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Abstract
Research is a fundamental process driving
the advancement of human civilization, yet
it demands substantial time and effort from
researchers. In recent years, the rapid de-
velopment of artificial intelligence (AI) tech-
nologies has inspired researchers to explore
how AI can accelerate and enhance research.
To monitor relevant advancements, this paper
presents a systematic review of the progress
in this domain. Specifically, we organize
the relevant studies into three main cate-
gories: hypothesis formulation, hypothesis val-
idation, and manuscript publication. Hypoth-
esis formulation involves knowledge synthe-
sis and hypothesis generation. Hypothesis val-
idation includes the verification of scientific
claims, theorem proving, and experiment val-
idation. Manuscript publication encompasses
manuscript writing and the peer review process.
Furthermore, we identify and discuss the cur-
rent challenges faced in these areas, as well
as potential future directions for research. Fi-
nally, we also offer a comprehensive overview
of existing benchmarks and tools across vari-
ous domains that support the integration of AI
into the research process. We hope this paper
serves as an introduction for beginners and fos-
ters future research. Resources have been made
publicly available1.

1 Introduction

Research is creative and systematic work aimed at
expanding knowledge and driving civilization’s de-
velopment (Eurostat, 2018). Researchers typically
identify a topic, review relevant literature, synthe-
size existing knowledge, and formulate hypothesis,
which are validated through theoretical and experi-
mental methods. Findings are then documented in
manuscripts that undergo peer review before pub-
lication (Benos et al., 2007; Boyko et al., 2023).

*Co-Corresponding Author
1https://github.com/zkzhou126/

AI-for-Research

However, this process is resource-intensive, requir-
ing specialized expertise and posing entry barriers
for researchers (Blaxter et al., 2010).

In recent years, artificial intelligence (AI) tech-
nologies, represented by large language mod-
els (LLMs), have experienced rapid development
(Brown et al., 2020; OpenAI, 2023; Dubey et al.,
2024; Yang et al., 2024a; DeepSeek-AI et al., 2024;
Guo et al., 2025). These models exhibit excep-
tional capabilities in text understanding, reason-
ing, and generation (Schaeffer et al., 2023). In
this context, AI is increasingly involving the en-
tire research pipeline (Messeri and Crockett, 2024),
sparking extensive discussion about its implica-
tions for research (Hutson, 2022; Williams et al.,
2023; Morris, 2023; Fecher et al., 2023). Moreover,
following the release of ChatGPT, approximately
20% of academic papers and peer-reviewed texts in
certain fields have been modified by LLMs (Liang
et al., 2024a,b). A study also reveals that 81%
of researchers integrate LLMs into their work-
flows (Liao et al., 2024).

As the application of AI in research attracts in-
creasing attention, a significant body of related
studies has begun to emerge. To systematically
synthesize existing research, we present compre-
hensive survey that emulates human researchers by
using the research process as an organizing frame-
work. Specifically, as depicted in Figure 1, the
research process is divided into three key stages:
(1) Hypothesis Formulation, involving knowledge
synthesis and hypothesis generation; (2) Hypothe-
sis Validation, encompassing scientific claim veri-
fication, theorem proving, and experiment valida-
tion; (3) Manuscript Publication, which focuses on
academic publications and is further divided into
manuscript writing and peer review.

Comparing with Existing Surveys Al-
though Luo et al. (2025) reviews the application
of AI in research, it predominantly focuses on
LLMs, while neglecting the knowledge synthesis
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Figure 1: Overview of AI for research. The frame-
work consists of three stages: hypothesis formulation,
hypothesis validation, and manuscript publication. In
the hypothesis formulation stage, knowledge integration
leads to the proposal of an initial hypothesis after a topic
is identified. The hypothesis validation stage involves
verifying the hypothesis from three perspectives to en-
sure its correctness and validity. Finally, the manuscript
publication stage focuses on drafting and publishing the
validated hypothesis.

that precedes hypothesis generation and the
theoretical validation of hypothesis. Other surveys
concentrate on more specific areas, such as paper
recommendation (Beel et al., 2016; Bai et al.,
2019; Kreutz and Schenkel, 2022), scientific
literature review (Altmami and Menai, 2022),
hypothesis generation (Kulkarni et al., 2025),
scientific claim verification (Vladika and Matthes,
2023; Dmonte et al., 2024), theorem proving (Li
et al., 2024e), manuscript writing (Li and Ouyang,
2024), and peer review (Lin et al., 2023a; Kousha
and Thelwall, 2024). Additionally, certain surveys
emphasize the application of AI in scientific
domains (Zheng et al., 2023b; Zhang et al., 2024d;
Gridach et al., 2025).

Contributions Our contributions can be summa-
rized as follows: (1) We align the relevant fields
with the research process of human researchers, sys-
tematically integrating and extending these aspects
while primarily focusing on the research process
itself. (2) We introduce a meticulous taxonomy
(shown in Figure 2). (3) We provide a summary of
tools that can assist in the research process. (4) We
discuss new frontiers, outline their challenges, and
shed light on future research.

Survey Organization We first elaborate hypoth-
esis formulation (§2), followed by hypothesis vali-
dation (§3) and manuscript publication (§4). Addi-
tionally, we present benchmarks (§5), and tools (§6)
that utilized in research. Finally, we outline chal-

lenges as well as future directions (§7), and dis-
cusssion about relevant ethical considerations (§8).
In the Appendix, we provide further discussion on
open questions (§A), challenges faced in different
domains (§B), and a comparison of capabilities
among different methods (§C).

2 Hypothesis Formulation

This stage centers on the process of hypothesis for-
mulation. As illustrated in Figure 3, it commences
with developing a comprehensive understanding of
the domain, followed by identifying a specific as-
pect and generating pertinent hypothesis. This sec-
tion is further structured into two key components:
Knowledge Synthesis and Hypothesis Generation.

2.1 Knowledge Synthesis
Knowledge synthesis constitutes the foundational
step in the research process. During this phase, re-
searchers are required to identify and critically eval-
uate existing literature to establish a thorough un-
derstanding of the field. This step is pivotal for un-
covering new research directions, refining method-
ologies, and supporting evidence-based decision-
making (Asai et al., 2024). In this section, the
process of knowledge synthesis is divided into two
modules: Research Paper Recommendation and
Systematic Literature Review.

2.1.1 Research Paper Recommendation
Research paper recommendation (RPR) identifies
and recommends novel and seminal articles aligned
with researchers’ interests. Prior studies have
shown that recommendation systems outperform
keyword-based search engines in terms of effi-
ciency and reliability when extracting valuable in-
sights from large-scale datasets (Bai et al., 2019).
Existing methodologies are broadly categorized
into four paradigms: content-based filtering, col-
laborative filtering, graph-based approaches, and
hybrid systems (Beel et al., 2016; Li and Zou, 2019;
Bai et al., 2019; Shahid et al., 2020). Recent ad-
vancements propose multi-dimensional classifica-
tion frameworks based on data source utilization
(Kreutz and Schenkel, 2022).

Recent trends in research suggest a decline in
publication volumes related to RPR (Sharma
et al., 2023), alongside an increasing focus on user-
centric optimizations. Existing studies emphasize
the limitations of traditional paper-centric interac-
tion models and advocate for more effective uti-
lization of author relationship graphs (Kang et al.,
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Theorem Proving (§3.2) E.g., Dt-solver (Wang et al., 2023b) , LEGO-Prover (Wang et al., 2024b) , DeepSeek-Prover (Xin et al., 2024)

Experiment Validation (§3.3) E.g., SANDBOX (Liu et al., 2023b) , CRISPR-GPT (Huang et al., 2024a) , MLR-Copilot (Li et al., 2024d)

Manuscript
Publication (§4)

Manuscript Writing (§4.1) E.g., Scilit (Gu and Hahnloser, 2023) , UR3WG (Shi et al., 2023) , STEP-BACK (Tang et al., 2024a)

Peer Review (§4.2) E.g., SWIF2T (Chamoun et al., 2024) , GLIMPSE (Darrin et al., 2024) , MetaWriter (Sun et al., 2024)

Figure 2: Taxonomy of Hypothesis Formulation, Hypothesis Validation and Manuscript Publication (This is a
simplified version, full version in Figure 6).

2023). Multi-stage recommendation architectures
that integrate diverse methodologies have been
shown to achieve superior performance (Pinedo
et al., 2024; Stergiopoulos et al., 2024). Visu-
alization techniques that link recommended pa-
pers to users’ publication histories via knowledge
graphs (Kang et al., 2022) and LLMs-powered
comparative analysis frameworks (Lee et al., 2024)
represent emerging directions for enhancing inter-
pretability and contextual relevance.

2.1.2 Systematic Literature Review

Systematic literature review (SLR) constitutes a rig-
orous and structured methodology for evaluating
and integrating prior research on a specific topic
(Webster and Watson, 2002; Zhu et al., 2023; Bo-
laños et al., 2024). In contrast to single-document
summaries (Elhadad et al., 2005), SLR entails syn-
thesizing information across multiple related scien-
tific documents (Altmami and Menai, 2022). SLR
can further be divided into two stages: outline gen-
eration and full-text generation (Shao et al., 2024;
Agarwal et al., 2024b; Block and Kuckertz, 2024).

Outline generation, especially structured out-
line generation, is highlighted by recent studies as
a pivotal factor in enhancing the quality of surveys.
Zhu et al. (2023) demonstrated that hierarchical
frameworks substantially enhance survey coher-
ence. AutoSurvey (Wang et al., 2024e) extended
conventional outline generation by recommend-
ing both sub-chapter titles and detailed content
descriptions, ensuring comprehensive topic cov-
erage. Additionally, multi-level topic generation
via clustering methodologies has been proposed as
an effective strategy for organizing survey struc-
tures (Katz et al., 2024). Advanced systems such
as STORM (Shao et al., 2024) employed LLM-
driven outline drafting combined with multi-agent
discussion cycles to iteratively refine the gener-

ated outlines. Tree-based hierarchical architectures
have gained increasing adoption in this domain.
For instance, CHIME (Hsu et al., 2024) optimized
LLM-generated hierarchies through human-AI col-
laboration, while HiReview (Hu et al., 2024b)
demonstrated the efficacy of multi-layer tree repre-
sentations for systematic knowledge organization.

Full-text generation follows the outline gen-
eration stage. AutoSurvey and Lai et al. (2024)
utilized LLMs with carefully designed prompts to
construct comprehensive literature reviews step-by-
step. PaperQA2 (Skarlinski et al., 2024) intro-
duced an iterative agent-based approach for gen-
erating reviews, while STORM employed multi-
agent conversation data for this purpose. LitLLM
(Agarwal et al., 2024a) and Agarwal et al. (2024b)
adopted a plan-based search enhancement strategy.
KGSum (Wang et al., 2022a) integrated knowl-
edge graph information into paper encoding and
used a two-stage decoder for summary generation.
Bio-SIEVE (Robinson et al., 2023) and Susnjak
et al. (2024) fine-tuned LLMs for automatic review
generation. OpenScholar (Asai et al., 2024) devel-
oped a pipeline that trained a new model without
relying on a dedicated survey-generation model.

2.2 Hypothesis Generation

Hypothesis generation, known as idea generation,
refers to the process of coming up with new con-
cepts, solutions, or approaches. It is the most im-
portant step in driving the progress of the entire
research (Qi et al., 2023).

Early work focused more on predicting relation-
ships between concepts, because researchers be-
lieved that new concepts come from links with
old concepts (Henry and McInnes, 2017; Krenn
et al., 2022). As language models became more
powerful (Zhao et al., 2023a), researchers are be-
ginning to focus on open-ended idea generation
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Figure 3: This figure illustrates the hypothesis for-
mulation process, consisting of two stages: knowledge
synthesis and hypothesis generation, which together pro-
duce an initial hypothesis related to a specific topic.

(Girotra et al., 2023; Si et al., 2024; Kumar et al.,
2024). Recent advancements in AI-driven hypoth-
esis generation highlight diverse approaches to re-
search conceptualization. For instance, MOOSE-
Chem (Yang et al., 2024c) and IdeaSynth (Pu
et al., 2024) used LLMs to bridge inspiration-to-
hypothesis transformation via interactive frame-
works. The remaining research primarily falls into
two areas: enhancing input data quality and im-
proving the quality of generated hypothesis.

Input data quality improvement is demon-
strated by Majumder et al. (2024a); Liu et al.
(2024a), who showed that LLMs can generate
comprehensive hypothesis from existing academic
data. Literature organization strategies have
evolved through various methodologies, includ-
ing triplet representations (Wang et al., 2024c),
chain-based architectures (Li et al., 2024a),
and complex database systems (Wang et al.,
2024d). Knowledge graphs emerge as critical
infrastructure (Hogan et al., 2021), enabling se-
mantic relationship mapping via subgraph identi-
fication (Buehler, 2024; Ghafarollahi and Buehler,
2024). Notably, SciMuse (Gu and Krenn, 2024) pi-
oneered researcher-specific hypothesis generation
by constructing personalized knowledge graphs.

Hypothesis quality improvement has been ad-
dressed through feedback and iteration (Rabby
et al., 2025), as proposed by HypoGeniC (Zhou
et al., 2024) and MOOSE (Yang et al., 2024b).
Feedback mechanisms include direct responses
to hypothesis (Baek et al., 2024), experimen-
tal outcome evaluations (Ma et al., 2024; Yuan
et al., 2025), comparison with the existing litera-
ture (Schmidgall and Moor, 2025), and automated
peer review comments (Lu et al., 2024). Fun-

Search (Romera-Paredes et al., 2024) generates
solutions by iteratively combining the innovative
capabilities of LLM with the verification capabil-
ities of an evaluator. Beyond iterative feedback,
collaborative efforts among researchers have also
been recognized, leading to multi-agent hypothesis
generation approaches (Nigam et al., 2024; Gha-
farollahi and Buehler, 2024). VIRSCI (Su et al.,
2024) further optimized this process by customiz-
ing knowledge for each agent. Additionally, the
Nova framework (Hu et al., 2024a) was introduced
to refine hypothesis by leveraging outputs from
other research as input.

Knowledge synthesis and hypothesis generation
comprise the hypothesis formulation phase. Re-
search paper recommendation supports knowledge
acquisition, while systematic literature review aids
organization within knowledge synthesis. Recent
advances integrate LLMs (de la Torre-López et al.,
2023) to enhance knowledge integration (Huang
and Tan, 2023; Gupta et al., 2023; Kacena et al.,
2024; Tang et al., 2024b). By developing a deep
understanding of a domain through knowledge syn-
thesis, researchers can identify research directions
and use hypothesis generation techniques to for-
mulate hypothesis. Additionally, the distinction
between scientific discovery and hypothesis gener-
ation is discussed in §A.

3 Hypothesis Validation

In scientific research, any proposed hypothesis
must undergo rigorous validation to establish its
validity. In some studies, this process is also re-
ferred to as ’falsification’ (Liu et al., 2024d; Huang
et al., 2025). As illustrated in Figure 4, this section
explores the application of AI in verifying scien-
tific hypothesis through three methodological com-
ponents: Scientific Claim Verification, Theorem
Proving, and Experiment Validation.

3.1 Scientific Claim Verification

Scientific claim verification, also referred to as sci-
entific fact-checking or scientific contradiction de-
tection, aims to assess the veracity of claims related
to scientific knowledge. This process assists scien-
tists in verifying research hypothesis, discovering
evidence, and advancing scientific work (Wadden
et al., 2020; Vladika and Matthes, 2023; Skarlinski
et al., 2024). Research on scientific claim verifica-
tion primarily focuses on three key elements: the
claim, the evidence, and the validity of the claim
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Figure 4: This figure illustrates the various perspec-
tives for hypothesis validation during the hypothesis
validation stage. A hypothesis is typically divided into
scientific claims and theorems, with SCI-claim verifica-
tion (scientific claim verification) and theorem proving
ensuring theoretical correctness, while experiment vali-
dation assesses practical feasibility.

(Dmonte et al., 2024).

Claim Studies have highlighted that certain
claims lack supporting evidence (Wührl et al.,
2024a), while others have demonstrated the ability
to perform claim-evidence alignment without an-
notated data (Bazaga et al., 2024). Additionally,
methods such as HiSS (Zhang and Gao, 2023) and
ProToCo (Zeng and Gao, 2023) proposed generat-
ing multiple claim variants to enhance verification.

Evidence Existing research has explored various
aspects related to evidence, including evidentiary
sources (Vladika and Matthes, 2024a), retrieval
configurations (Vladika and Matthes, 2024b),
strategies for identifying and mitigating flawed evi-
dence (Glockner et al., 2022; Wührl et al., 2024b;
Glockner et al., 2024a), and approaches for pro-
cessing sentence-level (Pan et al., 2023b) versus
document-level indicators (Wadden et al., 2022b).

Verification In the verification results genera-
tion phase, MAGIC (Kao and Yen, 2024) and
SERIf (Cao et al., 2024b) proposed utilizing LLMs
to synthesize evidence into more comprehensive
information. FactKG (Kim et al., 2023) and
Muharram and Purwarianti (2024) structured ev-
idence into knowledge graphs, enabling claim at-
tribution (Dammu et al., 2024; Wu et al., 2023).
Furthermore, Atanasova et al. (2020); Krishna et al.
(2022); Pan et al. (2023a); Eldifrawi et al. (2024);
Zhang et al. (2024b) advocated for generating ex-

planatory annotations alongside experimental out-
comes during the verification process. Meanwhile,
Das et al. (2023); Altuncu et al. (2023) emphasized
the critical role of domain expertise in ensuring
accurate verification.

3.2 Theorem Proving
Theorem proving constitutes a subtask of logical
reasoning, aimed at reinforcing the validity of the
underlying theory within a hypothesis (Pease et al.,
2019; Yang et al., 2023c; Li et al., 2024e).

Following the proposal of GPT-f (Polu and
Sutskever, 2020) to utilize generative language
models for theorem proving, researchers initially
combined search algorithms with language models
(Lample et al., 2022; Wang et al., 2023b). How-
ever, a limitation in search-based approaches was
later identified by Wang et al. (2024a), who high-
lighted their tendency to explore insignificant in-
termediate conjectures. This led some teams to
abandon search algorithms entirely. Subsequently,
alternative methods emerged, such as the two-stage
framework proposed by Jiang et al. (2023) and Lin
et al. (2024), which prioritized informal concep-
tual generation before formal proof construction.
Thor (Jiang et al., 2022a) introduced theorem li-
braries to accelerate proof generation, an approach
enhanced by Logo-power (Wang et al., 2024b)
through dynamic libraries. Studies like Baldur
(First et al., 2023), Mustard (Huang et al., 2024c),
and DeepSeek-Prover (Xin et al., 2024) demon-
strated improvements via targeted data synthesis
and fine-tuning, though COPRA (Thakur et al.,
2024) questioned their generalizability and pro-
posed an environment-agnostic alternative. Com-
plementary strategies included theoretical decom-
position into sub-goals (Zhao et al., 2023b) and
leveraging LLMs as collaborative assistants in in-
teractive environments (Song et al., 2024).

3.3 Experiment Validation
Experiment validation involves designing and con-
ducting experiments based on the hypothesis. The
empirical validity of the hypothesis is then de-
termined through analysis of the experimental re-
sults (Huang et al., 2024b).

Experiment validation represents a time-
consuming component of scientific research.
Recent advancements in LLMs have enhanced
their ability to plan and reason about experimental
tasks (Kambhampati et al., 2024), prompting
researchers to use these models for designing and
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implementing experiments (Ruan et al., 2024b).
To ensure accuracy, studies such as Zhang et al.
(2023) and Arlt et al. (2024) imposed input/output
constraints, though this reduced generalizability.
To address this, Boiko et al. (2023); Bran et al.
(2024); Huang et al. (2024a) integrated tools to
expand model capabilities. Full automation was
achieved by Ni and Buehler (2023); Li et al.
(2024a); Lu et al. (2024) through prompt-guided
multi-agent collaboration. Madaan et al. (2023);
Yuan et al. (2025) further highlighted that the
integration of feedback mechanisms demonstrated
potential for enhancing design quality, while
Zhang et al. (2024a); Liu et al. (2024c); Ni et al.
(2024) employed experimental outcomes to refine
hyperparameter configurations, and Szymanski
et al. (2023); Li et al. (2024d); Baek et al. (2024)
leveraged agent-generated analytical insights
to facilitate iterative hypothesis refinement. In
contrast, social science research often uses LLMs
as experimental subjects to simulate human
participants (Liu et al., 2023b; Manning et al.,
2024; Mou et al., 2024).

A hypothesis can be conceptualized as consisting
of two key components: claims and theorems. Sci-
entific claim verification and theorem proving offer
theoretical validation of hypothesis through formal
reasoning and logical deduction, whereas experi-
ment validation provides comprehensive practical
validation via empirical testing.

4 Manuscript Publication

Upon validating a hypothesis as feasible, re-
searchers generally progress to the publication
stage. As depicted in Figure 5, this section cat-
egorizes Manuscript Publication into two primary
components: Manuscript Writing and Peer Review.

4.1 Manuscript Writing

Manuscript writing, also referred to as scientific or
research writing. At this stage, researchers articu-
late the hypothesis they have formulated and the
results they have validated in the form of a schol-
arly paper. This process is crucial, as it not only
disseminates findings but also deepens researchers’
understanding of their work (Colyar, 2009).

Early shared tasks focused on assisting re-
searchers in writing or analyzing linguistic fea-
tures (Dale and Kilgarriff, 2010; Daudaravicius,
2015). Recent advances have led to three main
directions: citation text generation, related work

Verified Hypothesis Publication

Verified
Hypothesis

Papers Literature
Review

Generator

Citation Text

Related Work

Manuscripts

Revise

Paper

Reviewers Paper Review

Chair

Meta Review

Manuscript Publication

Figure 5: This figure shows the transformation of a val-
idated hypothesis into a publication, leveraging outputs
from the hypothesis formulation and validation stages.

generation, and complete manuscript generation.

Citation Text Generation (Sentence Level) A
subset of research on AI in scientific writing has fo-
cused on citation text generation, which addresses
the academic need for referencing prior work while
mitigating model inaccuracies (Gao et al., 2023b;
Gu and Hahnloser, 2023). For instance, Wang
et al. (2022b) developed an automated citation gen-
eration system by integrating manuscript content
with citation graphs. However, its reliance on rigid
template-based architectures led to inflexible cita-
tion formats. This limitation motivated subsequent
studies to propose incorporating citation intent as a
control parameter during text generation, aiming to
improve contextual relevance and rhetorical adapt-
ability (Yu et al., 2022; Jung et al., 2022; Koo et al.,
2023; Gu and Hahnloser, 2024).

Related Work Generation (Paragraph Level)
In contrast to citation text generation, several stud-
ies have focused on related work generation in
scholarly writing, emphasizing the production of
multiple citation texts and the systematic analy-
sis of inter-citation relationships (Li and Ouyang,
2022, 2024). The ScholaCite framework (Martin-
Boyle et al., 2024) leveraged GPT-4 to cluster ci-
tation sources and generate draft literature review
sections, although it required manually provided
reference lists. By contrast, the UR3WG system
(Shi et al., 2023) adopted a retrieval-augmented
architecture integrated with large language mod-
els to autonomously acquire relevant references.
To improve the quality of generated related work
sections, Yu et al. (2024b) utilized GNNs to
model complex relational dynamics between target
manuscripts and cited literature, while Nishimura
et al. (2024) initiative advocated for explicit novelty
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assertions regarding referenced publications.

Complete Manuscripts Generation (Full-text
Level) The aforementioned investigations primar-
ily focused on specific components of scientific
writing, while a study by Lai et al. (2024) explored
the progressive generation of complete manuscripts
via structured workflows. The AI-Scientist sys-
tem (Lu et al., 2024) further introduced section-
wise self-reflection mechanisms to enhance com-
positional coherence. Several studies emphasized
human-AI collaborative frameworks for improving
writing efficiency (Lin, 2024; Feng et al., 2024;
Ifargan et al., 2024), whereas Tang et al. (2024a)
concentrated on enabling personalized content gen-
eration in multi-author collaborative environments.
Following initial manuscript drafting, subsequent
text revision processes were systematically exam-
ined (Du et al., 2022b; Jourdan et al., 2023; Dang
et al., 2025). The OREO system (Li et al., 2022)
utilized attribute classification for iterative in-situ
editing, while Du et al. (2022a); Pividori and
Greene (2024) incorporated researcher feedback
loops for progressive text optimization. Notably,
Kim et al. (2022); Chamoun et al. (2024); D’Arcy
et al. (2024b) proposed replacing manual feedback
with automated evaluation metrics.

4.2 Peer Review
Peer review serves as a critical mechanism for
improving the quality of academic manuscripts
through feedback and evaluation, forming the cor-
nerstone of quality control in scientific research.
However, the process is hindered by its slow pace,
high time consumption, and increasing strain due
to the growing academic workload (Lin et al.,
2023a; Kousha and Thelwall, 2024; Thelwall and
Yaghi, 2024). To address these challenges and en-
hance manuscript quality, researchers have investi-
gated the application of AI in peer review (Yuan
et al., 2022; Liu and Shah, 2023; Niu et al., 2023;
Kuznetsov et al., 2024; Thakkar et al., 2025). Peer
review can be categorized into two main types: pa-
per review generation and meta-review generation.

Paper Review Generation In paper review gen-
eration, reviewers provide both scores and evalu-
ations for manuscripts. For instance, Setio and
Tsuchiya (2022) formulated score prediction as a
regression task, Muangkammuen et al. (2022) uti-
lized semi-supervised learning, and Couto et al.
(2024) treated the task as a classification problem
to evaluate the alignment between manuscripts and

review criteria. While these approaches focused
on label prediction for paper reviews, Yuan and
Liu (2022) extended the scope by directly generat-
ing reviews through the construction of a concept
graph integrated with a citation graph.

Subsequently, a pilot study conducted by Robert-
son (2023) demonstrated the capability of GPT-4
to generate paper reviews. Further investigations,
such as those by AI-Scientist (Lu et al., 2024) and
Liang et al. (2023), evaluated its performance as a
review agent. Additionally, systems like MARG
(D’Arcy et al., 2024a) and SWIF2T (Chamoun
et al., 2024) employed multi-agent frameworks to
generate reviews via internal discussions and task
decomposition. In contrast, AgentReview (Jin
et al., 2024) and Tan et al. (2024) modeled the
review process as a dynamic, multi-turn dialogue.
Furthermore, CycleResearcher (Weng et al., 2024)
and OpenReviewer (Idahl and Ahmadi, 2024) fine-
tuned models for comparative reviews and struc-
tured outputs aligned with conference guidelines.

Meta-Review Generation In meta-review gen-
eration, chairs are tasked with identifying a pa-
per’s core contributions, strengths, and weaknesses
while synthesizing expert opinions on manuscript
quality. Meta-reviews are conceptualized as ab-
stractions of comments, discussions, and paper ab-
stracts (Li et al., 2023). Santu et al. (2024) investi-
gated the use of LLMs for automated meta-review
generation, while Zeng et al. (2023) proposed a
guided, iterative prompting approach. MetaWriter
(Sun et al., 2024) utilized LLMs to extract key
reviewer arguments, whereas GLIMPSE (Darrin
et al., 2024) and Kumar et al. (2023) focused on
reconciling conflicting statements to ensure fair-
ness. Additionally, Li et al. (2024b) introduced a
three-layer sentiment consolidation framework for
meta-review generation, and PeerArg (Sukpanich-
nant et al., 2024) integrated LLMs with knowledge
representation to address subjectivity and bias via
a multiparty argumentation framework (MPAF).
DeepReview (Zhu et al., 2025) generates a compre-
hensive meta-review by simulating expert evalua-
tion across multiple dimensions.

During the Manuscript Publication phase, re-
searchers can leverage AI to systematically com-
plete manuscript writing by incorporating validated
hypothesis, related papers, and literature reviews.
The manuscript is subsequently subjected to peer
review, involving iterative revisions before culmi-
nating in its final publication.
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5 Benchmarks

Given that AI for research spans multiple disci-
plines, the tasks addressed within each domain
vary significantly. To facilitate cross-domain ex-
ploration, we provide a summary of benchmarks
associated with various areas, including research
paper recommendation, systematic literature re-
view, hypothesis generation, scientific claim veri-
fication, theorem proving, experiment verification,
manuscript writing, and peer review. An overview
of these benchmarks is presented in Table 9.

6 Tools

To accelerate the research workflow, we have cu-
rated a collection of tools designed to support var-
ious stages of the research process, with their ap-
plicability specified for each stage. To ensure prac-
tical relevance, our selection criteria emphasize
tools that are publicly accessible or demonstrate
significant influence on GitHub. A comprehensive
overview of these tools is presented in Table 10.

7 Challenges

We identify several intriguing and promising av-
enues for future research.

7.1 Integration of Diverse Research Tasks

The research process is an integrated pipeline of
interdependent stages. Paper recommendation and
literature review provide an AI tool with a field
overview and relevant works, ensuring that hypoth-
esis generation is informed and of higher quality.
Hypothesis validation assesses feasibility both log-
ically and practically, with results feeding back to
refine the hypothesis (Penadés et al., 2025). In
manuscript writing, validated hypotheses and prior
outputs serve as key inputs. Peer review evaluates
the manuscript and offers feedback across modules,
enabling the hypothesis generator to adjust content
accordingly (Lu et al., 2024). In addition, combina-
tions can also be made between some small fields,
for instance, meta-review generation could be inte-
grated with scientific claim verification, experiment
verification could be linked with hypothesis formu-
lation (Jansen et al., 2025; Yuan et al., 2025; Liu
et al., 2024d), and research paper recommendation
systems could be connected with manuscript writ-
ing processes (Gu and Hahnloser, 2023). Further-
more, some studies have begun to emphasize the
development of systems capable of covering mul-

tiple stages of the research process (Jansen et al.,
2024; Weng et al., 2024; Yu et al., 2024a).

7.2 Integration with Reasoning-Oriented
Language Models

Research is a process that places a significant em-
phasis on logic and reasoning. Theorem proving
serves as a subtask within logical reasoning (Li
et al., 2024e), while hypothesis generation is widely
recognized as the primary form of reasoning em-
ployed by scientists when observing the world
and proposing hypothesis to explain these observa-
tions (Yang et al., 2024b). Experiment verification,
in turn, demands a high degree of planning capa-
bility from models (Kambhampati et al., 2024).
Recent advances in reasoning-oriented language
models, such as OpenAI-o1 (Jaech et al., 2024)
and DeepSeek-R1 (Guo et al., 2025), have sub-
stantially enhanced the reasoning abilities of these
models. Consequently, we posit that integrating
reasoning language models with reasoning tasks is
a promising future direction. This prediction was
validated by experiments conducted by Schmidgall
et al. (2025) using o1-Preview.

Furthermore, in Appendix §B, we provide a
summary of the challenges in hypothesis formula-
tion, validation, and manuscript publication.

8 Ethical Considerations

AI has demonstrated significant potential in en-
hancing productivity by mitigating human limita-
tions, thereby motivating increased investigation
into its capacity to accelerate the research process
(Messeri and Crockett, 2024). Nevertheless, its
integration into scientific workflows introduces a
range of ethical concerns (Fecher et al., 2023; Mor-
ris, 2023), including algorithmic biases, data pri-
vacy issues, risks of plagiarism, and the broader
implications of AI-generated content for research
communities. In this work, we examine these ethi-
cal challenges across the key stages of the research
lifecycle: hypothesis formulation, validation, and
publication.

During the hypothesis formulation stage, re-
search paper recommendation systems and liter-
ature reviews are commonly employed; however,
they often suffer from limitations that can lead to
the formation of information bubbles and restrict
exposure to diverse viewpoints. Furthermore, these
systems tend to reinforce recognition disparities be-
tween prominent and lesser-known researchers and
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may inadvertently contribute to the dissemination
of misinformation (Polonioli, 2021; Bolaños et al.,
2024). To address these biases, recommendation al-
gorithms can be enhanced by emphasizing content-
based rather than author-based recommendations
and by incorporating robust evaluation mechanisms
to strengthen the credibility of suggested materials.

In contrast, AI-driven hypothesis generation
presents more pronounced ethical challenges. First,
the attribution of intellectual property rights and
authorship for AI-generated hypotheses remains
ambiguous (Majumder et al., 2024a). Additionally,
the widespread generation of low-quality content
poses a risk of diluting the integrity of the academic
landscape (Hu et al., 2024a), while the potential
misuse of such technologies for illicit purposes
cannot be overlooked (Si et al., 2024). Address-
ing these concerns necessitates the development of
robust accountability frameworks, the assignment
of clear responsibility for AI-generated outputs to
researchers, and the establishment of appropriate
legal and regulatory mechanisms.

During the hypothesis validation phase, auto-
mated systems for scientific fact-checking remain
underdeveloped. This limitation may be exploited
by malicious actors to create advanced misinfor-
mation generators capable of circumventing exist-
ing fact-checking tools (Wadden et al., 2022b).
Likewise, in the context of experimental validation,
there is a risk of unethical or legally questionable
experiments being designed (Eger et al., 2025).
These concerns underscore the need for continued
research into model safety.

During the manuscript publication stage, several
challenges remain. Text generated by AI models
may carry a risk of plagiarism (Salvagno et al.,
2023; Gupta and Pruthi, 2025), while AI-assisted
peer reviews often offer vague feedback and ex-
hibit inherent biases (Schintler et al., 2023; Drori
and Te’eni, 2024; Pataranutaporn et al., 2025). To
address these issues, the development of robust
detection methods is essential. However, current
detection tools are still in the early stages of matu-
rity (Gupta and Pruthi, 2025).

9 Conclusion

This paper provides a systematic survey of existing
research on AI for research, offering a compre-
hensive review of the advancements in the field.
Within each category, we offer detailed descrip-
tions of the associated subfields. In addition, we

examine current challenges, ethical considerations,
and potential directions for future research. To sup-
port researchers in exploring AI-driven research
applications and enhancing workflow efficiency,
we also summarize existing benchmarks and tools,
accompanied by a comparative analysis of repre-
sentative methods and their capabilities.

Furthermore, in the course of investigating vari-
ous subfields within AI for research, we observed
that this domain remains in its infancy. Research
in numerous directions remains at an experimental
stage, and substantial progress is necessary before
these approaches can be effectively applied in prac-
tical scenarios. We hope that this survey serves
as an introduction to the field for researchers and
contributes to its continued advancement.

Limitation

This study presents a comprehensive survey of AI
for research, based on the framework of the re-
search process conducted by human researchers.

We have made our best effort, but there may still
be some limitations. Due to space constraints, we
provide only concise summaries of each method
without detailed technical elaboration. Given the
rapid progress in AI and the expanding research
landscape, we primarily focus on works published
after 2022, with earlier studies receiving less at-
tention. To emphasize areas that closely mimic
the human research process, some topics are ex-
cluded from the main text but briefly discussed
in Appendix §A. Moreover, as AI for Research
is still an emerging field, the lack of standardized
benchmarks and evaluation metrics hinders direct
comparison. Nonetheless, we offer a comparative
analysis of representative methods across domains
using attribute graphs in Appendix §C.
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A Further Discussion

Open Question: What is the difference between
AI for science and AI for research? We posit
that AI for research constitutes a subset of AI for
science. While AI for research primarily focuses
on supporting or automating the research process, it
is not domain-specific and places greater emphasis
on methodological advancements. In contrast, AI
for science extends beyond the research process to
include result-oriented discovery processes within
specific domains, such as materials design, drug
discovery, biology, and the solution of partial differ-
ential equations (Zheng et al., 2023b; AI4Science
and Quantum, 2023; Zhang et al., 2024d).

Open Question: What is the difference between
hypothesis generation and scientific discovery?
Hypothesis generation, which is primarily based
on literature-based review (LBD) (Swanson, 1986;
Sebastian et al., 2017), emphasizing the process by
which researchers generate new concepts, solutions,
or approaches through existing research and their
own reasoning. Scientific discovery encompasses
not only hypothesis generation, but also innova-
tion in fields like molecular optimization and drug
development (Ye et al., 2024; Liu et al., 2024b),
driven by outcome-oriented results.

Open Question: What is the difference be-
tween systematic literature review and related
work generation? Existing research frequently
addresses the systematic literature survey, which
constitutes a component of the knowledge synthesis
process during hypothesis formulation, alongside
the related work generation phase in manuscript
writing (Luo et al., 2025). However, we argue that
these two tasks are distinct in nature. The system-
atic literature survey primarily focuses on summa-
rizing knowledge extracted from diverse scientific
documents, thereby assisting researchers in acquir-
ing an initial understanding of a specific field (Alt-
mami and Menai, 2022). In contrast, related work
generation focuses on the writing process, empha-
sizing selection of pertinent literature and effective
content structuring (Nishimura et al., 2024).

Discussion: Potential links between artificial in-
telligence systems and human research practice

• In research paper recommendation, Paper-
Weaver (Lee et al., 2024) offers an interactive
page that allows users to modify the topics
they are interested in.

• In systematic literature review, Block and
Kuckertz (2024) highlights the significant role
of humans, including setting correct questions
and individualized problem-solving and the-
orizing. Meanwhile, Hsu et al. (2024) em-
phasizes manual correction during the outline
generation process.

• In hypothesis generation, AI engages more
closely with human researchers, ranging from
scenarios where humans provide the core
ideas and AI contributes by iteratively refining
them (Pu et al., 2024), to more collaborative
settings where humans and AI engage in di-
alogue to facilitate new scientific discoveries
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(Ni et al., 2024; Liu et al., 2024b; Ye et al.,
2024).

• In scientific claim verification, Altuncu et al.
(2023); Das et al. (2023) highlight the critical
role of experts in countering fake scientific
news and advocate for the incorporation of
expert opinions as a form of evidence.

• In theorem proving, Song et al. (2024) pro-
poses leveraging LLMs as assistants to human
researchers by generating suggested proof
steps throughout the proving process.

• In experiment Validation, Ni et al. (2024) en-
hances the experimental setup through human-
AI dialogue, whereas Li et al. (2024d) in-
corporates human input and real-time adjust-
ments during the execution phase to optimize
experimental design.

• In manuscript writing, Ifargan et al. (2024);
Feng et al. (2024); Du et al. (2022a) require
human intervention to suggest improvements
to AI-generated paragraphs and enhance their
quality through interactive methods.

• In peer review, Kumar et al. (2023); Darrin
et al. (2024) advocate for assigning the respon-
sibility of generating meta-reviews to human
researchers. The role of AI is to assist by
identifying conflicts among reviewers’ opin-
ions and supporting the chair in the scoring
process, rather than independently assigning
scores.

At present, AI for research remains in its early
stages, and most systems still rely heavily on hu-
man priors and conventional research workflows.
This is due to both the limitations of current models
and the lack of trust from the research community.
However, as model capabilities significantly im-
prove, we may witness a paradigm shift. Systems
like AlphaFold have already demonstrated that im-
pactful scientific contributions can be made without
fully replicating human research processes. In the
future, AI may become an autonomous scientific
agent, pursuing its own pathways of discovery, po-
tentially letting humans learn from the model.

Discussion: The involvement of AI in
manuscript writing The application of
AI in manuscript writing has been accompanied by
significant controversy. As LLMs demonstrated

advanced capabilities, an increasing number of
researchers began adopting these systems for
scholarly composition (Liang et al., 2024b;
Gao et al., 2023a). This trend raised concerns
within the academic community (Salvagno et al.,
2023), with scholars explicitly opposing the
attribution of authorship to AI systems (Lee,
2023). Despite these reservations, the substantial
time efficiencies offered by this technology led
researchers to gradually accept AI-assisted writing
practices (Gruda, 2024; Huang and Tan, 2023;
Chen, 2023).This shift ultimately led to formal
guidelines issued by leading academic journals
(Ganjavi et al., 2024; Xu, 2025).

Discussion: Some areas that have not been dis-
cussed In addition to the eight areas discussed
above, there are other lines of work that also aim
to support scientific research, such as reading assis-
tance (Kang et al., 2020; Head et al., 2021; Lo et al.,
2023), which helps researchers read academic pa-
pers; literature processing2, which handles docu-
ments in various formats to provide effective data
for subsequent tasks; as well as code and data gen-
eration (Bauer et al., 2024; Zheng et al., 2023a),
which serve as a foundation for experimental vali-
dation. However, as our focus is on the core process
of scientific research, we have chosen to omit these
aspects from the main text.

Discussion: Unified system and domain-specific
system to automate research There is a clear
distinction between unified and domain-specific
AI research systems. Some efforts aim to develop
general-purpose frameworks capable of supporting
scientific discovery across domains (e.g., AI Scien-
tist (Lu et al., 2024)), while others target domain-
specific challenges (e.g., AI in biology (Irons et al.,
2024)). Given the current limitations of AI capa-
bilities, general-purpose systems have not yet fully
replaced domain-specific approaches. Both direc-
tions remain valuable, but a long-term vision may
favor general systems, as they hold the potential
to integrate cross-disciplinary knowledge and push
the boundaries of scientific understanding.

B Challenges

B.1 Hypothesis Formulation
Knowledge Synthesize Existing paper recom-
mendation tools predominantly rely on the meta-
data of existing publications to suggest related arti-

2https://sdproc.org
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cles, which often results in a lack of user-specific
targeting and insufficiently detailed presentation
that hampers comprehension. Leveraging LLMs
can facilitate the construction of dynamic user pro-
files, enabling personalized literature recommenda-
tions and enhancing the richness of the contextual
information provided for each recommended arti-
cle, ultimately improving the user experience. In
the process of generating systematic literature re-
views, our practical experience reveals that the out-
line generation tools often produces redundant re-
sults with insufficient hierarchical structure. More-
over, the full-text generation process is prone to
hallucinations—for instance, statements may not
correspond to the cited articles—a pervasive is-
sue in large language models (Huang et al., 2023;
Bolaños et al., 2024; Susnjak et al., 2024). This
problem can be ameliorated by enhancing the foun-
dational model capabilities or by incorporating ci-
tation tracing.

Hypothesis Generation Most existing tools gen-
erate hypotheses by designing prompts or construct-
ing systematic frameworks, which heavily rely on
the capabilities of pre-trained models. However,
these methods struggle to balance the novelty, fea-
sibility, and validity of the hypotheses (Li et al.,
2024c).Furthermore, our investigation reveals that
many current approaches adopt novelty and feasi-
bility as evaluation metrics; these metrics are ei-
ther difficult to quantify or require manual scoring,
which can introduce bias. To date, there is no uni-
fied benchmark to compare the various methods,
and we believe that future research should priori-
tize establishing a unified metric that objectively
reflects the strengths and weaknesses of different
approaches.

B.2 Hypothesis Validation

Most existing scientific claim verification tools are
largely confined to specific domains, exhibiting
poor generalizability, which limits their practical
applicability (Vladika and Matthes, 2023). Theo-
rem proving, the scarcity of relevant data adversely
affects performance improvements through training
, results across different proof assistants are not di-
rectly comparable, and the lack of standardized
evaluation benchmarks presents numerous chal-
lenges. Moreover, current approaches remain pre-
dominantly in the research stage and lack practical
tools that facilitate interaction with researchers (Li
et al., 2024e). Experiment Validation, as automat-

ically generated experiments often suffer from a
lack of methodological rigor, practical feasibility,
and alignment with the original research objectives
(Lou et al., 2024). All these fields require rigor-
ous logical reasoning, and I believe that the recent
surge in advanced reasoning technologies could
potentially address these issues.

B.3 Manuscript Publication
Similar to systematic literature surveys, manuscript
writing is also adversely affected by hallucination
issues (Athaluri et al., 2023; Huang et al., 2023).
Even when forced citation generation is employed,
incorrect references may still be introduced (Alja-
maan et al., 2024). Furthermore, the text generated
by models requires meticulous examination by re-
searchers to avoid ethical concerns, such as plagia-
rism risks (Salvagno et al., 2023). AI-generated
manuscript reviews frequently provide vague sug-
gestions and are susceptible to biases (Chamoun
et al., 2024; Drori and Te’eni, 2024). Addition-
ally, during meta-review generation, models can
be misled by erroneous information arising from
the manuscript review process (Kumar et al., 2023).
To address these issues, it may be necessary for
the industry to establish appropriate regulations
or to employ AI-based methods for detecting AI-
generated papers and reviews (Lin et al., 2023a).

C Ability Comparison

An effective survey should not only summarize ex-
isting methods within a field but also provide com-
parative analyses of different approaches. How-
ever, the domain of AI for Research remains in its
early stages, with many areas lacking standardized
benchmarks and even established evaluation met-
rics. To facilitate a clearer understanding of the
distinctions among various methods, we draw on
existing literature (Kang et al., 2023; Bolaños et al.,
2024; Luo et al., 2025; Vladika and Matthes, 2023;
Yang et al., 2023c; Li and Ouyang, 2022, 2024; Lin
et al., 2023a) and adopt attribute graphs to compare
representative approaches within each subfield, as
illustrated in table §1 to table §8.
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Method Human-Computer Interaction LLM Required Information Return Information Relevance Source

ComLittee (Kang et al., 2023) ✓ - Authorship Graphs Meta data with relevant authors R, Co, Ci
ArZiGo (Pinedo et al., 2024) ✓ - User Interest Meta data R
PaperWeaver (Lee et al., 2024) ✓ ✓ Collected Papers Meta data with description R

Kang et al. (2022) - -
Author’s social network relationships

+Reference relationship
Meta data with relevant authors R

Table 1: Research Paper Recommendation, we referred to Kang et al. (2023) for comparing different methods,
where R represents Paper recommender score, Co represents Co-author relationship, and Ci represents Cited author
relationship.

Method Research Field Across Stages Human Interaction Task Input Output Evaluation Method

AutoSurvey (Wang et al., 2024e) Any ✓ -
Outline Generation,

+Full-text Generation
Title & Full Content Literature Survey LLM & Human

CHIME (Hsu et al., 2024) Biomedicine - ✓ Outline Generation Title & Full Content Hierarchical Outline Automatic Metrics
Knowledge Navigator (Katz et al., 2024) Any - - Outline Generation Title & Full Content Hierarchical Outline LLM & Human
Relatedly (Palani et al., 2023) Any - - Full-text Generation Title & Related Work Literature Survey Human

STORM (Shao et al., 2024) Any - -
Outline Generation,

+Full-text Generation
Title & Full Content Literature Survey LLM & Automatic Metrics

Table 2: Scientific Literature Review, we referred to Bolaños et al. (2024) and made modifications, thereby
comparing different methods.

Method Research Field Across Stages Human Interaction Multi-agent Trained Model Online RAG Novelty Feasibility Validity

COI (Li et al., 2024a) Any ✓ - - - ✓ ✓ ✓ ✓
Learn2Gen (Li et al., 2024c) Artification Intelligence ✓ - - ✓ - ✓ ✓ ✓
MatPilot (Ni et al., 2024) Materials Science ✓ ✓ ✓ - - ✓ ✓ -
SciAgents (Ghafarollahi and Buehler, 2024) Any - ✓ ✓ - - ✓ ✓ -
SciMON (Wang et al., 2024c) Any - - - ✓ - ✓ - -

Table 3: Hypothesis Generation, we referred to Luo et al. (2025) and made modifications, thereby comparing
different methods.

Method Input Document Retrieval Human Interaction Rationale Selection Evidence Format Output

MULTIVERS (Wadden et al., 2022b) Claim & scientific abstract Provided - Longformer Document Label & sentence-level rationales
SFAVEL (Bazaga et al., 2024) Claim Pre-trained Language Model - - knowledge graph Top-K Facts & Corresponding Relevance Scores
ProToCo (Zeng and Gao, 2023) Claim-Evidence Pair Provided - - Sentence Label
MAGIC (Kao and Yen, 2024) Claim Provided - Dense Passage Retriever Sentence Label
aedFaCT (Altuncu et al., 2023) News Article Google Search ✓ Human Document Evidence

Table 4: Scientific Claim Verification, we referred to Vladika and Matthes (2023) and made modifications, thereby
comparing different methods.

Method Generation Based Stepwise Heuristic Search Informal or Formal Human-authored Realistic Proof

IBR (Qu et al., 2022) - ✓ ✓ Informal -
GPT-f (Polu and Sutskever, 2020) ✓ ✓ - Formal ✓
DT-Solver (Wang et al., 2023b) ✓ ✓ ✓ Formal ✓
POETRY (Wang et al., 2024a) ✓ - - Formal ✓

Table 5: Theorem proving, we referred to Yang et al. (2023c) and made modifications, thereby comparing different
methods.

Method Research Field Across Stages Human Interaction Multi-agent Task Input External tools

AutoML-GPT (Zhang et al., 2023) Artification Intelligence - - - Automated Machine Learning Task-oriented Prompts -
Chemcrow (Bran et al., 2024) Chemistry - ✓ - Chemical Task Task Description ✓
DOLPHIN (Yuan et al., 2025) Any ✓ - ✓ Automated Scientific Research Idea ✓
MechAgents (Ni and Buehler, 2023) Physics - - ✓ Mechanical Problem - -
Manning et al. (2024) Social Science ✓ - ✓ Simulating Human - -

Table 6: Experiment Validation: we use attribute diagrams to compare different schemes, and the table design refers
to Hypothesis Generation.

Method Across Stages Human Interaction Task Input Evaluation Method

AI Scientist (Lu et al., 2024) ✓ - Full-text Generation Manuscript Template & Experimental Results & Hypothesis LLM
data-to-paper (Ifargan et al., 2024) ✓ ✓ Full-text Generation Experimental Results & Hypothesis -
ScholaCite (Martin-Boyle et al., 2024) - - Related Work Generation Title & Abstract & Citation Citation Graph Metrics
SciLit (Gu and Hahnloser, 2023) ✓ - Citation Generation Keywords Automatic Metrics
Gu and Hahnloser (2024) - - Citation Generation Citation Intent & Keywords Human

Table 7: Manuscript Writing, we referred to Li and Ouyang (2022, 2024) and made modifications, thereby comparing
different methods.
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Method Across Stages Human Interaction Paper Review Meta Review Multi-agent Trained Model Output

Gamma-Trans (Muangkammuen et al., 2022) - - ✓ - - ✓ Peer-review Score
MARG (D’Arcy et al., 2024a) - - ✓ - ✓ - Peer-review Comments
CycleResearcher (Weng et al., 2024) ✓ - ✓ - - ✓ Peer-review Comments & Score
PeerArg (Sukpanichnant et al., 2024) - - - ✓ - - Final Decision
GLIMPSE (Darrin et al., 2024) - ✓ - ✓ - - Summary of Peer-review

Table 8: Peer Review, we referred to Lin et al. (2023a) and made modifications, thereby comparing different
methods.

Task Benchmark Domain Size Input Output Metric

SCHOLAT (Li et al., 2020) Research Paper Recommendation 34,518 - - Recall, Precission, F1-score
ACL selection network (Tao et al., 2020) Research Paper Recommendation 18,718 Topics Related Papers Accuracy
CiteSeer (Kang et al., 2021) Research Paper Recommendation 1,100 Paper Related Papers Correlation Coefficient
SciReviewGen (Kasanishi et al., 2023) Systematic Literature Review 10,000+ Abstracts literature review ROUGE
FacetSum (Meng et al., 2021) Systematic Literature Review 60,024 Source Text+Facet Summary of Facet ROUGE
BigSurvey (Liu et al., 2022) Systematic Literature Review 7,000+ Abstracts Survey Paragraph ROUGE, F1-score

SCHOLARQABENCH (Asai et al., 2024) Systematic Literature Review 2,200 Question Answer with Citations Accuracy, Coverage, Citations
+ Relevance, Usefulness

HiCaD (Zhu et al., 2023) Systematic Literature Review 7,600 Reference Papers Catalogues Catalogue Edit Distance Similarity (CEDS)
+ Catalogue Quality Estimate (CQE)

CLUSTREC-COVID (Katz et al., 2024) Systematic Literature Review 2,284 Titles, Abstracts Topic Clusters per Topic
CHIME (Hsu et al., 2024) Systematic Literature Review 2,174 Topic Hierarchies F1-score
Tian et al. (2024) Systematic Literature Review 700 Subject, Reference Title,Content -

MASSW (Zhang et al., 2024c) Hypothesis Generation 152000 Context of Literature Hypothesis BLEU, ROUGE, BERTScore,
+ Cosine Similarity, BLEURT

IdeaBench (Guo et al., 2024) Hypothesis Generation 2,374 Instruction, Background Information Hypothesis Insight Score, BERTScore, Novelty,
+ LLM Similarity Rating, Feasibility

SCIMON (Wang et al., 2024c) Hypothesis Generation - Background Context Idea ROUGE, BERTScore
+BARTScore, Novelty

MOOSEYang et al. (2024b) Hypothesis Generation 50 Background, Inspiration Hypothesis Validness, Novelty
+ Helpfulness

DISCOVERYBENCH (Majumder et al., 2024b) Hypothesis Generation 1,167 Data Discovery Hypothesis Match Score

Hypothesis

LiveIdeaBench (Ruan et al., 2024a) Hypothesis Generation - Scientific Keywords Idea Originality, Feasibility
+ Fluency, Flexibilit

Formulation

Kumar et al. (2024) Hypothesis Generation 100 Paper without Future Work Idea Idea Alignment Score, Idea Distinctness Index

SciRIFF (Wadden et al., 2024) Scientific Claim Verification 137,000 Evidence, Task prompt Structured Paragraph F1, BLEU
SCIFACT (Wadden et al., 2020) Scientific Claim Verification 1,409 Claim, Evidence Rationale Sentences, Label Precision, Recall, Micro-F1
SCIFACT-OPEN (Wadden et al., 2022a) Scientific Claim Verification 279 Claim, Evidence Rationale Sentences, Label Precision, Recall,Micro-F1

MISSCI (Glockner et al., 2024b) Scientific Claim Verification 435 Claim, Premise, Context Verification
Micro F1-score,P@1,Arg@1

+ METEOR Score,BERTScore
+NLI-A, NLI-S, Matches@1

FEVER (Thorne et al., 2018) Scientific Claim Verification 185,445 Claim, Evidence Label, Necessary Evidence F1-Score,Oracle Accuracy
+ Accuracy,Recall

XClaimCheck (Kao and Yen, 2024) Scientific Claim Verification 16,177 Claim, Evidence Label, Argument Macro-F1, Accuracy

HEALTHVER (Sarrouti et al., 2021) Scientific Claim Verification 14330 Claim, Evidence Label Macro Precision, Macro Recall
+ Macro F1-score, Accuracy

QuanTemp (V et al., 2024) Scientific Claim Verification 15,514 Claim, Evidence Label
Weighted-F1 Score, Macro-F1, BLEU,
+ BERTScore, Cohen’s Kappa Score

+ Human Evaluation
SCITAB (Lu et al., 2023) Scientific Claim Verification 1,225 Claim, Evidence Label Macro-F1
Check-COVID (Wang et al., 2023a) Scientific Claim Verification 1,504 Claim Evidence Accuracy, Precision, Recall, Macro-F1
HealthFC (Vladika et al., 2024) Scientific Claim Verification 750 Claim, Evidence Label Precision, Recall, F1-Macro
FACTKG (Kim et al., 2023) Scientific Claim Verification 108,000 Claim, Evidence Label Accuracy

BEAR-FACT (Wührl et al., 2024a) Scientific Claim Verification 1,448 Claim, Evidence
+Entity/Relation Information Label F1-Score

MINIF2F (Zheng et al., 2022) Theorem Proving 488 Problem, Theorem Proof Pass Rate
FIMO (Liu et al., 2023a) Theorem Proving 149 Problem, Theorem, statements Proof Pass Rate
LeanDojo (Yang et al., 2023a) Theorem Proving 98,734 Problem, Theorem Proof R@k, MRR, Pass Rate
Lean-github (Wu et al., 2024) Theorem Proving 28,597 Problem, Theorem Proof Accuracy, Pass Rate
TRIGO-real (Xiong et al., 2023) Theorem Proving 427 Problem, Theorem Proof Pass Rate, Accuracy, EM@n
TRIGO-web (Xiong et al., 2023) Theorem Proving 453 Problem, Theorem Proof Pass Rate, Accuracy, EM@n
TRIGO-gen (Xiong et al., 2023) Theorem Proving - Problem, Theorem Proof Pass Rate, Accuracy, EM@n
CoqGym (Yang and Deng, 2019) Theorem Proving 71,000 Problem, Theorem Proof Success Rate
MLAgentBench (Huang et al., 2024b) Experiment Validation 13 - - Competence, Efficiency

AAAR-1.0 (Lou et al., 2024) Experiment Validation - Instance, Papers Design, Explanation S-F1, S-Precision, S-Recall
+ S-Match, ROUGE

TASKBENCH (Shen et al., 2024) Experiment Validation 17,331 - - ROUGE, t-F1, v-F1
+Normalized Edit Distance

Spider2-V (Cao et al., 2024a) Experiment Validation 494 Task Experiment Execution Success Rate
CORE-Bench (Siegel et al., 2024) Experiment Validation 270 Task Requirements Experiment Result Accuracy
LAB-Bench (Laurent et al., 2024) Experiment Validation 2400 Multiple-choice Question Answer Accuracy, Precision, Coverage
PaperBench (Starace et al., 2025) Experiment Validation 20 Paper, Additional Information Code Replication Score

Hypothesis

SUPER (Bogin et al., 2024) Experiment Validation 801 Task Requirements - Accuracy, Landmark-Based Evaluation

Validation

ScienceAgentBench (Chen et al., 2025) Experiment Validation 102 Task Instruction, Dataset Information
+Expert-Provided Knowledge Program Valid Execution Rate, Success Rate, CodeBERTScore, API Cost

SciCap+ (Yang et al., 2023b) Manuscript Writing 414,000 Figure, OCR tokens
+ Mention Paragraph Caption BLEU, ROUGE, METEOR

+ CIDEr, SPICE
AAN Corpus (Radev et al., 2013) Manuscript Writing - - - -
SciSummNet (Yasunaga et al., 2019) Manuscript Writing 1,000 Paper,Citation Sentence Summary ROUGE
CiteBench (Funkquist et al., 2023) Manuscript Writing 358,765 Cited Papers, Context Citation Text ROUGE, BERTScore
ALCE (Gao et al., 2023b) Manuscript Writing 3,000 Question Answer with Citations Recall, Precision
GCite (Wang et al., 2022b) Manuscript Writing 2,500 Citing/Cited Paper Citation Text BLEU, ROUGE
ARXIVEDITS (Jiang et al., 2022b) Manuscript Writing 1,000 Sentence Pairs Sentence, Intent Precision,Recall,F1-score

CASIMIR (Jourdan et al., 2024) Manuscript Writing 15,646 Original Sentence Revised Sentence Exact-match (EM),SARI, BLEU,
+ ROUGE-L,Bertscore

ParaRev (Jourdan et al., 2025) Manuscript Writing 48,203 Original Paragraph Revised Paragraph ROUGE-L,SARI
+ BertScore

SCHOLAWRITE (Wang et al., 2025) Manuscript Writing 62,000 Before-text Writing Intention, After-text F1-score, Lexical Diversity, Topic Consistency, Intention Coverage
MReD (Shen et al., 2022) Peer Review 7,089 Reviews Meta-Review ROUGE

ORSUM(Zeng et al., 2024) Peer Review 15,062 Reviews Meta-Review ROUGE-L, BERTScore, FACTCC
+ SummaC, DiscoScore

PeerRead v1 (Kang et al., 2018) Peer Review 107,000 Reviews Accept/Reject Accuracy

NLPeer (Dycke et al., 2023) Peer Review 5,000 Reviews,Paper Review Score, Connection,
+ Review Category

MRSE, F1-macro
+ Precision, Recall

AMPERE (Hua et al., 2019) Peer Review 400 Review Review with Type Precision, Recall, F1-score

MOPRD (Lin et al., 2023b) Peer Review 6,578 Reviews,Paper Editorial Decision, Review,
+ Meta-Review, Author Rebuttal ROUGE, BARTScore

ARIES (D’Arcy et al., 2024b) Peer Review 1,720 Review Comment, Edits Comment-Edit Pairs Precision, Recall, F1-score

ASAP-Review (Yuan et al., 2022) Peer Review - Paper Review

Aspect Coverage, Aspect Recall,
+Semantic Equivalence

+Human: Recommendation Accuracy(RAcc),
+Informativeness(Info),Aspect-level,

+Constructiveness(ACon) and Summary accuracy
ReviewMT (Tan et al., 2024) Peer Review 26,841 Paper Review Dialogue ROUGE,BLEU,METEOR

Manuscript

ReAct (Choudhary et al., 2021) Peer Review 6,250 Review Classification of Review Accuracy

Publication

PEERSUM (Li et al., 2023) Peer Review - Reviews Meta-Review ROUGE,BERTScore,UniEval,ACC

Table 9: An overview of benchmarks on AI for research. In the Input, Output, and Metric columns, the ’+’ symbol
indicates that the row is a continuation of the previous row.

11801



Tool Research Paper
Recommendation

Systematic
Literature
Review

Hypothesis
Generation

Scientific Claim
Verification

Theorem
Proving

Experiment
Verification

Manuscript
Writing

Peer
Review

Reading
Assistance

Connected Paper ✓
Inciteful ✓
Litmaps ✓
Pasa ✓
Research Rabbit ✓
Semantic Scholar ✓ ✓
GenGO ✓ ✓
Jenni AI ✓ ✓ ✓
Elicit ✓ ✓
Undermind ✓ ✓
OpenScholar ✓ ✓
ResearchBuddies ✓ ✓
Hyperwrite ✓ ✓ ✓
Concensus ✓ ✓ ✓
Iris.ai ✓ ✓ ✓ ✓
MirrorThink ✓ ✓ ✓ ✓ ✓
SciSpace ✓ ✓ ✓ ✓ ✓
AskYourPDF ✓ ✓ ✓ ✓ ✓ ✓
Iflytek ✓ ✓ ✓ ✓ ✓ ✓ ✓
FutureHouse ✓ ✓ ✓ ✓
Enago Read ✓ ✓ ✓ ✓ ✓ ✓
Aminer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
OpenRsearcher ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ResearchFlow ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
You.com ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GPT Researcher ✓
PICO Portal ✓
SurveyX ✓
Scinence42:Dora ✓ ✓
STORM ✓ ✓
ChatDOC ✓ ✓
Scite ✓ ✓
Silatus ✓ ✓
Agent Laboratory ✓ ✓ ✓
Sider ✓ ✓ ✓
Quillbot ✓ ✓ ✓ ✓
Scholar AI ✓ ✓ ✓ ✓ ✓ ✓
AI-Researcher ✓ ✓ ✓ ✓ ✓
AI Scientist ✓ ✓ ✓ ✓
Isabelle ✓
LeanCopilot ✓
Llmstep ✓
Proverbot9001 ✓
chatgpt_academic ✓
gpt_academic ✓
HeadlineAnalyzer ✓
Langsmith Editor ✓
Textero.ai ✓
Wordvice.AI ✓
Writesonic ✓
Writefull ✓ ✓
Covidence ✓
Penelope.ai ✓
Byte-science ✓
Cool Papers ✓
Explainpaper ✓
Uni-finder ✓

Table 10: Tools for Research Paper Assistance
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https://www.connectedpapers.com/
https://inciteful.xyz/
https://www.litmaps.com/
https://pasa-agent.ai/
https://researchrabbitapp.com/
https://www.semanticscholar.org/
https://gengo.sotaro.io/
https://jenni.ai/
https://elicit.com/
https://undermind.ai/home/
https://openscholar.allen.ai/
https://researchbuddy.app/
https://www.hyperwriteai.com/
https://consensus.app/search/
https://iris.ai/
https://mirrorthink.ai/
https://typeset.io/
https://askyourpdf.com
https://sciai.las.ac.cn/
https://platform.futurehouse.org/
https://www.read.enago.com/
https://www.aminer.cn/
https://github.com/GAIR-NLP/OpenResearcher
https://rflow.ai/
https://you.com/?chatMode=research
https://gptr.dev/
https://picoportal.org/
https://surveyx.cn/list
https://pharma.ai/dora
https://storm.genie.stanford.edu/
https://chatdoc.com/
https://scite.ai/home
https://silatus.com/
https://github.com/SamuelSchmidgall/AgentLaboratory
https://sider.ai/
https://quillbot.com/
https://scholarai.io/
https://sakana.ai/ai-scientist/
https://sakana.ai/ai-scientist/
https://isabelle.in.tum.de/
https://github.com/lean-dojo/LeanCopilot
https://github.com/wellecks/llmstep
https://proverbot9001.ucsd.edu/
https://github.com/ifyz/chatgpt_academic
https://github.com/binary-husky/gpt_academic
https://coschedule.com/headline-analyzer
https://editor.langsmith.co.jp/
https://textero.ai/
https://wordvice.ai/
https://writesonic.com/
https://x.writefull.com/
https://www.covidence.org/
https://www.penelope.ai/
https://byte-science.com/
https://papers.cool/
https://www.explainpaper.com/
https://uni-finder.dp.tech/question
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Hypothesis
Formulation (§2)

Knowledge Synthe-
size (§2.1)

Research Paper
Recommendation
(§2.1.1)

PaperWeaver (Lee et al., 2024), ArZiGo (Pinedo et al., 2024), ComLittee (Kang et al., 2023), Stergiopoulos
et al. (2024), Kang et al. (2022), Kreutz and Schenkel (2022) , Shahid et al. (2020), Bai et al. (2019), Li
and Zou (2019), Beel et al. (2016)

Systematic
Literature Review
(§2.1.2)

AutoSurvey (Wang et al., 2024e) , OpenScholar (Asai et al., 2024) , HiReview (Hu et al., 2024b), Pa-
perQA2 (Skarlinski et al., 2024), Knowledge Navigator (Katz et al., 2024), CHIME (Hsu et al., 2024),
STORM (Shao et al., 2024), LitLLM (Agarwal et al., 2024a), Bio-SIEVE (Robinson et al., 2023), KGSum
(Wang et al., 2022a), Agarwal et al. (2024b), Lai et al. (2024), Susnjak et al. (2024), Bolaños et al. (2024),
Block and Kuckertz (2024), Zhu et al. (2023) , Altmami and Menai (2022)

Hypotheses Genera-
tion (§2.2)

Other Works
MOOSE-Chem (Yang et al., 2024c), IdeaSynth (Pu et al., 2024), Si et al. (2024), Kumar et al. (2024), Giro-
tra et al. (2023), Qi et al. (2023), Krenn et al. (2022), Henry and McInnes (2017)

Input Data Quality SciPIP (Wang et al., 2024d), COI (Li et al., 2024a), SciAgents (Ghafarollahi and Buehler, 2024), DATAVOY-
AGER (Majumder et al., 2024a), SciMON (Wang et al., 2024c), Buehler (2024), Liu et al. (2024a)

Hypothesis Quality
Agentrxiv (Schmidgall and Moor, 2025) Dolphin (Yuan et al., 2025), VIRSCI (Su et al., 2024), Nova (Hu
et al., 2024a), AI Scientist (Lu et al., 2024), SGA (Ma et al., 2024), HypoGeniC (Zhou et al., 2024), Re-
searchAgent (Baek et al., 2024), Acceleron (Nigam et al., 2024), MOOSE (Yang et al., 2024b)

Hypothesis Validation
(§3)

Scientific Claim Veri-
fication (§3.1)

Claim
HiSS (Zhang and Gao, 2023), SFAVEL (Bazaga et al., 2024), ProToCo (Zeng and Gao, 2023), Wührl et al.
(2024a)

Evidence
Glockner et al. (2024a), Vladika and Matthes (2024b), Vladika and Matthes (2024a), Wührl et al. (2024b),
Pan et al. (2023b), Glockner et al. (2022), Wadden et al. (2022b)

Verification
ClaimVer (Dammu et al., 2024), MAGIC (Kao and Yen, 2024), FactKG (Kim et al., 2023), aedFaCT (Altuncu
et al., 2023), PROGRAMFC (Pan et al., 2023a), Zhang et al. (2024b), Muharram and Purwarianti (2024),
Eldifrawi et al. (2024), Cao et al. (2024b), Das et al. (2023), Wu et al. (2023)

Theorem Proving
(§3.2)

DeepSeek-Prover (Xin et al., 2024), Lean-STaR (Lin et al., 2024), Thor (Jiang et al., 2022a), COPRA (Thakur et al., 2024), Logo-
power (Wang et al., 2024b), Baldur (First et al., 2023), Mustard (Huang et al., 2024c), DT-Solver (Wang et al., 2023b), HTPS (Lample
et al., 2022), GPT-f (Polu and Sutskever, 2020), Wang et al. (2024a), Song et al. (2024), Li et al. (2024e), Zhao et al. (2023b), Yang et al.
(2023c), Jiang et al. (2023)

Experiment Validation
(§3.3)

MatPilot (Ni et al., 2024), CRISPR-GPT (Huang et al., 2024a), AgentHPO (Liu et al., 2024c), AutoML-GPT (Zhang et al., 2023), ML-
Copilot (Zhang et al., 2024a), (Arlt et al., 2024), Kambhampati et al. (2024), Ruan et al. (2024b), Huang et al. (2024b), Boiko et al.
(2023), Bran et al. (2024), Szymanski et al. (2023), Liu et al. (2023b), Manning et al. (2024), Mou et al. (2024)

Manuscript
Publication (§4)

Manuscript Writing
(§4.1)

Citation Text
Generation

SciLit (Gu and Hahnloser, 2023), DisenCite (Wang et al., 2022b), Gu and Hahnloser (2024), Gao et al.
(2023b), Yu et al. (2022), Jung et al. (2022)

Related Work
Generation

ScholaCite (Martin-Boyle et al., 2024), UR3WG (Shi et al., 2023), Li and Ouyang (2024), Yu et al. (2024b),
Nishimura et al. (2024), Li and Ouyang (2022)

Complete
Manuscripts
Generation

Cocoa (Feng et al., 2024), Step-Back (Tang et al., 2024a), data-to-paper (Ifargan et al., 2024), ARIES (D’Arcy
et al., 2024b), OREO (Li et al., 2022), R3 (Du et al., 2022a), Lai et al. (2024), Chamoun et al. (2024), Pivi-
dori and Greene (2024), Jourdan et al. (2023), Lin (2024)

Peer Review (§4.2)

Paper Review
Generation

CycleResearcher (Weng et al., 2024), OpenReviewer (Idahl and Ahmadi, 2024) RelevAI-Reviewer (Couto
et al., 2024), AgentReview (Jin et al., 2024), SWIF2T (Chamoun et al., 2024), MARG (D’Arcy et al., 2024a),
Quality Assist (Setio and Tsuchiya, 2022), KID-Review (Yuan and Liu, 2022) Tan et al. (2024), Liang et al.
(2023), Robertson (2023), Muangkammuen et al. (2022),

Meta-Review
Generation

Deeprview (Zhu et al., 2025) PeerArg (Sukpanichnant et al., 2024) GLIMPSE (Darrin et al., 2024),
MetaWriter (Sun et al., 2024), CGI2 (Zeng et al., 2023), Li et al. (2024b), Santu et al. (2024), Kumar et al.
(2023), Li et al. (2023)

Figure 6: Taxonomy of Hypothesis Formulation, Hypothesis Validation and Manuscript Publication (Full Edition).
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