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Abstract

Multimodal Large Language Models (MLLMs)
have demonstrated exceptional performance
across various tasks. However, the internal
mechanisms by which they interpret and in-
tegrate cross-modal information remain insuffi-
ciently understood. In this paper, to address the
limitations of prior studies that could only iden-
tify neurons corresponding to single-token and
rely on the vocabulary of LLMs, we propose a
novel method to identify multimodal neurons
in Transformer-based MLLMs. Then we in-
troduce fuzzy set theory to model the complex
relationship between neurons and semantic con-
cepts and to characterize how multiple neurons
collaboratively contribute to semantic concepts.
Through both theoretical analysis and empirical
validation, we demonstrate the effectiveness of
our method and present some meaningful find-
ings. Furthermore, by modulating neuron ac-
tivation values based on the constructed fuzzy
sets, we enhance performance on the Visual
Question Answering (VQA) task, showing the
practical value of our approach in downstream
applications in MLLMs.

1 Introduction

Large Language Models (LLMs) have significantly
advanced natural language processing, enabling
breakthroughs in diverse natural language tasks
(Bai et al., 2023; Grattafiori et al., 2024; Guo et al.,
2025). Motivated by their success, researchers
have further extended LLMs to multimodal domain,
developing Multimodal Large Language Models
(MLLMs) capable of integrating visual and textual
modalities, achieving impressive results across mul-
timodal understanding and generation (Dai et al.,
2023; Chen et al., 2025; Liu et al., 2024b).
Despite significant advances in LLM inter-
pretability research (Sun et al., 2024; Tang et al.,
2024; Yu and Ananiadou, 2024), the internal mech-
anisms by which MLLMs process and integrate
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different modalities remain unclear. This opacity
risks generating biased or hallucinatory content and
hinders error traceability, undermining trust and es-
calating safety risks in critical applications, such as
medical diagnostics (Gonzdlez-Alday et al., 2023)
or autonomous driving systems (Ma et al., 2025).
Hence, improving the explainability of MLLMs is
essential for both advancing their development and
ensuring the trustworthiness of Al

Recent multimodal studies (Pan et al., 2023;
Schwettmann et al., 2023) have focused on iden-
tifying neurons that are respond to both textual
and visual inputs within Transformer architectures,
known as multimodal neurons. These neurons
have learned visual features from images during
training and are capable of influencing text genera-
tion. Among existing methods, Schwettmann et al.
(2023) propose a gradient-based neuron attribution
method to identify multimodal neurons within feed-
forward networks (FFNs). Pan et al. (2023) define
a contribution score based on activation outputs
from FFNSs, enabling gradient-free identification of
multimodal neurons in MLLMs. However, both
methods rely on the next-token prediction for neu-
ron attribution, restricting neuron identification to
single-token concepts and limiting generalizability
due to dependence on the vocabulary of LLMs. Be-
sides, previous methods only focus on the role of
individual neurons, neglecting the complex mech-
anisms by which multiple neurons collaboratively
encode different semantic concepts. Moreover, the
potential for broader application in real-world tasks
remains largely unexplored.

To address these challenges, we first propose a
visual-semantic perturbation-based neuron attribu-
tion method. In this method, both original visual
inputs and their counterparts with target seman-
tic concepts removed are input into the model for
caption generation. By comparing the neuron acti-
vation differences accumulated over all generated
tokens between the two types of inputs, we can
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identify the neurons that are highly responsive to
the semantic concepts. Thus, our method can ex-
pand the scope of identification to include multi-
token semantic concepts and avoid the influence of
the vocabulary of LLMs.

Furthermore, inspired by prior work (Cao et al.,
2025; Kalibhat et al., 2023) that investigate the
function of neuron groups in convolutional neural
networks (CNNs), we believe that multimodal neu-
rons in MLLMs also exhibit similar associations
with semantic concepts—an individual neuron may
contribute to multiple semantic concepts with vary-
ing degrees of activation, while the representation
of semantic concepts often emerges from the coor-
dinated activation of multiple neurons. To model
this neuron-semantic relationship, we introduce
fuzzy set theory (Zadeh, 1965). Specifically, we
construct a fuzzy set for each semantic concept,
in which each neuron is assigned a membership
degree according to its degree of affiliation with
the set. This modeling approach systematically
characterizes how multimodal neurons contribute
to different concepts, offering a novel perspective
on neuron activation mechanisms within MLLMs.

Based on the constructed fuzzy sets of mul-
timodal neurons for semantic concepts, we fur-
ther demonstrate their application in the Visual
Question Answering (VQA) task. By modulat-
ing the activation values of neurons in the fuzzy
sets corresponding to the concepts relevant to each
image-question pair, we strengthen the model’s
capacity to identify and interpret specific seman-
tics within images, thereby improving VQA perfor-
mance. Further experimental results demonstrate
that our method can be extended to identify text
neurons representing interrogative words, which
can then be applied in the VQA task, proving the
generalizability of our approach.

In summary, our contributions are three-fold: (1)
We propose a new method for identifying multi-
modal neurons in MLLMs. (2) We introduce fuzzy
set theory to systematically characterize the contri-
butions of neurons across different semantic con-
cepts. (3) We explore the application of multimodal
neurons in the VQA task.

2 Background

2.1 Pixel-Level Semantic Attribution via
Diffusion Models

Latent diffusion models (e.g., Stable Diffusion
(Rombach et al., 2022)) synthesize photorealistic

images from random noise through text-guided it-
erative denoising. The framework integrates three
core components: a CLIP (Dosovitskiy et al., 2020)
text encoder converts input prompts into seman-
tic embeddings, a variational autoencoder (VAE)
(Kingma et al., 2013) compresses and reconstructs
images in latent space, and a U-Net (Ronneberger
et al., 2015) network progressively removes noise
from latent vectors.

To achieve pixel-level semantic attribution,
cross-attention mechanisms in diffusion models
align textual tokens with latent space features. At
each denoising step, normalized attention scores
between textual tokens and latent space features
within U-Net layers measure the semantic rele-
vance of local regions to text prompts. Tang et al.
(2022) aggregate attention scores across spatiotem-
poral dimensions, and interpolate them into pixel
space to generate semantic attribution maps, which
quantify the influence of specific textual tokens
on each pixel. In this paper, we utilize the pre-
trained Stable Diffusion model to generate images
for text prompts containing target concepts and
acquire pixel-level attention matrices through dif-
fusion attention mechanisms with attribution maps.

2.2 Neurons in Transformer-Based MLLMs

A MLLM typically contains three core components:
a visual encoder, a textual LLM backbone, and a
vision-to-language adapter module. Following pre-
vious works (Dai et al., 2021; Pan et al., 2023;
Schwettmann et al., 2023; Wang et al., 2022), we
focus our analysis specifically on neurons within
FFNs in the textual LLMs, as they carry two-
thirds of the parameters and have been empirically
demonstrated to be essential in understanding tex-
tual and visual features.

Formally, the FFN in a Transformer (Vaswani
etal., 2017) layer is:

FFN(x) = f(xW; ' +b;)Wa+by, (1)

where x € R is the hidden representation from the
previous layer, f(-) is the activation function, W1,
Wy € RIm*d gre projection matrices, and by, bo
are biases.

For simplicity, leta = f(xW; | +b;), where the
i-th element represents the activation output of the
1-th neuron, which is also the unit to be investigated
in our study. In the following discussion, we denote
it as u(l,4), where [ represents the index of the
Transformer layer, and ¢ indicates the neuron index
within the hidden layer of the FFN.
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Figure 1: The overview of method for identifying and modeling multimodal neurons.

3 Method

In this section, we first propose a perturbation ap-
proach to measure activation differences and iden-
tify neurons responsive to semantic concepts. We
further leverage membership degrees from fuzzy
set theory to quantify the semantic contribution of
multimodal neurons. The overview of our method
is illustrated in Figure 1.

3.1 Activation Contrast via Visual-Semantic
Perturbation

We first introduce the method for activation con-
trast. Given a target semantic concept x, we syn-
thesize N original images {v®1), ... v(®N)} ys-
ing Stable Diffusion with text prompts contain-
ing z. Based on the pixel-level semantic attri-
bution method described in Section 2.1, we com-
pute the semantic attribution map by spatiotempo-
ral aggregation of cross-attention scores for each
image v(®")  We then apply K-means clustering
(k = 2) on its attribution map to obtain binary
mask M(®™) ¢ {0,1}7, where P is the number of
patches and M (@™ [p] = 0 indicates that patch p
has high attention scores to the concept x.

The perturbation is strategically applied after the
patch-embedding stage in the visual encoder. Let
v},ﬁ’”) = PatchEmbed(v(®™) € RP*P denote the
original patch embeddings of image v(*™, where
D is the embedding dimension. We define a mask-
ing module M that performs patch-level noise re-
placement on selected embeddings:

~N(0,6%) if M®™[p] =0
M ppemy = 3~ N 7
(Ve o v;(;i’m [p] if M(z’")[p] =1

2

Hence, patches with high attribution to x are
replaced by random noise, while other patches re-
main unchanged. The resulting perturbed embed-

dings v},ﬁ’”” are then combined with the [CLS]
token embedding vcrs and positional embeddings
Epos, and fed into the Transformer Encoder to ob-

1 1 (xvn)/ .
tain perturbed visual features v PR

vff”’")/ = TransformerEncoder ([UCLs, vé,ﬁ’")/} + Epos) ,
3)
To quantify the effect of visual-semantic pertur-
bations, we record neuron activations during au-
toregressive text generation for image captioning
under two visual conditions: the original visual fea-

(z,n) (z,n)’

tures v and the perturbed features v P For

the original visual input, let a(®™ (1;7) [j] € R de-
note the activation of the i** neuron in layer [ at the
4t generated token. Similarly, for the perturbed
visual input, let a(*™)" (I;7) [j] € R denote the cor-
responding activation. The activation difference
A@™) (1 1) is computed as the difference between
the expected neuron activations under the original
and perturbed visual inputs:

A(z’n)(l,i) ) [a(zv”) (l; z) []]] —E [a(z,n)/ (l§ 7’) []]] 5
“)

3.2 Fuzzy Set Modeling for Multimodal
Neurons

To further evaluate the contribution of each neu-
ron to specific semantic concepts, we introduce
a fuzzy set-based modeling approach and com-
pute membership degrees by aggregating two key
metrics: response stability and mean activation
delta. For each semantic concept z, we select

11651



the top 100 neurons with the highest activation
difference A(*:m) (1,1) for each synthesized image
@) Let U™ = {u(l,i) | A@M(1,4) €
Top100(A®™)} denote the set of neurons with
high response, and define the union set across all
images as U, = [J\_, U@,

For each neuron u(l,i) € U,, we define its re-
sponse stability c,(l,1) as the proportion of images
in which the neuron appears in the high response
set, and its mean activation delta s,(l,1) as the
geometric mean of its activation differences across
those same images:

N
ﬁ Alwn) ( lz) I(u(l,) € U@m)
(u(l,i) € Ut=m)
(6)
where I(-) is an indicator function.
The membership degree 11,(1,4) € [0, 1] is ob-

tained by normalizing the product of response sta-
bility and mean activation delta:
1o (1,3) = Norm (¢ (1,4) - s2(1,1)) , @)
where Norm(-) denotes min-max normalization.
Finally, we define the fuzzy set X for multi-
modal neurons corresponding to the concept z as
follows. Here, 0 € [0, 1] is a prespecified member-
ship threshold.
®)

4 Experiments

4.1 Experimental Setup

Models. We use LLaVA-NEXT (Liu et al., 2024b)
and Janus-Pro (Chen et al., 2025) as our research
models. LLaVA-NEXT focuses on multimodal
understanding tasks, while Janus-Pro unifies mul-
timodal understanding and visual generation by
decoupling visual encoding but still using a sin-
gle, unified Transformer architecture for process-
ing. Specifically, we select llava-v1.6vicuna-7b-hf!
and Janus-Pro-7B?, and the number of neurons un-
der study is 352.3K and 330.2K, respectively.

"https://huggingface.co/1lava-hf/1lava-v1.
6-vicuna-7b-hf

2https://huggingface.co/deepseek—ai/
Janus-Pro-7B

Datasets. We employ our method and conduct
experiments across 80 semantic categories from
the MSCOCO dataset (Lin et al., 2014), covering
both single-token concepts (e.g., dog) and multi-
token concepts (e.g., fire hydrant). We utilize the
pre-trained diffusion model® to synthesize images
and obtain pixel-level attention matrices. The tex-
tual prompts are randomly sourced from annotated
sentences in Flickr 30k (Young et al., 2014), specif-
ically those containing the targeted concepts.

Metrics. To evaluate if multimodal neurons are
responsive to certain concepts from both textual
and visual perspectives, we measure several evalua-
tion mentrics as follows: (1) Semantic Relevance:
To verify the relevance of neurons to textual con-
cepts, we align them with natural language. The
closer the top tokens associated with a neuron are
to the textual concept, the stronger the semantic
relevance of the neuron. To quantify this, we mea-
sure BERTScore (Zhang et al., 2019), MoverScore
(Zhao et al., 2019) and LaBSE (Feng et al., 2020)
between each concept and the corresponding top-
10 tokens. (2)Visual Selectivity: To investigate
the alignment between multimodal neurons and
semantic concepts in images, we quantify their re-
ceptive fields for specific visual concepts by taking
the activations at image patch tokens, following
Schwettmann et al. (2023). We upsample the ac-
tivation maps to the input resolution by bilinear
interpolation and threshold them above the 0.95
percentile to obtain binary masks, which are com-
pared to COCO instance segmentations using Inter-
section over Union (IoU).

Baselines. We implement the following two base-
line methods for comparison: (1) Grad: The gra-
dient of the output logit with respect to neuron
activation through backpropagation (Schwettmann
et al., 2023); (2)Act: The element-wise product
of neuron activation and the unembedding matrix,
representing the neuron’s contribution to a specific
token in the output vocabulary (Pan et al., 2023).

Implementation Details. In constructing the fuzzy
set X, we select a threshold 8 corresponding to the
top 20% of the membership values i, (1, %) in Uy,
ensuring that neurons demonstrating statistically
meaningful contributions to concept x are retained.
Finally, we statistically analyze the number of mul-
timodal neurons within the fuzzy sets across the 80

3https://huggingface.co/stabilityai/
stable-diffusion-2-1
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Relative CLIPScore Change (%)

Target i NonTarget i
-30 Target-Rand NonTarget-Rand
bus fire hydrant kite giraffe suitcase

Figure 2: Relative CLIPScore change (%) across five
concepts under four conditions: Target/NonTarget de-
notes the text concept type; Semantic/Random denotes
the mask type. We report the mean change over N
images per concept, with all changes statistically signif-
icant (p < 0.01).

Semantic concept: dog

Image Model Type Output
original a dog swimming in the water.
LLaVA-NEXT
g perturbed water with ripples.

original a dog swimming in water.

Janus-Pro

perturbed the water surface with gentle waves.

Semantic concept: fire hydrant

. a man sitting on the grass next to a
original

- LLaVA-NEXT red fire hydrant.
gu perturbed a person sitting on the grass.
. a person sitting on grass next to a
Janus-Pro original red fire hydrant.

perturbed a person sitting on grass outdoors.

Table 1: Example model outputs.

semantic concepts. The average counts are 601 for
LLaVA-Next and 847 for Janus-Pro, corresponding
t0 0.17% and 0.26% of the total number of neurons
in the FFN intermediate layers, respectively. More
details can be found in appendix A.

4.2 Results & Discussion

In this section, we first validate the effectiveness of
our proposed visual-semantic perturbation method
(§4.2.1). We then compare our method with prior
approaches, demonstrating that our identified mul-
timodal neurons exhibit higher semantic relevance
(§4.2.2) and stronger visual selectivity (§4.2.3). Fi-
nally, we analyze the semantic activation patterns
(§4.2.4) and layer-wise distributions of the discov-
ered multimodal neuron sets (§4.2.5).

4.2.1 Perturbation Efficacy

To evaluate the effectiveness of our proposed vi-
sual perturbation method, we compute the rela-

Model Method BS MS LB
Grad 0.533 0.641 0.376
LLaVA-NEXT Act 0.549 0.649 0.400
Ours 0.560 0.652 0.406
Grad 0.527 0.638 0.354
Janus-Pro Act 0.530 0.630 0.374
Ours 0.534 0.629 0.375

Table 2: Results of BERTScore(BS), MoverScore(MS),
and LaBSE(LB). For each semantic concept, we select
top 5% multimodal neurons and compute the average
scores across all concepts.

Semantic concept: kite
Model Method Top Neuron
Grad  u(4,8572)
LLaVA-NEXT  Act  u(31,2611)
Ours u(21,7551)
Grad  u(6,2778)

Janus-Pro Act u(29,6369)
Ours u(28,3371)

Top Tokens

[‘flag’, ‘flags’, ‘Flag’, ‘emo’]

[‘k’, “children’, ‘children’, ‘Children’]
[‘flight’, “flying’, ‘fly’, “fly’]
[‘Content’, ‘Mut’, ‘hi’, ‘Alliance’]
[BkEE, $EEE’, ‘dance’, ‘Dance’]
[‘fly’, ‘Fly’, “flying’, ‘Fly’]

Table 3: An example of kite, showing the top neuron
selected by different methods and its top-4 tokens.

tive CLIPScore (Hessel et al., 2021) change us-
ing the pre-trained CLIP model*. For each im-
age, we encode its visual features both with and
without our masking module in the visual encoder.
Text features are encoded using two prompt types:
the target concept (e.g., bus) and non-target con-
cepts extracted from image captions (e.g., street,
people, trees from “a bus on a street with people
and trees.”). As a control, we also apply a ran-
domly shuffled binary mask with the same sparsity.
As shown in Figure 2, random masking results in
negligible score changes, whereas semantic mask-
ing substantially reduces similarity to the target
concept while preserving or enhancing alignment
with non-target concepts. Table 1 shows examples
of how our perturbation affects model predictions.
These results demonstrate that our method selec-
tively suppresses target information without com-
promising the integrity of other semantic content.

4.2.2 Textual Semantics of Neurons

To evaluate whether the identified multimodal neu-
rons encode interpretable textual semantics, we
follow the projection analysis in Pan et al. (2023),
where the multiplication of the unembedding ma-
trix and the second layer of FFN maps neuron ac-
tivations to token probabilities. For each neuron,

4https://huggingface.co/openai/
clip-vit-large-patch14-336

11653


https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336

Ours in LLaVA-NEXT
Actin LLaVA-NEXT
= Grad in LLaVA-NEXT

Ours in Janus-Pro
Actin Janus-Pro
Grad in Janus-Pro

0.4

0.1 | ‘ ‘
0.0

bench  bottle car cat chair  couch handbag peréon

o
w

Mean loU
o
o

Figure 3: Mean IOU across 8 semantic concepts. For
Grad and Act, we select the same number of top-ranked
neurons based on their respective attribution scores and
average their scaled activations. We randomly sample
20 images from the MSCOCO-2017 validation set for
each concept and report the mean results.

Original Image

loU=0.5222

10U=0.3076

loU=0.3415

Figure 4: Heatmap, binary mask, and IoU results for
chair in an example image.

we rank its projection row and extract the top-10
tokens. Following Schwettmann et al. (2023), we
restrict the computation to interpretable neurons.
For each semantic concept, we select the top 5% of
multimodal neurons from its corresponding fuzzy
set and compute their semantic relevance, then
take the average. Table 2 reports the results on
single-token concepts, with an example illustrated
in Table 3. Experimental results and examples on
multi-token concepts are provided in appendix B.1.
These results confirm that our selected neurons ex-
hibit strong semantic relevance.

4.2.3 Visual Focus of Neurons

To evaluate the visual selectivity of multimodal neu-
rons in images, we conduct experiments using the
constructed fuzzy set of multimodal neurons, com-
puting weighted activations based on membership
degrees. As shown in Figure 3, our method pro-
duces receptive fields that more accurately segment
target objects than Grad and Act. The examples
in Figure 4 show our neurons are more focused on
image regions containing specific concepts. More
examples are shown in appendix B.2.

LLaVA-NEXT Janus-Pro
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Figure 5: Spearman’s rank correlations between differ-
ent semantic concepts.
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Figure 6: Layer-wise Distribution of multimodal neu-
rons in fuzzy sets, averaged across sub-categories within
each super-category per layer.

4.2.4 Semantic Activation Correlation

To examine the correlation of neuron activation pat-
terns across different semantic concepts in MLLMs,
we calculate Spearman’s rank correlations (Spear-
man, 1961) based on neuron rankings by member-
ship degree within the corresponding multimodal
neuron fuzzy sets. As shown in Figure 5, con-
cepts within the same super-category exhibit high
inter-correlations, while those from different super-
categories remain consistently low, indicating that
models exhibit shared activation patterns for seman-
tically related concepts while maintaining distinct
patterns for unrelated concepts. We further provide
additional examples in appendix B.3.

4.2.5 Layer-Wise Neuron Distribution

Figure 6 shows the distribution of multimodal neu-
rons across layers. Both LLaVA-Next and Janus-
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. COCO-QA VQA-v2
Models Settings what where how many ‘ ALL | what why who which where how how many | ALL
Baseline | 66.53 43.50 72.81 64.51 | 5746 3296 6248 4892 5025 43.88 70.48 58.85
X-Fix | 66.50 41.20 73.00 64.36 | 57.35 3291 62.56 4884 5023 43.57 70.43 58.75
X 66.66 42.94 72.81 64.59 | 57.55 33.02 6257 49.04 5029 43.82 70.50 58.92
LLaVA-NEXT | Q-Fix | 6439 41.89 70.20 62.29 | 5742 3295 6236 48.64 5034 43.71 70.35 58.79
Q 66.63  43.99 72.39 64.59 | 57.60 3296 62.73 49.00 5041 43.85 70.51 58.96
X+Q-Fix | 64.28 39.83 70.12 62.11 | 57.25 3295 6247 48.65 50.03 43.74 70.35 58.66
X+Q 66.82 43.54 72.28 64.74 | 57.72 33.01 62.74 49.12 50.54 43.80 70.56 59.06
Baseline | 57.22 30.02 71.22 55.01 | 50.14 1534 47.17 39.54 4023 3173 67.16 51.80
X-Fix | 57.29 30.15 70.95 55.06 | 50.13 15.18 47.19 39.72 4025 31.48 67.23 51.80
X 57.32 30.19 71.10 55.10 | 50.30 1546 47.55 39.75 40.31 31.62 67.27 51.95
Janus-Pro Q-Fix | 5729 29.86 71.07 55.06 | 50.01 1542 46.82 3896 40.18 31.40 66.87 51.63
Q 57.31 30.19 71.14 55.08 | 50.22 15.65 47.01 39.23 40.10 31.58 67.25 51.86
X+Q-Fix | 57.16  30.06 71.07 5496 | 50.17 1549 47.58 39.60 40.09 31.54 67.21 51.83
X+Q 57.33 30.35 71.03 55.12 | 50.34 15.72 47.64 39.72 4028 31.60 67.31 51.98

Table 4: Accuracy(%) for each question type and overall accuracy on VQA task, restricted to SW2H question types.
For LLaVA-Next, the scaling coefficients are set to A, = 0.50, A, = 0.25; for Janus-Pro, A, = 0.02, A, = 0.02.

Pro exhibit a low number of neurons in early lay-
ers, increasing gradually to a peak in higher lay-
ers, which is consistent with previous studies (Huo
et al., 2024; Pan et al., 2023). Notably, LLaVA-
Next shows a resurgence of neurons in the final
layer, whereas Janus-Pro does not. We hypothesize
that this difference is due to their distinct task orien-
tations: LLaVA-Next focuses on multimodal under-
standing, enabling semantic multimodal neurons
in the final layer to directly influence the language
output distribution, whereas Janus-Pro is designed
for both understanding and generation, which may
require its final layer to serve as a unified output
head, thereby limiting its specialization in semantic
multimodal representations. The interpretability of
models that unify multimodal understanding and
generation will be explored in future work.

5 Application: VQA

To evaluate the practical benefits of our constructed
fuzzy sets of multimodal neurons, we apply them
to the VQA task. In typical VQA pipelines, the
model takes an image and a question as input and
outputs an answer. To improve model’s semantic
grounding during inference, we modulate the acti-
vation values of multimodal neurons correspond-
ing to image-related semantics. To further capture
question intent and facilitate cross-modal reason-
ing, we extend our method to the textual modal-
ity by identifying and modulating neurons associ-
ated with interrogative words (SW2H: what, why,
who, which, where, how, how many). Specifically,

we construct paired inputs: one with the original
image-question pair, and the other with the same
image and a declarative sentence formed by replac-
ing the interrogative word with the answer. We then
record neuron activations over the textual tokens for
both inputs and compute the differences between
their mean activations. For each question type,
we use 500 paired inputs and construct the corre-
sponding neuron fuzzy sets, following the method
described in Section 3. Other experimental settings
follow those used for multimodal semantic neu-
rons. On average, the seven fuzzy sets of interrog-
ative neurons contain 1,022 neurons (0.29%) in
LLaVA-Next and 1,588 neurons (0.48%) in Janus-
Pro. The layer-wise distribution of these neurons
is presented in appendix B.4.

We conduct experiments on the COCO-QA (Ren
et al., 2015) and VQA v2.0 (Goyal et al., 2017)
datasets, both of which use images from MSCOCO.
For each input pair, we select the multimodal neu-
ron sets corresponding to the image semantics x
and the interrogative neuron sets for the question
type g. We then amplify their activations based on
fuzzy membership degrees. Let a(l,7) denote the
original activation of neuron u(l, i), and let u, (1, ),
pq(l,3) € [0,1] represent its membership degrees
in the corresponding fuzzy sets. The amplified
activation is computed as:

a(l,i) = a(l,i) - (14 Aappa(l,2) + Agug(1,9)) -
©)
where \; and A, are scaling coefficients for the
multimodal and interrogative neurons, respectively.

11655



Image

Question What is the color of Which fruit is lyingon ~ How many dogs are
the bed? top? outside?

Baseline black stop apple 4

X+Q purple 2o banana 5

-Modulate ‘what’, ‘bed’, ‘person’ ‘what’, ‘car’, ‘traffic light’ which’, “apple’, ‘banana’, ‘how many’, ‘dog’, ‘frisbee’

"bowl’

Table 5: Some examples where our X+Q setting generates correct answer while direct inference using LLaVA-Next
produces incorrect answers. Here, -Modulate indicates the corresponding sets of neurons amplified during inference.

We evaluate the effect of neuron-level activa-
tion modulation under seven settings: Baseline (no
neuron modulation), X and Q (amplifying only
multimodal or interrogative neurons based on their
fuzzy membership degrees), X+Q (joint amplifica-
tion), and their corresponding comparison settings
using a fixed membership degree of 0.5, namely
X-Fix, Q-Fix, and X+Q-Fix. As shown in Table 4,
joint amplification based on membership degrees
achieves the best performance, demonstrating the
effectiveness of fuzzy set-based neuron modula-
tion. Table 5 presents some examples from LLaVA-
Next. We further conduct experiments suppressing
multimodal and interrogative neurons by setting
their activations to 0. Results on COCO-QA using
LLaVA-Next indicate that suppressing fewer than
1% of neurons leads to around a 10% performance
drop, while suppressing the same number of ran-
dom neurons shows negligible changes. This high-
lights the critical role the identified neurons play
in the task. Exploring more effective utilization of
these neurons remains a promising direction.

6 Related work

Neuron Analysis in Pre-Trained Transformers.
Recent studies have revealed neuron-level func-
tional specialization in pre-trained Transformers,
establishing a foundation for interpretability and
controllable behavior. In LLMs, Dai et al. (2021)
identify knowledge neurons whose activations cor-
relate with factual recall, while Wang et al. (2022)
discover skill neurons responsible for task-specific
behaviors such as translation task. Tang et al.
(2024) focus on language-specific neurons, which

Huo et al. (2024) and Huang et al. (2024) further
expand to multimodal settings, uncovering domain-
specific and modality-specific neurons in MLLMs.
In addition, Schwettmann et al. (2023) identify
multimodal neurons that reveal how LLMs convert
visual representations into corresponding texts. Pan
et al. (2023) introduce a new approach for identi-
fying such neurons in MLLMs, highlighting their
sensitivity, specificity, and causal-effect.
Development of MLLMs. Recent progress in
MLLMs has advanced both vision-language un-
derstanding and image generation. For understand-
ing, building on the design of LLaVA (Liu et al.,
2023), researchers have developed a series of high-
performing MLLMs (Liu et al., 2024a,b; Bai et al.,
2023; Yang et al., 2024). To unify multimodal
understanding and generation, some approaches
combine LLMs with pre-trained diffusion models
(Ge et al., 2023a,b; Sun et al., 2023); Wu et al.
(2024) instead decouples visual encoding into sep-
arate paths for semantics and spatial details, and
Chen et al. (2025) further enhance this design with
scalable training and adaptive fusion.

7 Conclusion

In this paper, we propose a novel method to iden-
tify multimodal neurons in MLLMs and introduce
fuzzy set theory to model their collaborative contri-
butions to semantic concepts. We further success-
fully apply our method to the VQA task. Extensive
quantitative and qualitative experiments demon-
strate the explanatory powers and practical value of
our fuzzy set-based multimodal neurons, advancing
interpretability research in MLLMs.
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Limitations

Our research has some limitations: (1) The effec-
tiveness of the pipeline relies on the quality of se-
mantic attribution maps generated by the diffusion
model, and noisy attention may lead to inaccurate
masks, potentially affecting neuron identification.
(2) The utilization of the text-to-image generation
process to obtain pixel-level attention matrices may
introduce additional computational overhead, as
analyzed in the Appendix. (3) The collaborative
patterns among multiple neurons may involve more
complex dynamical interactions, and relying solely
on activation values to interpret these patterns may
still fail to comprehensively reveal the decision-
making mechanisms of the model. (4) The effec-
tiveness and utility of the proposed method have
been validated on specific tasks and datasets, while
its applicability to other scenarios requires further
investigation. We recognize these limitations as
potential areas for future research.
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A Implementation Details

A.1 Synthesizing Images and Obtaining
Pixel-Level Semantic Attribution Maps

When generating images using the diffusion model,
the number of denoising steps is set to 50, and
the seed of the generator is set to 42. During this
process, to achieve pixel-level alignment between
the global heatmaps and the generated images, each
raw attention map is upsampled to (336, 336) using
bicubic interpolation, resulting in a unified token-
to-pixel attention representation.

A.2 Perturbation in the Visual Encoder

As shown in Figure 7, we take the Vision Trans-
former architecture as an example and apply the
masking module before the transformer encoder.
Specifically, for each binary mask matrix, we per-
form average pooling to downsample it to (24, 24),
where each 14 x 14 region corresponds to an image
patch. The average value of each region determines
whether the corresponding image patch is kept or
perturbed. The resulting mask is then reshaped
to match the patch-embedding dimensions, and
the corresponding image patches are replaced with
noise accordingly.

Perturbed Visual Features

Transformer Encoder

*@@@%ﬁfﬁ@#@b
£ ¢¢¢¢¢¢¢¢¢

Linear Projection of Flattened Patches

E?:-—»iﬂéi YT
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Figure 7: The Vision Transformer architecture with the
masking module applied.

B More Experiment Results

We present supplementary experimental results and
case studies to strengthen the support for our con-
clusion.

B.1 Textual Semantics of Neurons

As shown in Table 6, our method achieves competi-
tive scores on multi-token concepts. Table 7 shows
some examples.

Model Method BS MS LB
LLaVA-NEXT Ours 0.411 0.551 0.335
Janus-Pro Ours 0.393 0.547 0.297

Table 6: Results of BERTScore(BS), MoverScore(MS),
and LaBSE(LB) on multi-token concepts. For each
semantic concept, we select top 5% multimodal neurons
and compute the average scores across all concepts.

B.2 Visual Focus of Neurons

We present additional examples of both single-
token and multi-token concepts in Table 8, report-
ing their heatmaps, binary masks, and IOU results.

B.3 Semantic Activation Correlation

Figure 8 shows another example to support the
observation of neuron activation patterns.

B.4 Layer-Wise Distribution Comparison
between Multimodal Neurons and
Interrogative Neurons

We compare the layer-wise distributions of mul-
timodal neurons and interrogative neurons across
LLaVA-Next and Janus-Pro. For each semantic
concept or interrogative word, the top 500 neurons
in the corresponding fuzzy set are selected for vi-
sualization. As shown in Figure 9, both models
exhibit similar trends in the layer-wise distribution
of multimodal neurons and interrogative neurons.
Compared to multimodal neurons, interrogative
neurons begin to emerge in large numbers at in-
termediate layers and show a sharp increase at the
final layers. This suggests that the models start
encoding question semantics in the middle layers
while the deeper layers are primarily responsible
for the integration of conceptual semantics.

C Expansion of Limitation

To further elaborate on the limitation regarding
computational overhead, we quantify the computa-
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tional requirements of our method using LLaVA-
Next on an RTX 4090 GPU under two settings:

1) Per-inference cost.

This setting includes synthesizing a single im-
age and performing two forward passes with
the MLLM (original and perturbed).

* Image synthesis: ~81.907 TFLOPS
(CUDA time: ~1.375 seconds)

e MLLM inference (x2): ~81.124
TFLOPS (CUDA time: ~3.698 seconds)

¢ Total per-inference: ~163.031 TFLOPS
(CUDA time: ~5.073 seconds)

2) Per-concept cost.

This setting measures the cost of identify-
ing multimodal neurons for a given semantic
concept, requiring N image synthesis steps
and 2*N MLLM inferences. With N = 200,
the total computation amounts to ~32,606.2
TFLOPS and the inference runtime reaches
~1,014.6 seconds on an RTX 4090.

Although our method incurs a non-trivial compu-
tational cost, it remains within an acceptable range
— requiring only 5.073 seconds per inference on
a consumer-grade GPU. Moreover, the cost is one-
time, and the identified multimodal neurons offer
lasting benefits for downstream tasks such as VQA.
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Semantic concept: sports ball
Model Method Top Neuron  Top Tokens

u(20,512) [‘ball’, ‘ball’, ‘balls’, ‘Ball’]

LLaVA-NEXT Ours u(25,4873) [‘s’, ‘soc’, “fut’, ‘vol’]
u(23,11005) [‘ball’, ‘throw’, ‘throws’, ‘aim’]
u(23,4402) [‘BRE, < BER, “football’, ‘soccer’]

Janus-Pro Ours u(24,9614) [‘field’, ‘fields’, ‘field’, ‘Field’]

u(27,1085) [F55°, ‘athletes’, ‘BRkiK’, T H]

Semantic concept: traffic light
Model Method Top Neuron  Top Tokens
u(31,6588) [‘Sign’, ‘signs’, ‘Sign’, ‘sign’]
LLaVA-NEXT Ours u(20,7139) [‘Exit’, ‘exit’, ‘Exit’, ‘exit’]

u(21,570) [‘blue’, ‘yellow’, ‘red’, ‘green’]
u(28,10732) [‘Traffic’, ‘traffic’, ‘traffic’, ‘Traffic’]
Janus-Pro Ours u(26,2579) [‘lights’, “kTJ%¢’, ‘LED’, “AT"]

u(28,4444) [‘lit’, ‘Lit’, “lit’, ‘lit’]

Table 7: The examples of the concept sports ball and traffic light, showing the top-3 neurons selected by our
method and their associated top-4 activation tokens.

LLaVA-NEXT Janus-Pro

1.0 1.0
traffic Iight 0.4 031 0.00 0.00 005 0.00 0.00 0.00 traffic Iight 028 018 0.00 0.02 000 0.00 000 0.00
stop sign 028 019 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.8
parking meter 018 019 - 002 006 001 0.00 000 0.00

stop sign

parking meter

remote remote o0 0.00 006 037 n 03 010 000 011
cell phone 0.4 cell phone 000 0.00 001 038 034 100 013 001 007 04
botte voite w  w oo [N - e
0.2 02
wine glass wine glass 000 0.00 0.00 0.00 0.00 0.01 051 100 043
-0.0 . o ry o e o P 0.0
RS N & » Q¥
& B 6‘“\ Q‘o & “0(\ 3 Q";) &
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Figure 8: Another example of Spearman’s rank correlations between different semantic concepts.

LLaVA-NEXT Janus-Pro
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Figure 9: Layer-Wise Distribution Comparison between Multimodal Neurons and Interrogative Neurons. Grey lines
indicate multimodal neurons, and coloured lines correspond to interrogative neurons.
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Sémantic CoCco1b Original Heatmap Binary Mask 10U
oncept Image
bird 508602 0.586
car 180878 0.608
clock 512248 0.566
pizza 80932 0.644
fire hydrant 38048 0.466
hot dog 42286 0.514
potted plant 37740 0.553
teddy bear 92091 0.586

Table 8: Heatmap, binary mask, and IoU results for more concepts in example images.
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