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Abstract

Fine-tuning large language models (LLMs) typ-
ically relies on producing large sets of input-
output pairs. Yet for a given question, there can
be many valid outputs. In practice, these out-
puts are often derived by distilling knowledge
from teacher models, and they can vary depend-
ing on the specific teacher model or prompt-
ing strategy employed. Recent findings show
that how these training outputs are generated
can significantly affect the performance of the
fine-tuned model, raising an important ques-
tion: how do we pick the best data generation
method from among numerous possibilities?
Rather than exhaustively training and evalu-
ating on each candidate, this paper proposes
a scalable approximate method that assesses
a small subset of generated data to estimate
its suitability for a specific target LLM. Our
central idea is that effective outputs should
be familiar to the target LLM. While previ-
ous work measures familiarity with perplex-
ity, we find that perplexity might be subop-
timal in characterizing “familiarity” through
empirical analyses and practical observations.
To address this, we introduce self-aligned per-
plexity, a novel metric capturing how closely
candidate outputs adhere to the target LLM’s
own style and reasoning patterns. In this way,
we can identify the most effective generation
strategy on a small sample, then apply it to pro-
duce the complete training set. We demonstrate
that training on data generated by the chosen
method yields significant improvements across
diverse reasoning-focused benchmarks, partic-
ularly in cases where different candidate meth-
ods lead to highly divergent training outcomes.
Our implementation is publicly available at
https://github.com/XuanRen4470/SPPL.

1 Introduction

When instruction-tuning an LLM, training data con-
sists of question-response pairs, where multiple
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TCorresponding author.

valid responses can be generated for the same in-
put. Previous studies (Ren et al., 2024) show that
datasets with identical input questions but differ-
ent responses can lead to varied learning outcomes,
even when responses contain similar levels of detail.
This raises a key question: how can we construct re-
sponses that are most effective for the target LLM?

Prior research has explored improving responses
by adding details or rationales, such as structur-
ing ground truth step by step (Hsieh et al., 2023;
Ranaldi and Freitas, 2024), incorporating ratio-
nales, or enriching responses with additional in-
formation (Zhang et al., 2024; Kang et al., 2023;
Liet al., 2022). However, recent studies (Ren et al.,
2024; Yang et al., 2024) suggest that more details
or converting responses to step by step style do not
always improve performance and that alignment
with the LLM’s linguistic style is crucial.

In our experiment, we observe that no single re-
sponse generation strategy works universally across
tasks. Thus, we need to create a method to find out
the most effective way to generate responses for
each task, rather than a single method for all tasks.

The concurrent works (Xu et al., 2024; Kim
et al., 2024) attempt to predict the effectiveness
of response generation methods by evaluating the
entire training dataset. They generate full train-
ing datasets using each method and then estimate
training effectiveness based on scores computed
via algorithms or reward models. However, these
approaches are computationally expensive and not
scalable.

However, can we predict the effectiveness of
each data generation methods efficiently? We
observe an interesting phenomenon that each re-
sponse generation method produces responses with
a consistent style, meaning that a small subset of
generated examples can effectively represent the
entire dataset. Based on this assumption, we pro-
pose an efficient ranking pipeline that evaluates a
limited number of samples (e.g., 50) to assess the
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performance of each response generation strategy.
This approach uses an alignment estimation func-
tion to assign scores to each strategy, enabling us
to identify the best-performing method without the
need for a full-dataset evaluation.

Previous research (Ren et al., 2024) used per-
plexity to measure a model’s familiarity with can-
didate question-answer pairs, proposing that lower-
perplexity responses for the same input tend to
yield better training performance. However, we
found several cases where perplexity-based filter-
ing was ineffective. For instance, responses struc-
tured in a step-by-step or redundant style often
exhibit low perplexity but do not necessarily im-
prove training outcomes. While some candidate
responses (e.g., step-by-step or redundant ones)
may achieve low perplexity under the target LLM,
the model itself rarely generates such responses
when producing answers freely. This suggests that
low perplexity does not always indicate alignment
with the model’s inherent reasoning style. These
findings suggest that perplexity can be "hacked" by
response style. Thus, traditional perplexity alone is
insufficient for selecting the best response genera-
tion strategy.

To address this, we propose self-aligned perplex-
ity, a refined metric for measuring a model’s famil-
iarity with target responses. The key idea is that a
model is most familiar with the data it generates it-
self. Leveraging this, we modify perplexity compu-
tation by incorporating model-generated responses
as in-context examples. Specifically, we first have
the model produce initial responses, which is then
appended to the question as in-context examples. A
prompt enforce the model to pay attention to these
examples when computing perplexity, thereby alter-
ing the probability estimation of the candidate re-
sponse. If the target response deviates significantly
from the model’s own generated response—the one
it is most familiar with—the model assigns it a
lower probability, increasing its perplexity. Our ex-
periments show that self-aligned perplexity outper-
forms traditional perplexity in selecting effective
data generation strategies.

In our experiments, we observe a strong cor-
relation between the proposed indicator and the
ranking of training dataset performance. Further-
more, we construct a pool of answer generation
strategies and demonstrate that applying our selec-
tion criterion leads to significant performance gains
compared to the baselines—especially in scenarios
where different data-generation methods produce

highly divergent outcomes

2 Related Works

There has been extensive research into what types
of data yield the best training outcomes for large
language models (LLMs). Previous studies have
identified several factors that positively influence
model training, such as adding complexity (Xu
et al., 2023), adding details (Zhang et al., 2024;
Kang et al., 2023; Li et al., 2022), adding diversity
(Luo et al., 2023), augmenting ground-truth an-
swers in a step-by-step manner (Hsieh et al., 2023;
Ho et al., 2022; Magister et al., 2023; Fu et al.,
2023; Ranaldi and Freitas, 2024), and ensuring cor-
rectness (Trinh et al., 2024; Ranaldi and Freitas,
2024). However, in practice, these metrics are chal-
lenging to measure for a given dataset, making it
difficult to determine the quality of training data
based on these criteria. Ren et al. (2024) found that
familiarity, measured by perplexity, significantly
impacts model training.

Perplexity has been widely used for different pur-
pose in prior research. Perplexity has been used to
select prompts (Gonen et al., 2022), showing that
prompts with lower perplexity generally lead to
better performance in question-answering tasks. It
has also been used for selecting pretraining datasets
(De la Rosa et al., 2022), detecting Al-generated
content (Xu and Sheng, 2024; Hu et al., 2020), and
selecting instruction-tuning data from a database
(Mekala et al., 2024). Li et al. (2024) modify the
perplexity score and propose “IFD” (Instruction
Following Difficulty), which is used to select a
small pool of challenging data from the original
dataset for efficient training. Researchers hypoth-
esize that higher perplexity indicates more chal-
lenging data, which can be beneficial for teaching
LLMs new knowledge. In addition, perplexity or
confidence-based curricula have been explored for
NMT (Kocmi and Bojar, 2017) and general text
generation (Platanios et al., 2019), where harder
(high-perplexity) data are introduced progressively
to improve sample efficiency. Unlike these stud-
ies, our focus is on identifying the best strategy
to generate target responses (y) for a given input
(x), rather than selecting difficult (x, y) pairs for
training language models.

Recent efforts have begun to ask which teacher
model produces the most useful synthetic tar-
gets. Xu et al. (2024) introduce a Compatibility-
Adjusted Reward (CAR) and judge its quality by
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the Spearman correlation between CAR scores and
downstream accuracy on two instruction-following
datasets, each evaluated with a single meta-prompt.
Kim et al. (2024) study nine datasets spanning
mathematics, coding, and general instructions; they
correlate several corpus statistics with training
gains and combine them with principal-component
analysis to rank teacher models. Our study differs
in four key respects. First, we estimate a strategy’s
quality from only a small sample of its outputs,
making synthetic data generation and evaluation
far more affordable. Second, we target accuracy im-
provement, not just rank correlation. Third, we ex-
periment on a much broader benchmark: 17 diverse
tasks plus 6 Plan-Bench planning tasks. Fourth,
we evaluate our method on datasets generated us-
ing diverse meta-prompts, explicitly accounting for
prompt variability.

3 Method

This paper aims to efficiently select the most ef-
fective answer generation strategy for fine-tuning
a target LLM. In what follows, we first present
the problem setup, then detail our proposed self-
aligned perplexity metric for scoring the outputs
from each candidate strategy.

3.1 Problem Definition

LetS = {S1,...,S5,} beasetof candidate answer-
generation strategies, where each strategy Sy, pro-
duces a response §j* = Si(x) for an input z. Our
goal is to select the strategy .S, that yields the most
effective training data D = {(z, ¢*)} to fine-tune
a target model M. Since generating the full dataset
via the API for every strategy is costly, we evaluate
a small subset D; of size K (K < |DJ) to estimate
how well each strategy’s outputs align with M.

3.2 The Familiarity Hypothesis

The work in (Ren et al., 2024) suggests that if the
model is more “familiar” with a given response,
then the model can learn better with the given re-
sponse. In their work, perplexity, which is cor-
related to the likelihood of generating a response
with the model, is used to measure this familiar-
ity score. In our study, we argue that perplexity
is sub-optimal to measure familiarity. We suggest
that familiarity can be more precisely measured by
this equation:

F(p) = By [s(y, 9)] = / S 9)Par(y)dy. (1)

where s(y, ) is a semantic similarity measure be-
tween ¢ and a sample response y drawn from the
model M. In plain language, it quantifies how sim-
ilar a candidate response is to the range of answers
that the model might generate. It is straightforward
to demonstrate that when s(y,9) = d(y, ), i.e.,
when §(y,y) = 1 only if y is exactly identical to
1, the function F' becomes equivalent to the like-
lihood Py/(y), and hence equivalent to perplexity.
using perplexity as a surrogate to measure famil-
iarity fails to account for the variety of responses
that may be semantically equivalent to a candidate
response, thereby underestimating the familiarity.
In practice, this results in assigning an excessively
high perplexity to a good candidate response that
the model might actually be familiar with, as evi-
denced by our empirical study in section 6.1.

3.3 Self-Aligned Perplexity

To evaluate the effectiveness of different response
generation strategies, we first construct a small cal-
ibration set D, consisting of the first K examples
(e.g., K=50) input questions. For each strategy,
we generate one candidate response §; per ques-
tion z; € D;. Rather than directly measuring the
likelihood of a response given a question, as in tra-
ditional perplexity, we compute its likelihood under
a prompt augmented with in-context exemplars to
better reflect stylistic alignment.

Specifically, for each input x;, we let the tar-
get model M generate an initial prediction y; =
M (z;). Since these initial predictions may be in-
correct, we evaluate them using the same task-
specific script used at test time, and retain only
those that are correct. These correct model-
generated responses form a style pool C'.

To measure how well a candidate ¢; (generated
by a specific strategy) aligns with the model’s
own response style, we compute its perplexity un-
der a prompt that includes two in-context exem-
plars randomly sampled from the style pool C
(see Appendix 6 for the prompt). Each exemplar
Ys,» Ys, € C comes from a different question than
x; (81 # 1, 82 # 1) to avoid leaking the answer.

This measurement corresponds to what we refer
to as the self-aligned perplexity (SPPL) of ¢j;. Com-
pared to standard perplexity, which only conditions
on the input question, SPPL incorporates stylistic
guidance from the model’s own correct outputs.
Lower SPPL indicates stronger alignment with the
model’s preferred generation style.

For each response generation strategy S, we
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compute the SPPL for all of its generated responses
in D,, and average the scores to obtain a strategy-
level value mepp Sy ). We then rank all strategies
by their average SPPL and select the one with the
lowest score to generate the full training set.

4 Benchmark Construction

In this section, we show how we use different strate-
gies (distinct prompts and teacher LLMs) in gener-
ating high-quality responses with different styles.

4.1 Target LLMs and APIs

We use Mistral-7B-instruct-V2 (Jiang et al., 2023),
Llama3-instruct (Dubey and Abhinav Jauhri, 2024)
and Qwen-2.5-7B-Instruct(Qwen et al., 2025) as
the target language models M. In this paper, we re-
fer to Llama3-instruct, Mistral-7B-instruct-V2, and
Qwen-2.5-7B-Instruct as Mistral7B, Llama3, and
Qwen?2.5, respectively. We use GPT-40, MiniGPT-
40, and Claude 3.5 APIs as teacher models for
response generation. Specifically, we use gpt-
40-mini-2024-07-18 and gpt-40-2024-08-06 (Ope-
nAl, 2023) from OpenAl, and claude-3-5-sonnet-
20240620 (Anthropic, 2023) from Anthropic.

4.2 Datasets

We use English reasoning datasets referenced in
the technical reports of LLaMA3 (Dubey and Ab-
hinav Jauhri, 2024), Mistral (Jiang et al., 2023),
and Qwen-2.5 (Qwen et al., 2025) (the three target
models M in our experiments). We select datasets
with at least 650 examples that can be evaluated via
accuracy. If a dataset lacks sufficient training data,
we reconstruct it to contain at least 400 training, 50
validation, and 200 testing examples.

For datasets with subcategories (e.g., MATH,
MMLU, MMLU_PRO, API_BANK, AGIEVAL),
we choose the challenging subcategory (i.e., with
the lowest reported accuracy). For example, we
include moral scenarios from MMLU, Professional
Law from MMLU_PRO, Level 3 problems from
API_BANK, geometry from MATH, and LogicQA
from AGIEVAL; we also incorporate the Algebra
subcategory from MATH as in (Ren et al., 2024).

Following (Ren et al., 2024), we train and eval-
uate the first 1,000 training and testing examples,
generating up to 1,000 training examples per data
generation strategy.

Main-experiment corpus. In total, our datasets
include: Mathematics: GSM8K (Cobbe et al.,
2021), MATH (Algebra) and MATH (Geometry)

(Hendrycks et al., 2021); Commonsense reason-
ing: PIQA (Bisk et al., 2020), WinoGrande (Sak-
aguchi et al., 2021), Hellaswag (Zellers et al.,
2019), and ECQA (Aggarwal et al., 2021); Read-
ing comprehension: BoolQ (Clark et al., 2019)
and SQuAD (Rajpurkar et al., 2016); Aggre-
gated benchmarks: MMLU (Moral Scenarios)
(Hendrycks et al., 2020), MMLU_PRO (Profes-
sional Law) (Wang et al., 2024), and AGIEval
(LogicQA) (Zhong et al., 2023); Coding: MBPP
(Austin et al., 2021); Reasoning: DROP (Duaet al.,
2019) and ARC-Challenge (Clark et al., 2018); and
Tool-using: API-BANK (Lv 3 problems) (Li et al.,
2023). More details are in Table 19 (Appendix).

PlanBench Extension. We further evalu-
ate the most challenging subtasks of Plan-
Bench (Valmeekam et al., 2023)—those on which
GPT-3 attains an accuracy below 20%. The sub-
tasks comprise plan generation, plan optimization,
plan verification, plan reuse, plan generalization,
and replanning. Although we experimented with
various prompt formats, Qwen consistently failed
to solve any execution problems. Since our method
relies on generating correct responses for use as
in-context examples, we exclude the execution task
from our evaluation. The remaining six categories
remain sufficiently challenging and are not part of
our main training benchmarks. We use them solely
to analyze performance variance when models are
trained on tasks that are very challenging. How
do different response generation strategies affect
performance variance under such conditions?

4.3 Data Generation Strategies

Given 1,000 samples, we use different strategies to
generate target responses. For a fair comparison,
we use the same prompts from (Ren et al., 2024) to
generate responses, including GPT-40 Answer Di-
rectly, Claud Answer Directly, MiniGPT-40 An-
swer Directly, Step-by-Step and Rewrite Ground
Truth. Besides, we design two new prompts named
GPT-40 Examples and Human Examples on our
own. Please refer to Appendix A.6 for details on
each response construction method.

We provide ground truth to the teacher models
and allow up to three attempts for data generation.
If the first result is incorrect, we regenerate; oth-
erwise, we stop. The same evaluation script used
during testing is applied to check correctness.
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Methods STD Range num of recorded data | mistral | llama 3 instruct | qwen | Avg Acc
Upper bound All Data 51.0 59.39% 64.44% 71.41% | 65.08%
Step-by-step 56.25% 60.94% 69.87% | 62.35%
GPT-4 ICL examples 57.29% 62.03% 69.90% | 63.07%
Human examples 56.95% 61.91% 70.22% | 63.03%
Mini-GPT-4 56.72% 61.36% 70.13% | 62.74%
GPT-4 56.92% 62.83% 69.89% | 63.21%
Claude 57.45% 62.93% 70.30% | 63.56%
Ours 58.34% 63.66% 70.50% | 64.16%
Ours - Claude All Data 51.0 +0.88% +0.72% +0.19% | +0.60%
Ours - Avg of Others +1.41% +1.66% +0.45% | +1.17%
Ours - Claude STD > 2.00% 21.0 +1.67% +1.14% -0.21% | +1.18%
Ours - Avg of Others +2.17% +2.84% +1.88% | +2.41%
Ours - Claude STD > 4.00% 10.0 +3.61% +1.56% -1.63% | +2.26%
Ours - Avg of Others +3.60% +6.00% +3.38% | +4.54%

Table 1: Comparison of our method with other response generation strategies, averaged over three subsets. Experi-
ments are conducted on datasets from the Main-experiment corpus, introduced in Section 4.2. In this benchmark,

Claude emerges as the strongest competitor among the baseline methods.

Methods ‘ STD Range ‘ num of recorded data ‘ mistral ‘ llama 3 instruct ‘ qwen Avg Acc | Weighted Spearman Pho
Upper bound All Data 51.0 59.39% 64.44% 71.41% | 65.08%

skywork 56.32% 61.64% 70.26% | 62.74% 0.271

CAR 56.36% 61.80% 70.31% | 62.82% 0.279

IFD 57.23% 61.65% 69.85% | 62.91% 0.191
perplexity 57.48% 63.65% 70.37% | 63.83% 0.301

Ours 58.34% 63.66% 70.50% | 64.16% 0.324

Ours - Perplexity | All Data 51.0 +0.86% +0.00% +0.12% | +0.33% +0.023

Ours - Perplexity | STD > 2.00% 21.0 +1.62% +0.08% +0.50% | +0.80% +0.032

Ours - Perplexity | STD > 4.00% 10.0 +3.05% +0.18% +1.63% | +1.76% +0.075

Table 2: We compare our method against IFD (Li et al., 2024), Skywork (Liu et al., 2024), CAR (Xu et al., 2024),
and Perplexity(Ren et al., 2024). The experiments are conducted on datasets from the Main-experiment corpus,
introduced in Section 4.2. In this benchmark, Perplexity emerges as the strongest competitor among the baselines.

5 Experiment

In this section, we treat each generation strategy
from Section 4.3, and response-selection metrics
from the related work section, as baselines. We
then compare the average training outcomes of our
method against these baselines across all tasks.

There are two benchmark sets, detailed in Sec-
tion 4.2. The first is the Main-experiment corpus,
which covers a diverse range of tasks and serves as
the primary benchmark for evaluating both the gen-
eral ranking ability of our metric and the average
performance gains achievable by our method.

Since our goal is efficient data selection, we eval-
uate each metric using only a small subset of the
training data. For each method, we repeat the pro-
cess three times, each time selecting a different
subset of size K=50 from the training dataset, and
report the average performance across these runs.
For example, one run may use the first 50 samples,
another the second 50, and so on. The final result is
computed as the average of these three evaluations.

5.1 Hyperparameters

We utilize the identical hyperparameter settings as
referenced in (Ren et al., 2024). Specifically, for
model fine-tuning, a learning rate of 2e-5, a batch
size of 32, and a warm-up phase encompassing
10% of the total training iterations are applied. A
cosine annealing schedule is implemented for the
learning rate, and only the Q and V matrices of the
LoRA parameters are fine-tuned with a rank of 8.
All models undergo training and evaluation using
half-precision arithmetic.

5.2 Evaluation Metrics

Accuracy. For every {model, dataset} pair, we let
each ranking metric select the top-ranked response-
generation strategy, fine-tune the model on data
produced by that strategy, and record the resulting
test accuracy. We then report the macro average
of these accuracies across all evaluated tasks. This
score answers the practical question: If I trust a
metric to choose my training data, how well will
my model perform on average?

Weighted Spearman correlation. To measure
how closely a metric’s ranking matches the gold
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ranking, we compute a weighted Spearman coef-
ficient in which each task is weighted by the stan-
dard deviation of accuracies obtained from all can-
didate strategies; tasks whose choice of strategy
matters more thus contribute more. The exact for-
mula and implementation details are provided in
Appendix A.4.

5.3 Comparison with Baseline Response
Generation Strategies

Table 1 summarizes the average test accuracy ob-
tained when the target model is fine-tuned on data
produced by each response-generation strategy.
For datasets that provide chain-of-thought (CoT)
groundtruth, we additionally evaluate the Rewrite
Ground Truth strategy. As this strategy is only ap-
plicable to CoT datasets and some datasets do not
have CoT groundtruth, its results are excluded from
the table to avoid skewing the overall averages;
nevertheless, they are included in every metric that
ranks candidate strategies on a per-task basis.

Effect of task-specific variance. Table 13 shows
that the performance gap among generation strate-
gies is highly task-dependent: some tasks show
differences of several percentage points, while oth-
ers are nearly insensitive to the chosen strategy.
To quantify how much our method helps when
the choice of generation strategy matters most, we
group every {model, dataset} pair by the standard
deviation (SD) of accuracies across baselines. All
tasks include all pairs without filtering. High-
variance tasks retain only those with SD > 2%.
Very-high-variance tasks retain only those with
SD > 4%. In the whole Main-experiment corpus,
our approach delivers the highest mean accuracy,
exceeding the strongest single baseline (Claude) by
0.60% and the mean of all baselines by 1.17%.

When we restrict evaluation to high-variance
tasks, the average gain of our method over Claude
increases to 1.18%; under the very-high-variance
filter, this gain further rises to 2.26%. Compared
with the mean of all baselines, the improvements
reach 2.41% and 4.54% on the high-variance and
very-high-variance subsets, respectively. These re-
sults confirm that self-aligned perplexity is particu-
larly valuable in scenarios where candidate gener-
ation strategies produce widely divergent training
outcomes.

For a more detailed analysis of performance vari-
ance across different tasks and models, please refer
to Section 6.2.

5.4 Comparison with Alternative Response
Selection Metrics

Table 2 reports results obtained with the same set-
up as in Section 5.3, but swapping the ranking
metric. Across the full Main-experiment corpus,
self-aligned perplexity achieves the best mean ac-
curacy and the highest weighted Spearman corre-
lation; standard perplexity is the closest baseline.
All tasks: Using every training run, our metric
surpasses standard perplexity by 0.33% in accu-
racy and by 0.023 in weighted Spearman p. High-
variance tasks (SD > 2%): The margins widen
to 0.80% in accuracy and 0.032 in weighted p.
Very-high-variance tasks (SD > 4%): Gains
further increase to 1.76% in accuracy and 0.075 in
weighted p. These results mirror the trend observed
in Section 5.3: the larger the performance spread
among candidate strategies, the more our metric
outperforms conventional perplexity, underscoring
its value for selecting high-quality training data.

5.5 Performance Differences among Response
Generation Strategies Can be Very Large

Candidate response-generation strategies can yield
significantly different results depending on the
task. To illustrate this, we evaluate various strate-
gies on the PLANBENCH benchmark introduced
in Section 4.2, which is designed to be more dif-
ficult than standard instruction-following datasets
due to its long-horizon, goal-conditioned reason-
ing requirements. As shown in Table 3 and
Tabel 20(Appendix), training outcomes vary sig-
nificantly across methods, underscoring the impor-
tance of selecting an appropriate generation strat-
egy. Our self-aligned perplexity metric improves
accuracy by an average of 2.46% over standard per-
plexity and 5.31% over the mean performance of
all strategies. The results further demonstrate that,
as the optimal model varies across datasets and
continues to shift as APIs evolve, model-aware se-
lection metrics like self-aligned perplexity remain
critical.

As shown in Table 3, the average accuracy of
IFD is slightly higher than that of our method. How-
ever, our method shows comparatively better per-
formance on the main tasks, which cover a broader
set of 17 tasks (Table 2). This suggests that our
approach may offer more stable and reliable results
when applied across a wider range of tasks.
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Methods STD Range | num of recorded data | mistral | llama 3 instruct | qwen | Avg Acc | Weighted Spearman Pho
Upper bound All Data 18.0 52.88% 54.87% 41.87% | 49.88%

Step-by-step 37.56% 44.48% 31.06% | 37.70%

GPT-4 ICL examples 40.86% 45.84% 36.86% | 41.19%

Human examples 45.01% 41.82% 29.89% | 38.91%

Mini-GPT-4 38.68% 40.29% 30.51% | 36.49%

GPT-4 39.33% 41.86% 31.08% | 37.42%

Claude 51.89% 50.09% 37.27% | 46.42%

Ours 45.29% 50.06% 39.66% | 45.00%

Ours - Claude -6.60% -0.03% +2.39% | -1.42%

Ours - Avg of Others +3.07% +5.99% +6.89% | +5.31%

Upper bound All Data 18.0 52.88% 54.87% 41.87% | 49.88%

skywork 43.66% 46.01% 36.12% | 41.93% 0.101
CAR 41.87% 44.99% 35.00% | 40.62% 0.133
IFD 52.88% 49.73% 38.19% | 46.93% 0.386
perplexity 42.69% 48.50% 36.44% | 42.54% 0.198
Ours 45.29% 50.06% 39.66% | 45.00% 0.241
Ours - Perplexity +2.59% +1.56% +3.22% | +2.46% +0.043

Table 3: Comparison of our method with other metrics or response generation methods on 6 subsets from the
PlanBench dataset as introduced by PlanBench Extension, introduced in Section 4.2. We compare our method
against IFD (Li et al., 2024), Skywork (Liu et al., 2024), CAR (Xu et al., 2024), and Perplexity(Ren et al., 2024).

Target Response style Model Task PPL | SehsPPL | ScadPPL | S:PPL
Step by Step(sbs) Mistral7B | ECQA | 4.476 | 3.695 485 | 4.329
GPT4 Answer Directly(cad) 5.551 | 4.116 | 4.768 | 4.456
Redundant(r) 4944 | 4334 5.615 | 4.326
Step by Step(sbs) Mistral7B | PIQA | 4.290 | 3.816 5.968 | 4.028
GPT4 Answer Directly(cad) 6.277 | 4.053 5.962 | 4.250
Redundant(r) 4.547 | 3919 6.724 | 4.027

Table 4: Examples showing that in-context perplexity
favors responses matching the style of the in-context
example. PPL is standard perplexity; Sg,sPPL, ScagPPL,
and S;PPL use step-by-step, GPT-40 Answer Directly,
and redundant responses as context, respectively.

6 Ablation Study

6.1 Why Self-Aligned Perplexity Outperforms

Traditional Perplexity

Traditional perplexity is sensitive to surface-level
stylistic cues, so a low score does not necessarily
mean the response “feels” familiar to the model.
We therefore anchor the metric on the model’s own
zero-shot prediction: the closer a candidate lies to
this anchor, the more familiar it should be. Inject-
ing that prediction as a single in-context example
reshapes the probability distribution, yielding a self-
aligned perplexity that more faithfully reflects the
response’s true familiarity.

When perplexity fails. According to Table 4, On
ECQA, a deliberately redundant answer(see Ap-
pendix A.6.1 for how we construct this dataset)
scores 4.94 in raw perplexity, while the terser,
higher-quality GPT-4-direct answer scores 5.55
(Table 4). A similar pattern appears in PIQA (4.55
vs. 6.28). Thus, lower perplexity can sometimes
reflect wordiness rather than genuine familiarity
with the model’s preferred style.

How self-aligned perplexity helps. According
to Table 4, adding a single in-context example can
realign the perplexity scores. For the GPT-4—style
response on ECQA, the raw perplexity (PPL) is
5.551, which is higher than the redundant-style
response (4.944). After prepending an in-context
example drawn from another GPT-4—style answer,
the GPT-4 response’s perplexity drops to 4.768. In
contrast, when the same example is added to the
redundant and step-by-step responses, their per-
plexities increase from 4.944 and 4.476 to 5.615
and 4.850, respectively.

A similar effect occurs on PIQA: the GPT-4 re-
sponse on Mistral has an initial perplexity of 6.277,
higher than the redundant style (4.570). With a
GPT-4 in-context example, its perplexity decreases
to 5.962, while the redundant style’s perplexity
rises to 6.724.

Across the two tasks, using the model’s own pre-
diction as the in-context anchor consistently low-
ers the score for its native style by 0.6—1.5 points,
restoring the correct ordering and yielding rankings
that track downstream fine-tuning gains.

6.2 Why Do Some Datasets Show Greater
Variance in Training Outcomes?

We observed a striking regularity across tasks:
whenever enlarging the training set from 100 to
1 000 examples yields little or no accuracy gain,
the choice of response-generation method matters
equally little. Conversely, tasks that continue to
improve with more data show pronounced perfor-
mance gaps between generation strategies.
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Weighted Method | Model Accuracy | Spearman’s p
Ours Mistral 7B 0.583 0.317
TTT (Ir=2e-5) 0.578 0.188
TTT (Ir=2e-4) 0.579 0.557
Ours Llama3 0.637 0.288
TTT (Ir=2e-5) 0.613 0.168
TTT (Ir=2e-4) 0.627 0.398
Ours Qwen2.5 0.705 0.367
TTT (Ir=2e-5) 0.702 0.065
TTT (Ir=2e-4) 0.709 0.273
Ours Average 0.642 0.324
TTT (Ir=2e-5) 0.631 0.141
TTT (Ir=2e-4) 0.638 0.409

Table 5: Ours (K=50, avg. of 3 subsets) vs. Train-then-
Test (TTT) (K=100, 1 seed) on Main-experiment corpus.

Standard Deviation vs. Improvement Ratio

o mistral
® llama_3_instruct
o que

— Trend (Quadratic)

g

Standard Deviation

:
:
% e
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-1071 -10-2 0 1072 1071
Improvement Ratio (symlog)

Figure 1: When the improvement ratio is high, the stan-
dard deviation of training outcomes across different
response-generation strategies tends to be larger.

Let the improvement ratio be defined as
Accio00/Accioo — 1, representing the relative gain
from increasing the training size ten-fold. Figure 1
plots log(improvement ratio) (x-axis) against the
standard deviation of accuracies across generation
methods (y-axis). A clear positive trend emerges:
once the improvement ratio exceeds roughly 2%,
the variance among methods rises sharply; below
this threshold, it is nearly zero. We plot Figure 1
using training results from all tasks in the Main-
experiment corpus and PlanBench.

The results suggest that divergence across gener-
ation strategies is greatest exactly when the dataset
still offers headroom for improvement. On such
high-variance tasks, selecting the right response-
generation method is critical, underscoring the
value of our self-aligned perplexity criterion.

Figure 1 shows that many red data points lie
to the left of the green 2% threshold line, indicat-
ing that training with data generated by different
response-generation strategies produces negligible
variation in training outcomes on Qwen. We hy-
pothesize that this low-variance pattern arises be-
cause the training set contributes little information
beyond Qwen’s existing capabilities. This also ex-

plains why our method improves accuracy by only
0.45% over the average of all response-generation
strategies on Qwen when evaluated on the full
dataset. In Table 7, we compare zero-shot accu-
racy with the accuracy of the three models after be-
ing trained on GPT-40 direct-answer data for each
task. As shown, only 43.8% of tasks improve after
training, suggesting that Qwen already possesses
strong prior knowledge of standard benchmarks
for most tasks. In contrast, when trained on data
with STD > 4%, Qwen achieves a 3.38% accuracy
improvement over the average of all other meth-
ods. On PlanBench, as demonstrated in Section 5.5
and Table 3, our method yields substantial accu-
racy gains across the six PlanBench subtasks with
Qwen: +3.22% over perplexity and +6.89% over
the average of all strategies.

6.3 The effectiveness of Correctness Filter

Correctness filter is helpful mainly on the tasks that
the model is very unfamiliar with.

Removing the correctness filter has negligible
impact on the 17 main tasks, as shown in the Ta-
ble 9. The table shows the accuracy and weighted
Spearman correlation deltas between the filtered
and unfiltered versions of our method (Ours Ours-
w/o-Filter); Overall, skipping the filter—i.e., using
the model’s raw predictions—only minimally re-
duces performance in terms of average accuracy
and weighted Spearman correlation.

However, removing the correctness filter results
in a performance drop on PlanBench, as shown in
the table 10.

6.4 Our Method vs. Train-Then-Select

One natural (but computationally expensive) ap-
proach to select the optimal response generation
strategy is to adopt a Train-Then-Select (TTS) pro-
cedure. In this way, we first generate a small dataset
(e.g., 100 samples) using each candidate strategy.
For each dataset, we train the target model and eval-
uate its performance. We then rank the strategies
based on the results and choose the best-performing
one to generate the remainder of the dataset.
When evaluating TTS, we train the target model
on 100 samples under two settings: 1) Standard
Training: A learning rate of 2e-5 for 20 epochs
(matching our main setup). The performance accu-
racies for each strategy under this setting is in the
Table 17. 2) Intense Training: A learning rate of
2e-4 for 40 epochs. The performance accuracies
for each strategy under this setting is in Table 18.
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0-10 10-20 20-30 0-30 30-60 60-90 0-50 50-100 | 100-150
Accuracy (%) | 63.90% | 64.22% 63.93% | 64.25% | 63.96% | 64.22% | 64.17% | 64.10% | 64.22%
Weighted p 0.289 0.363 0.290 0.327 0.286 0.269 0.317 0.288 0.367
0-100 | 100-200 | 200-300 | 0-200 0-300 - - B -
Accuracy (%) | 64.18% | 64.09% 64.08% | 64.13% | 64.13% - - -
Weighted p 0.332 0.330 0.323 0.333 0.342 - - -

Table 6: Performance on different subsets when ranking with self-aligned perplexity. An interval such as 60-90
means starting at index 60 and using the next 30 instances (indices 60—89) for ranking calculation.

Model 2smek

piga Squad
7 86.0% 1 87.9% 673%176.2%

drop

hellaswag nk
% | 0.7%/79.4% | 70.6%/70.6%

Yy a
% | 11.7% 143.3%

qwen 94.8% /88.9% | 9
‘mistral 393%/ 62.5%
llama 3 instruct | 85.8% /814% | S

5%
o | 44.9% 1713% | 69.2% /869% | 33.5% / 40.0% | 8.8%/732% | 57.6%
% | 68.4%/69.5% | 81.1% /86.5% | 43.0% /43.5% | 24.5%/75.2% | 72.0%

% | 0.6%/74.6% | 39.7% 1 65.4%
o | 15.1% 179.6% | 56.8% /72.2%

1.8% / 51.0%
0.0% /49.4%

Table 7: Zero-shot (left) vs. trained on GPT-40 direct-answer data (right) accuracy across tasks for each model.
Win ratios of GPT-40 direct-answer training over zero-shot: qwen: 7/16 (43.8%); mistral: 15/16 (93.8%); llama 3

instruct: 14/16 (87.5%).

After ranking the strategies using TTS, we com-
pare their performance with ours. In Table 5, de-
spite using less data and requiring no training, vali-
dation, or testing computations for strategy selec-
tion, our method achieves better average accuracy
and comparable weighted Spearman correlation.

6.5 Stability of Our Method

As shown in Table 6, accuracy generally improves
as the subset size grows, and the overall perfor-
mance is consistent across ranges. Small subsets
sometimes degrade accuracy (values highlighted in
red); thus, we recommend using at least 30 sam-
ples or even 50 samples for the best performance.
Specifically, “0-107, “10-20", and “20-30" denote
the first, second, and third batches of ten training
examples, respectively, while “0-50"" and “0-100”
correspond to the first 50 and 100 examples. When
the subset size reaches 50 or more, average accu-
racy stabilises. The weighted Spearman correlation
(p) also increases with larger subsets, but the gains
taper off once the subset size exceeds 50.

7 Conclusions

In this paper, we present a novel and scal-
able approach for selecting the optimal response-
generation strategy to train large language models.
We introduce a new metric, self-aligned perplex-
ity, which more effectively evaluates the alignment
between a target model and its response options
compared to traditional perplexity. We demonstrate
that choosing the optimal generation strategy based
on self-aligned perplexity leads to substantial im-
provements in model performance, particularly on
tasks with high performance variance. We hope our
work will inspire researchers who use perplexity as
a downstream metric or who wish to build the most
effective instruction tuning datasets.

8 Limitations

While recent open-source “thinking” models(such
as DeepSeek-R1-Distill-Qwen-7B) support long
chain-of-thought reasoning, our evaluations focus
on chat models. We used meta prompts to elicit
reasoning steps but did not test on “thinking” mod-
els. We believe our style-alignment approach still
applies, though further validation on smaller or dif-
ferently pretrained models is needed. We leave
broader scaling studies and extensions to other
model families for future work.
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A Appendix

A.1 Ground Truth vs. Synthetic Data

As shown in Table 13 (Appendix), when ground
truth is provided in natural language (e.g., GSM8K,
MATH, ECQA, MBPP), training on ground truth
is less effective than on synthetic data. This
is because LLMs are more familiar with LLM-
generated data, as demonstrated by Ren et al.
(2024). However, when the ground truth is written
as a gold label without a CoT inference process,
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training on the gold label can sometimes outper-
form training on CoT synthetic data within the
same domain. However, in Table 11 (Appendix),
training on gold labels harms cross-domain perfor-
mance more than training on synthetic data. Be-
sides, in real-life scenarios, training on natural lan-
guage data is crucial, as users expect to see the ra-
tionale behind the final prediction made by LLMs.

A.2 Can we get performance gain if we simply
put all of the response variants together?

Selecting the optimal data generation strategy re-
mains essential, even when resources or funding
are unlimited. As shown in Table 8, simply combin-
ing six types of synthetic data (Total 1y, = 6000)
does not guarantee a performance gain over select-
ing the best synthetic training data. For example,
after training the Llama3 model on API-Bank us-
ing all six types of synthetic data, the evaluation
accuracy is only 49%, much lower than when se-
lecting the Claude Answer Directly data (54.7%).
Indeed, according to Table 8, if we combine the
mixture of the top three data generation strategies
(Mixture of good nin = 3000), the performance
is almost always better than if we simply combine
all of the data together (Total i, = 6000). This
underscores the importance of selecting data gener-
ation strategies, even if we can afford large-scale
synthetic data generation and training.

A.3 The Impact of Accuracy of the Synthetic
Data on Training Outcomes

In our experiment, we aim to ensure the correctness
of generated answers by validating them against
ground truth answers. Our research seeks to iden-
tify the best strategy for generating the optimal
version of an answer. In other words, we can adjust
data generation strategies to ensure correctness.

In our experiments, we use ground truth an-
swers to guide the generated answers for nearly all
datasets, with the only exceptions being mathemat-
ical problems. This follows the setting of the paper
to maintain consistency with previous work (Ren
et al., 2024). This approach might be acceptable
since closed-source APIs tend to generate accurate
answers. For GSM8K and Math Algebra, GPT-
40, Claude, and MiniGPT-40 achieve accuracies of
90% or above.

To evaluate the impact of accuracy on training
outcomes, we conducted the following experiment.
As shown in Table 12, we tested three approaches:
training on the full dataset, using only correct pre-

dictions, and replacing incorrect predictions with
rewritten ground truth. These approaches showed
less than a 2% improvement overall. Note that in
this experiment, GPT-4 refers to the gpt-4-1106-
preview API, rather than the gpt-40-2024-08-06
API, which was used in all other experiments in
the paper. The mathematical capabilities of GPT-
40, GPT-4-Mini, and Claude are similar on Math
Algebra tasks. Therefore, we used the gpt-4-1106-
preview API, which has a weaker ability to solve
Math Algebra problems. The benifit of using it is
that it makes more mistakes on GSMS8K so that we
can better evaluate the influence of accuracy. We
used this API once to generate the data and train
the model from there.

According to the table, the overall benefit of
replacing incorrect examples with rewritten ground
truth or removing incorrect examples has minimal
impact on the overall training outcomes.

A4 Weighted Spearman’s Rank Correlation
Coefficient

Spearman’s rank correlation (p) measures how
well two orderings agree, ignoring absolute values.
Because some of our {model, dataset} pairs ex-
hibit far larger performance gaps among response-
generation strategies than others, we assign higher
importance to pairs whose choice of strategy mat-
ters more. We therefore adopt a weighted variant of
Spearman’s correlation in which each item is given
a non-negative weight w;.

Definition. Let 1 ; and R ; be the ranks of the i-
th item under two orderings and let w; be its weight.
Denote the weighted means
Ry — D iy Willy Ry = > i wiRa
Do wi D Wi

The weighted Spearman correlation is then the
weighted Pearson correlation between the rank vec-
tors:

Zwi (Rl,i — Rl) (RQ,i - Rz)

=1

Pw =

\j Z’Uji (Ri — R1)2 \j Zwi (R2,s — Rz)z
i=1 i=1

Choice of weights. For each {model, dataset}
pair, we first train the target model on data pro-
duced by every candidate response-generation
method and record the resulting accuracies. The
weight wj is set to the standard deviation of these
accuracies. Intuitively, tasks in which the strategies
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Method Model DROP | Hellaswag | API-Bank
Best nyain = 1000 Mistral7B | 0.743 0.675 0.559
AVEg Nyrain = 1000 0.726 0.646 0.446
Total npain = 6000 0.740 0.738 0.555
Mixture of good ny,in = 3000 0.770 0.731 0.555
Mixture of good ny,in = 1000 0.744 0.686 0.535
Average of all nyqin = 1000 0.711 0.686 0.433
Best nyain = 1000 Llama3 0.805 0.718 0.547
AVE Nyrain = 1000 0.778 0.711 0.392
Total 15, = 6000 0.810 0.738 0.490
Mixture of good ny,in = 3000 0.812 0.745 0.527
Mixture of good ny,in = 1000 0.804 0.728 0.490
Average of all Ny, = 1000 0.771 0.705 0.457
Best nyain = 1000 Qwen2.5 0.814 0.739 0.461
AVE Nyrain = 1000 0.804 0.719 0.413
Total 75, = 6000 0.798 0.748 0.584
Mixture of good ny,in = 3000 0.824 0.738 0.584
Mixture of good ny,in = 1000 0.818 0.742 0.490
Average of all Ny, = 1000 0.778 0.712 0.412

Table 8: Best represents the best data generation strategy for the task with the target model. Total combines all
strategies, yielding ny,;, = 6000. Mixture of good (7ny,, = 3000) includes the top three strategies with 1000
samples each, while Mixture of good (i, = 1000) has about 333 samples per strategy.

yield very different outcomes (w; large) are more
informative when judging a ranking metric, so they
contribute more to py,.

Interpretation. A value of p,, ~ 1 indicates that
the metric produces a ranking almost identical to
the gold ranking, with higher-variance tasks influ-
encing the score most strongly. Conversely, p,, ~0
implies no weighted monotonic relationship, and
pw~ —1 signals an inverse agreement.

Throughout the main text and Appendix, all re-
ported “Spearman” results actually correspond to
this weighted formulation.

A.5 Data Selection Rationale for the
Benchmark

The datasets included in our benchmark, drawn
from the Mistral, Llama, and Qwen benchmarks,
were selected according to a specific set of rules
designed to ensure relevance and suitability. These
rules are as follows:

1. Sufficient Dataset Size: We only included
datasets where the combined size of the training,
validation, and testing sets exceeded 650 samples.
This threshold was chosen to ensure sufficient data
for robust model evaluation.

2. Accuracy as Evaluation Metric: A key re-
quirement was that the dataset could be evaluated

using accuracy as the primary metric. This allows
for a clear and quantifiable assessment of model
performance.

3. English Question-Answering Format: All
selected datasets are in an English question-and-
answer format to maintain consistency and focus
on English language reasoning abilities.

4. Focus on Reasoning Tasks: The underlying
task presented by each dataset must involve rea-
soning skills. This ensures that the benchmark
effectively assesses the models’ ability to reason
and infer.

A detailed justification for the inclusion or ex-
clusion of each dataset can be found in Table 19.

A.6 Correctness Filter

Without supervised fine-tuning (SFT), M (z) may
generate incorrect responses, making cosine simi-
larity calculations between M (z)and ¢ unreliable.
To alleviate this, we introduce a filtering mech-
anism to filter out the incorrect M (x). We no-
tice that for mathematical problems, the correct
final answer typically appears as the last number
in M(z). Therefore, for Math-related tasks, we
use regular expressions (regex) to extract the last
number from the prediction and compare it directly
with the ground truth. For other types of problem,
we use the Qwen2.5-Instruct 7b model to extract
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the predicted label from the model output. We
then compare this extracted label with the true gold
label; if they match, we consider the prediction
correct by default.

Response Construction Details

Ground Truth: This strategy uses the original
ground-truth responses from the datasets as target
outputs. Since our focus is on selecting effective
chain-of-thought (CoT) target responses, we ap-
ply this method to datasets that include human-
annotated CoT reasoning steps, such as GSM8K,
MATH, ECQA, MBPP. When human-annotated
CoT is unavailable, we use the gold label as ground
truth.

GPT-40 Answer Directly, Claud Answer Di-
rectly, and MiniGPT-40 Answer Directly gener-
ate responses based on questions and the ground
truth using GPT-40, Claude 3.5 and Mini-GPT4,
respectively. Rewrite Ground Truth: Direct GPT-
40 to restyle the ground truth in its own language.
This method is only applicable to GSM8K, MATH
Algebra, ECQA. The other tasks’s ground truth con-
sists of target labels without any human-annotated
chain-of-thought (CoT) reasoning, making rewrit-
ing infeasible. Step-by-Step: instructs GPT-4o to
generate step-by-step responses based on questions
and ground truth. GPT-40 Examples: To facil-
itate problem-solving, we provide GPT-40 with
two high-quality, expert-selected in-context exam-
ples of its own responses. GPT-40 is then tasked
with generating new responses based on these ex-
amples. Human Examples: To aid GPT-40 in
understanding problem-solving for these datasets,
we provide two carefully chosen human-written
examples as context. GPT-40 then uses these ex-
amples to generate new responses. We put more
details in Section A.6.2 in Appendix.

A.6.1 Prompt for Self-Aligned Perplexity
Redundant Prompt

We construct redundant prompts (shown in the Fig-
ure 7) to demonstrate that the perplexity of the
redundant target responses is lower than that of
GPT-4’s answers. Perplexity primarily reflects how
fluent the language is and how well the language
style aligns with the model, but it places less em-
phasis on semantic meaning.

Self-Aligned In-Context Prompt for Perplex-
ity Calculation The prompt shown from the Fig-
ure 6 shows how we add self - generated initial
predictions from other questions as in - context

examples for perplexity calculation.

A.6.2 Data Generation Strategies

We instruct GPT-4, Claude 3.5, Mini-GPT4 to gen-
erate different of target responses using different
target reponse generation strategies.

GPT-4/Claude 3.5/Mini-GPT4 Answer Di-
rectly: This prompt is from (Ren et al., 2024). For
tasks involving mathematics and coding, we submit
the problems from our training dataset directly to
GPT-4 or Claude 3.5 to obtain their solutions. In
the case of classification tasks, we provide these
models with the input questions alongside the cor-
rect labels (excluding any human-generated expla-
nations) and utilize their outputs. These generated
answers are then paired with the original questions
to form the GPT-4/Claude 3.5 Direct Answer Train-
ing Dataset.

To ensure that the models develop their own
problem-solving and analytical capabilities, we de-
liberately exclude any solutions or rationales re-
lated to math, coding, or classification tasks. This
approach prevents the models from simply mim-
icking the ground truth processes, which could
otherwise result in some of GPT-4’s predictions
lacking its unique reasoning style. Such mimicry
would undermine the reliability of our perplexity
measurements, which are designed to evaluate how
effectively a language model handles outputs from
other models.

The prompt from the Figure 2 below is designed
to guide GPT-4/Claude 3.5 in generating responses
without relying on the ground truth solutions:

Rewrite Ground Truth: This prompt is from
(Ren et al., 2024). In this approach, we provide
GPT-4 and Claude 3.5 with the ground truth data,
which includes human-annotated rationales and de-
tailed problem-solving steps. The goal is to have
GPT-4 and Claude 3.5 rephrase the ground truth
content using their own linguistic styles.

The subsequent prompt(shown in the Figure 5)
guides GPT-4 and Claude 3.5 to generate the GPT-
4/Claude 3.5 Response (Rewrite GT) output.

Step-by-step: This prompt is from (Ren et al.,
2024). We instruct GPT-4 and Claude 3.5 to me-
thodically address each problem by breaking it
down into sequential steps. For tasks involving
mathematics and coding, we present the problems
directly from our training dataset to these models
to obtain their solutions. In classification tasks, we
provide GPT-4 and Claude 3.5 with the correct la-
bels (excluding any human-generated explanations)
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Methods STD Range | #Data | Mistral Llama Qwen Acc Weighted p
Ours - Ours w/o Filter | All 51 —0.01% | —0.03% | 0.00% | —0.02% +0.007
Ours - Ours w/o Filter | STD > 2% 27 +0.01% | —0.03% | +0.37% | +0.03% +0.013
Ours - Ours w/o Filter | STD > 4% 14 +0.01% | —0.10% | +0.55% | +0.05% +0.012

Table 9: Comparison between our method and our method without the correctness filter across different variance

ranges.

Methods STD Range | #Data

Mistral

Llama Qwen Acc Weighted p

Ours - Ours w/o Filter | All Data 18.0

+2.97%

+3.21% | +5.52% | +3.90% +-0.068

Table 10: Performance gain of our method compared with the variant without the correctness filter.

along with the input questions, and then utilize their
detailed, step-by-step responses. These generated
answers are subsequently paired with the original
questions to form the GPT-4/Claude 3.5 Step-by-
Step Response (No GT) Dataset.

To ensure that the models develop their own
unique problem-solving and analytical approaches,
we intentionally exclude the solutions or rationales
for the mathematics, coding, or classification tasks.
This prevents the models from simply mimick-
ing the problem-solving and analytical methods
found in the ground truth data. Including such pro-
cesses could result in some of GPT-4’s and Claude
3.5’s outputs not reflecting their inherent reason-
ing styles, thereby compromising the accuracy of
our perplexity measurements. These measurements
are designed to assess how effectively a language
model can handle outputs generated by other lan-
guage models.

The following prompt from the Figure 4 di-
rects GPT-4 and Claude 3.5 to generate the GPT-
4/Claude 3.5 Step-by-Step Response (No GT) re-
sponses.

GPT-40 with GPT-40 Examples: We devel-
oped this prompt specifically for the API-Bank and
Plan-Bench datasets. This prompt utilizes GPT-
4’s own accurate generations as examples to help
GPT-4 not only better understand the task but also
demonstrate how to solve the problems effectively.
The prompt below is an example that we used to
generate target responses for the API-Bank dataset.

The following prompt from the Figure 3 directs
GPT-40 to generate responses guided by GPT-40
generated Examples

GPT-4 with Human Written Examples: We
developed this prompt specifically for the API-
Bank and Plan-Bench datasets. This prompt uti-
lizes human written examples to help GPT-4 not
only better understand the task but also demonstrate
how to solve the problems effectively. The prompt

below is an example that we used to generate target
responses for the API-Bank dataset.

The following prompt from the Figure 3 directs
GPT-40 to generate responses guided by Human
written Examples

A.7 Al Assistant

We used GPT-40 as a writing assistant and pro-
gramming aid for editing purposes.

A.8 Required Compute Resources

Each individual training run reported in this paper
requires approximately 5—-48 GPU hours when us-
ing a 40GB A100 GPU. We do not recommend
you to reproduce every training run, as there are
too many experiments. Instead, we strongly rec-
ommend directly using the reported training out-
comes from each table as the final results. You can
then compute your ranking metrics to evaluate how
well your metric aligns with the training outcomes.
Calculating metrics such as perplexity on a small
subset of all of the dataset takes only about 2 hours
on a single 40GB A100 GPU.

A.9 License of the Dtasets

All dataset we use are publicly available dataset
for research purpose. API-BANK (Lv 3 prob-
lems) (Li et al., 2023): CC-BY-SA GSMSK (Cobbe
et al.,, 2021): MIT license PIQA (Bisk et al.,
2020): unkown BoolQ (Clark et al., 2019):CC
BY-SA 3.0 MBPP (Austin et al., 2021):CC BY
4.0 DROP (Dua et al., 2019): CC BY-SA 4.0
ARC-Challenge (Clark et al., 2018):CC BY-SA
4.0 PlanBench (Valmeekam et al., 2023): MIT
license MATH (Algebra) and MATH (Geom-
etry) (Hendrycks et al., 2021): MIT license
SQuAD (Rajpurkar et al., 2016):SA 4.0 license
MMLU(Hendrycks et al., 2020): MIT license
WinoGrande (Sakaguchi et al., 2021): Apache-2.0
license Hellaswag (Zellers et al., 2019): MIT Ili-
cense ECQA (Aggarwal et al., 2021): Apache-2.0
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prompt = f"""We have the {question}

1. We wish you to answer the question.

2. You must answer the question (with inference process) directly without say anything else. Please not saying
anything 'like sure I can help you with' or ‘sure, i will not mention the gold label’

3. You will inference first then put the Final Answer (NUMBER_HERE) at the end of the prediction like this

INFERENCE HERE
Final Answer: NUMBER_HERE"""

Figure 2: Prompt that we used for generate GPT-4/Claude 3.5/Mini-GPT4 Answer Directly responses

prompt = f"'""We have the "{question}" and the groundtruth {gold_label}

1. We wish you to answer the question. We will use your answer to train our model, thus you will answer and pretend as
not knowing the gold_label.

2. You must answer the question (with inference process) directly without say anything else. Please not saying anything
'like sure I can help you with' or 'sure, i will not mention the gold label'

3. You will inference first then put the Final Answer: {gold_label} at the end of the prediction like this

INFERENCE HERE

Final Answer: {gold_label}
Example 1:

Question : "{q1}"
groundtruth: {gold_labell}
Inference: {al}

Example 2:

question: "{q2}"
groundtruth: {gold_label2}
Inference: {a2}

Example 3:

question: "{q3}"
groundtruth: {gold_label3}
Inference: {a3}

We have the "{question}" and the groundtruth {gold_label}

1. We wish you to answer the question. We will use your answer to train our model, thus you will answer and pretend as
not knowing the gold_label.

2. You must answer the question (with inference process) directly without say anything else. Please not saying anything
'like sure I can help you with' or 'sure, i will not mention the gold label’

3. You will inference first then put the Final Answer ({gold_label}) at the end of the prediction like this

INFERENCE HERE
Final Answer: {gold_label}"""

Figure 3: Prompt that we used for generate responses guided by GPT-40 with GPT-40/Human written Examples

license MMLU_PRO (Wang et al., 2024): Apache-
2.0 license AGIEval(Zhong et al., 2023): MIT li-
cense
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prompt = f"""We have the {question}

1. We wish you to answer the question step by step.

2. You must answer the question (with inference process) directly without say anything else. Please not saying
anything 'like sure I can help you with' or 'sure, i will not mention the gold label'

3. You will inference first then put the Final Answer (NUMBER_HERE) at the end of the prediction like this

Step by step INFERENCE HERE
Final Answer: NUMBER_HERE"""

Figure 4: Prompt that we used for generate step by step responses

prompt = f"""Given the question: {question}
and the groundtruth: {groundtruth}

Please states the prediction in your own words. The groundtruth is 100% correct. You should not change the problem
solving logic of the groundtruth. just restates it in your own words.

1. You will pretend as you do not know the groundtruth, because we will use your prediction as target labels to train
our model.

2. (important format) You must generate the groundtruth directly. Please not saying anything like 'sure I can help you
with' or 'sure, i will not mention the gold label'"""

Figure 5: Prompt that we used for generate the Rewrite Ground Truth style responses

in_context_question = \
f"""Question: {original_question}

We have 2 inference examples below to show you how to solve the
problem. please follow the inference style and solve the problem

inference example: {initial_prediction_of_another_question_1}

inference example: {initial_prediction_of_another_question_2}

now, according to the inference examples, please solve the problem.

Figure 6: Prompt that we used for self-aligned perplexity
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prompt = f"""We have the question and the groundtruth. Given on the groundtruth, please reformat the
groundtruth so that it answer the question in a step by step redundant manner. Be as repetitive and step by
step and redundant as possible.

Question: {question}
Groundtruth: {groundtruth}

1. We wish you to reformat a new groundtruth. The new groundtruth are reformated a new groundtruth which solve the
problem as steo by step and redundant as possible.
2. You will pretend as you do not know the groundtruth, because we will use your step by step redundant answer as

target responses to train our model.

3. (important format) You must generate the groundtruth with the step by step redundant inference process directly.
Please not saying anything like 'sure I can help you with' or 'sure, i will not mention the gold label

4. (important format) You will inference first then put the Final Answer: {gold_label}

at the end like this

INFERENCE HERE

Final Answer: {gold_label}

Figure 7: Prompt that we used for generate step by step responses

Method Model Type | training task GSMB8K | Math Algebra | ECQA | SQUAD | DROP | WINOGRANDE
Gold Label Mistral ECQA 0.383 0.181 0.722 0.251 0.084 0.562
GPT-40 Answer Directly 0.484 0.218 0.707 0.175 0.016 0.638
Gold Label Mistral SQUAD 0.082 0.0931 0.633 0.74 0.208 0.566
GPT-40 Answer Directly 0.512 0.234 0.594 0.748 0.268 0.628
Gold Label Mistral DROP 0.076 0.097 0.621 0.561 0.628 0.578
GPT-40 Answer Directly 0.542 0.241 0.602 0.546 0.736 0.638
Gold Label Mistral WINOGRANDE | 0.381 0.172 0.625 0.166 0.042 0.742
GPT-40 Answer Directly 0.477 0.219 0.569 0.106 0.016 0.713
Gold Label LLAMA3 ECQA 0.798 0.416 0.734 0.193 0.1 0.637
GPT-40 Answer Directly 0.778 0.469 0.723 | 0.389 0.284 0.638
Gold Label LLAMA3 SQUAD 0.584 0.366 0.712 0.758 0.49 0.639
GPT-40 Answer Directly 0.791 0.457 0.726 0.759 0.368 0.651
Gold Label LLAMA3 DROP 0.144 0.169 0.674 0.574 0.738 0.582
GPT-40 Answer Directly 0.776 0.507 0.703 0.555 0.786 0.626
Gold Label LLAMA3 WINOGRANDE | 0.776 0.445 0.717 0.226 0.162 0.766
GPT-40 Answer Directly 0.775 0.485 0.721 0.305 0.238 0.695
Gold Label Qwen ECQA 0914 0.903 0.814 0.662 0.008 0.675
GPT-40 Answer Directly 0.903 0.888 0.793 0.668 0.016 0.716
Gold Label Qwen SQUAD 0.899 0.892 0.784 0.768 | 0.056 0.693
GPT-40 Answer Directly 0.896 0911 0.789 0.756 | 0.074 0.712
Gold Label Qwen DROP 0.788 0.904 0.799 0.701 0.664 0.711
GPT-40 Answer Directly 0.911 0.903 0.792 0.741 0.806 0.701
Gold Label Qwen WINOGRANDE | 0.893 0.904 0.78 0.651 0.004 0.725
GPT-40 Answer Directly 0.902 0.896 0.798 0.68 0.022 0.721

Table 11: The training data size is 1000. This table compares the in-domain and cross-domain performance when
training on gold-label vs. GPT-4 generated synthetic data. As can be seen from the table, the in-domain performance
of the model is typically higher when training with gold-label data. However, the cross-domain performance when
training on GPT-4 generated data is significantly higher than when training with only gold-label data. The grey area
represents the in-domain performance.
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Dataset Method Accuracy and N train | Mistral | Llama3-8B-Chat
MATH Algebra | GPT4 preview 82.5%, 1000 0.301 0.504
GPT4 only correct 100%, 825 0.293 0.501
GPT4 only correct + rewritten ground truth 100%, 1000 0.293 0.500
MATH Algebra | Claude 90.1%, 1000 0.265 0.508
Claude only correct 100%, 901 0.277 0.487
Claude only correct + rewritten ground truth 100%, 1000 0.286 0.492
MATH Algebra | Mini GPT4 91.6% , 1000 0.313 0.523
Mini GPT4 only correct 100%, 916 0.311 0.523
Mini GPT4 only correct + rewritten ground truth 100%, 1000 0.326 0.539
GSMSK GPT4 preview 92.1%, 1000 0.597 0.799
GPT4 only correct 100%, 921 0.587 0.791
GPT4 only correct + rewritten ground truth 100%, 1000 0.588 0.808
GSMSK Claude 95.6%, 1000 0.578 0.796
Claude only correct 100%, 956 0.580 0.797
Claude only correct + rewritten ground truth 100%, 1000 0.588 0.798
GSMSK Mini GPT4 89.8% , 1000 0.623 0.795
Mini GPT4 only correct 100%, 898 0.606 0.793
Mini GPT4 only correct + rewritten ground truth 100%, 1000 0.607 0.790

Table 12: The table shows that the accuracy of the generated data has a marginal effect on the training outcome. In
this table, we use the API with different math abilities. The rank of their math problem-solving abilities is: Claude
>MiniGPT-4 >GPT-4 preview. GPT-4 preview represents the data generated using the GPT-4 preview model, rather
than the GPT-40 model.

Data Generation Strategy Model Type | gsm8k | math algebra | math geometry | ecqa | boolq | winogrande | piga | agieval | squad | arc challenge | drop | mbpp | api bank | hellaswag | mmlu pro law | mmlu moral scenarios
‘gold Tabel mistral 0717 [ 0997 | 0736 | 0.854 | 044 | 0.741 0747 0.645 0452 0.772 0.263 0.679
groundtruth 0.442 0.194 0.125 0.684 0325

eptd 0.62 0324 0.146 0703 | 0.87 0717 | 0864 | 041 | 0732 0.631 0723 | 0362 | 0515 0.659 0238 0.691
claude 0.582 0278 0.136 0735 0.885 | 0724 | 0.848 | 0445 | 0.736 0753 0.729 | 0.379 | 0579 0.553 0.248 0751
mini gpt4 0.619 0306 0.151 0708 | 0.882 |  0.695 | 0.868 | 0427 | 0.732 0.772 0.735 | 0.348 | 043 0.663 0.205 0.659
step by step 0.626 0314 0.137 0706 | 0.874 | 0.693 | 0.862 | 0445 | 0.749 0.71 0.696 | 0.333 | 0377 0.644 0.249 0.714
openai human written examples 0.621 0303 0.163 0708 | 0.891 | 0721 | 0.859 | 0.413 | 0.76 0.692 0.741 | 0.345 | 0411 0.674 0.233 0.71
gptd style in context examples 0.61 0254 0.158 0726 | 0.884 | 0727 | 0.868 | 044 | 0.761 0.697 0735 | 0.378 | 0416 | 0672 0.225 0.728
rewrite groundtruth in own words 0.502 0238 0.127 0.703 0306

‘gold label Tlama 3 instruct 07370979 | 0761 ] 0852 0432 | 0.756 0.766 0.742 0507 0772 0332 0.639
groundtruth 0.678 0.404 0.239 0.701 0.445

2ptd 0.816 0559 0301 074 | 087 0.697 | 0.866 | 0.448 | 0.759 0.806 0.793 | 0.482 | 0477 0712 0.247 0.659
claude 0.803 05 0.254 0.756 | 0.865 0.72 0.86 | 0445 | 0.765 0.801 0.757 | 0471 | 0.547 0.709 0.259 0.737
mini gptd 0.805 0551 0.28 0721 | 0.864 | 0677 | 0.868 | 0437 | 0.747 0816 0.783 | 0491 | 0384 | 0719 0.225 0.645
step by step 0.797 0562 0.26 0.731 | 0.869 072 0.853 | 0433 | 0.779 0.792 078 | 0455 | 0227 0.71 0242 0.684
openai human written examples 0.81 0547 0.283 0735 | 0.893 | 0717 | 0.867 | 044 | 0.766 0.804 0.807 | 0477 | 0347 0.706 0.229 0.667
gpté style in context examples 0.796 0494 0.285 0.736 | 0.885 |  0.719 087 | 0447 | 0752 0811 0794 | 047 | 0368 0.721 0.259 0.681
rewrite groundtruth in own words 0742 0444 0241 0727 0437

gold Tabel qwen 08160892 | 0732 0867 048 | 0.7 0.855 0.663 0515 0.74 0.303 0.605
groundtruth 0.899 0.894 0.667 0.793 0.59

eptd 0.897 0916 0.679 0794 | 0.858 | 0709 | 0878 | 0552 | 0.76 0.886 0.798 | 0.591 | 0436 | 0722 03 0.656
claude 0.895 0.904 0.648 0.788 | 0.862 072 088 | 0553 | 0.766 0.874 0.793 | 0.607 | 0.462 0.72 0.309 0.66
mini gpt4 0.904 0.904 0.654 0.787 | 0.87 0712 | 0.882 | 0555 | 0.763 0.891 0.821 | 0.642 | 0379 0.701 0.308 0.664
step by step 0.899 0.907 0.642 0792 | 0859 | 0716 088 | 0548 | 0.767 0881 0.806 | 0.623 | 0.417 0713 0.287 0.662
openai human written examples 0.905 0909 0.647 0787 | 0871 | 0697 | 0883 | 0.547 | 0.794 0.883 082 | 0628 | 0458 0.724 0.283 0.608
gpté style in context examples 0.899 0.903 0.657 0.803 | 0.88 0731 | 0878 | 057 |0.785 0.868 0.809 | 0.631 | 0.309 0742 03 0.642
rewrite groundtruth in own words 0.902 0.904 0.654 0.787 0589

Table 13: average of seed 0,1,2 train datasize 1000 Ir 2e-05 epoch num 20

Data Generation Straiegy Model Type | gsm8K | math algebra | math geometry | ecqa | boolq | winogrande | piqa | agieval | squad | arc challenge | drop | mbpp | api bank | hellaswag | mmlu pro law | mmlu moral scenarios
‘gold Tabel ‘mistral 0722099 | 0742 | 0.852 | 0440 | 0.748 0759 | 0.628 0465 | 0.771 0252 0.650
groundtruth 0.440 0.201 0.110 0.672 0.370

optd 0.625 0.319 0.177 0.700 | 0.867 0.713 0.869 | 0.400 | 0.732 0.611 0.746 | 0.347 0.510 0.654 0.229 0.713
claude 0.583 0.279 0.160 0.720 | 0.886 0.709 0.849 | 0425 | 0.728 0.732 0.726 | 0.403 0.584 0.549 0.219 0.760
mini gpt4 0627 0291 0.148 0710 | 0873 | 0688 | 0877 | 0420 | 0740 | 0775 | 0726 | 0.363 | 0433 | 0.663 0.183 0.643
step by siep 0639 0.323 0127 0705 | 0885 | 0687 | 0.861 | 0445 | 0752 | 0708 | 0.676 | 0.340 | 0478 | 0639 0.196 0723
openai human written examples 0604 0.306 0.160 0709 | 0897 | 0718 | 0.869 | 0420 | 0756 |  0.685 | 0.742 | 0.350 | 0.400 | 0664 0.196 0717
£pt4 style in context examples 0619 0.231 0.169 0725 0887 | 0732 | 0879 | 0430 | 0764 | 0678 | 0732|0373 | 0433 | 0687 0223 0.710
rewrite groundiruth in own words 0511 0231 0.127 0.709 0323

gold label llama 3 instruct 0.734 | 0.978 0.766 0.855 | 0.435 | 0.761 0.764 0.738 0.502 0.777 0.312 0.630
groundtruth 0.681 0.396 0.215 0.691 0.450

gptd 0814 0.562 0278 0723 0880 | 0695 | 0.865 | 0435 | 0752 |  0.801 0796 | 0480 | 0494 | 0722 0276 0677
claude 0816 0.493 0253 0748 | 0879 | 0728 | 0.864 | 0455 | 0.763 0808 | 0.746 | 0.500 | 0.547 | 0710 0286 0.757
mini gpt4 0795 0.557 0278 0725 0867 | 0702 | 0863 | 0450 | 0739 | 0826 | 0730 | 0.500 | 0384 | 0.703 0223 0.670
step by step 0798 0.564 0308 0728 | 0874 | 0718 | 0.866 | 0.460 | 0.783 0792|0780 | 0450 | 0216 | 0715 0229 0.657
openai human written examples 03811 0.547 0.266 0736 | 0891 | 0719 | 0.864 | 0450 | 0770 | 0809 | 0.808 | 0457 | 0.355 | 0699 0269 0.640
2ptd style in context examples 0.792 0515 0274 0742 0875 | 0717 | 0.854 | 0460 | 0.755 0809 | 0798 | 0483 | 0273 | 0718 0219 0.683
rewrite groundtruth in own words 0.729 0.443 0.241 0.715 0417

gold label qwen 0814 | 0880 | 0725 ] 0.868 | 0500 | 0.769 |  0.8% | 0.652 0518 | 0.747 029 0.590
groundtruth 0906 0.898 0675 0784 0610

P 0889 0916 0.658 0793 | 0865 | 0721|0879 | 0545 | 0762 | 0890 | 0.794 | 0.607 | 0433 | 0706 0276 0633
claude 0.884 0.906 0.662 0796 | 0873 | 0716 | 0.885 | 0550 | 0.767 0867 | 0.798 | 0.600 | 0457 | 0717 0322 0.667
mini gptd 0905 0.904 0.654 0782 | 0865 | 0704 | 0.881 | 0535 | 0.760 | 0.891 0818 | 0633 | 039 | 0704 0299 0.657
step by step 0.899 0.908 0.624 0.795 | 0.846 0.703 0.874 | 0.545 | 0.752 0.882 0.766 | 0.630 0.412 0.717 0.276 0.653
openai human written examples 0.907 0.910 0.658 0.790 | 0.876 0.699 0.884 | 0.540 | 0.808 0.881 0.816 | 0.617 0.445 0.731 0.286 0.583
gpt4 style in context examples 0.896 0.902 0.654 0.799 | 0.883 0.734 0.871 | 0.540 | 0.782 0.863 0.800 | 0.607 0.339 0.742 0.302 0.653
rewrite groundtruth in own words 0911 0.899 0.654 0.791 0.587

Table 14: seed 0 train datasize 1000 Ir 2e-05 epoch num 20
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Data Generation Strategy Model Type 2sm8k | math algebra | math geometry | ecqa | boolq | winogrande | piqa | agieval | squad | arc challenge | drop | mbpp | api bank | hellaswag | mmlu pro law | mmlu moral scenarios
gold label mistral 0.714 | 0.997 0.733 0.855 0.738 0.741 0.654 0.445 0.772 0.269
groundtruth 0.443 0.191 0.131 0.690
gptd 0.617 0.327 0.148 0.704 | 0.872 0.719 0.861 | 0415 | 0.732 0.641 0.518 0.662 0.243 0.680
claude 0.581 0.277 0.143 0.742 | 0.885 0.731 0.847 | 0455 | 0.740 0.764 0.576 0.555 0.262 0.747
mini gpt4 0.615 0.314 0.148 0.707 | 0.886 0.698 0.863 | 0.430 | 0.728 0.771 0.429 0.663 0.216 0.667
step by step 0.619 0.309 0.131 0.707 | 0.868 0.696 0.862 | 0.445 | 0.748 0.711 0.327 0.646 0.276 0.710
openai human written examples 0.630 0.302 0.165 0.707 | 0.888 0.723 0.854 | 0410 | 0.762 0.695 0.416 0.679 0.252 0.707
gpt4 style in context examples 0.605 0.265 0.152 0.726 | 0.882 0.724 0.862 | 0.445 | 0.760 0.706 0.736 0.408 0.665 0.226 0.737
rewrite groundtruth in own words 0.497 0.241 0.139 0.700
gold label llama 3 instruct 0.738 | 0.979 0.759 0.850 | 0.430 | 0.754 0.767 0.744 0.510 0.769 0.342 0.643
groundtruth 0.677 0.408 0.241 0.706 0.443
2pt4 0.817 0.557 0.312 0.748 | 0.865 0.698 0.866 | 0.455 | 0.762 0.808 0.792 | 0.483 | 0.469 0.707 0.650
claude 0.796 0.504 0.253 0.760 | 0.858 0.716 0.858 | 0.440 | 0.766 0.797 0.762 | 0.457 | 0.547 0.709 0.727
mini gpt4 0.810 0.548 0.274 0.719 | 0.863 0.664 0.871 | 0430 | 0.751 0.811 0.810 | 0.487 | 0.384 0.727 0.633
step by step 0.796 0.561 0.266 0.733 | 0.867 0.721 0.846 | 0.420 | 0.777 0.792 0.780 | 0.457 0.233 0.708 0.697
‘openai human written examples 0.809 0.547 0.291 0.735 | 0.894 0.716 0.868 | 0. 0.764 0.801 0.806 | 0.487 0.343 0.709 0.680
gpt4 style in context examples 0.798 0.484 0.291 0.733 | 0.890 0.720 0.878 | 0.440 | 0.751 0.812 0.792 | 0.463 0.416 0.723 0.680
rewrite groundtruth in own words 0.749 0.445 0.253 0.733 0.447
gold label qwen 0.817 | 0.898 0.735 0.867 | 0.470 | 0.771 0.854 0.668 0.514 0.737 0.306 0.613
groundtruth 0.896 0.892 0.658 0.798 0.580
gpt4 0.901 0.904 0.692 0.794 | 0.855 0.703 0.878 | 0.555 | 0.759 0.884 0.800 | 0.583 | 0.437 0.730 0312 0.667
claude 0.901 0.903 0.654 0.784 | 0.857 0.722 0.878 | 0.555 | 0.765 0.877 0.790 | 0.610 0.465 0.721 0.302 0.657
mini gpt4 0.903 0.904 0.662 0.789 | 0.872 0.716 0.882 | 0.565 | 0.765 0.891 0.822 | 0.647 0.371 0.700 0312 0.667
step by step 0.899 0.907 0.646 0.790 | 0.866 0.723 0.883 | 0.550 | 0.775 0.881 0.826 | 0.620 | 0.420 0.711 0.292 0.667
openai human written examples 0.904 0.908 0.641 0.786 | 0.868 0.696 0.883 | 0.550 | 0.787 0.884 0.822 | 0.633 | 0.465 0.720 0.282 0.620
gpt4 style in context examples 0.900 0.903 0.658 0.805 | 0.878 0.730 0.882 | 0.585 | 0.787 0.870 0.814 | 0.643 | 0.294 0.742 0.299 0.637
rewrite groundtruth in own words 0.897 0.907 0.692 0.785 0.590

Table 15: seed 1 train datasize 1000 Ir 2e-05 epoch num 20
Data Generation Strategy Model Type gsm8k | math algebra | math geometry | ecqa | boolq | winogrande | piqa | agieval | squad | arc challenge | drop | mbpp | api bank | hellaswag | mmlu pro law | mmlu moral scenarios
gold label mistral 0.681 | 0.996 0.743 0.838 | 0.450 | 0.741 0.734 0.656 0.449 0.776 0.269 0.663
groundtruth 0.441 0.211 0.101 0.679 0.350
gptd 0.617 0.315 0.169 0.708 | 0.868 0.700 0.870 | 0415 | 0.739 0.661 0.720 | 0.343 | 0.482 0.641 0.276 0.703
claude 0.612 0.277 0.148 0.742 | 0.883 0.716 0.856 | 0.410 | 0.744 0.743 0.726 | 0.367 | 0.445 0.570 0.246 0.713
mini gpt4 0.622 0.177 0.703 | 0.865 0.688 0.855 | 0435 | 0.740 0.768 0.708 | 0.353 | 0.429 0.670 0219 0.697
step by step 0.622 0.139 0.709 | 0.866 0.697 0.843 | 0.430 | 0.763 0.700 0.714 0.298 0.661 0219 0.720
openai human written examples 0.614 0.156 0.701 | 0.900 0.718 0.855 | 0405 | 0.754 0.663 0.748 0.408 0.679 0.246 0.720
gpt4 style in context examples 0.606 0.165 0.712 | 0.884 0.724 0.860 | 0.420 | 0.771 0.711 0.748 0.449 0.673 0.266 0.737
rewrite groundtruth in own words 0.506 0.135 0.703
gold label 1lama 3 instruct 0.735 | 0.980 0.760 0.865 | 0.445 | 0.757 0.762 0.740 0.465 0.784 0.329 0.663
groundtruth 0.696 0.415 0.228 0.690 0.413
2ptd 0.806 0.553 0.278 0.733 | 0.864 0.697 0.865 | 0.450 | 0.742 0.824 0.748 | 0.487 | 0.445 0.725 0.683
claude 0.789 0.489 0.257 0.734 | 0.866 0.685 0.846 | 0450 | 0.759 0.800 0.770 | 0.507 | 0.547 0.716 0.743
mini gpt4 0.795 0.536 0.287 0.733 | 0.866 0.690 0.869 | 0.450 | 0.754 0.796 0.686 | 0.467 | 0.367 0.709 0.640
step by step 0.800 0.551 0.245 0.719 | 0.884 0.707 0.865 | 0.460 | 0.767 0.782 0.792 | 0.467 | 0.245 0.697 0.653
‘openai human written examples 0.796 0.529 0.287 0.736 | 0.884 0.714 0.863 | 0.450 | 0.757 0.808 0.800 | 0.460 0.367 0.689 0.680
gpt4 style in context examples 0.800 0.500 0.283 0.729 | 0.876 0.709 0.856 | 0.440 | 0.767 0.809 0.816 | 0.480 0.433 0.708 0.683
rewrite groundtruth in own words 0.754 0.431 0.291 0.715 0.457
gold label qwen 0.818 | 0.887 0.724 0.867 | 0.495 | 0.774 0.861 0.652 0.539 0.740 0.302 0.590
groundtruth 0.901 0.910 0.675 0.758 0.623
2pt4 0.897 0.892 0.654 0.791 | 0.858 0.710 0.883 | 0.540 | 0.777 0.882 0.788 | 0.603 | 0.433 0.703 0.306 0.607
claude 0.881 0.916 0.641 0.785 | 0.859 0.735 0.877 | 0.540 | 0.762 0.872 0.798 | 0.597 0.461 0.732 0.292 0.690
mini gpt4 0.902 0.904 0.658 0.778 | 0.875 0.711 0.880 | 0.555 | 0.760 0.890 0.798 | 0.613 0.396 0.696 0.309 0.677
step by step 0.886 0.907 0.679 0.770 | 0.859 0.715 0.869 | 0.560 | 0.767 0.867 0.792 | 0.597 0.404 0.711 0.332 0.677
openai human written examples 0.900 0.887 0.646 0.794 | 0.881 0.707 0.872 | 0.540 | 0.802 0.895 0.804 | 0.603 | 0.449 0.724 0.306 0.640
gpt4 style in context examples 0911 0.908 0.650 0.792 | 0.875 0.728 0.891 | 0.535 | 0.790 0.866 0.824 | 0.577 | 0318 0.734 0.316 0.643
rewrite groundtruth in own words 0.905 0.899 0.637 0.799 0.600

Table 16: seed 2 train datasize 1000 Ir 2e-05 epoch num 20
Data Generation Strategy Model Type 2sm8K | math algebra | math geometry | ecqa | boolq | winogrande | piqa | agieval | squad | arc challenge | drop | mbpp | api bank | hellaswag | mmlu pro law | mmlu moral scenarios
gold label mistral 0.627 | 0.869 0.608 0.814 | 0.430 | 0.582 0.704 0.482 0.220 0.625 0.153 0.420
groundtruth 0.420 0.205 0.101 0.591
gptd 0.513 0.231 0.101 0.596 | 0.837 0.636 0.790 | 0.345 | 0.333 0.624 0.244 0.249 0.269 0.166 0.380
claude 0.505 0.215 0.110 0.634 | 0.837 0.627 0.804 | 0.400 | 0.290 0.630 0.250 0.257 0.284 0.179 0.413
mini gpt4 0.511 0.223 0.097 0.619 | 0.845 0.644 0.782 | 0.360 | 0.404 0.633 0.210 0.253 0.223 0.183 0.343
step by step 0.494 0.247 0.080 0.593 | 0.845 0.636 0.765 | 0.355 | 0.314 0.618 0.092 0.265 0.254 0.183 0.403
openai human written examples 0.504 0.230 0.118 0.611 | 0.853 0.639 0.811 | 0.355 | 0.467 0.578 0.280 0.257 0.316 0.166 0.517
gpt4 style in context examples 0.500 0.245 0.114 0.560 | 0.845 0.649 0.789 | 0.340 | 0312 0.611 0.124 0.208 0.295 0.183 0.423
rewrite groundtruth in own words 0.450 0.214 0.110 0.603
gold label llama 3 instruct 0.710 | 0.852 0.636 0.789 | 0.395 | 0.680 0.764 0.620 0.082 0.610 0.196 0.200
groundtruth 0.794 0.460 0.249 0.691 0.407
2ptd 0.791 0.491 0.266 0.686 | 0.802 0.634 0.801 | 0.430 | 0.504 0.760 0.410 | 0.480 | 0.082 0.592 0.223 0.387
claude 0.804 0.492 0.266 0.699 | 0.806 0.640 0.821 | 0.450 | 0.495 0.739 0.420 | 0.483 | 0.082 0.608 0.233 0.430
mini gpt4 0.797 0.477 0.257 0.710 | 0.800 0.621 0.823 | 0425 | 0.509 0.751 0.400 | 0.497 | 0.086 0.589 0.229 0.373
step by step 0.808 0.496 0.219 0.702 | 0.818 0.626 0.799 | 0435 | 0.565 0.743 0.488 | 0.477 | 0.110 0.608 0.199 0.407
‘openai human written examples 0.809 0.472 0.257 0.720 | 0.810 0.630 0.815 | 0.440 | 0.564 0.747 0.414 | 0.500 0.078 0.600 0.236 0.387
gpt4 style in context examples 0.800 0.434 0.266 0.695 | 0.793 0.638 0.808 | 0.455 | 0.429 0.762 0.344 | 0.497 0.090 0.582 0.229 0.407
rewrite groundtruth in own words 0.813 0.480 0.262 0.718 0.447
gold label qwen 0.791 | 0.843 0.677 0.875 | 0.465 | 0.703 0.877 0.334 0.220 0.702 0.306 0.387
groundtruth 0913 0.918 0.679 0.792 0.603
2pt4 0.908 0.898 0.692 0.802 | 0.831 0.711 0.863 | 0.560 | 0.661 0.891 0.092 | 0.637 | 0.237 0.697 0.580
claude 0911 0.912 0.679 0.788 | 0.837 0.718 0.876 | 0.550 | 0.652 0.894 0.114 | 0.640 | 0.237 0.691 0.577
mini gpt4 0.902 0914 0.667 0.791 | 0.852 0.720 0.884 0.660 0.891 0.068 | 0.600 0.237 0.702 0.583
step by step 0.909 0.919 0.599 0.802 | 0.848 0.708 0.870 0.682 0.879 0.062 | 0.617 0.224 0.690 0.563
openai human written examples 0.900 0.918 0.671 0.789 | 0.842 0.718 0.864 0.681 0.887 0.090 | 0.597 0.237 0.706 0.563
gpt4 style in context examples 0918 0.914 0.679 0.798 | 0.836 0.710 0.865 0.678 0.888 0.050 | 0.627 | 0.196 0.696 0.567
rewrite groundtruth in own words 0910 0.916 0.667 0.782 0.590

Table 17: seed O train datasize 100 Ir 2e-05 epoch num 20
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Data Generation Straiegy Model Type | gsm8K | math algebra | math geometry | ecqa | boolq | winogrande | piqa | agieval | squad | arc challenge | drop | mbpp | api bank | hellaswag | mmlu pro law | mmlu moral scenarios
‘gold Tabel mistral 0681 | 0870 | 0694 | 0830 | 0420 | 0.730 | 0.726 | 0.620 0486 | 0.737 0236 0677
groundiruth 0.409 0.186 0.093 0638 0293

optd 0.586 0.270 0.152 0.672 | 0.864 0.686 0.821 | 0455 | 0.649 0.736 0.670 | 0.340 0.404 0.623 0.233 0.687
claude 0.554 0.237 0.122 0.663 | 0.858 0.701 0.855 | 0.405 | 0.690 0.760 0.662 | 0.360 0.400 0.619 0.243 0.710
mini gpt4 0514 0.266 0.152 0.705 | 0.850 0.674 0.847 | 0425 | 0.670 0.739 0.666 | 0.357 0.359 0.651 0.233 0.623
step by sicp 0575 0.235 0131 0662 | 0853 | 0667 | 0842 | 0415 | 0691 0746 | 0.646 [ 0327 | 0286 | 0575 0233 0.593
openai human written examples 0536 0278 0.156 0674 | 0874 | 0665 | 0850 | 0435 | 0700 | 0764 | 0.698 | 0.340 | 0302 | 0.628 0229 0.677
gptd style in context examples 0548 0222 0.156 0658 | 0879 | 0681 | 0.864 | 0430 | 0.676 |  0.741 0650 | 0333 | 0343 | 0.628 0203 0.687
rewrite groundiruth in own words 0443 0202 0.101 0.330

gold label llama 3 instruct 0.705 | 0.866 0.675 0.847 | 0430 | 0.727 0.773 0.684 0.494 0.682 0.299 0.633
groundtruth 0.683 0.404 0.211 0.679 0.430

gpt4 0.798 0.529 0.257 0.731 | 0.864 0.679 0.845 | 0.440 | 0.729 0.815 0.734 | 0.470 0.424 0.711 0.246 0.683
claude 0.805 0.495 0224 0712|0834 | 0694 | 0857 | 0420 | 0744 | 0789 | 0.742 | 0.467 0677 0226 0.693
mini gpt4 0807 0.504 0278 0719 | 0852 | 0674 | 0.858 | 0445 | 0746 | 0795 | 0.744 | 0473 | 0335 | 0676 0266 0.630
step by step 0779 0.528 0.198 0690 | 0874 | 0683 | 0.863 | 0435 | 0736 | 0797 | 0708 | 0457 | 0253 | 0.688 0233 0.620
openai human written examples 0772 0.483 0.249 07120873 | 0678 | 0.853 | 0405 | 0726 | 0789 |0.772 | 0473 | 0302 | 0674 0262 0.640
gpt4 style in context examples 0794 0.488 0283 0712 0861 | 0690 | 0.859 | 0440 | 0729 | 0770 | 0.754 | 0473 | 0380 | 0702 0259 0.693
rewrite groundtruth in own words 0.693 0415 0232 0430

gold label qwen 0.820 | 0883 | 0704 | 0.858 | 0480 | 0.747 0849 | 0.642 0457 | 0725 0339 0.563
groundtruth 0867 0.896 0637 0823 0523

gptd 0897 0.890 0.620 0787 [ 0859 | 0709 | 0.881 | 0545 | 0.743 0882|0808 | 0.617 | 0388 | 0687 0362 0.690
claude 0882 0.890 0616 0790 | 0869 | 0738 | 0.867 | 0555 | 0.766 |  0.871 0810 | 0603 | 0527 | 0702 0316 0.750
mini gpt4 0889 0912 0.624 0794 | 0867 | 0719 | 0.887 | 0530 | 0.750 |  0.891 0772 0580 | 0429 | 0707 0289 0.640
step by step 0902 0.899 0.586 0788 | 0868 | 0731 | 0.878 | 0545 | 0.737 0.881 0788 | 0630 | 0339 | 0715 0309 0.677
openai human written examples 0.892 0.899 0.616 0.783 | 0.874 0.727 0.883 | 0.565 | 0.776 0.875 0.824 | 0.590 0.392 0.694 0.233 0.643
gpt4 style in context examples 0.896 0.899 0.637 0.782 | 0.864 0.720 0.881 | 0.550 | 0.764 0.868 0.832 | 0.620 0.335 0.752 0.302 0.677
rewrite groundtruth in own words 0.899 0.892 0.646 0.583

Table 18: seed 0 train datasize 100 Ir 0.0002 epoch num 40

Bencl k Name | Data Name Chosen/Not Chosen Why not chosen
Mistral 7B ‘Winogrande v

PIQA v

GSM8K '

MATH v

MBPP v

MMLU v

AGIEVAL v

ARC Challenge v

BoolQ v

Hellaswag v

CommonsenseQA X not a reasoning task

BBH X In github, it says this dataset can never used in training.

SIQA X not a reasoning task

OpenbookQA X not a reasoning task

ARC Easy X We already choose ARC Challenge

NaturalQuestions X It evaluates world knowledge instead of reasoning ability

TriviaQA X It evaluates world knowledge instead of reasoning ability

QuAC X this is a multiturn, muti context qa dataset. evaluation is too hard
Llama 3 MMLU v

MMLU_Pro v

GSM8K v

MATH '

AGIEVAL v

ARC CHALLENGE v

DROP v

API-BANK v

IFEval x less than 650 data

HumanEval+ X less than 650 data

BFCL X (subcategory) less than 650 data

Nexus X Unable to find the dataset

GPQA X less than 650 data

HumanEval X less than 650 data

ZeroSCROLLS/QuALITY X This dataset evaluating model’s long context QA ability. The input is too long thus is hard to train.

InfiniteBench/En.MC X This dataset evaluating model’s long context QA ability. The input is too long thus is hard to train.

NIH/Multi-needle X Long context QA task. The input is too long thus is hard to train. Llama already achieves 98.8% accuracy with zero-shot setting.
Qwen2.5 MMLU v

MMLU Pro v

MBPP v

ARC CHALLENGE v

GSMSK v

MATH v

WindoGrande v

HellaSwag v

MMLU stem X (subcategory) less than 650 data

Truthful QA X not reasoning task

GPQA X less than 650 data

TheoremQA X the data set is tooooo challenging for GPT-4o. it does not have the ability to be a teacher for this task.

HumanEval X less than 650 data

HumanEval+ X less than 650 data

MMLU redux X (subcategory) less than 650 data

BBH X In github, it says this dataset can never used in training.

MBPP+ X less than 650 data

MultiPL-E X (subcategory) less than 650 data

Table 19: This table explains which data from the Mistral, LLaMA3, and Qwen benchmarks were chosen and
why some data were not selected. Multi-lingual dataset is not listed in this Table since our experiment only covers
English-only datasets. API-BANK is in Table 16 from Llama 3 technical report.
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Data Generation Strategy Model Type plan bench generation | plan bench optimality | plan bench generalization | plan bench replaning | plan bench reuse | plan bench verification
gold label mistral 0.607 0.448 0.807 0.815 0.945 0.318
groundtruth

gptd 0.458 0.37 0.215 0.2 0.61 0.518
claude 0.505 0.45 0.362 0.445 0.755 0.586
mini gpt4 0.445 0.38 0.282 0.235 0.51 0.5
step by step 0.448 0.253 0.253 0.177 0.63 0.492
openai human written examples 0.485 0.43 0.302 0.28 0.73 0.474
gpt4 style in context examples 0.37 0.232 0.43 0.207 0.665 0.56
gold label 1lama 3 instruct 0.478 0.38 0.853 0.87 0.87 0.482
groundtruth

gpt4 0.463 0.36 0.265 0.225 0.72 0.49
claude 0.545 0.485 0.407 0.425 0.637 0.532
mini gpt4 0.415 0.375 0.25 0.215 0.5 0.674
step by step 0.475 0.39 0.287 0.232 0.732 0.564
openai human written examples 0.458 0.372 0.307 0.25 0.603 0.516
gpt4 style in context examples 0.45 0.435 0.438 0.223 0.75 0.468
gold label qwen 0.32 0.285 0.38 0.732 0.845 0.516
groundtruth

gpt4 0.237 0.253 0.145 0.2 0.515 0.538
claude 0.325 0.265 0.277 0.46 0.393 0.534
mini gpt4 0.253 0.255 0.168 0.188 0.42 0.55
step by step 0.265 0.182 0.135 0.17 0.577 0.536
openai human written examples 0.24 0.19 0.222 0.155 0.47 0.52
gpt4 style in context examples 0.302 0.268 0.338 0.2 0.597 0.534

Table 20: seed average of seed_0,1 train datasize 1000 Ir 2e-05 epoch num 40
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