection can be written as:

Embhidden
ECG = ZdropoutW1 + b1

Emb′hidden
ECG = ReLU(Embhidden

ECG )

FECG = Emb′hidden
ECG W2 + b2

(7)

where ReLU is the activation function, b1 and
b2 bias terms, and W1 ∈ RD×Dh and W2 ∈
RDh×D′

are learnable parameters.
This projection layer serves to improve non-

linear representational capacity before multimodal
alignment, and to map ViT-specific features to a

dimensionally consistent space with text query em-
beddings, enabling efficient cross-modal attention
in the Cardiac Fusion Network (CFN).

A.4.3 Projection of Text Query Embeddings
To align cardiac query embeddings with ECG fea-
tures in the multimodal latent space, we apply a
modality-specific projection head to the output of
the MedCPT query encoder (QEnc). Given M
queries encoded into a matrix E ∈ RM×768, the
projection head transforms each 768-dimensional
embedding into a D′-dimensional representation
compatible with ECG tokens.

The projection is implemented as a two-layer
multilayer perceptron (MLPQuery) as well, consist-
ing of:

• A linear transformation from 768 to a hidden
dimension Dh;

• A non-linear activation function (GELU);

• A linear transformation from Dh to the target
fusion dimension D′.

Formally, the operation is defined as:

Embhidden
Query = EdropoutW3 + b3

Emb′hidden
Query = GeLU(Embhidden

Query )

FQuery = Emb′hidden
Query W4 + b4

(8)

where GeLU is the activation function, b3 and
b4 bias terms, and W3 ∈ R768×Dh and W4 ∈
RDh×D′

are learnable parameters.
This projection head enables cross-modal align-

ment by transforming domain-specific textual se-
mantics into a shared feature space used by the Car-
diac Fusion Network (CFN). The structure mirrors
the ECG-side projection to maintain architectural
symmetry and training stability.

A.4.4 Initialization of Cardiac Fusion
Network.

All weights in linear layers and attention modules
are initialized with a normal distribution, W ∼
N (0, 0.02). To support batch processing, the text
embeddings Ftext are expanded to match the batch
size B. Both ECG and text embeddings undergo
layer normalization to improve training stability
and convergence.
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A.5 Zero-shot Evaluation Analysis
A.5.1 Specific Classification Mechanism
During zero-shot evaluation, the class set (i.e., di-
agnostic query set Q) is dynamically specified per
downstream dataset but remains fixed for all sam-
ples within that dataset. The model computes one
score per query in Q for a given ECG sample.
These scores are produced via a sigmoid-activated
MLP head following the Cardiac Fusion Network
(CFN) output, where each query representation
attends over the ECG feature sequence. Impor-
tantly, this design supports variable-sized query
sets across datasets, and prediction is always per-
formed over the currently defined Q. The clas-
sifier weights are not pre-defined or fixed, but
learned representations aligned to query embed-
dings through cross-modal attention, ensuring full
flexibility across unseen classes.

A.5.2 Simplified Clinical
Knowledge-Enhanced Prompt
Engineering

In our implementation of simplified CKEPE query
construction, we follow the general design princi-
ple introduced in MERL (Liu et al., 2024). The
original CKEPE pipeline in MERL employs GPT-4
with web browsing to retrieve attributes and sub-
types of each cardiac condition from clinical knowl-
edge sources such as SNOMED CT and SCP-ECG.
The prompt typically used is:

"Which attributes and subtypes
does <cardiac condition> have?"

The responses are then validated against the ex-
ternal databases to avoid hallucination and finally
organized into detailed clinical descriptions used
as prompts for downstream evaluation (see MERL
Section 3.4 and Figure 3).

In contrast, we adopt a simplified version of this
process (Section 3.3) aimed at reducing verbosity
while preserving clinical specificity. Specifically,
we use GPT-4o with the following style of prompt:

"Provide the standard clinical
definition of <SCP diagnostic
code> based on the SCP-ECG
protocol."

The generated responses are then automatically
validated by external databases as well to reduce
hallucinated content. Rather than expanding into
all potential attributes or phenotypes (as done in

MERL), we retain only the concise, high-precision
diagnostic phrase for each class, enabling cleaner
alignment with the downstream label space.

Take a simple case study as example, for the di-
agnostic class LBBB (Left Bundle Branch Block),
MERL would produce a long-form prompt such as:

“A conduction abnormality characterized
by delayed depolarization of the left ven-
tricle, typically resulting in a widened
QRS complex (>120 ms), often asso-
ciated with underlying structural heart
disease or ischemia.”

In contrast, our simplified prompt (after GPT-4o
generation and medical verification) becomes:

“left bundle branch block”

This compact form reduces potential noise in
query encoding while retaining diagnostic speci-
ficity. It aligns with our hypothesis that multimodal
fusion benefits more from semantically discrimi-
native labels than verbose natural language defini-
tions.

A.5.3 Evaluation Metrics
We use zero-shot learning and linear probing to
evaluate the performance of our framework and
mainstream eSSL frameworks. The primary metric
is Area Under the Receiver Operating Character-
istic (AUROC, also referred to as AUC). AUROC
is widely used to evaluate the performance of bi-
nary classification models. The ROC curve plots
the True Positive Rate (TPR) on the vertical axis
against the False Positive Rate (FPR) on the hori-
zontal axis. By varying the classifier’s threshold,
TPR and FPR are calculated and then plotted to
form the curve, where TP refers to True Positive,
FN refers to False Negative, FP refers to False
Positive, and TN refers to True Negative.:

TPR =
TP

TP+ FN

FPR =
FP

FP+TN

(9)

AUROC is the area under the ROC curve, with
values ranging from 0 to 1, reflecting the overall
classification ability of the model. AUROC = 0.5
indicates that the model’s classification ability is
equivalent to random guessing, while AUROC >
0.5 and values closer to 1 indicate that the model is
able to classify with greater accuracy.
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A.6 Statistics and Overlap Analysis

A.6.1 Statistics of Extracted MIMIC-IV-ECG
Entities

We extract over 3.4 million clinical entities from
free-text ECG reports in the MIMIC-IV-ECG
dataset using an instruction-tuned LLM. At the
term level, this results in 1,168 unique raw enti-
ties (Table 14). Among these, 93.75% remain after
filtering out uncertain or ambiguous expressions.
To resolve redundancy and lexical variation, we
apply embedding-based clustering using MedCPT
representations, reducing the vocabulary to 341
cluster representatives. Further manual verification
and mapping to UMLS/SNOMED CT terminolo-
gies yield a final set of 295 standardized cardiac
entities used as global queries during supervised
pre-training.

Entity Type Count Proportion

Raw extracted entities 3,419,064 100% (sample-level)
Unique raw extracted entities 1,168 100% (term-level)
Terms after uncertainty filtering 1,095 93.75% (vs. 1,168)
Entity cluster representatives (post-deduplication) 341 29.20% (vs. 1,168)
Final unique standardized entities (post-mapping) 295 25.26% (vs. 1,168)

Table 14: Statistics of unique cardiac Entities: Extrac-
tion, Filtering, Deduplication, and Mapping

Table 15 provides additional statistics on the
clustering process. The average cluster contains
3.39 entities, with some clusters merging up to 29
semantically similar terms. In total, 86.51% of
clusters are successfully mapped to standardized
terms. The distribution of standardized entity fre-
quencies is illustrated in Figure 10. The left panel
shows a log-scaled histogram of the most common
cardiac terms, with "normal", "abnormal", and "my-
ocardial infarction" being the most frequent. The
right panel presents a word cloud that qualitatively
reflects term prevalence and semantic variety. To-
gether, these visualizations confirm that while a
few diagnostic terms dominate the corpus, a long
tail of clinically significant but less frequent en-
tities is preserved, supporting robust coverage in
downstream classification.

Clustering Metric Value

Number of clusters formed 341
Average number of entities per cluster 3.39
Maximum / Minimum cluster size 29 / 1
Proportion of clusters mapped to standard terms 86.51%

Table 15: Clustering statistics of extracted cardiac enti-
ties on MedCPT embeddings

101 102 103 104 105

Figure 10: Frequency distribution of standardized ECG
entities after deduplication and mapping in MIMIC-IV-
ECG.

A.6.2 Dataset Overlap Analysis

We analyze the cardiac query overlap between the
pre-training dataset and six downstream datasets
specified in Section 4.1, as well as among the down-
stream datasets themselves, as illustrated in Fig-
ure 11. Specifically, we embed all entities from
the pre-training dataset and cardiac queries from
the downstream datasets, compute their cosine sim-
ilarity, and apply a threshold of 0.95 verified by
cardiologists with 10+ years of experience as well
to filter overlapping queries.

Figure 11: Overlap between ECG datasets, with left
panel showing pairwise overlap counts between down-
stream datasets, and right panel showing the distribution
of overlapping and non-overlapping classes between
each downstream dataset and the pre-training dataset.

The heatmap on the left shows that pairwise
overlaps among downstream datasets are generally
limited, reflecting the diversity of cardiac query
prompts. The bar chart on the right reveals that 57
cardiac queries overlap between the pre-training
dataset and the downstream datasets. Despite the
pre-training dataset shares some similar queries, a
substantial portion of queries remains unique to the
downstream datasets, allowing the pre-training pro-
cess to establish robust general-purpose representa-
tions while leaving room for downstream-specific
adaptation.

Table 16 shows the overlap between entities from
the pre-training dataset and cardiac queries from
the downstream datasets, filtered using a cosine
similarity threshold of 0.95.
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Pre-training Dataset Entity Downstream Cardiac Query Similarity Score

atrial fibrillation atrial fibrillation 1.0000
supraventricular tachycardia supraventricular tachycardia 1.0000
ventricular preexcitation ventricular preexcitation 1.0000
right bundle branch block right bundle branch block 1.0000
myocardial infarction myocardial infarction 1.0000
atrial premature complex atrial premature complex 1.0000
Prolonged QT interval prolonged qt interval 1.0000
T wave abnormalities t wave abnormalities 1.0000
ST depression st depression 1.0000
AV block av block 1.0000
T wave Changes t wave changes 1.0000
sinus bradycardia sinus bradycardia 1.0000
left anterior fascicular block left anterior fascicular block 1.0000
sinus arrhythmia sinus arrhythmia 1.0000
left bundle branch block left bundle branch block 1.0000
sinus tachycardia sinus tachycardia 1.0000
abnormal Q wave abnormal q wave 1.0000
ventricular premature complex ventricular premature complex 1.0000
Prolonged PR interval prolonged pr interval 1.0000
Atrial Tachycardia atrial tachycardia 1.0000
Supraventricular Tachycardia supraventricular tachycardia 1.0000
left posterior fascicular block left posterior fascicular block 1.0000
normal normal 1.0000
second degree AV block second degree av block 1.0000
anterior myocardial infarction anterior myocardial infarction 1.0000
incomplete left bundle branch block incomplete left bundle branch block 1.0000
incomplete right bundle branch block incomplete right bundle branch block 1.0000
ST elevation st elevation 1.0000
atrial flutter atrial flutter 1.0000
Sinus Tachycardia sinus tachycardia 1.0000
Sinus Bradycardia sinus bradycardia 1.0000
first degree AV block first degree av block 1.0000
premature complex premature complex 1.0000
ST-T change st-t changes 0.9968
premature atrial complex atrial premature complex 0.9961
left ventricle hypertrophy left ventricular hypertrophy 0.9924
right ventricle hypertrophy right ventricular hypertrophy 0.9920
Q wave present q wave 0.9903
complete right bundle branch block right bundle branch block 0.9891
high QRS voltage high qrs voltages 0.9878
complete left bundle branch block left bundle branch block 0.9861
second degree AV block(Type one) second degree av block 0.9817
anteroseptal myocardial infarction anteroseptal infarction 0.9809
ischemic ischemia 0.9804
second degree AV block(Type two) second degree av block 0.9795
third degree av block second degree av block 0.9795
low amplitude T wave high t wave amplitude 0.9741
abnormal QRS abnormal qrs morphology 0.9737
suggests digitalis-effect digitalis effect 0.9726
supraventricular arrhythmia supraventricular tachycardia 0.9684
anterolateral myocardial infarction anterolateral infarction 0.9667
paroxysmal supraventricular tachycardia supraventricular tachycardia 0.9611
left front bundle branch block left bundle branch block 0.9537
inferior myocardial infarction inferior infarction 0.9512
right atrial hypertrophy right atrial enlargement 0.9570

Table 16: Overlap between pre-training dataset entities
and downstream cardiac queries, filtered with similarity
threshold of 0.95, sorted by similarity score.

A.7 Downstream Task Configuration

A.7.1 Downstream Data Split

For PTB-XL, we adopt the official train-test split
recommended by the dataset authors (Wagner et al.,
2020), ensuring consistency with prior works and
a balanced distribution of ECG categories. This
split is directly applied across the Superclass, Sub-
class, Form, and Rhythm subsets of PTB-XL. For
CPSC-2018 and CSN, we follow the data splitting
approach used by (Liu et al., 2024), which ran-
domly divides the datasets into training, validation,
and testing subsets in a 70%:10%:20% ratio.

Details of the splits, including the specific num-
ber of samples allocated to each subset, are sum-
marized in Table 17.

A.7.2 Downstream Experiment Configuration

The training configurations for downstream tasks,
including optimizer, scheduler, and relevant hyper-
parameters, are detailed in Table 18.

Dataset Category Number Train Set Validation Set Test Set

PTB-XL

Superclass 5 17,084 2,146 2,158
Subclass 23 17,084 2,146 2,158
Form 19 7,197 901 880
Rhythm 12 16,832 2,100 2,098

Others

CPSC-2018 9 4,950 551 1,376
CSN 38 16,546 1,860 4,620

Table 17: Data splits and sample distribution for down-
stream datasets.
A.8 Performance of Non-overlapped Cardiac

Conditions
While evaluating performance exclusively on non-
overlapping (i.e., unseen) downstream classes is
not a standard practice in existing ECG literature,
including MERL and other multimodal or self-
supervised frameworks, we acknowledge its value
in assessing true generalization. To address this,
we conduct an additional analysis where we eval-
uate zero-shot AUC only on downstream classes
that do not appear in the pre-training dataset.

Table 19 presents the comparison between AUC
scores on all downstream classes versus only non-
overlapping ones. As expected, performance on
unseen classes is moderately lower, yet remains
strong across datasets, confirming our framework’s
ability to generalize beyond pre-trained diagnostic
categories. This analysis complements our main
results and provides deeper insights into model
robustness.

A.9 Performance on Specific Cardiac
Conditions

PTB-XL-Superclass. Figure 12 records the AUC
performance of SuPreME on specific cardiac con-
ditions in PTB-XL-Superclass dataset.
PTB-XL-Subclass. Figure 13 records the AUC
performance of SuPreME on specific cardiac con-
ditions in PTB-XL-Subclass dataset.
PTB-XL-Form. Figure 14 records the AUC perfor-
mance of SuPreME on specific cardiac conditions
in PTB-XL-Form dataset.
PTB-XL-Rhythm. Figure 15 records the AUC
performance of SuPreME on specific cardiac con-
ditions in PTB-XL-Rhythm dataset.
CPSC-2018. Figure 16 records the AUC perfor-
mance of SuPreME on specific cardiac conditions
in CPSC-2018 dataset.
CSN. Figure 17 records the AUC performance of
SuPreME on specific cardiac conditions in CSN
dataset.

11836



Hyperparameter PTB-XL-Superclass PTB-XL-Subclass PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN

Optimizer

Type AdamW AdamW AdamW AdamW AdamW AdamW
Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight Decay 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8

Scheduler

Type Cosine Annealing Cosine Annealing Cosine Annealing Cosine Annealing Cosine Annealing Cosine Annealing
Warmup Steps 5 5 5 5 5 5

General

Batch Size 16 16 16 16 16 16
Epochs 100 100 100 100 100 100

Table 18: Downstream dataset information and split proportions.

Setting PTB-XL-Super PTB-XL-Sub PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN Overall

Non-overlapping Classes 75.97 69.30 61.36 83.83 – 75.73 73.24
All Classes 78.20 77.52 60.67 86.79 79.83 80.17 77.20

Table 19: Zero-shot AUC on downstream datasets using only non-overlapping (unseen) classes vs. using all classes.

Figure 12: Zero-shot learning performance of SuPreME and its variants on specific categories in PTB-XL-Superclass.
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Figure 13: Zero-shot learning performance of SuPreME and its variants on specific categories in PTB-XL-Subclass.
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Figure 14: Zero-shot learning performance of SuPreME and its variants on specific categories in PTB-XL-Form.

Figure 15: Zero-shot learning performance of SuPreME and its variants on specific categories in PTB-XL-Rhythm.
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Figure 16: Zero-shot learning performance of SuPreME and its variants on specific categories in CPSC-2018.
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Figure 17: Zero-shot learning performance of SuPreME and its variants on specific categories in CSN.
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A.10 Further Discussion

A.10.1 Offline Use of Large-sized LLM for
Clinical NER

While we employ LLaMA3.1-70B-Instruct for clin-
ical entity extraction, this step is performed offline
only once during dataset construction and is not
part of the SuPreME model’s pre-training & infer-
ence pipeline. The motivation for using a larger
model is to ensure high annotation quality for the
pre-training dataset. Once entities are extracted
and mapped, they form a standardized query list
used throughout training and evaluation. There-
fore, clinical deployments do not require access to
large LLMs, and the SuPreME model itself remains
lightweight during inference.

A.10.2 Computation Cost and Practical
Deployment

Data Processing (Offline NER). To obtain high-
quality supervision labels, we extract and normal-
ize diagnostic entities from MIMIC-IV-ECG re-
ports using LLaMA3.1–70B-Instruct with struc-
tured prompts. This step is performed only once
as described above before pre-training SuPreME
model. The output is a cleaned, deduplicated
dataset of standardized diagnostic labels, which
serves as supervision for training. The annotation
process takes approximately 6 hours on 8 NVIDIA
A100-SMX4-80GB GPUs, and the tested mini-
mum reproducing resources are 4 NVIDIA A100-
PCIE-40GB GPUs without parallelized LLM infer-
ence. The resulting standardized dataset is reused
across training and downstream evaluation.
SuPreME Pre-training. SuPreME itself consists
only of a ViT-based ECG encoder, query-based
supervision, and a lightweight Cardiac Fusion Net-
work (CFN). Training is efficient, around 1.5 hours
on 4 NVIDIA A100-PCIE-40GB GPUs achieving
best AUC performance (16 epochs), and does not
require contrastive sampling or further fine-tuning
in deployment.
Deployment and Inference Once pre-trained,
SuPreME supports zero-shot ECG classification
via a set of concise cardiac query prompts. Infer-
ence only involves a forward pass through the ECG
encoder and CFN, taking milliseconds per ECG
sample. No LLMs or textual reports are needed
at test time, making SuPreME highly practical for
deployment in real-world clinical settings. We em-
pirically verify that inference can be efficiently per-
formed on a single NVIDIA A5000-PCIE-24GB

GPU or NVIDIA RTX4090-PCIE-24GB GPU.

A.10.3 Similarity Threshold Determination
The similarity thresholds in our entity deduplica-
tion and mapping pipeline were determined in con-
sultation with experienced cardiologists (over 10
years of clinical practice), based on joint analysis
of the results under various threshold settings in
each phase.

Through this process, we observed that setting
the thresholds too high (e.g., above 0.9 in entity
mapping) would exclude valid clinical variants due
to minor wording differences, while setting them
too low (e.g., below 0.7 in entity mapping) could
introduce semantic ambiguity by incorrectly match-
ing unrelated conditions (Table 20).

Standard Terminology Report Entity Similarity Score

left ventricle hypertrophy Ventricular fibrillation 0.6400
non-specific ST changes ST elevation 0.6343
inferior myocardial infarction anterior wall abnormality 0.5717

Table 20: Incorrect matching examples between stan-
dard terminology and report entities.

"left ventricle hypertrophy" and "ventricular fib-
rillation" shows a similarity score of 0.64, but are
entirely unrelated - one refers to structural enlarge-
ment of the left ventricle, while the other refers to
a life-threatening arrhythmia. The selected thresh-
olds reflect a balance between preserving clinically
meaningful variants and minimizing noise.

A.10.4 LLM-based NER Evaluation
Regarding the performance of NER outputs from
LLaMA, we conducted a manual evaluation on 200
randomly sampled clinical reports, annotated by
physicians with over ten years of experience. Us-
ing a token-level BIO tagging scheme (Ramshaw
and Marcus, 1999; Moryossef et al., 2023), we
found strong agreement between LLaMA and ex-
pert annotations, with an F1 score of 95.71% and a
Cohen’s kappa of 0.93 (Cohen, 1960; Ruan et al.,
2024). These results confirm the reliability of
LLaMA for clinical NER and support the valid-
ity of our original findings.

Metrics Value

Precision 96.30%
Recall 95.13%
F1 95.71%

Cohen’s kappa 0.93

Table 21: Physician-annotated evaluation of LLaMA
NER performance.
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A.10.5 Comparing SuPreME with MERL
To assess the relative effectiveness of our su-
pervised multimodal framework, we compare
SuPreME against MERL (Liu et al., 2024), a re-
cent multimodal contrastive learning baseline that
utilizes clinical reports and enhanced prompt en-
gineering (Figure 18). While MERL employs
contrastive objectives and handcrafted prompts,
SuPreME leverages fine-grained diagnostic super-
vision through LLM-extracted entities and mul-
timodal fusion via the Cardiac Fusion Network
(CFN).
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Figure 18: Per-dataset AUC difference between
SuPreME and MERL.

As shown in Table 22, SuPreME achieves con-
sistently higher AUCs across all but one dataset.
On average, SuPreME improves zero-shot perfor-
mance by 3.66% absolute. Statistical testing con-
firms this improvement is significant: a paired t-test
across the six datasets yields t = 3.51, p = 0.0171.

Moreover, SuPreME demonstrates significantly
lower performance variance across datasets. While
MERL exhibits a standard deviation of 2.30,
SuPreME achieves a much smaller deviation of
0.21 (Table 23), indicating greater robustness and
stability across diverse cardiac classification tasks.
These results collectively support the effectiveness
of our proposed supervised pre-training framework
and its entity-level modality fusion strategy, even
when compared to a strong multimodal baseline.

To ensure completeness, we also compare
SuPreME with MERL-ResNet in zero-shot set-
tings. Across six datasets, SuPreME achieves
higher AUCs on four tasks and yields an overall
average gain of +1.95 absolute AUC (equivalent to
+2.6% relative improvement).

A.10.6 On the Effectiveness of CFN with
Different Backbones

To address concerns regarding the effectiveness of
the Cardiac Fusion Network (CFN), particularly its

relatively lower performance when paired with a
ResNet backbone (cf. Table 2), we conduct statis-
tical analyses to better understand the interaction
between backbone architecture and the CFN mod-
ule.
∆ AUC Comparison. We compare the AUC im-
provement brought by CFN over linear classifica-
tion for both ViT and ResNet backbones across
six downstream datasets. As shown in Figure 19,
CFN brings consistent performance gains when
combined with ViT, with average improvement of
+5.97 AUC. In contrast, CFN shows little to nega-
tive improvement with ResNet, indicating that the
quality of the underlying feature representations
plays a critical role in effective cross-modal fusion.
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Figure 19: CFN vs. linear classification (∆ AUC) for
ViT ECG backbone.

Statistical Significance. To verify this trend, we
perform a paired t-test and Wilcoxon signed-rank
test on the ∆ AUC values. Both tests confirm that
CFN yields significantly greater improvements on
ViT than ResNet:

• Paired t-test: t = 4.99, p = 0.0021

• Wilcoxon test: W = 21.0, p = 0.0156

These results provide strong statistical evidence
that ViT synergizes better with CFN compared to
ResNet, likely due to ViT’s superior capacity in
capturing global temporal dependencies in ECG
signals.

CFN is designed to align high-level ECG fea-
tures with cardiac queries via cross-attention. How-
ever, ResNet provides only local, convolutional
features with limited contextual depth, especially
compared to ViT’s global receptive field. As a
result, the decoder lacks sufficient global represen-
tations to effectively condition on query semantics.
This bottleneck explains the performance drop ob-
served in ResNet + CFN.
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Framework PTB-XL-Superclass PTB-XL-Subclass PTB-XL-Form PTB-XL-Rhythm CPSC-2018 CSN Avg

MERL 73.89 74.32 61.54 79.89 76.01 75.61 73.54
SuPreME 78.20 77.52 60.67 86.79 79.83 80.17 77.20

Table 22: Zero-shot AUC comparison between SuPreME and MERL.

Framework Zero-shot AUC (%)

MERL 73.54± 2.30
SuPreME (Ours) 77.20± 0.21

Table 23: Average zero-shot AUC and standard devia-
tion across six datasets.

Two-Way ANOVA. We further conduct a two-way
ANOVA with Backbone (ResNet vs. ViT) and
Module (Linear vs. CFN) as factors. As shown in
Table 24, the interaction term is statistically signif-
icant (F = 6.60, p = 0.018), confirming that the
effect of CFN depends on the choice of backbone.
Notably, neither factor alone is significant, suggest-
ing that their combination determines performance.

Source Sum of Squares df F-value p-value

Backbone 167.06 1 3.79 0.066
Module 5.57 1 0.13 0.726
Backbone × Module 290.65 1 6.60 0.018
Residual 881.22 20 - -

Table 24: Two-way ANOVA results on AUC with back-
bone and module as factors.

Takeaway. These findings reinforce CFN’s role as
a powerful fusion mechanism when paired with
a backbone (like ViT) that produces expressive
feature sequences. The drop in performance with
ResNet may stem from its less structured output,
which lacks the sequential token-style organization
needed for effective query-based attention. Thus,
the CFN is not inherently ineffective, but its utility
hinges on a compatible encoder design.

A.10.7 Domain Scope and Generalization
Potential

While our framework is evaluated on 12-lead ECG
data, we believe that this modality represents a
highly impactful and widely applicable domain in
clinical practice. ECG is routinely used across
diverse medical contexts, including emergency
rooms, intensive care units (ICUs), outpatient car-
diology clinics, and even home-based healthcare
monitoring, due to its low cost, non-invasiveness,
and real-time ability to reflect cardiac electrical ac-
tivity. As such, improving automated ECG interpre-
tation has direct clinical relevance across resource

settings and specialties.
Moreover, although this work focuses on ECG,

the core methodology of SuPreME, namely mul-
timodal learning between biomedical signals and
clinically meaningful queries, can be generalized
to other physiological signal domains such as EEG
(electroencephalogram) or PPG (photoplethysmog-
raphy). These modalities are similarly structured
(multi-channel, time-series signals) and increas-
ingly available in clinical and wearable settings.
However, to the best of our knowledge, there is
currently a lack of large-scale, publicly accessible
datasets that pair these signals with detailed, free-
text clinical reports suitable for training our entity
extraction module.

We hope our work can inspire future efforts
toward building such paired datasets for other
biomedical signals, enabling the broader applica-
tion of query-based multimodal learning frame-
works beyond ECG.
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