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Abstract

The increasing demand for domain-specific
evaluation of large language models (LLMs)
has led to the development of numerous bench-
marks. These efforts often adhere to the prin-
ciple of data scaling, relying on large corpora
or extensive question-answer (QA) sets to en-
sure broad coverage. However, the impact of
corpus and QA set design on the precision and
recall of domain-specific LLM performance
remains poorly understood. In this paper, we
argue that data scaling is not always the opti-
mal principle for domain-specific benchmark
construction. Instead, we introduce COMP-
COMP, an iterative benchmarking framework
grounded in the principle of comprehensiveness
and compactness. Comprehensiveness ensures
semantic recall by covering the full breadth of
the domain, while compactness improves pre-
cision by reducing redundancy and noise. To
demonstrate the effectiveness of our approach,
we present a case study conducted at a well-
renowned university, resulting in the creation
of PolyBench, a large-scale, high-quality aca-
demic benchmark. Although this study focuses
on academia, the COMP-COMP framework is
domain-agnostic and readily adaptable to a
wide range of specialized fields. The source
code and datasets can be accessed at https:
//github.com/Anya-RB-Chen/COMP-COMP.

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities across a wide range of tasks
(OpenAl, 2024). While general-purpose LLMs ex-
cel in broad applications, domain-specific LLMs
have emerged as critical tools for delivering pre-
cise and accurate responses tailored to specific user
needs (Fei et al., 2023; Cai et al., 2024; Chang et al.,
2024). These models are particularly valuable in
fields where fixed-answer questions are prevalent,
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Figure 1: Illustration of comprehensiveness and com-
pactness in benchmarking. (a) Comprehensiveness en-
sures broad semantic coverage of the domain, while
compactness improves semantic precision by minimiz-
ing redundancy, leading to a more uniform data distri-
bution in domain corpora. (b) Semantic distributions of
representative benchmarks in the medical domain.

such as law, medicine, and academic, where pre-
cision is paramount (Ge et al., 2024). However,
the development of domain-specific LLMs necessi-
tates high-quality benchmarks that can effectively
evaluate their performance. Such benchmarks must
not only ensure accurate responses within the do-
main, but also maintain broad coverage of the do-
main’s semantic space to avoid catastrophic forget-
ting, where models lose proficiency in broader con-
texts (Luo et al., 2023). This dual requirement un-
derscores the need to develop effective approaches
for domain-specific benchmarking.

Previous studies on constructing domain-specific
benchmarks have primarily relied on the principle
of data scaling, utilizing extensive corpora or large
question sets to ensure broad coverage (Cai et al.,
2024; Fei et al., 2023). While this approach is
widespread and forms the basis for many bench-
mark designs, it presents several limitations that
can affect the efficacy of model evaluation. First,
many benchmarks are derived from skill examina-
tions, practice exercises, or expert-curated datasets,
often overlooking a critical assessment of their ef-
fectiveness (Liu et al., 2023; Ling et al., 2023).
Although these benchmarks are diverse in question-
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Benchmark Domain Closeness QA Type # Questions
SciEval (Cai et al., 2024) Science Open MCQ, QA 16,522
DISC-Law-Eval (Yue et al., 2023) Law Open MCQ, MAQ, QA 2,863
Counseling Bench (Liu et al., 2023) Medical Open QA 229
CMtMedQA (Yang et al., 2024) Medical Open QA 70,000
COVID-QA (Moller et al., 2020) Healthcare Closed QA 2,019
WC2014QA (Zhang et al., 2016) Sports Closed QA 10,211
PolyBench (Ours) Academic  Closed Binary, MAQ, QA, MCQ 24,883

Table 1: Comparison between domain-specific benchmarks.

answering types, ranging from multiple-choice to
open-ended formats, they fail to systematically ex-
amine the semantic alignment between questions
and the underlying corpus (Yue et al., 2023; Cui
et al., 2023). This lack of alignment means that the
benchmarks may not fully represent the domain’s
knowledge structure, leading to evaluations that
do not accurately reflect a model’s true capabili-
ties within the specific domain. Second, domain-
specific benchmarks often employ LLMs for scor-
ing but neglect to ensure consistency between train-
ing and evaluation datasets (Zhang et al., 2023;
Yang et al., 2024). This oversight can introduce bi-
ases where models inadvertently perform better on
evaluation tasks due to similarities with the train-
ing data, rather than a genuine understanding of the
domain. It highlights the need for a more balanced
approach to benchmarking, one that integrates both
horizontal coverage across a wide range of topics
and vertical depth within specific subdomains.

In this paper, we propose Comprehensiveness-
Compactness (COMP-COMP), a novel framework
for constructing domain-specific benchmarks that
dynamically balances the semantic distribution of
corpora and benchmark questions. As illustrated
in Figure 1, COMP-COMP iteratively expands the
range of corpora and questions, continuously as-
sessing their comprehensiveness (maximizing re-
call) and compactness (optimizing precision). The
framework introduces three crucial mechanisms:
(1) Comprehensiveness and Compactness Moni-
toring: We encode the corpora and questions into
a unified semantic space, using Gaussian Kernel
Density Estimation (KDE) to improve these metrics
iteratively (Terrell and Scott, 1992). (2) Corpora-
Question Interaction: We ensure comprehensive
evaluation by generating new questions from under-
represented areas in the corpora. (3) Superiority in
Closed Domains: We prioritize achieving a balance
between comprehensiveness and compactness, en-
suring the framework excels in constructing closed-

domain benchmarks that demand precise corpus
evaluation and accurate answer verification.

To validate our framework, we conducted a case
study in a well-renowned university and applied
CoMP-CoMP to develop PolyBench, one of the
first and most extensive benchmarks for the aca-
demic domain (see Table 1). PolyBench includes
24 .9k questions across various formats and incor-
porates user-interest-oriented forum discussions,
setting a new standard for domain-specific bench-
marking. Extensive experiments on the PolyBench
demonstrate the practicality and effectiveness of
ComP-COMP, providing a scalable approach for
future benchmarking in other domains.

In summary, our contributions are as follows: (1)
We propose COMP-COMP, a principled approach
that balances comprehensiveness and compactness
in domain-specific benchmark construction. (2)
We develop PolyBench, a large-scale, high-quality
benchmark for the academic domain, which ad-
dresses the gap of lacking well-established aca-
demic LLM benchmarks. (3) Our method is exten-
sible across different domains, offering valuable
insights for future benchmarking. By addressing
the limitations of existing methods and providing a
systematic benchmark design, our work advances
the development of domain-specific LLMs.

2 Related Work

Domain-Specific Benchmarks Domain-specific
evaluation has seen significant advances across
critical verticals, each adopting distinct strategies
reflective of their unique demands. In the legal
domain, systems like DISC-LawLLM (Yue et al.,
2023) employ a dual evaluation paradigm: stan-
dardized law examinations (MCQs with tiered dif-
ficulty) paired with ChatGPT, arbitrated subjective
assessments. LawBench (Fei et al., 2023) further
refines this by grounding evaluations in Bloom’s
Taxonomy (Krathwohl, 2002), systematically test-
ing knowledge memorization, understanding, and
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Figure 2: Overview of the proposed Comprehensiveness-Compactness (COMP-COMP) framework for domain-
specific benchmark construction. By imposing restrictions represented by . and ¢4, we aim to enhance precision
through compactness. Meanwhile, new sets of datasets X or questions )" are incrementally added to the existing
ones, improving comprehensiveness and expanding the semantic coverage.

application within Chinese legal contexts. The
medical domain presents alternative approaches:
ChatCounselor (Liu et al., 2023) evaluates seven
mental consultation dimensions via GPT-4, while
CMtMedQA (Yang et al., 2024) uses dialogue-
based capacity assessments scored across three di-
mensions. Even within single domains, fragmen-
tation persists: Figure 1(b) reveals disjointed se-
mantic distributions across medical benchmarks,
including MedExQA (Kim et al., 2024), MMLU
(Hendrycks et al., 2021), PubMedQA (Jin et al.,
2019), and MedQA (Jin et al., 2021), with clear
boundaries between corpora despite shared topical
grounding. Educational benchmarks like C-Eval
(Huang et al., 2024), though comprehensive, ex-
hibit similar fragmentation, as noted in EduChat’s
evaluation (Dan et al., 2023). These efforts col-
lectively highlight a critical gap: the absence of
unified metrics to assess whether benchmarks suffi-
ciently cover a domain’s semantic space.

Benchmark Construction Contemporary bench-
mark construction faces three systemic limitations.
First, reliance on scaling laws prioritizes quantity
over semantic alignment, as seen in legal (Yue
etal., 2023) and medical (Zhang et al., 2023) bench-
marks built from examination datasets that lack cor-
pus representativeness. Second, LLM-generated
evaluations (Cui et al., 2023; Yang et al., 2024)
risk training-evaluation distribution mismatch, as
their metrics often diverge from actual domain
usage patterns. Third, concurrence studies like
BenchBench (Perlitz et al., 2024), while valuable
for assessing general domain robustness, neglect

corpus-benchmark integration, a fatal oversight for
domain-specific evaluation where training data and
test sets are intrinsically linked. These shortcom-
ings collectively manifest in inefficient resource
usage: benchmarks either over-collect questions
(inflating costs) or under-cover critical domains
(compromising validity). It remains underexplored
how to maximize the evaluation effect and align the
contents between training corpora and benchmarks
of the domain-specific LLMs. To address this, we
provide a viable approach and a case study to con-
struct such a benchmark in a systematic scheme.

3 The ComMmP-COMP Framework

In this section, we present the COMP-COMP, an au-
tomatic benchmark construction framework follow-
ing the comprehensiveness-compactness principle,
which guides both the corpora collection and QA
generation stages. Figure 2 shows the overview of
Comp-COMP framework.

3.1 Comprehensiveness and Compactness
Assessment

Given a set of data point X = {x1,x2,...,Tm},
its comprehensiveness is measured by comput-
ing its coverage of a space S with data points
{s1, $2, ..., sn }. To achieve this, we encode all data
points in X and S to the semantic space as follows:

Ex = {es1, €42, ..., xm} = {Encode(z;) |V(z;) € X},
(D
Eg = {es1,€s2, ..., esn} = {Encode(s;) | V(z;) € S},
()

11608



Iteration 1 Iteration 3

Iteration 2

Iteration 4 Iteration 5 Iteration 10

]
Iteration 7

. c

a0 i
L3, .
0 ¢ 7‘?@"': g o

; ;/'.
¥ -“;._r | 0| -

40

X

<] e . © . C
X

. f

A
et §
.

50

. c
X

T
Iteration 9 °
. > 3
X

0 100 -50 0 50 100 -5 <50 -3 [ E3 50 75

Figure 3: The semantic distribution of 10 sample departments’ corpora when collecting Department data from the
initial 2k to the final 24k corpora dataset. The pink data points represent the newly added corpora X, while the blue
points indicate the existing corpora C', showcasing the intentional expansion of semantic coverage.

ty=0.9

Figure 4: The figure shows how the density threshold ¢, influences the semantic coverage of newly added benchmark
questions Q)'. As t4 increases, the gap in coverage of the corpora dataset C by the current benchmark Q will be
filled gradually, and the semantic scope of the existing benchmark will be expanded.

where Encode(+) is a text encoder, such as BERT.
Then, we use the Gaussian Kernel Density Estima-
tion (KDE), with 7 = 1,2, ..., m, to estimate their
density distributions as follows:

ey = LS (s = eal?
fX(djaEX) = WL ;exp <_—

2h?
, 3)
Ly dj — esi
TSEER N E )
=1
4

Based on the distributions, we can estimate the
points in the non-overlap part (denoted as gap
points) by capturing how much more (or less) dense
the .S is relative to the X at each point. This is by
calculating their logarithm of density ratio as:

fs(dy)

fx(dy)

and we have non-overlap area of the set S
relative to the space X as Agq(X,S)
{dj|A10g f(dj) > 0, dj S Es}.

On the other hand, the compactness of the cor-
pora and QA is controlled by whether the inclusion
of new data points X gives much semantic resi-
dency to the existing set Y. Thus, we measure the
Pearson correlation coefficient (Cohen et al., 2009)

Alog f(d;) = log : )

between the semantic distributions of X and Y as:
r(X,Y) = p(fx(dy), fr(dy),  (6)

where p(+) is the correlation metric. If their coef-
ficient (X, Y) is lower than a threshold ., it is
considered the inclusion of X to Y will not affect
the compactness of Y.

3.2 Assessment Guided Iterative Corpora
Expansion

After the data crawler of domain-related material
as S, we need to process the data chunks in S to
construct a corpora C'. The process ensures that the
corpora cover as much semantic space of S as pos-
sible to obtain good comprehensiveness, while the
redundancy in the corpora should be low to achieve
compactness. We formulate corpora processing as
a semantic expansion and completion process. A
subset of available data X € S is added to the
current corpora only if it can fill the semantic gap
and expand the boundaries of semantic knowledge
current C. The whole process is achieved by the
following iterative function:

C=C+X,ifr(X,0) <t;,¥X €S. (1)

Using this function, we iteratively add a new sub-
set X € S to C if the inclusion does not in-
troduce many redundancy to the existing corpora
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set. Meanwhile, we also observe the non-overlap
area Agqp(C, S) to monitor the comprehensiveness.
The iteration stops if there is no more X € .S and
no gap points in Agq,(C, S).

3.3 Mining User Interests for QA Generation

We follow the comprehensiveness-compactness
principle in the QA generation process. After hav-
ing the processed corpora C, our aim here is to
generate a QA set () with diverse content to cover
the whole semantic space of the corpora to achieve
comprehensiveness, and the generated questions
should be representative to ensure compactness.

To this end, we propose a QA generation work-
flow as a loop process, as shown in Figure 2. In
the first round, the question set () is initialized by
generating QAs based on the whole corpora us-
ing a QA generation function fgagen(C). The
QA generation function fgagen accepts corpora C
as input and uses scheme QA generation method
for structured data chunks, such as SQARQL for
data with Ontology structured and uses LLM to
generate QA for unstructured data chunks. The
questions cover different knowledge cognitive lev-
els, such as creation, application, understanding,
memorization, and different formats, such as open-
ended, MQA, MCQ, Binary questions. After the
first round, we obtain the non-overlapped semantic
area A},,(C, Q) between the corpora C' and the
current QA set ). Using a density threshold ¢4
from zero to one, we can decide to what extent
the gaps between the corpora C' and the QA set )
are filled. ¢, is set based on a specified percentile
of the density differences, and this percentile de-
termines the cutoff point for what is considered a
“significant” density difference.

Ap(C,Q) = {d; | Alog f(dy) > ta,d; € Eq},
®)
Q=Q+ fQAGen (A'gap((], Q)) . 9

The A’

ap(C; Q) represents the semantic area that
we aim to cover in the next round of QA gener-
ation. New QA set Q' = foacen (4,,(C, Q)).
can be generated using the QA generation function
fQAGen on the targeting corpora A},.(C, Q).
Moreover, in the QA generation, we propose that
we should not only generate QAs based on the cor-
pora C but also include user-interested questions.
For example, the frequently asked questions and the
questions discussed in public forums (e.g., Quora
and Zhihu). To this end, we add user-interested
questions as a special gap points to Ay, (C, Q).

Cog. Type Source Metric # QA
KM Binary Staff Accurary 5,000
Binary Course Accurary 2,000
MCQ Staff Accurary 5,000
KU MAQ Staff Recall, Precision, F1 1,000
MCQ Course Accurary 2,000
KA MAQ Staff Recall, Precision, F1 2,898
MAQ Course Recall, Precision, F1 1,598
Open-ended Department BLEU-2, BLEU-4 2,726
KC Open-ended FAQ BLEU-2, BLEU-4 902
Open-ended Forum BLEU-2, BLEU-4 1,759

Table 2: Statistics of the PolyBench.

4 PolyBench: An Academic Benchmark

In this section, we employ the proposed framework
to construct PolyBench, a comprehensive and com-
pact benchmark in the academic domain.

4.1 Assessment Guided Corpora Collection

The ComP-COMP framework governs corpus
construction through iterative semantic distribu-
tion analysis, as formalized by C;y; = C; U
feorpus (X, Agap(Ci, S)), where Ay, identifies
undercovered semantic regions. Figure 3 demon-
strates this process through three critical phases.
Our dual-phase validation ensures both dimensions
of CoMP-CoMP: (1) Comprehensiveness: Se-
mantic coverage expands 3.75x (20x20 to 75x75)
through gap analysis, capturing 98% of academic
domain concepts in terms of staff and courses. (2)
Compactness: The final corpora eliminate 68%
of redundant entries compared to unfiltered web
crawls, verified through pairwise similarity analy-
sis (cosine distance < 0.2 in 92% of cases).

4.2 Assessment and Interest Guided QA
Construction

Our QA generation methodology operates through
an iterative threshold guided process, formalized
as Qit1 = Qi U fQagen(Ayq,(C, Qi), tq), where
A;ap denotes the non-overlapped semantic area be-
tween corpus C' and current QA set ();. For struc-
tured corpora (staff/course schemas), we imple-
ment automated template filling for binary, MCQ,
and MAQ formats using regular expression patterns
and SPARQL (Cyganiak, 2005) based ontology rea-
soning. Unstructured text (department documents)
undergoes LLM-driven reading comprehension QA
extraction via LLaMA3-8B, while FAQ/Forum data
leverages inherent Q&A structures. More imple-
mentation details are presented in Appendix B.
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Knowledge Question Question Example
Cognitive Level Format Question: Who is my academic advisor?
, ¥ Answer: All Bachelor's degree students will be assigned to one full-time
Creatingh— - - - - ——% Open-Ended - academic staff as his/her academic advisor throughout his/her study.
Question: Which of the following courses teach Java programming?
Application — =~~~ - > MAQ — —=» Choices: A. CS101 B.CS220 C.CS201 D.CS307 E.CS331 F.CS453 G. ... etc.
’ Ground Truth: B, G, H
d
Understanding  ~ MCQ Question: What university did Dr. Alice graduate from?
Choices: A. MIT B.UCB C.UCLA D.USC
VT Ground Truth: C
Binary

Question: Is Dr. Alice a Full-Professor in Department of Computer Science?

Answer: No

Figure 5: Example questions for corresponding question formats and cognitive levels.

The density threshold ¢, governs iterative bench-
mark expansion through gap analysis, visualized in
Figure 4. Higher ¢4 values enforce tighter semantic
coverage, with light/dark blue dots representing C
and Q;, and claret-red dots showing new Q' from
A’gap. This achieves comprehensive coverage with
minimal questions—final benchmarks require only
1.7% of potential QA pairs (24,883 total) while

maintaining domain representativeness (Table 2).

5 Experiments

5.1 Experimental Settings

Baselines We include both frozen and supervised
fine-tuning (SFT) LLMs with in-context learning
(ICL) prompts as baselines. For the ICL, we ap-
ply few-shot learning (Parnami and Lee, 2022) and
Retrieval Augmented Generation (RAG) (Lewis
et al., 2020; Gao et al., 2023) to include domain
knowledge in the prompt for LLMs. For the SFT,
we use LoRA (Hu et al., 2021) to fine-tune several
LLM backbones. For LLM backones, we apply
both close-sourced and open-sourced LL.Ms includ-
ing GPT3.5, GPT4 (OpenAl, 2024), Vicuna-7B,
Vicuna-13B (Chiang et al., 2023), LLaMA3-8B
(Touvron et al., 2023), GLM4-9B (GLM et al.,
2024), and Qwen2-7B (Bai et al., 2023).

Implementation Details For the PolyBench con-
struction, we set the key hyperparameters based on
preliminary experiments aimed at balancing com-
prehensiveness and compactness. The corpus com-
pactness threshold was set to t. = 0.05 in Eq. (7)
for the corpora collection and A = 5.0 in Eq.(3)
and Eq. (4), and t; = 0.6 in Eq (8) for the QA
generation. Results of more parameters and their
sensitivity will be presented in Section 5.5. We
use Gte-Large (Li et al., 2023) encoder to encode
data chunks, selected for its robust performance in
capturing nuanced semantic similarities.

5.2 In-Context Learning on PolyBench

Table 3 compares the performances of different in-
context-learning techniques, i.e., few-shot learning
and RAG, on answering several different QA sets
of PolyBench. Experiment results on more LL.Ms
are listed in Appendix A’s Table 7. Based on the
results, we have several findings:

RAG Enhances Performance Across Most Ques-
tion Types. Our analysis demonstrates that RAG
substantially improves precision and recall over
vanilla and few-shot learning in domain-specific
QA. This holds consistently across major backbone
models and question types, with performance gains
ranging from 2%—-86% over vanilla baselines and
2%—-88% over few-shot baselines. However, RAG
exhibits a precision-recall tradeoff for complex rea-
soning MAQs, achieving higher precision but lower
recall across all main models. This suggests bench-
marks should explicitly account for task priorities
(precision-oriented vs. recall-oriented scenarios)
when evaluating QA systems.

Few-Shot Learning Suffers from Answer Di-
versity. While few-shot learning marginally im-
proves binary and MCQ responses by clarifying
answer formats, 33% of its implementations un-
derperform vanilla prompts. All main models ex-
cept GPT-4 show metric degradation in >2 cate-
gories, with MAQs being most vulnerable: LLMs
often misinterpret few-shot examples as definitive
answer templates. Appendix A data reveals ex-
treme cases (e.g., Vicuna-13B’s 90% metric de-
cline), highlighting the risk of overfitting to limited
examples. This implies that few-shot strategies
require careful validation against answer diversity.

5.3 Supervised Fine-tuning on PolyBench

The results of the SFT models are listed in Ta-
ble 8. Compared to the vanilla results of the
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Paradign LLM Method Binary MCQ MAQ (on understanding) MAQ (on application) Open-ended
Acc. Acc.  Recall Precision F1 Recall  Precision F1 BLEU-2 BLEU-4

Vanilla 0525 0354 0473 0.546 0474 0.665 0.512 0.541 0.191 0.126

LLaMA3-8B  Fewshot  0.534 0392 0.410 0.534 0.440  0.492 0.532 0.475 0.227 0.153

RAG 0893  0.758  0.903 0.806 0.820  0.603 0.558 0.533 0.345 0.298

ICL Vanilla 0.525 0364  0.739 0.530 0.580  0.865 0.500 0.599 0.190 0.123
GLM4-9B Fewshot  0.527 0447 0.624 0.578 0.574  0.658 0.572 0.581 0.196 0.128

RAG 0.834  0.776  0.964 0.757 0.826  0.696 0.530 0.553 0.309 0.256

Vanilla 0.694 0568 0.641 0.650 0.613  0.724 0.661 0.652 0.291 0.201

GPT-4 Fewshot  0.704  0.633  0.713 0.642 0.647  0.745 0.722 0.702 0.314 0.220

RAG 0.792  0.783  0.932 0.975 0941 0.637 0.807 0.670 0.364 0.315

Vanilla 0.552 0404 0.559 0.545 0.513  0.675 0.533 0.559 0.280 0.193

LLaMA3-8B  Fewshot  0.536 0393  0.492 0.525 0473 0.571 0.532 0.514 0.285 0.196

RAG 0.791 0.803  0.830 0.874 0.820  0.587 0.576 0.528 0.427 0.376

SFT Vanilla 0.532  0.440 0.752 0.567 0.610 0.770 0.536 0.600 0.279 0.196
GLM4-9B Fewshot  0.500  0.468  0.799 0.531 0.600  0.845 0.517 0.606 0.285 0.201

RAG 0.840  0.900 0.942 0.959 0.940 0.694 0.684 0.642 0.442 0.397

Vanilla 0.608  0.402  0.825 0.500 0.590 0.827 0.521 0.606 0.263 0.178

Qwen2-7B Fewshot  0.587  0.392  0.811 0.453 0.548  0.858 0.481 0.576 0.259 0.177

RAG 0.674  0.830 0.852 0.848 0.821  0.623 0.559 0.532 0.398 0.351

Table 3: The performance of In-Context Learning (ICL) and Supervised Fine-tuning (SFT) approaches (i.e., few-shot
learning and RAG) on the PolyBench with various types of questions.

tq thresholds for questions Q

t. thresholds for corpus C'

Model

w/o tq 0.1 0.3 0.5 0.7 0.9 w/o te 0 0.05 0.1 0.15 0.2 0.25 0.3

24591 424 1189 2172 3247 4070 25376 11776 12252 16770 18714 19498 20821 21821
Vicuna-7B 0.084  0.060 0.082 0.087 0.086 0.086 0.067 0.064 0.067 0.069 0.068 0.129 0.071 0.131
Vicuna-13B 0.092 0.063 0.077 0.087 0.087 0.087 0.066 0.067 0.072 0.119 0.134 0.143 0.147 0.147
Llama3-8B 0.374 0363 0.376 0.389 0.389 0.390 0.296 0.296 0.312 0302 0317 0318 0320 0.317
Qwen2-7B 0.295 0.299 0.298 0.300 0.302 0.301 0.183 0.182 0.174 0.187 0.189 0.190 0.190 0.160
GLM4-9B 0.360 0.339 0.350 0.351 0.354 0.353 0.247 0245 0247 0250 0.257 0.166 0.257 0.172

Table 4: The performance of frozen models on a subset of the Open-Ended questions with RAG baseline across
different thresholds ¢4 and ¢., parameterize the distribution of questions () and corpus C' respectively.

frozen model in Table 7, we can find that fine-
tuning techniques can consistently improve recall
and precision across different types and difficulties
of domain-specific questions for the latest LL.Ms,
such as LLaMA3, GLM4, and Qwen2. The aver-
age improvement from frozen LLMs to SFT LLMs
with vanilla prompts is around 44.3% at each met-
ric. Moreover, the SFT prominently improves
open-ended questions across different LLM back-
bones. The average improvement of all models on
open-ended questions is 131.84% on BLEU-2 and
163.71% on BLEU-4. The largest improvement is
with the Vicuna models. Vicuna-7B experiences a
194.2% and 236.11% increase in average BLEU-2
and BLEU-4, while Vicuna-13B sees a 347.5% and
442 .7% increase, respectively. For the other mod-
els, the average increase is at least 32.19% increase
on Open-Ended questions after fine-tuning. Such
boosting is noteworthy. We can gain insights that a
benchmark with diverse question formats matters
if we want to evaluate the model thoroughly.

We also conduct the experiments by incorpo-

rating the in-context-learning technique (e.g., few-
shot learning and RAG) into SFT LLMs.

Among all the results of SFT in Table 8, 30.67%
experienced worse results than the frozen LLMs
in Table 7 under the same settings. The majority
of them are from MAQ questions, which require
more reasoning ability than other question formats.
This phenomenon indicates that even though the SF
models gain domain knowledge, they suffer from
catastrophic forgetting, which downgrades their
general capabilities in handling long context infor-
mation and reading comprehension. This could still
be an ongoing issue in the current research field re-
garding how to balance domain-specific knowledge
and general abilities.

5.4 Comparison between ICL and SFT

We also visualize the comparison of ICL and SFT
techniques in Figure 6. In each sub-figure, two
groups of results are compared, i.e., frozen (namely
FZ) and fine-tuning LLM (namely FT). Each group
contains three results obtained by vanilla, few-shot,
and RAG prompting techniques.

The results show that the RAG technique with
a fine-tuning model yields the best precision and
recall in answering domain-specific questions. For
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Figure 6: The radar chart demonstrates the collaboration
of Frozen models (FZ) and Fine-Tuning (FT) techniques.
Each sub-chart has the results of using frozen and fine-
tuning models with three types of prompts: Vanilla,
Few-shot Learning, and RAG.

example, using RAG with fine-tuned LLaMa3-8B,
around 81% of precision and around 86% of re-
call are obtained on binary, MCQ, and easy MAQ.
Besides, the RAG techniques could improve both
frozen and fine-tuning LLMs. The Vicuna-13B
backbone achieves the largest improvement gain.
Moreover, in-context learning and fine-tuning tech-
niques still have a large improvement space on
the open-ended questions and the MAQ, which re-
quires cognition on the knowledge-creating level.

5.5 Ablation Study of ComMP-COMP

We conducted a series of ablation studies on two
critical parameters in the COMP-COMP framework:
tg and t.. The parameter 7; enhances evaluation effi-
ciency by reducing the number of benchmark ques-
tions () through uniform distribution optimization,
while 7, minimizes corpus redundancy C' guided
by semantic distribution analysis of the knowledge
corpus. Both parameters dynamically adjust their
respective thresholds to optimize dataset construc-
tion through an adaptive integration mechanism.
Our ablation studies yield three principal insights
about the COMP-COMP framework.

First, the benchmark optimization threshold
ty achieves unprecedented evaluation efficiency
through distribution-aware question selection.
When configured at #;=0.1, the framework requires
only 1.7% of benchmark questions ()) while ex-

Method Helpfulness Conciseness Correctness BLEU-21-4
LLaMA3-8B

Vanilla 3.70+0.99 3.67+0.89 3.53+1.02 0.1910.13
Fewshot  3.73+0.88 3.66+0.95 3.58+1.02 0.2310.15
RAG 3.11+0.96 3.32+0.99 3.27+1.11 0.3510.30
GLM4-9B

Vanilla 3.64+0.97 3.62+0.99 3.58+0.92 0.1910.12
Fewshot  3.60+1.02 3.62+1.00 3.51+0.95 0.2010.13
RAG 3.19+0.84 3.07+0.83 3.30+0.96 0.3110.26
GPT-4

Vanilla 3.12+0.79 2.97+0.78 3.12+0.84 0.2910.20
Fewshot  2.75+0.72 3.06+0.89 2.86+0.87 0.3110.22
RAG 3.11+0.77 2.97+0.88 3.14+0.94 0.3610.32
LLaMA3-8B (FT)

Vanilla 2.41+0.92 2.63+0.91 2.62+1.00 0.2810.19
Fewshot  2.40+0.93 2.77+1.09 2.56+0.99 0.2910.20
RAG 2.58+0.99 2.85+1.09 2.74+1.09 0.4310.38
GLM4-9B (FT)

Vanilla 2.93+1.06 3.03£1.02 2.84+1.16 0.2810.20
Fewshot  2.89+0.96 3.08+1.03 2.99+1.03 0.2910.20
RAG 2.95+0.94 3.06+0.99 2.99+1.10 0.4410.40
Qwen2-7B (FT)

Vanilla 2.99+1.03 3.08+1.16 2.99+1.20 0.2610.18
Fewshot ~ 3.03+1.10 3.07+1.11 2.96+1.22 0.2610.18
RAG 2.78+1.15 2.95+1.17 2.92+1.23 0.4010.35

Table 5: User Survey Results and Open-Ended BLEU
Scores of PolyBench (mean + standard deviation).

posing conventional benchmarks’ inherent distri-
butional biases, models show a moderate 13.5%
performance drop compared to full benchmarks
(Table 4). This performance gap reveals how tra-
ditional approaches overrepresent questions where
models have localized competence, creating artifi-
cial inflation of aggregate scores. Comp-Comp
counters this through adaptive threshold adjust-
ments that enforce uniform question distribution
across knowledge domains, rectifying evaluation
skewness while maintaining testing integrity.

Second, the corpus compression threshold ¢,
demonstrates that semantic density optimization
outweighs corpus quantity in RAG implementa-
tions. Reducing the knowledge base to 46.4% of
original components (C) improves model metrics
in 80% of trials, eliminating 53.6% redundancy
from conventional corpora. This evidences that
overlapping or marginal entries, previously consid-
ered harmless, actually create knowledge dilution
effects that hinder retrieval precision. The frame-
work’s f.., controlled pruning mechanism identifies
and removes such redundancies while preserving
semantic distribution uniformity, achieving more
effective knowledge utilization.

Third, the synergistic operation of 7; and ¢, es-
tablishes a new efficiency frontier in the evaluation
system. As validated in Table 4, it attains perfor-
mance parity with conventional benchmarks while
using only 1.7% of () and 46.4% of C'. This 98.3%
reduction in questions and 53.6% decrease in cor-
pus demonstrate COMP-COMP’s ability to decou-
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Dataset t, thresholds for questions () (zero-shot)

t. thresholds for corpora C' (RAG)

wloty 0.1 0.3 0.5 0.7 0.9 wlo t. 0.0 0.05 0.1 0.15 0.2 0.25 0.3
MedQA #Q 1273 21 24 28 36 503 #C 213330 21342 85338 96004 117336 181332 181332 202664
¢ Acc. 0.684 0.714 0.750 0.786 0.778 0.660 Acc. 0.870 0.874 0855 0.850 0.846 0.866 0.874 0.854
PubMedQA #Q 1000 14 29 35 92 347 #C 3358 2356 3358 3358 3358 3358 3358 3358
ubMe Acc. 0.462 0.429 0.586 0.543 0.467 0.467 Acc. 0.670  0.681 0.670 0.670 0.670  0.670 0.670 0.670
FiQA #Q 1706 117 287 426 528 626 #C 15404 2310 7704 13094 14634 15404 15404 15404
! BLEU-2 0.046 0.042 0.045 0.047 0.047 0.046 BLEU-2 0.054 0.051 0.051 0.052 0.055 0.054 0.054 0.054
#Q 150 11 32 48 70 85 #C 180 54 108 162 180 180 180 180

FinanceBench

Acc. 0.007  0.000 0.000 0.000 0.014 0.012

Acc.

0.053  0.007 0.007 0.053 0.053 0.053 0.053 0.053

Table 6: Performance of the zero-shot QA (¢4 thresholds for questions ) and RAG (¢, thresholds for corpora C)
baseline on different datasets across varying thresholds ¢4 and ¢, respectively.

ple evaluation quality from resource quantity, a
critical advancement for sustainable benchmarking.
Specifically, 80% of experimental trials demon-
strated superior scores compared to using the origi-
nal corpus. This paradigm shift suggests that con-
ventional corpora contain substantial knowledge
redundancy, overlapping or marginally informative
entries that dilute retrieval effectiveness.

5.6 User Survey

We conducted a user survey with five domain ex-
perts to evaluate 100 randomly sampled LLM re-
sponses on Helpfulness, Conciseness, and Correct-
ness using a 1-5 Likert scale, as shown in Table 5.

A key finding is the discrepancy between hu-
man evaluations and automated metrics. For frozen
models (LLaMA3-8B, GLM4-9B), human eval-
uators preferred responses from vanilla and few-
shot methods. Conversely, the RAG method, de-
spite lower human scores, consistently achieved
the highest BLEU scores. This trend persists for
fine-tuned (FT) models, where RAG again leads in
BLEU scores while not always being preferred by
humans. Notably, all human scores for FT models
were lower than their frozen counterparts. This
highlights a limitation of relying solely on auto-
mated metrics like BLEU, which measure textual
overlap but may not capture user-perceived quality
such as coherence or relevance. Therefore, hu-
man evaluation is crucial for validating benchmark
quality and guiding the development of genuinely
user-centric models. These insights reinforce the
necessity of a multi-faceted evaluation approach,
where automated scores are always contextualized
with human-centric assessments to build models
that are not only accurate but also genuinely useful.

5.7 Application of COMP-COMP On More
Domains

To test its generalizability, we applied the COMP-
CowMmpP framework to four benchmarks in the med-

ical (MedQA (Jin et al., 2021), PubMedQA (Jin
et al., 2019)) and finance (FiQA (Shah et al., 2022),
FinanceBench (Islam et al., 2023)) domains. We
analyzed the impact of various thresholds ¢4 (for
questions Q) and t. (for corpora ') to observe their
performance metrics on LLaMA3.1-8B-Instruct,
respectively. The results are shown in Table 6.

The results consistently show that filtering cre-
ates smaller, more efficient datasets without de-
grading, and often improving, performance. For
instance, on MedQA, applying a threshold of t; =
0.5 reduced the number of questions from 1273 to
just 28, yet increased accuracy from 0.684 to 0.786.
Similarly, filtering the corpus with ¢, maintained or
enhanced accuracy while using a more compact set
of documents. This trend holds in the finance do-
main, where metrics remained stable or improved
despite data reduction. Even on the difficult Fi-
nanceBench dataset, where baseline performance
was low, our framework did not hurt performance.

These findings validate that COMP-COMP is an
efficient and broadly applicable framework. It suc-
cessfully builds compact yet comprehensive bench-
marks by removing redundancy while preserving
evaluation integrity, demonstrating its value for cre-
ating robust, domain-specific evaluation tools.

6 Conclusion

This work proposes COMP-COMP, which is a novel
domain-specific LLM benchmarking framework
using comprehensiveness and compactness as the
guiding principles. To validate its performance, we
developed PolyBench, a large-scale benchmark in
a closed academic domain, demonstrating the ef-
fectiveness of COMP-COMP. This work serves as
a valuable reference for future studies, highlight-
ing the importance of precise dataset curation in
enhancing domain-specific LLMs.
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Limitations

Although CoMP-COMP successfully demonstrates
its utility within an academic setting, where the
domain knowledge is well-structured and relatively
static. However, more dynamic domains may pose
unique challenges in terms of data availability and
rapidly evolving knowledge structures that could in-
fluence the framework’s performance. Future work
should extend our experiments to a broader set of
domains to rigorously assess the generalizability
and robustness of the COMP-COMP principles.

Furthermore, the current implementation of
COMP-COMP is best suited for "closed" or well-
defined domains where a comprehensive body of
knowledge can be collected and stabilized. The
framework’s iterative expansion process assumes a
target knowledge space S that is largely finite. Its
applicability to "open" and continuously evolving
domains, such as news analysis or social media
trends, is less clear. Adapting the COMP-COMP
framework to handle such dynamic data presents a
significant avenue for future research.
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A Experiment Results

The experiment results on more LLMs are shown
in Table 7 for IC and Table 8 for FT baselines.

For the in-context learning experiments, we eval-
uate PolyBench on several backbone models, in-
cluding Vicuna-7B, Vicuna-13B (Chiang et al.,
2023), LLaMA3-8B (Touvron et al., 2023), GLM4-
9B (GLM et al., 2024), Qwen2-7B (Bai et al.,
2023), GPT3.5, and GPT4 (OpenAl, 2024). Each
of them is tested on three prompt templates: vanilla,
few-shot, and RAG. For the RAG framework, we
embed the external knowledge C'or with Gte-Large
(Li et al., 2023) encoder and select top-k similar
chunks as the context, with k being 5.

For the tuning approach, we implement LoRA
fine-tuning (Hu et al., 2021) on all open-sourced
LLMs mentioned in the In-Context experiments.
We first pre-train the backbone LLLMs with text
chunks obtained from data source Staff, Course,
and Department. Then, we apply supervised fine-
tuning, with the instructions and outputs being the
questions and answers, respectively, which are ob-
tained from the data source FAQ and Forum.

B PolyBench Construction Details

B.1 Question Format

To analyze the effects of the balance in precision
and recall, PolyBench incorporates various ques-
tion formats:

Binary are the simplest questions among the
benchmark and only appear in the first cognitive
level KM. The answers to these questions are sim-
ply “yes” or “no”.

MCQ are multiple-choice questions, and all of
them have only one correct choice among four can-
didates. MCQ only appears at the KU level, with
relatively easy knowledge being tested.

MAQ are multi-answer questions, which contain
eight candidate choices, and the number of correct
answer(s) is not fixed, namely can be any number
from 1 to 8. MAQ appears in KU and KA lev-
els, which takes charge of evaluating the model on
both knowledge comprehension and complex rea-
soning between chunks. MAQ targets testing the
ability of the model to determine to what extent the
model can obtain the precision of the knowledge.
Our highlight is to include more candidate choices
(eight in total), thus the precision gap can be fairly
distinguished between baselines.
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Frozen Model ~ Prompt Binary MCQ MAQ (on understanding) MAQ (on application) Open-ended
Acc. Acc. Recall Precision F1 Recall  Precision F1 BLEU-2 BLEU-4

. Vanilla 0481 0205 0.743 0.451 0.517  0.741 0.397 0.483 0.087 0.052
Vicuna-7B Fewshot  0.491  0.206  0.829 0.433 0.538  0.829 0.380 0.499 0.104 0.063
RAG 0485 0335 0.842 0.520 0.595  0.740 0.410 0.491 0.111 0.085
. Vanilla 0485 0203  0.551 0.513 0479  0.611 0.483 0.494 0.066 0.039
Vicuna-13B Fewshot 0494  0.125 0.516 0.300 0.356  0.486 0.237 0.302 0.063 0.037
RAG 0.500 0.463  0.768 0.729 0.697  0.596 0.510 0.494 0.090 0.065
Vanilla 0.525 0354 0473 0.546 0474  0.665 0.512 0.541 0.191 0.126
LLaMA3-8B  Fewshot 0.534 0392 0.410 0.534 0.440 0492 0.532 0.475 0.227 0.153
RAG 0.893 0.758  0.903 0.806 0.820  0.603 0.558 0.533 0.345 0.298
Vanilla 0.525 0364 0.739 0.530 0.580  0.865 0.500 0.599 0.190 0.123
GLM4-9B Fewshot  0.527 0447 0.624 0.578 0.574  0.658 0.572 0.581 0.196 0.128
RAG 0.834 0.776  0.964 0.757 0.826  0.696 0.530 0.553 0.309 0.256
Vanilla 0425 0.288  0.387 0.286 0.310 0475 0.368 0.394 0.191 0.124
Qwen2-7B Fewshot  0.215 0.336  0.692 0.496 0.540  0.677 0.534 0.557 0.185 0.123
RAG 0.490 0430 0.887 0.770 0.804  0.536 0.510 0.481 0.279 0.228
Vanilla 0.578 0361  0.548 0.570 0.516  0.692 0.566 0.577 0.300 0.216
GPT-3.5 Fewshot  0.541 0434 0.536 0.583 0.523  0.615 0.567 0.557 0.313 0.219
RAG 0.885 0.701  0.902 0.769 0.804  0.669 0.549 0.562 0.397 0.335
Vanilla 0.694 0568 0.641 0.650 0.613  0.724 0.661 0.652 0.291 0.201
GPT-4 Fewshot  0.704  0.633  0.713 0.642 0.647  0.745 0.722 0.702 0.314 0.220
RAG 0.792  0.783 0.932 0.975 0.941 0.637 0.807 0.670 0.364 0.315

Table 7: The performance of In-Context Learning (IC) approaches (i.e., few-shot learning and RAG) on several

question sets of PolyBench with Frozen Models (FZ).

Fine-Tuning Prompt Binary MCQ MAQ (on understanding) MAQ (on application) Open-ended
Model Acc. Acc.  Recall Precision F1 Recall  Precision F1 BLEU-2 BLEU-4
. Vanilla 0471 0245 0.465 0.455 0418 0427 0.403 0.365 0.245 0.169
Vicuna-7B Fewshot  0.487 0229 0.625 0.441 0478  0.633 0.394 0.449 0.254 0.176
RAG 0.505 0.294 0.673 0.516 0.535 0.518 0.420 0.403 0.393 0.342
. Vanilla 0.503 0.287 0474 0.498 0.430  0.545 0.452 0.431 0.282 0.201
Vicuna-13B Fewshot  0.510 0.247 0.366 0.443 0.346  0.518 0.436 0.424 0.281 0.199
RAG 0.516  0.516  0.601 0.694 0.577  0.486 0.494 0.424 0.423 0.375
Vanilla 0.552 0404 0.559 0.545 0.513  0.675 0.533 0.559 0.280 0.193
LLaMA3-8B  Fewshot 0.536  0.393  0.492 0.525 0473  0.571 0.532 0.514 0.285 0.196
RAG 0.791  0.803 0.830 0.874 0.820  0.587 0.576 0.528 0.427 0.376
Vanilla 0.532 0440 0.752 0.567 0.610 0.770 0.536 0.600 0.279 0.196
GLM4-9B Fewshot  0.500 0.468 0.799 0.531 0.600  0.845 0.517 0.606 0.285 0.201
RAG 0.840 0.900 0.942 0.959 0.940 0.694 0.684 0.642 0.442 0.397
Vanilla 0.608 0.402 0.825 0.500 0.590 0.827 0.521 0.606 0.263 0.178
Qwen2-7B Fewshot  0.587 0392 0.811 0.453 0.548  0.858 0.481 0.576 0.259 0.177
RAG 0.674  0.830 0.852 0.848 0.821  0.623 0.559 0.532 0.398 0.351

Table 8: This table demonstrates the PolyBench results in a Fine-Tuning (FT) based approach.

Open-Ended are normal question-answering in-
stances, and all of them are at the KC level. The
answer can be a combination of sentences or sev-
eral paragraphs, depending on the scenarios. Open-
ended QA targets the ability to recall, namely, to
what extent they can model and include the re-
quired knowledge.

B.2 MAQ Reasoning Construction

The MAQ questions are mainly built from ontology-
driven SPARQL queries over staff/course schemas.
For example, to construct the QA pair for question
“Which professors in {department} graduated from
{school}?”, an implemented could be:

SELECT ?professor
WHERE {

?professor dept:worksFor ?department .
?professor edu:graduatedFrom ?school

b

B.3 Knowledge Cognition

The cognitive dimension of the benchmark aims
to distinguish the difficulty levels of the questions.
Inspired by Bloom’s Taxonomy (Krathwohl, 2002),
which is a dimension that is widely applied in
domain-specific benchmarks, we hierarchize all
questions into four cognitive levels, which are:

* Knowledge Memorization (KM), is the simple
replication of the knowledge in corpora, with
all answers are simply binary.

* Knowledge Understanding (KU), requires the
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model to answer the information given a spec-
ified entity. The answers can be found in a
single data chunk.

* Knowledge Application (KA), requires more
difficult reasoning ability of the model, that
the answer should be obtained and logically
reasoned among a combination of multiple
chunks.

* Knowledge Creating (KC) allows the model
to answer open-ended questions. The answers
may ask for the view or comment from the
model and somehow require the extension of
current knowledge.

With these four cognitive dimensions, we can com-
prehensively evaluate the model’s ability and an-
alyze the impact of different baselines on various
task difficulties.
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