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Abstract

The primary goal of traditional federated learn-
ing is to protect data privacy by enabling dis-
tributed edge devices to collaboratively train a
shared global model while keeping raw data de-
centralized at local clients. The rise of large lan-
guage models (LLMs) has introduced new chal-
lenges in distributed systems, as their substan-
tial computational requirements and the need
for specialized expertise raise critical concerns
about protecting intellectual property (IP). This
highlights the need for a federated learning ap-
proach that can safeguard both sensitive data
and proprietary models. To tackle this chal-
lenge, we propose FedQSN, a federated learn-
ing approach that leverages random masking to
obscure a subnetwork of model parameters and
applies quantization to the remaining parame-
ters. Consequently, the server transmits only a
privacy-preserving proxy of the global model to
clients during each communication round, thus
enhancing the model’s confidentiality. Experi-
mental results across various models and tasks
demonstrate that our approach not only main-
tains strong model performance in federated
learning settings but also achieves enhanced
protection of model parameters compared to
baseline methods. Code and resources are avail-
able at https://github.com/zb2313/FedQSN.

1 Introduction

Federated learning (FL) is a distributed machine
learning paradigm that preserves data privacy by
enabling a central server to train a model without di-
rect access to clients’ raw data (Nguyen et al., 2022;
Long et al., 2020; Imteaj et al., 2021; Lim et al.,
2020). A canonical example is FedAvg (McMahan
et al., 2017), in which the server broadcasts global
parameters, clients perform local updates, and the
server aggregates the returned updates.
Meanwhile, large language models (LLMs) have
become valuable intellectual property: they acquire
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rich semantic knowledge through large-scale pre-
training and underpin commercial APIs such as
OpenAl’s GPT series (Radford et al., 2019) and
Google’s PaLM (Chowdhery et al., 2023). Because
FedAvg shares full model parameters each round, it
risks exposing proprietary LLM weights and under-
mining IP protection—thereby motivating methods
that guard model confidentiality in FL.

In federated learning scenarios where an inter-
net company collaborates with multiple hospitals
to train a comprehensive medical model, both par-
ties face distinct privacy concerns. The internet
company, having invested substantial resources in
training a large language model, seeks to protect
its intellectual property by preventing the full ex-
posure of its model parameters and capabilities.
Meanwhile, the hospitals aim to safeguard the pri-
vacy of their sensitive local medical data. This
dual-privacy setting has driven recent advances in
federated learning research, with growing attention
to protecting server-side model privacy in addition
to client-side data privacy.

To address the risk of intellectual property
leakage, several approaches have been proposed
that preserve model privacy—such as construct-
ing proxy models—while maintaining the ability
to protect user data. FedSP (Dong et al., 2023)
is the first work to address large language model
(LLM) privacy in federated learning. It introduces a
proxy model mechanism, allowing clients to down-
load a surrogate model instead of accessing the
server’s global model parameters. However, FedSP
requires the server to possess a labeled dataset that
is independently and identically distributed (IID)
with client data—a condition rarely met in prac-
tice and potentially at odds with the privacy goals
of federated learning. FedLPP (Zhu et al., 2024)
eliminates the need for such auxiliary datasets by
sharing only quantized LoRA (Low-Rank Adapta-
tion) adapters with clients, thus enhancing model
privacy. Nonetheless, the backbone model must
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still be distributed to clients before training begins.
If this model contains proprietary information, it
may expose the server’s intellectual property. Ad-
ditionally, FedLPP offers limited protection for the
server-side model.

Previous studies have shown that training only
a subset of a model’s parameters can yield
performance comparable to training the full
model (Houlsby et al., 2019; Xu and Zhang, 2024).
While quantization is commonly used to reduce
model size and communication overhead for de-
ployment on resource-constrained platforms(Xiao
et al., 2023; Yao et al., 2023), it essentially works
by lowering the precision of model parameters.
This reduction in precision makes it more diffi-
cult for external parties to recover exact parameter
values, thereby helping preserve the model owner’s
competitive advantage and protect the intellectual
property of the model(Zhu et al., 2024; Colombo
et al., 2025). Building on these concepts, we intro-
duce the FedQSN approach, which combines ran-
dom masking and quantization to enhance model
privacy protection while maintaining model perfor-
mance with minimal degradation.

In the proposed FedQSN framework, the server
first applies a global random mask to hide a sub-
set of model parameters from all clients, prevent-
ing any client coalition from reconstructing the
complete model. Then, a client-specific random
mask is applied to each selected client to further
increase the masking ratio for that round. Due
to randomized client selection and masking in
each communication round, every client trains a
unique subnetwork on its private data, while en-
suring that all model parameters are updated suffi-
ciently over time. Prior to transmission, the masked
model is quantized to lower-precision representa-
tions, which not only obscures exact parameter
values but also reduces communication overhead.
This process produces a privacy-preserving proxy
model for client-side training. After all training
rounds, the final model is reconstructed by applying
alogical AND operation between the trained model
and the original untrained model retained by the
server, effectively restoring the masked parameters.
While federated learning inherently safeguards data
privacy, FedQSN offers additional protection for
model confidentiality. A schematic overview is
provided in Figure 1. Experimental results show
that FedQSN significantly enhances model privacy
with minimal performance degradation compared
to existing baselines.

The major contributions of this paper are sum-
marized as follows:

* We propose FedQSN, a novel federated learn-
ing algorithm that simultaneously preserves
the privacy of the server-side model and the
client-side data. Clients interact only with
a proxy model, which undergoes server-side
random masking and quantization, instead of
accessing the complete global model.

» Extensive experiments conducted on diverse
datasets and model architectures demonstrate
that our method significantly improves model
privacy compared to baseline approaches,
while maintaining competitive performance
without significant degradation.

* We conduct comprehensive ablation studies to
assess the individual and combined effects of
each component in our proposed framework.

2 Related Work

2.1 Traditional Federated Learning

Federated Learning (FL) (Konecny et al., 2016;
McMahan et al., 2017; Yang et al., 2019; Kairouz
et al., 2021) enables multiple clients to train a
shared model without sharing raw data. The ap-
plication of FL in the field of Natural Language
Processing (NLP) addresses the issues of data leak-
age and privacy infringement caused by traditional
centralized model training methods. Previous re-
lated work has primarily focused on addressing
heterogeneity (Li et al., 2019; Zhao et al., 2018;
Jeong et al., 2018), communication (Shahid et al.,
2021; Konec¢ny, 2016; Luping et al., 2019), robust-
ness (Bonawitz et al., 2017) and data privacy pro-
tection (Bogdanov et al., 2008; Geyer et al., 2017;
Cai et al., 2020) issues.

2.2 Federated Learning for LLMs

However, in the context of large language mod-
els (LLMs), traditional federated learning (FL)
approaches face scalability challenges, primarily
due to communication and training inefficiencies
caused by the transmission of full model param-
eters. To address this, Fe[dRDMA (Zhang et al.,
2024) leverages RDMA-based communication by
splitting model updates into blocks for more effi-
cient transfer. FedPETuning (Zhang et al., 2023)
explores parameter-efficient fine-tuning (PEFT)
methods to improve training efficiency in FL,
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Figure 1: The proposed federated learning approach protects both server-side model and client-side data privacy. (1)

The global model is first masked with a server-side mask to create the "server model."
model is perturbed with client-specific masks and quantized to form the "proxy model."

In each round, this server
(2) The proxy model is sent

to clients for local training. (3) After training, clients return parameter updates, which are aggregated by the server.
(4) The updated server model serves as the starting point for the next round. After all training rounds, the proxy
model and the original global model are combined via a logical AND operation to produce the final global model,

enhancing both privacy and performance.

while (Wang et al., 2024) proposes a gradient-free
prompt tuning approach for better few-shot perfor-
mance. In terms of privacy, FedML-HE (Jin et al.,
2023) introduces selective homomorphic encryp-
tion to protect sensitive parameters with reduced
overhead.

2.3 Model privacy protection in FL.

To prevent the intellectual property of NLP models
from being leaked to clients participating in Feder-
ated Learning, some studies have begun to explore
model protection privacy in Federated Learning.
FedSP (Dong et al., 2023) introduces a proxy
model and a tunable soft prompt as intermedi-
aries between the server and clients, avoiding di-
rect sharing of the global model. To mitigate the
performance gap between the proxy and global
models, FedSP requires the server to possess an
auxiliary dataset that is independent and identi-
cally distributed (IID) with the client data. How-
ever, this assumption contradicts the core princi-
ple of federated learning—protecting client data
privacy—as the auxiliary dataset may reveal sensi-
tive features to the server. Moreover, constructing
such a dataset is often impractical in real-world
scenarios. FedLPP (Zhu et al., 2024) improves
model protection by decomposing the global model
into a backbone and a LoRA adapter, sharing only
the backbone and a quantized proxy adapter with

clients. While this design prevents direct exposure
of the global adapter, it only protects a portion of
the model parameters and thus does not achieve
full model-level privacy.

In contrast, another line of work focuses on data-
level privacy. Methods such as EW-Tune(Behnia
et al., 2022), Whispered Tuning(Singh et al., 2024),
Split-N-Denoise(Mai et al., 2023) (SnD), and user-
level DP-SGD(Charles et al., 2024), focus on pro-
tecting data privacy through techniques like differ-
ential privacy, PII redaction, client-side noise addi-
tion, and sampling strategies. These methods are
orthogonal to ours, which focuses on model-level
privacy through random masking and quantization,
rather than data-level protection. Thus, our ap-
proach can complement data-centric techniques, as
DP mechanisms cannot substitute parameter-level
defenses.

3 Method

In the following sections, we will introduce the im-
proved federated learning approach we proposed.
We will sequentially present the random masking
and model quantization methods introduced to en-
hance model privacy protection, as well as the over-
all training process.
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3.1 Preliminary

We first revisit the fundamental objective of fed-
erated learning (FL), which aims to minimize the
global loss function:

o~ __|Dil
w ; > k=1 | Dkl
where W represents the model parameters, |Dy|
denotes the size of the private dataset for the k-th
client, L () is the local loss function for dataset
D;., and N is the total number of clients. The
primary challenge lies in training a unified model
across distributed clients while ensuring the protec-
tion of data privacy.

Lr(W) (1)

3.2 Random Model Masking

To protect the privacy of the server-side model by
limiting client access to its full parameters, we in-
troduce a random mask applied to the global model
before it is transmitted from the server to the clients
during federated learning training. Specifically, we
inject a column-wise random mask directly into the
model weights of every attention and MLP layer
before distribution. Let W be a weight matrix and
let M be a random mask whose entries are sampled
independently as in Equation 2:

0 with probability p

Mej =1L ith probability 1 - p

2)
where M has the same dimensions as W, the
masked weights are obtained by a Hadamard prod-
uct, refer to Equation 3:

W=WoM (3)

with probability 1 — p the column in matrix W

is kept but amplified by ﬁ, so that E[/VV] =W
and the expected magnitude of activations is pre-
served. This adjustment follows the same principle
as Dropout (Srivastava et al., 2014), ensuring that
the overall distribution of the outputs remains sta-
ble, preventing significant shifts due to the mask-
ing.

During training, the server employs a hierarchi-
cal masking mechanism to safeguard the model
before distributing its parameters to the clients.
This process involves two sequential masking steps:
first, a server-side mask, referred to as the server
mask, is applied to the global model. Then, a client-
specific mask, which we refer to as the client mask,
is applied when the model is distributed to each
client. A detailed description of this dual-masking
strategy can be found in Section 3.4.

3.3 Model Quantization

Model quantization, a widely used compression
technique, reduces model size by lowering parame-
ter precision, often at the expense of performance.
By quantizing the models distributed from the
server to clients, we hinder accurate reconstruc-
tion of server parameters, thereby enhancing model
privacy. In this work, we employ conventional
blockwise quantization with w-bit precision, as es-
tablished in prior studies (Dettmers et al., 2024;
Zhu et al., 2024).

The quantization process begins by selecting a
target bit-width w, which determines the quantiza-
tion levels. The floating-point values in the weight
matrix W are then partitioned into blocks of size
s, preserving spatial continuity in the flattened rep-
resentation. For each block X;, we compute the
maximum absolute value, denoted absmax(X;).
The quantized parameters of the ¢-th block, X;,
are then obtained by scaling and rounding to the
nearest integer, as expressed in Equation 4:

291 -1
absmax(X;)

X; = round( X;) 4)

3.4 Training Procedure

In the proposed FedQSN approach, we first gen-
erate a server mask based on the methodology de-
scribed in Section 3.2 and apply it to the original
global model with a masking proportion p;. This
ensures that the masked parameters are inaccessi-
ble to clients, preventing full model reconstruction
and reducing the risk of collusion among adversar-
ial clients. Next, C clients are randomly selected
from the N participants. For each selected client,
a client-specific mask with a proportion ps is gen-
erated and applied to the already server-masked
model, which increases the overall masking and
ensures that each client trains a distinct subnetwork
on its private data in each round. Over successive
training rounds this guarantees that all parameters
receive updates. The doubly masked model is then
subjected to block-wise w-bit quantization (as de-
tailed in Section 3.3) before being distributed to the
clients. Quantization obscures the exact parameter
values and reduces communication overhead. The
resulting privacy-preserving proxy model is then
distributed to clients for local training.

During local training, clients iteratively update
the received proxy model based on their local
datasets. The local optimization process follows
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Method BLEU NIST METEOR ROUGE-L CIDEr
FedAVG  global 3504  6.58 32.64 52.01 1.80
FedSP  global 2642  3.65 25.88 44.42 121

global 34.60 606  31.43 51.32 1.70
FedLPP  proxy 3246 512  29.72 50.31 1.52
gap 214 0.94 1.71 1.01 0.18
global 3391 552 3070 49.27 1.61
FedQSN  proxy 25.15 3.37 23.76 42.56 1.01
gap 876 215 6.94 6.71 0.60

Table 1: Comparative evaluation of FedQSN against three baseline methods, with metric values averaged across
four benchmark datasets (E2E, DART, DIALOGSUM, ViGGO).

DART

BLEU

METEOR ROUGE-!

global

METEOR

DialogSum

NIST

ROUGE-L™ METEOR ROUGE- METEOR

EE proxy

Figure 2: Performance of global and proxy models across multiple metrics for FedQSN on various datasets.

the update rule:

Dy| Wk

Wi =W, + Z SN ’Dk’ Wi (5)

where W, denotes the global model parameters at
iteration t, AWf represents the parameter updates
from the k-th client, and the weighting term AW/
ensures proportional contribution based on client
dataset sizes. This federated averaging mechanism
aligns with the overarching objective of minimiz-
ing the global loss in Equation 1. Upon completing
local training, clients transmit AWF to the server.
The server aggregates the received updates using a
weighted summation, as defined in Equation 5, and
applies a secure aggregation protocol (Bonawitz
et al., 2017) to ensure privacy during the aggre-
gation process. This results in the updated global
model W, which will be used in the subsequent
training round. The complete workflow encompass-
ing masking, quantization, and secure aggregation
is formalized in Algorithm 1. At the conclusion
of all training rounds, a logical AND operation is

performed between the final aggregated model and
the original untrained model retained by the server,
effectively restoring the masked parameters and
reconstructing the fully trained global model.

4 Experiments

In this section, we present an extensive set of ex-
periments to evaluate the effectiveness of our algo-
rithm in preserving model privacy, while maintain-
ing strong performance in federated learning (FL)
across a range of tasks. We provide comparative
performance results against baseline models.

Our experiments primarily utilize the GPT-2
Medium model in conjunction with four widely
recognized datasets: E2E (Novikova et al., 2017),
DART (Nan et al., 2020), ViGGO (Juraska et al.,
2019), and DialogSum (Chen et al., 2021). De-
tailed descriptions of these datasets can be found
in Appendix B.

For evaluation, we employ several standard met-
rics, including BLEU (Papinesi, 2002), NIST (Belz
and Reiter, 2006), METEOR (Banerjee and
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Method BLEU NIST METEOR ROUGE-L CIDEr
FedAVG global 56.40 7.78 41.07 62.64 .64
~ global 39.90 4.46 2235 47.67 0.59
FedQSNw = 1 proxy 8.29 0.02 7.83 27.48 0.02
~ global 52.14 6.46 31.38 56.72 131
FedQSNw =2 proxy 2474 0.35 19.34 45.69 0.53
~ global 54.18 7.32 33.41 58.41 1.46
FedQSNw =3 proxy 4156 2.12 25.09 53.60 0.85
~ global 54.98 7.49 33.70 58.54 1.50
FedQSNw =4 proxy 48.18 3.60 27.14 55.67 1.04

Table 2: Performance of our method with varying bit width (w) settings. To maintain consistent experimental
conditions, the server mask ratio is fixed at p; = 0.1 and the client mask ratio at po = 0.1. Evaluations are
performed on the E2E dataset using the GPT-2 Medium model to assess the impact of different bit widths on

performance.

Method BLEU NIST METEOR ROUGE-L CIDEr

FedAVG global  56.40 7.78 41.07 62.64 1.64

FQSNp =012 =0 DO0 050 T aos s Lod
FQSNp =0p2 =01 LU0 500 T ais sew 1o
FadQSNp =012 =01 D00 G4 300 a6 sk dol
RQSNp =012 =02 D00 G0 3 903 s 10
FQSNp <0252 =01 DU D03 2i0 066 ass oo
FQSNp =022 =02 L0000 L0630 aees  nss 09

Table 3: Performance of the proposed method under varying random mask settings, with server and client mask
ratios p; and po detailed in Section 3.2. Experiments use a quantization bit width w = 2 on the E2E dataset with the

GPT-2 Medium model.

Lavie, 2005), ROUGE-L (Chin-Yew, 2004), and
CIDEr (Vedantam et al., 2015).

4.1 Baselines

We use the following methods as baselines to com-
pare with our proposed FedQSN. To ensure a fair
and systematic comparison between different fed-
erated learning methods, we conducted the evalu-
ations under consistent settings. The final perfor-
mance metrics were reported on the test set. For
detailed implementation specifics, please refer to
Appendix D.

* FedAVG: Aggregates client-trained global
models to preserve data privacy but lacks pri-
vacy mechanisms, exposing model leakage
risks.

* FedSP: Pioneers joint model-data privacy via

proxy distillation but violates FL principles by
requiring client data access during distillation.

* FedLPP: Enhances FedAVG with quantized
LoRA transmission to reduce gradient leak-
age. However, partial server-model exposure
persists, limiting full privacy. FedLPP bal-
ances privacy and efficiency, serving as the
key reference for FL privacy advancements.

4.2 Performance Comparison

Table 1 presents a comparative analysis between
our proposed method, FedQSN, and existing base-
lines. To evaluate server-side model privacy protec-
tion, we follow the evaluation protocol proposed in
FedLPP (Zhu et al., 2024), which uses the perfor-
mance gap between the server-held global model
and the client-received proxy model as a measure of
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Model BLEU NIST METEOR ROUGE-L CIDEr
GP2XL DO N6 s mm sS4 ogl
Uamad2iB DO D05 Tea as76 sem 083
vamad238 0D S0G6 The asa 3521 090
vamadisb 0NN RS o s g im

Table 4: Performance of the FedQSN method on the E2E dataset across language models of varying parameter
sizes and types, showcasing the versatility of our approach. To ensure consistent experimental conditions, the server
mask ratio is fixed at p; = 0.1, the client mask ratio at po = 0.1, and the quantization bit width at w = 2.

Method BLEU NIST METEOR ROUGE-L CIDEr
FedAVG(cross silo)  global  56.88  7.87 39.55 61.93 1.77
. global 5620  7.71 39.24 61.43 1.65
FedQSN(crosssilo) ' 4002 234 25.05 53.43 0.84
FedAVG(large scale)  global ~ 55.61  7.73 40.76 62.30 1.57
global  52.14 645 31.38 56.72 1.31
FedQSN(largescale) o' 7474 035 19.34 45.69 0.53

Table 5: This table shows experimental results for federated learning on the E2E dataset using GPT-2 Medium. The
"cross silo" scenario uses all 5 clients, while the "large scale" scenario randomly selects 5 from 25 clients. Server
and client mask ratios are fixed at p; = p2 = 0.1, with quantization bit width w = 2.

privacy preservation. Specifically, for both FedLPP
and FedQSN, we compare the best-performing
global model and the best-performing proxy model
across all training rounds. This choice reflects a
realistic and worst-case scenario, as both the server
and client are expected to retain their most effective
models for deployment or further use. If the global
model consistently outperforms the proxy model,
it indicates effective protection of the server-side
model. Moreover, a larger performance gap sug-
gests that the proxy model remains less competitive,
providing stronger evidence of privacy preservation
within the federated learning framework. The re-
ported results represent the average performance
across all four datasets for each method.

As shown in Table 1, FedQSN achieves more
effective model privacy protection compared to
FedLPP. While FedSP also aims to protect model
privacy, its global model performance is signifi-
cantly lower than that of both FedLPP and FedQSN.
Across all metrics, the global model trained with
FedQSN consistently outperforms the proxy model,
indicating that the server retains a performance ad-
vantage over individual clients and thus protects
the model owner’s proprietary knowledge. Further-
more, the performance of the global model trained

with FedQSN is comparable to that of FedAVG,
suggesting that our method preserves model util-
ity while enhancing privacy protection. Table 1
provides a quantitative comparison of the base-
line methods based on average results across all
datasets.

For detailed performance results of FedQSN on
individual datasets, refer to Figure 2. As illus-
trated in Figure 2, the global model consistently
outperforms the proxy model across all metrics
and datasets. Notably, the performance curves for
the global model encompass those of the proxy
model in all dimensions, empirically validating
the strong privacy-preserving capabilities of our
method through its robust performance.

We further evaluated the privacy protection of
FedQSN by measuring the cosine similarity be-
tween the global and proxy model parameters, in
comparison with FedLPP. As shown in Table 6,
FedQSN exhibits notably lower similarity, indicat-
ing superior model privacy protection. Additional
details are provided in Appendix D.2.

Our method is compatible with secure aggre-
gation protocols (Bonawitz et al., 2017) and does
not require a labeled dataset on the server side,
thereby avoiding potential risks to client data pri-
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vacy—unlike FedSP. Consequently, it achieves a
level of client data protection comparable to that of
FedAVG.

Method Parameter Similarity
FedLPP 0.995
FedQSN 0.805

Table 6: Comparison of parameter similarity between
the global model and its proxy under FedQSN and
FedLPP.

5 Ablation Analysis

In this section, we present a series of ablation stud-
ies to evaluate the impact of varying random mask-
ing and quantization levels within the FedQSN ap-
proach. We also conduct comparison experiments
across models of different scales and foundational
architectures, as well as experiments in diverse fed-
erated learning scenarios.

5.1 Impact of quantization levels

FedQSN involves a trade-off between model pri-
vacy and performance, governed by the quantiza-
tion bit width w. Lower bit widths (smaller w) en-
hance privacy by increasing the deviation between
the proxy and global models, but also introduce
greater gradient bias, reducing performance.

We evaluated bit widths of 1 to 4, with results
shown in Table 2. Bit widths of 3 and 4 strike a
favorable balance, achieving strong privacy protec-
tion with minimal performance loss. In contrast,
overly aggressive quantization (e.g., w = 1 or 2)
leads to significant performance degradation due
to insufficient proxy model information, despite
stronger privacy guarantees. All experiments were
conducted under identical training settings for fair
comparison.

5.2 Impact of random masking levels

Table 3 shows that both server-side and client-side
random masking provide effective privacy protec-
tion for the global model in federated learning. Un-
der consistent quantization levels, random mask-
ing yields negligible degradation in global model
performance while substantially reducing the accu-
racy of proxy models reconstructed by adversaries.
However, excessive masking can significantly im-
pair aggregated model performance, undermining
the primary goal of maintaining high accuracy in
federated learning.

Additionally, Table 8 in Appendix D compares
the individual effects of quantization and random
masking. While quantization alone offers stronger
privacy protection, it leads to greater degradation
in global model performance. In contrast, increas-
ing the masking ratio at a fixed quantization level
enhances privacy with only a minor impact on per-
formance.

5.3 Impact of model scales and various
federated learning scenarios

We extended FedQSN from GPT-2 Medium to
larger architectures, including GPT-2 XL (Rad-
ford et al., 2019), Llama3.2-1B, Llama3.2-3B, and
Llama3.1-8B (Grattafiori et al., 2024). Results on
the E2E dataset (Novikova et al., 2017), shown
in Table 4, confirm that FedQSN consistently pro-
tects model privacy while maintaining strong per-
formance across model scales.

To assess its robustness in different federated
learning (FL) settings, we evaluated FedQSN under
two representative scenarios: cross-silo FL, where
all clients participate in each round (Kairouz et al.,
2021), and large-scale cross-device FL, where only
a subset of clients with smaller datasets partic-
ipate due to communication or availability con-
straints (Lai et al., 2022).

Experiments using the E2E dataset under both
scenarios (see Table 5) demonstrate that FedQSN
maintains effectiveness despite limited client partic-
ipation, as evidenced by the observed performance
gap between global and proxy models. These re-
sults highlight FedQSN’s adaptability to diverse
and realistic FL environments.

6 Conclusion

In this study, we introduce FedQSN, a federated
learning approach that enhances the privacy of
model parameters. The server applies random
masking and quantization to the model parame-
ters before transmitting them to clients, thereby
enhancing parameter-level confidentiality. Un-
like baseline methods, FedQSN limits clients’ ac-
cess to the full model and mitigates the risk of
reverse-engineering. Experimental results show
that FedQSN achieves comparable performance
to baseline methods while significantly enhancing
server-side model protection. This establishes a
clear distinction between the server-side global
model and the privacy-preserving proxy models
delivered to clients.
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Limitations

We have demonstrated the effectiveness of FedQSN
in protecting model privacy within the federated
learning framework across various datasets and
models. However, several areas warrant further
investigation. First, applying FedQSN to larger-
scale models could help assess its scalability and
effectiveness in more complex scenarios. Second,
evaluating the method on more diverse and com-
plex datasets could offer deeper insights into its
robustness in real-world settings. Third, integrat-
ing differential privacy—a standard technique for
protecting model intellectual property from training
data—with our approach could further strengthen
model owners’ control in federated learning, rep-
resenting a promising direction for future research.
Addressing these limitations could improve the
broader applicability of FedQSN and facilitate its
adoption in diverse federated learning scenarios.
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A  Method

Algorithm 1 FedQSN. R is the number of training
rounds, C is the number of chosen clients, E is
the number of local epochs, and 7 is the learning
rate. p; and po represent the proportions of the
server mask and client mask, respectively, while w
denotes the level of quantization.

ServerExcute:
initial global model parameters W)
Wy < SetModelMask (W, p1)
S < (random choose C clients)
for eachroundt =1,2,...R — 1do
for each client ¢ € S in parallel do
W < SetModelMask (W;_1, p2)
W < Quantization(Wf, w)
W < ClientLocalTrain(W¢, ¢)
end for

| D] c
Wt < ZcES Zszl |Dk|Wt

A A G S i s

,_.,_.
—_ O

. end for

— =

: ClientLocalTrain(c, W°):
: B <« (split dataset D, into batches)
: for each local epoche =0,1,2,...FE do
for each batch b € B do
W€+ We—nVLWEb)
end for
end for
: return W€ to server

N = —m = = =
2 Y 0w

B Datasets

B.1 Datasets details

Datasets #Train #Validation #Test
E2E 42,061 4,672 4,693
DART 62,659 2,768 5,097
DialogSum 12,460 500 1,500
Viggo 5,103 714 1,083

Table 7: Statistics for different datasets.

The E2E dataset comprises a collection of table-
to-text generation data, primarily designed for train-
ing end-to-end natural language generation sys-
tems within the restaurant domain. In contrast, the
ViGGO dataset, while also a table-to-text genera-
tion resource, is intended to support a broader range
of conversational dialogue act types. DART, on the
other hand, is an open-domain table-to-text genera-
tion dataset, and DialogSum is specifically tailored

for the task of dialogue summarization. The spe-
cific amount of data contained in each dataset is
provided in Table 7.

C Baselines

* FedAVG: The original global model is dis-
tributed to users, who then train it using their
local private data. In each training round, the
server aggregates the models trained by dif-
ferent users, without applying any random
masks or model quantization during the train-
ing. This serves as an upper-bound baseline.

* FedSP: This is the first method proposed to
simultaneously protect model privacy in the
federated learning framework for large lan-
guage models. The FedSP approach relies
on distilling a proxy model from the global
model prior to initiating the federated learn-
ing process. However, this approach tradition-
ally requires access to clients’ local datasets
during the distillation phase, thereby under-
mining the fundamental privacy preservation
principles inherent in federated learning archi-
tectures.

FedLPP: It is a federated learning algorithm
improved upon FedAVG to protect model
privacy. The main improvement lies in the
transmission of quantized LoRA between the
server and users. However, there is still a
possibility that users may have access to the
server-side model backbone, meaning the pri-
vacy of the global model is not fully protected.
This method serves as the primary comparison
point in our study.

D Experiments

D.1 Implementation Details

To ensure fair and consistent comparisons, we con-
ducted hyperparameter searches for each dataset
and method. The best model was selected based on
the validation loss, and the corresponding test set
results were reported. We primarily evaluated the
performance of FedQSN across three quantization
levels, specifically with bit width w € {1,2,3,4},
while maintaining a fixed block size of 256. For the
random masking level p, we selected values from
the set {0.05,0.1,0.15,0.2}.

For FedSP, the prefix length was chosen from
{40,80,160}, and the number of layers in the
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Method BLEU NIST METEOR ROUGE-L CIDEr
B B .. global 5671 7.81 4337 64.84 1.73
p1=0.1,p2 = 0.1, wlo quantization — 55— ¢5 42.16 64.08 173
o — 0.2 73 — 0.2, wio quantization 2P 9939 780 3974 62.08 1.63
tmae iz s proxy  53.72  17.56 39.12 61.28 1.45
o sk o — 9 global 5441 754 3427 58.20 1.46
W= proxy 3278 090  23.44 51.67 0.72
o sk — 4 global 5694 7.80  35.43 59.65 1.66
= proxy 48.89 3.63  27.13 56.11 1.07
ol —O0lw—o global 56.88 7.87  39.55 61.93 1.77
S e proxy 4002 234 2505 53.43 0.84
- B - global 5546 7.74 3491 58.48 1.54
pr=01pr=01w=4 proxy 4641  3.04 26.52 55.36 1.01
B - B global 52.78 724 3254 57.23 1.45
pr=02p=02w=4 proxy 40.64 3.07 2665 53.55 0.97

Table 8: This table presents supplementary comparison experiments with varying mask and quantization levels.
The server and client mask ratios are denoted as p; and po, respectively, with detailed configurations provided in
Section 3.2. "w/o mask" indicates the absence of random masking, while "w/o quantization" refers to the absence of

quantization. w denotes the quantization bit width.

proxy model was selected from {1, 4, 8}. For
all methods, the learning rate was chosen from
{1074,3 x 107%,1073}, with a batch size fixed
at 16. The number of local training epochs per
client in each round was selected from {1,3,5},
with a total of 10 communication rounds. We im-
plemented the proposed approach, FedQSN, along
with the baseline methods, using Hugging Face
Transformers (Wolf, 2020). All experiments were
conducted on a single server equipped with four
NVIDIA GeForce RTX 3090 GPUs, each with 24
GB of memory.

D.2 Parameter Similarity Analysis

To evaluate the effectiveness of our method in pro-
tecting model privacy, we assess not only the per-
formance gap between the global model and the
proxy model, but also the cosine similarity between
their parameters. A lower degree of parameter sim-
ilarity suggests enhanced protection of the model’s
proprietary knowledge or intellectual property. As
shown in Table 6, we compare the parameter sim-
ilarity between the global and proxy models for
FedLPP and FedQSN, using a fixed quantization
bit-width of 2. The experiments are conducted with
the GPT2-medium model.

The experimental results demonstrate that
FedQSN achieves significantly lower parameter
similarity compared to FedLPP. This can be at-
tributed to the design of FedLPP, in which the full

backbone model is distributed to clients prior to
training, and during training, only the quantized
LoRA matrices are exchanged between the server
and clients. As a result, FedLPP offers relatively
weaker protection of the global model’s privacy.

D.3 Additional ablation study

In Table 8, we present comparative experiments
that examine the effectiveness of applying either
masking or quantization alone. The results demon-
strate that applying quantization alone leads to a
greater performance loss for the global model, but
provides stronger protection for the model, as evi-
denced by a larger gap between the global model
and the proxy model. On the other hand, applying
only masking results in less performance degrada-
tion for the global model, but offers slightly weaker
model protection. When one of the methods (quan-
tization or masking) is kept fixed and the other is
adjusted, both approaches enhance model privacy
protection.

In conclusion, our experiments show that both
masking and quantization contribute to improving
model privacy, with each offering distinct trade-offs
in terms of performance and protection effective-
ness.
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