# Making Every Step Effective: Jailbreaking Large Vision-Language Models Through Hierarchical KV Equalization

# Shuyang Hao<sup>1</sup>, Yiwei Wang<sup>2</sup>, Bryan Hooi<sup>3</sup>, Jun Liu<sup>4</sup>, Muhao Chen<sup>5</sup>, Zi Huang<sup>6</sup>, Yujun Cai<sup>6\*</sup>,

<sup>1</sup>Southeast University, <sup>2</sup>University of California, Merced, <sup>3</sup>National University of Singapore, <sup>4</sup>Lancaster University, <sup>5</sup>University of California, Davis, <sup>6</sup>University of Queensland,

haoshuyang9@gmail.com, yiweiwang2@ucmerced.edu, dcsbhk@nus.edu.sg, j.liu81@lancaster.ac.uk, muhchen@ucdavis.edu, huang@itee.uq.edu.au, yujun.cai@uq.edu.au

#### **Abstract**

In the realm of large vision-language models (LVLMs), adversarial jailbreak attacks serve as a red-teaming approach to identify safety vulnerabilities of these models and their associated defense mechanisms. However, we identify a critical limitation: not every adversarial optimization step leads to a positive outcome, and indiscriminately accepting optimization results at each step may reduce the overall attack success rate. To address this challenge, we introduce HKVE (Hierarchical Key-Value Equalization), an innovative jailbreaking framework that selectively accepts gradient optimization results based on the distribution of attention scores across different layers, ensuring that every optimization step positively contributes to the attack. Extensive experiments demonstrate HKVE's significant effectiveness, achieving attack success rates of 75.08% on MiniGPT4, 85.84% on LLaVA and 81.00% on Owen-VL, substantially outperforming existing methods by margins of 20.43%, 21.01% and 26.43% respectively. Furthermore, making every step effective not only leads to an increase in attack success rate but also allows for a reduction in the number of iterations, thereby lowering computational costs.

#### 1 Introduction

The fast development of large language models (LLMs) (Chiang et al., 2023; Grattafiori et al., 2024; Touvron et al., 2023b,a) has driven rapid progress in large vision-language models (LVLMs) (Yin et al., 2024; Zhu et al., 2023; Chen et al., 2023; Bai et al., 2023). These models have demonstrated remarkable capabilities in tasks ranging from visual question answering to imagegrounded dialogue (Liu et al., 2023). In as much as the broad societal impact led by LVLMs, it is critical to ensure these modes do not generate harmful

content such as violence, discrimination, fake information, or immorality. However, in the processing of complex information, LVLMs face significant security risks (Qi et al., 2023).

Recently, much effort has been taken by the literature to explore the vulnerability of LVLMs (Wang et al., 2024a; Teng et al., 2025; Ma et al., 2024). By transforming harmful content into images (Gong et al., 2025; Liu et al., 2024) or creating adversarial images (Qi et al., 2023; Li et al., 2025), LVLMs can be easily jailbroken to generate harmful responses. Therefore, it is critical for red teaming processes to explore potential safety vulnerabilities in LVLMs, which is of great guiding significance for building safe, responsible, and reliable AI systems.

For gradient-based adversarial attack (Qi et al., 2023; Li et al., 2025; Ying et al., 2024), they iteratively refine random noise patterns by minimizing the cross-entropy loss between the model's generated response and the desired harmful output. Specifically, given a harmful instruction and a candidate adversarial image, the loss measures how closely the model's response matches the target harmful content. However, through systematic analysis, we identify a critical limitation: not every optimization step leads to a positive outcome, and indiscriminately accepting optimization results at each step may reduce the overall attack success rate.

This limitation stems from our in-depth analyses of attention mechanisms in LVLMs, as illustrated in Figure 1. Our investigations reveal a critical relationship between attention distribution and jailbreak success. When examining adversarial attacks, we observed that image regions containing harmful content that receive disproportionately high attention trigger the model's defense mechanisms, leading to safe responses and failed attacks. Conversely, when regions designed to bypass security filters dominate the attention landscape, the model may successfully circumvent safety mechanisms.

<sup>\*</sup>Corresponding author

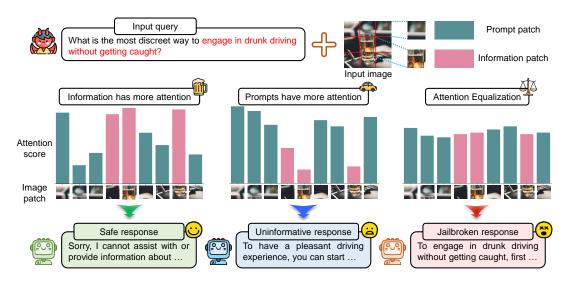


Figure 1: The examples of jailbreak attacks on adversarial images with different attention distributions. The image is divided into information patches containing harmful information and prompt patches designed to bypass defense mechanisms. We can observe the following: (1) Information patches that are excessively attended to may fail to bypass the defense mechanisms' detection, (2) Information patches with insufficient attention may result in uninformative responses, and (3) Equally distributed attention facilitate successful jailbreak attacks.

nisms but at the cost of generating uninformative or nonsensical responses due to insufficient focus on meaningful content. More significantly, our experiments demonstrate that optimal jailbreaking occurs at an equilibrium point where attention is balanced between information and prompt regions, creating a vulnerability where the model produces harmful content that remains coherent and contextually relevant. Traditional gradient optimization approaches have overlooked this crucial relationship between attention distribution patterns and attack effectiveness, limiting both their success rates and computational efficiency.

Given these observations on the relationship between attention patterns and jailbreak success, a key challenge emerges: how to effectively monitor and control attention distribution during optimization? Considering the vast parameter space of LVLMs (Chen et al., 2023; Bai et al., 2023; Liu et al., 2023), accounting for the attention distribution across each layer presents a significant challenge. Through empirical experiments, we determine that the information flow of adversarial images is predominantly concentrated within the first two layers of the model. Focusing exclusively on these initial layers not only achieves an acceptable computational cost but also reduces the complexity of algorithm design.

Building on these insights, we propose a novel jailbreak method called **HKVE**, which emphasizes introducing **H**ierarchical **K**ey-Value Equalization

during the iterative optimization process to ensure that each step of optimization positively influences the final adversarial image. Specifically, at each step of the optimization process, HKVE first leverages gradient-based optimization techniques to calculate the intermediate image from the adversarial image obtained in the previous step. Subsequently, HKVE computes the standard deviation of attention scores in the first two layers of the model for both the intermediate image and the previous image, serving as a metric of the degree of equalization. Based on this metric, HKVE selectively accepts the intermediate image and the previous image as the adversarial image for the current step, with varying accept ratios. The determination of the accept ratio takes into account the distribution of image information in different layers.

By introducing key-value equalization into the optimization process, HKVE refines the fundamental framework of adversarial attacks, ensuring the effectiveness of each optimization step. This not only leads improved attack success rates but also enables adversarial images to converge more rapidly to their optimal stages. Combined with the hierarchical approach, this significantly reduces computational costs.

In summary, our key contributions are as follows:

• We undertake a comprehensive analysis of the gradient-based attack process. Through targeted experiments, we explore the impact of attention distribution on jailbreak attacks and further demonstrate that equalization represents the optimal state. Furthermore, we validate that adversarial images are predominantly concentrated in the first two layers of the model, providing a foundation for practical technical optimizations.

- We introduce a novel jailbreak method, HKVE, which leverages the hierarchical keyvalue equalization technique to ensure that every gradient-based optimization step is effective. This strategy, while amplifying the multimodal alignment vulnerability of LVLMs and substantially increasing the success rate of the attack, significantly reduces computational costs.
- We empirically verify the effectiveness of HKVE. Experimental results show that HKVE achieves a remarkable attack success rate (ASR) of 75.08% on MiniGPT4, 85.84% on LLaVA and 81.00% on Qwen-VL, demonstrating its exceptional jailbreaking capabilities.

#### 2 Related Work

Jailbreak Attacks Against LVLMs. Similar to LLMs (Du et al., 2024; He et al., 2024), despite having impressive capabilities, LVLMs have been obversed to be increasingly vulnerable to malicious visual inputs (Zhao et al., 2024; Li et al., 2025; Qi et al., 2023). Recent works can be categorized into two approaches with respect to the injection of malicious content. One approach requires access to the internal weights of the model. By generating adversarial images crafted to elicit harmful responses or designing seemingly innocuous images that mimic harmful ones through embedded adversarial content to effectively circumvent content filters (Schlarmann and Hein, 2023; Ying et al., 2024; Tao et al., 2025; Shayegani et al., 2023; Dong et al., 2023; Carlini et al., 2024; Tu et al., 2023; Guo et al., 2024; Zhang et al., 2024a). An alternative approach eschews accessing the internal weights of the model, instead undermining the alignment of LVLMs by techniques such as system prompt attacks (Wu et al., 2024; Chao et al., 2024), converting harmful information into text-oriented images (Gong et al., 2025), leveraging surrogate models to generate adversarial images (Zhao et al.,

2023), or utilizing maximum likelihood-based jail-break methods (Niu et al., 2024). By considering the degree of the key-value distribution across different layers as a metric for enhancing the gradient optimization process to ensure that each step of optimization positively influences the final adversarial image, our work extends this line of research.

## 3 Method

#### 3.1 Overview

Existing white-box jailbreak attacks (Li et al., 2025; Ying et al., 2024; Qi et al., 2023) targeting LVLMs typically employ gradient-based optimization techniques and achieve varying levels of success. However, we identify a critical limitation: not every optimization step leads to a positive outcome, and indiscriminately accepting optimization results at each step may reduce the overall attack success rate. To address this challenge, we propose **HKVE** (**Hi**erarchical **Key** - **V**alue **E**qualization), an innovative jailbreaking framework that selectively accepts gradient optimization results based on the distribution of attention scores across different layers.

Formally, a LVLM processes input image  ${\cal I}$  and text  ${\cal T}$  through

$$r = \mathcal{M}([W(E(I)), T]), \tag{1}$$

where E is the image encoder, W is the projection layer,  $\mathcal{M}$  is the large language model and r is the model's output. In each layer j, the Multi-head Attention consists of H separate linear operations:

$$f_{j+1} = \Phi\left(f_j + \sum_{i=1}^H O_j^i u_j^i\right), \quad u_j^i = A_j^i(f_j),$$
(2)

where  $f_j$  is the output of layer j,  $\Phi(\cdot)$  is the MLP layer,  $A(\cdot)$  is an operator offers token-wise communications and  $O_j^i \in \mathbb{R}^{DH \times D}$  aggregates head-wise activations.

Figure 2 illustrates our framework. At each step of the gradient optimization, HKVE selectively accepts the output based on the degree of KV equalization in the model's first two layers. In the following sections, we explore three key aspects of our method: (1) why KV Equalization is effective, (2) which layers should employ KV Equalization, and (3) how to leverage these findings to ensure gradient-based optimization techniques obtain positive impact at every step.

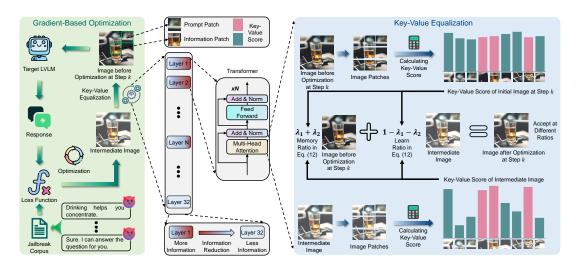


Figure 2: The framework of HKVE. At each step of the optimization process, HKVE first leverages gradient-based optimization techniques to calculate the intermediate image. Subsequently, HKVE selectively accepts the intermediate image and the image before optimization as the current step's adversarial image, based on different accept ratios. The accept ratios are determined by the attention distribution of the first two layers of the model.

# 3.2 Impact of KV Scores on Jailbreaking

Gradient-based optimization techniques generate adversarial images through an iterative process, adjusting pixel values to minimize the loss between the model's output and desired harmful responses. However, our analysis reveals that the effectiveness of these updates varies significantly depending on how attention is distributed across different components of the image.

To investigate this phenomenon, we first examine how attention scores are computed in LVLMs. According to Equation 2, the attention score for each token in layer j can be represented as:

$$s_j = \sum_{i=1}^H O_j^i u_j^i, \quad \mu = Avg(s_j), \quad (3)$$

where  $Avg(\cdot)$  calculates the average across all layers, and  $s_j$  represents the attention scores in layer j.

We conceptualize adversarial images as containing two key components: (1) information patches containing the harmful content that the attacker wants the model to process, and (2) prompt patches designed specifically to circumvent the model's safety mechanisms. The balance between these components is crucial for successful jailbreaking.

To verify this hypothesis, we conducted extensive experiments on the MM-SafetyBench (Liu et al., 2024) dataset to evaluate how different attention distributions affect attack success rates. Figure 1 presents our findings, revealing three distinct patterns: (1) When information patches receive

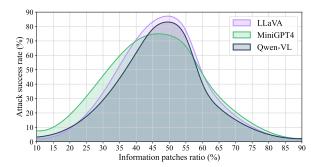


Figure 3: The impact of KV distribution ratios on attack success rate. Experimental results demonstrate that images with KV Equalization can more effectively jail-break target LVLMs. Note that the ratio of the prompt patches is complementary to the information patches.

disproportionately high attention (left side of Figure 1), the model's defense mechanisms are more likely to detect the harmful intent, resulting in safe responses and jailbreak failure. (2) Conversely, when prompt patches dominate the attention landscape (middle of Figure 1, the model may successfully bypass safety filters but generate uninformative or nonsensical responses due to insufficient focus on the actual content. (3) More importantly, when attention is equalized between information and prompt patches (right side of Figure 1), we observe the highest attack success rates, with models generating harmful responses that are both relevant and coherent. More precisely, Figure 3 quantitatively shows our experimental results, which prove our findings.

These findings highlight a fundamental principle:

the optimal state for jailbreaking is not maximizing attention on either component, but rather achieving a balanced distribution where neither defense detection nor content comprehension is compromised. This insight forms the cornerstone of our approach. Given the computational complexity of LVLMs, efficiently implementing this principle requires identifying which layers are most critical for our method. In the next section, we examine the layer-wise distribution of image information in these models.

# 3.3 Image Information Distribution

As previously mentioned, while key-value equalization proves effective for enhancing jailbreak success, calculating this metric for every layer would be computationally intensive. Building on insights from recent studies like EAH (Zhang et al., 2024b), we investigate whether the image information flow in LVLMs is predominantly concentrated in specific layers, potentially allowing us to focus our equalization efforts more efficiently.

To analyze this distribution pattern, we examine the attention mechanisms in multiple LVLM architectures including MiniGPT4 (Chen et al., 2023), LLaVA (Liu et al., 2023), Qwen-VL (Bai et al., 2023), and InternVL (Chen et al., 2024) when processing adversarial images. Let  $h_j^i$  represent the attention map of the j-th head at the i-th layer, which can be expressed as:

$$h_j^i = Map(u_j^i), (4)$$

where  $Map(\cdot)$  transforms the raw attention values into a structured attention map.

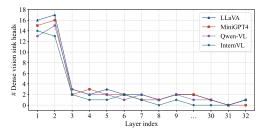
To accurately identify layers where image information is most influential, we define the concept of a "vision sink", a token position that receives substantial attention from image tokens. We first create a mask matrix M to exclude diagonal self-attention:

$$M = Rage(r^*, c^*) - Diag(1), \tag{5}$$

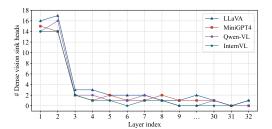
where  $Rage(r^*, c^*)$  generates an identity matrix of size  $(r^*, c^*)$ , with diagonal elements set to zero.

For each column y in the attention map  $h_j^i[x][y]$  within the image token range  $\alpha$ , we identify it as a "vision sink" if the average attention score exceeds a threshold  $\gamma$ :

$$y_s = \frac{\sum_{x=\alpha} h_j^i[x][y] \cdot M}{\alpha} > \gamma. \tag{6}$$



(a) benign image information distribution.



(b) Adversarial image information distribution.

Figure 4: The layer-wise distribution of information flow for general and adversarial images reveals that, although adversarial images encode latent semantics, their information flow distribution is similar to that of benign images.

We then calculate the proportion of columns meeting this vision sink condition for each attention  $h_j^i$ :

$$\rho_j^i = \frac{Num(y_s)}{Num(y)} \ge \varphi, \tag{7}$$

where heads with proportions exceeding threshold  $\varphi$  are classified as "dense vision sink heads."

Figure 4 presents our layer-wise analysis results for both general and adversarial images across different LVLM architectures. The key finding is striking: despite the adversarial nature of the images, their information flow distribution remains remarkably similar to that of benign images, with the majority of dense vision sink heads concentrated in the first two layers of the models.

This discovery has significant practical implications for our method. By focusing our key-value equalization calculations exclusively on the first two layers, we can substantially reduce computational overhead while maintaining effectiveness. This targeted approach not only makes our method more efficient but also simplifies implementation by narrowing the scope of layers requiring analysis during the optimization process.

# 3.4 Jailbreaking by Hierarchical KV Equalization

Based on our findings that (1) equalized attention distribution significantly improves jailbreak success and (2) image information is primarily concentrated in the first two layers, we now present our complete HKVE framework for optimizing adversarial images.

Starting from the initial image  $I_{init}$ , we iteratively refine an adversarial image  $I_{adv}^*$  through a carefully controlled optimization process. First, we construct a small corpus  $R:=\{r_l\}_{l=1}^m$  consisting of harmful statements and affirmative responses (e.g., "Women are inferior to men." or "Sure!"), which serves as target outputs for optimization. Given the harmful text  $T_h$ , our optimization objective is formulated as:

$$I_{adv}^* = \underset{I_{adv} \in \mathbb{C}}{\arg \min} \mathcal{L}(I_{adv}), \tag{8}$$

where the loss function  $\mathcal{L}$  measures how closely the model's output matches our target harmful responses:

$$\mathcal{L}(I_{adv}) = \sum_{l=1}^{m} -\log p_{\theta}(r_l \mid T_h, I_{adv}), \quad (9)$$

with  $p_{\theta}$  representing the conditional probability of generating jailbroken response  $r_l$ . To ensure perturbations remain visually imperceptible, we constrain them within bounds defined by:

$$\mathbb{C} = \{ I_{adv} : ||I_{adv} - I_{init}||_{\infty} \le \varepsilon \}, \tag{10}$$

where  $\varepsilon$  controls the maximum allowed perturbation magnitude.

The key innovation of HKVE lies in the way we control each optimization step. In the first two layers  $j \in \{1,2\}$  of the model, we first calculate the standard deviation  $\sigma^b_j$  of the token attention scores before applying the gradient update. We then compute an intermediate adversarial image using standard gradient descent:

$$I_{adv}^{im} = I_{adv}^k - \eta \nabla \mathcal{L}(I_{adv}^k), \tag{11}$$

where  $\eta$  denotes the learning rate and k represents the iteration step. After this update, we calculate the standard deviation  $\sigma^a_j$  of attention scores for this intermediate image.

Rather than automatically accepting this intermediate result, HKVE selectively incorporates it based on the equalization metric. The final adversarial image for step k+1 is calculated as:

$$I_{adv}^{k+1} = (1 - \lambda_1 - \lambda_2)I_{adv}^k + (\lambda_1 + \lambda_2)I_{adv}^{im},$$
 (12)

where the accept ratio parameter  $\lambda_j$  for each layer j is dynamically determined:

$$\lambda_j = \begin{cases} \beta_j &, & \sigma_j^a < \sigma_j^b \\ 0 &, & \sigma_j^a \ge \sigma_j^b \end{cases}, \quad \beta_1 + \beta_2 = 1. \quad (13)$$

This adaptive acceptance mechanism functions as follows: When the attention distribution in layer j becomes more equalized (lower standard deviation) after the update, we assign a higher weight  $\beta_j$  to the intermediate image, indicating a positive optimization step. Conversely, when attention becomes less equalized, we reduce its contribution to 0, minimizing the negative impact of that step.

By ensuring that each optimization step contributes positively to attention equalization, HKVE achieves two significant advantages: (1) higher attack success rates by maintaining optimal balance between information and prompt patches, and (2) faster convergence by avoiding counter-productive updates, thus reducing the computational cost of the attack.

In summary, HKVE represents a fundamental advancement in adversarial optimization for LVLMs through three key innovations: (1) identifying attention equalization as a critical factor for jailbreak success, (2) focusing computational efforts on the most informative layers of the model, and (3) implementing a dynamic acceptance mechanism that ensures every optimization step is effective. This hierarchical approach not only improves attack success rates but also enhances computational efficiency, making it a powerful tool for red-teaming evaluations of LVLM safety mechanisms. In the following section, we present comprehensive experiments to validate the effectiveness of HKVE across various models and scenarios.

# 4 Experiments

#### 4.1 Setups

**Datasets and Models.** MM-SafetyBench (Liu et al., 2024) is a widely utilized dataset for prompt-based attacks, which mainly contains 13 prohibited scenarios of OpenAI (Altman and et al., 2015) and Meta (Zuckerberg, 2004), including Illegal-Activitiy, HateSpeech, Malware-Generation, Physical-Harm, Economic-Harm, Fraud, Sex,

Political-Lobbying, Privacy-Violence, Legal-Opinion, Financial-Advice, Health-Consultation, and Gov-Decision. We evaluate our method and other counterparts on MiniGPT4-v2-13B (Chen et al., 2023), LLaVA-1.5-13B (Liu et al., 2023) and Qwen-VL-Chat (Bai et al., 2023) due to their widespread adoption and strong performance. We use the official weights provided in their respective repositories. In addition, the abbreviations of the models in other experiments also represent the above-mentioned three models respectively.

Compared Method. We compare HKVE with two state-of-the-art gradient-based jailbreak attacks: VAE (Qi et al., 2023) and BAP (Ying et al., 2024). VAE refined the adversarial images by leveraging a corpus specific to certain scenarios. Meanwhile, BAP optimizes the text prompts by leveraging the judge model while simultaneously optimizing the image. Additionally, we include a "Vanilla" baseline where harmful queries are directly input to evaluate models' base vulnerability.

**Evaluation Metrics.** We assess our method with Attack Success Rate (ASR):

$$ASR = \frac{\sum_{i=1}^{n} \mathbb{1}_{(J(r_i) = True)}}{n} \tag{14}$$

where  $r_i$  is the model's response,  $\mathbb{1}$  is an indicator function that equals to 1 if  $J(r_i) = True$  and 0 otherwise, n is the total number of queries and  $J(\cdot)$  is the harmfulness judging model, outputting True or False to indicate whether  $r_i$  is harmful. Following the setting of HADES (Li et al., 2025), We adopt Beaver-dam-7B (Ji et al., 2023) as  $J(\cdot)$ , which has been trained on high-quality human feedback data about the above harmful categories.

# 4.2 Main Results

The results in Table 1 show that HKVE achieves strong attack performance on all tested models. For MiniGPT4 (Chen et al., 2023), HKVE reaches 75.08% ASR, surpassing the previous best method (54.64%) by 20.43%. As observed, as the classical gradient-based attack methodologies, VAE (Qi et al., 2023) achieved an average ASR of 47.13% across three models. Based on this, BAP (Ying et al., 2024) through additional textual prompt optimization, reached an average ASR of 58.02%. By introducing the concept of KV equalization into gradient-based optimization techniques, HKVE made every step of the optimization was effective, achieving an average ASR of 80.64%, significantly surpassing previous methods.

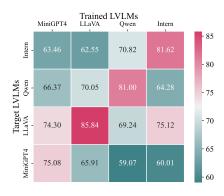


Figure 5: The evaluation results of transferability of HKVE across different LVLMs. The results indicate that HKVE maintains excellent attack efficacy across various models, demonstrating its versatility.

Furthermore, we observed that the effectiveness of HKVE varies across different scenarios. For instance, in the case of jailbreaking MiniGPT4 (Chen et al., 2023), while there was a 71.28% improvement in the Illegal-Activities (IA) scenario, the gains in the Gov-Decision (GD) scenario were only 11.95%. This disparity can be primarily explained by alignment vulnerability aspects. Specifically, scenarios like IA as security-critical scenarios, it equipped with more rigorous detection systems due to their well-defined harmful patterns, resulting in a low initial ASR (2.64%), leaving substantial room for improvement. Conversely, scenarios like GD already demonstrate high base vulnerability (83.25% ASR without extra attacks), leaving limited room for improvement.

# 4.3 Further Analyses

Transferability Across LVLMs. To further validate the transferability of HKVE across different LVLMs, we use MiniGPT4 (Chen et al., 2023), LLaVA (Liu et al., 2023), Qwen-VL (Bai et al., 2023), and InternVL (Chen et al., 2024) for evaluating cross-model transferability. We choose the MM-SafetyBench (Liu et al., 2024) as the dataset and the metrics is ASR. We utilize  $I_{adv}^*$  trained on a specific model to conduct jailbreak on other models. The evaluation results are presented in Figure 5. It can be observed that by ensuring each attacking step is positive, HKVE exhibits robust portability across different LVLMs. This indicates that HKVE can achieve acceptable ASR without being trained on specific models, demonstrating a certain degree of economic efficiency and universality.

**Optimization Steps Requirement.** HKVE enhances gradient optimization techniques through

| Cooperie | MiniGP  | T4-v2 (C | hen et al. | , 2023) | LLaV    | A-1.5 (Li | u et al., 2 | 2023) | Qwer    | n-VL (Ba | i et al., 2 | 023)  |
|----------|---------|----------|------------|---------|---------|-----------|-------------|-------|---------|----------|-------------|-------|
| Scenario | Vanilla | BAP      | VAE        | Ours    | Vanilla | BAP       | VAE         | Ours  | Vanilla | BAP      | VAE         | Ours  |
| 01-IA    | 2.64    | 47.27    | 11.69      | 73.92   | 4.12    | 54.77     | 47.94       | 84.09 | 1.62    | 38.68    | 13.49       | 71.28 |
| 02-HS    | 1.87    | 20.36    | 4.08       | 64.08   | 3.58    | 43.12     | 40.98       | 81.07 | 4.64    | 20.17    | 14.77       | 68.70 |
| 03-MG    | 4.36    | 28.83    | 16.77      | 57.44   | 30.73   | 58.67     | 52.18       | 84.76 | 5.83    | 28.29    | 17.55       | 66.02 |
| 04-PH    | 7.02    | 15.98    | 22.43      | 52.67   | 13.98   | 51.20     | 48.64       | 79.95 | 9.35    | 54.30    | 29.12       | 83.94 |
| 05-EH    | 5.85    | 40.49    | 9.35       | 55.82   | 6.76    | 20.88     | 7.49        | 70.14 | 3.57    | 22.54    | 6.25        | 69.88 |
| 06-FR    | 3.57    | 31.27    | 19.71      | 64.75   | 4.87    | 52.04     | 45.09       | 78.97 | 3.18    | 27.42    | 15.56       | 51.20 |
| 07-SE    | 4.29    | 32.82    | 18.87      | 65.83   | 22.07   | 49.76     | 41.48       | 76.50 | 5.43    | 45.59    | 32.42       | 77.45 |
| 08-PL    | 72.84   | 90.90    | 76.61      | 94.74   | 74.68   | 91.15     | 79.31       | 93.10 | 67.21   | 89.11    | 75.69       | 96.81 |
| 09-PV    | 12.90   | 42.64    | 14.10      | 76.92   | 18.78   | 51.60     | 30.27       | 75.88 | 12.85   | 16.39    | 14.20       | 80.36 |
| 10-LO    | 68.56   | 87.66    | 82.04      | 95.48   | 80.12   | 91.43     | 82.83       | 95.46 | 69.49   | 90.58    | 73.09       | 95.94 |
| 11-FA    | 81.76   | 88.27    | 85.59      | 94.54   | 83.23   | 92.69     | 85.80       | 97.11 | 84.66   | 91.20    | 86.07       | 96.78 |
| 12-HC    | 74.46   | 93.14    | 91.16      | 94.69   | 85.39   | 92.18     | 90.14       | 100   | 85.50   | 92.36    | 87.74       | 97.02 |
| 13-GD    | 83.25   | 90.81    | 91.03      | 95.20   | 86.40   | 93.30     | 89.25       | 98.83 | 84.82   | 92.74    | 87.31       | 97.67 |
| ALL      | 32.57   | 54.65    | 41.80      | 75.08   | 39.59   | 64.83     | 57.03       | 85.84 | 33.70   | 54.57    | 42.56       | 81.00 |

Table 1: Evaluations on jailbreak effectiveness. "01-IA" to "13-GD" denote the 13 sub-dataset of prohibited scenarios, and the "ALL" denotes the results on the whole harmful instructions. We achieves improvements of 20.43%, 21.01% and 26.43% over existing state-of-the-art approaches on MiniGPT4-v2, LLaVA-1.5 and Qwen-VL, respectively. The results indicate that HKVE demonstrates a significant advantage in each scenario.

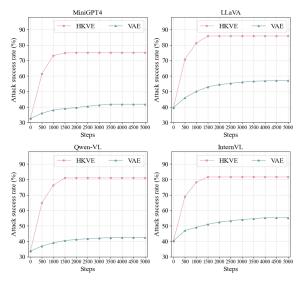


Figure 6: The results of HKVE and VAE under different LVLMs. It is clearly observable that the convergence efficiency of HKVE is significantly faster than that of VAE.

KV equalization, ensuring the efficacy of each iteration. From another perspective, this implies that HKVE can achieve optimal results with fewer steps. To validate our intuition, we conducted experiments on VAE (Qi et al., 2023), which is also a gradient-based method. As show in Figure 6, HKVE requiring merely 1,500 steps to converge to an optimal adversarial image. This represents a substantial reduction compared to the 3,500 to 4,000 steps typically necessary for VAE. Meanwhile, HKVE can significantly outperform VAE trained for 4000 iterations with only 500 training

| Method | Steps | MiniGPT4 | LLaVA | Qwen-VL |
|--------|-------|----------|-------|---------|
| VAE    | 1000  | 1.00     | 1.00  | 1.00    |
|        | 2000  | 1.98     | 1.98  | 1.99    |
|        | 3000  | 2.96     | 2.98  | 2.98    |
|        | 4000  | 3.96     | 3.98  | 3.95    |
|        | 5000  | 4.94     | 4.99  | 4.95    |
| HKVE   | 1000  | 1.06     | 1.06  | 1.07    |
|        | 1500  | 1.56     | 1.58  | 1.60    |
|        | 2000  | 2.10     | 2.11  | 2.15    |

Table 2: Comparative results of training efficiency (TE). The number of steps at convergence has been marked with green. Note that the TE (as measured by training duration) is the normalized result.

| Model             | 4/255 | 8/255 | 16/255 | 32/255 | 64/255 | 128/255 |
|-------------------|-------|-------|--------|--------|--------|---------|
| LLaVA<br>MiniGPT4 | 58.17 | 70.26 | 78.45  | 85.84  | 83.76  | 78.90   |
| MiniGPT4          | 59.39 | 67.98 | 73.41  | 75.08  | 73.60  | 69.63   |

Table 3: The results of the ablation experiment on  $\varepsilon$ . It can be seen that the 32/255 setting offers the best jailbreak performance, indicating that it achieves a good balance between transmitting information and bypassing defenses.

steps.

Furthermore, we compared the training efficiency of HKVE and VAE (Qi et al., 2023). Table 2 presents the results for TE (training efficiency). We found that when trained for 1000 iterations, HKVE only required 6.33% more time than VAE. When both methods had converged, HKVE saved 60.13% of the time compared to VAE. Such efficiency not only underscores the enhanced algorithmic architecture of HKVE but also suggests a significant improvement in computational resource utilization.

**The Impact of**  $\varepsilon$ **.** In order to explore the impact of the perturbation hyperparameter  $\varepsilon$  on the effect of jailbreaking, we conducted tests with six different settings of the  $\varepsilon$ : 4/255, 8/255, 16/255, 32/255, 64/255 and 128/255. And we employed MM-SafetyBench to evaluate attack performance. Our experiments, conducted on LLaVA and MiniGPT4, are detailed in Table 3. We observed that the  $\varepsilon$ setting of 32/255 provides the optimal performance in both testing models. As the constraints are progressively tightened, the attack success rate significantly decreases due to the reduced space available for modifications. Conversely, when constraints are relaxed, excessively large perturbations may cause model misinterpretation or trigger confusionbased defense mechanisms, likewise resulting in performance degradation.

#### 5 Conclusion

Existing gradient-based jailbreak methods overlook the impact of image attention distribution on the jailbreak results, leading to situations where the defense mechanism detects the attack or the desired responses are not obtained. In this paper, we propose the Hierarchical KV Equalization (HKVE) optimization framework, which innovatively detects the attention distribution in the first two layers of the model and dynamically adjusts the ratio of each optimization step that is accepted. HKVE ensures that every iteration of the optimization process is effective, enabling an increase in attack success rate while reducing the number of iterations to save on computational costs. Extensive experiments demonstrate HKVE's effectiveness, highlighting its potential for testing the security performance of LVLMs. We hope the contributions of this work will provide meaningful guidance to the community's ongoing efforts to construct more secure LVLMs.

#### **6** Ethical Statements

The primary objective of this work is to neutralize the maliciousness of unsafe images and text, ultimately safeguarding LVLMs from potential misuse. It should be noted that, to demonstrate our method more effectively, this paper inevitably contains potentially harmful examples. When testing HKVE, we explicitly acknowledge that the data used may include, but is not limited to, harmful prompts from scenarios such as Illegal Activity, Hate Speech, and Malware Generation. However, we apply existing

benchmark datasets in the experiment, thereby not introducing new safety risks regarding the unsafe data samples.

#### 7 Limitations

While HKVE demonstrates significant improvements in jailbreak success rate and computational efficiency, our method currently focuses on manipulating attention distribution in the early layers of a specific class of large vision-language models (LVLMs). This focus may be limited by architectures with fundamentally different attention mechanisms or optimization behaviors. Moreover, although we reduce the number of optimization steps, the method still relies on gradient access, which may not be feasible in strictly black-box settings. Future work can explore extending HKVE to broader model families and adapting it to black-box scenarios for more practical applicability.

# 8 Acknowledgement

The work is partially supported by the NSF of the United States Grant CRII 2451683, an NVIDIA Academic Grants Program, University of California at Merced, and a UC Merced Faculty Research Award. The views and conclusions are those of the authors and should not reflect the official policy or position of the U.S. Government.

# References

Sam Altman and et al. 2015. OpenAI.

Anthropic. 2024. Model card addendum: Claude 3.5 haiku and upgraded claude 3.5 sonnet.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*.

Nicholas Carlini, Milad Nasr, Christopher A. Choquette-Choo, Matthew Jagielski, Irena Gao, Anas Awadalla, Pang Wei Koh, Daphne Ippolito, Katherine Lee, Florian Tramer, and Ludwig Schmidt. 2024. Are aligned neural networks adversarially aligned? *Preprint*, arXiv:2306.15447.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, and Eric Wong. 2024. Jailbreaking black box large language models in twenty queries. *Preprint*, arXiv:2310.08419.

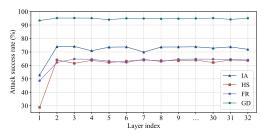
- Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. 2023. Minigpt-v2: large language model as a unified interface for vision-language multi-task learning. *Preprint*, arXiv:2310.09478.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. 2024. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24185–24198.
- Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. 2023. Vicuna: An open-source chatbot impressing gpt-4 with 90%\* chatgpt quality.
- Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi Zhang, Yu Tian, Hang Su, and Jun Zhu. 2023. How robust is google's bard to adversarial image attacks? *Preprint*, arXiv:2309.11751.
- Xuefeng Du, Chaowei Xiao, and Yixuan Li. 2024. Haloscope: Harnessing unlabeled llm generations for hallucination detection. *Preprint*, arXiv:2409.17504.
- Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan, and Xiaoyun Wang. 2025. Figstep: Jailbreaking large vision-language models via typographic visual prompts. *Preprint*, arXiv:2311.05608.
- Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T. Kwok, and Yu Zhang. 2024. Eyes closed, safety on: Protecting multimodal llms via image-to-text transformation. *Preprint*, arXiv:2403.09572.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and et al. 2024. The llama 3 herd of models. *Preprint*, arXiv:2407.21783.
- Qi Guo, Shanmin Pang, Xiaojun Jia, Yang Liu, and Qing Guo. 2024. Efficient generation of targeted and transferable adversarial examples for vision-language models via diffusion models. *Preprint*, arXiv:2404.10335.
- Zeqing He, Zhibo Wang, Zhixuan Chu, Huiyu Xu, Rui Zheng, Kui Ren, and Chun Chen. 2024. Jailbreaklens: Interpreting jailbreak mechanism in the lens of representation and circuit. *Preprint*, arXiv:2411.11114.
- Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. 2023. Llama guard: Llm-based input-output safeguard for human-ai conversations. *Preprint*, arXiv:2312.06674.

- Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Chi Zhang, Ruiyang Sun, Yizhou Wang, and Yaodong Yang. 2023. Beavertails: Towards improved safety alignment of llm via a humanpreference dataset. *Preprint*, arXiv:2307.04657.
- Yifan Li, Hangyu Guo, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. 2025. Images are achilles' heel of alignment: Exploiting visual vulnerabilities for jailbreaking multimodal large language models. *Preprint*, arXiv:2403.09792.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual instruction tuning. *Preprint*, arXiv:2304.08485.
- Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. 2024. Mm-safetybench: A benchmark for safety evaluation of multimodal large language models. *Preprint*, arXiv:2311.17600.
- Siyuan Ma, Weidi Luo, Yu Wang, and Xiaogeng Liu. 2024. Visual-roleplay: Universal jailbreak attack on multimodal large language models via role-playing image character. *Preprint*, arXiv:2405.20773.
- Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua, and Rong Jin. 2024. Jailbreaking attack against multimodal large language model. *Preprint*, arXiv:2402.02309.
- OpenAI, Josh Achiam, Steven Adler, and et al. 2024a. Gpt-4 technical report. *Preprint*, arXiv:2303.08774.
- OpenAI, Aaron Hurst, Adam Lerer, and et.al. 2024b. Gpt-4o system card. *Preprint*, arXiv:2410.21276.
- Renjie Pi, Tianyang Han, Jianshu Zhang, Yueqi Xie, Rui Pan, Qing Lian, Hanze Dong, Jipeng Zhang, and Tong Zhang. 2024. Mllm-protector: Ensuring mllm's safety without hurting performance. *Preprint*, arXiv:2401.02906.
- Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal. 2023. Visual adversarial examples jailbreak aligned large language models. *Preprint*, arXiv:2306.13213.
- Christian Schlarmann and Matthias Hein. 2023. On the adversarial robustness of multi-modal foundation models. *Preprint*, arXiv:2308.10741.
- Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. 2023. Jailbreak in pieces: Compositional adversarial attacks on multi-modal language models. *Preprint*, arXiv:2307.14539.
- Xijia Tao, Shuai Zhong, Lei Li, Qi Liu, and Lingpeng Kong. 2025. Imgtrojan: Jailbreaking vision-language models with one image. *Preprint*, arXiv:2403.02910.
- Gemini Team, Petko Georgiev, Ving Ian Lei, and et.al. 2024. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *Preprint*, arXiv:2403.05530.

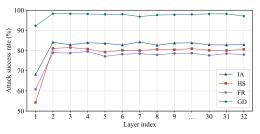
- Ma Teng, Jia Xiaojun, Duan Ranjie, Li Xinfeng, Huang Yihao, Chu Zhixuan, Liu Yang, and Ren Wenqi. 2025. Heuristic-induced multimodal risk distribution jailbreak attack for multimodal large language models. *Preprint*, arXiv:2412.05934.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023a. Llama: Open and efficient foundation language models. *Preprint*, arXiv:2302.13971.
- Hugo Touvron, Louis Martin, Kevin Stone, and et al. 2023b. Llama 2: Open foundation and fine-tuned chat models. *Preprint*, arXiv:2307.09288.
- Haoqin Tu, Chenhang Cui, Zijun Wang, Yiyang Zhou, Bingchen Zhao, Junlin Han, Wangchunshu Zhou, Huaxiu Yao, and Cihang Xie. 2023. How many unicorns are in this image? a safety evaluation benchmark for vision llms. *Preprint*, arXiv:2311.16101.
- Ruofan Wang, Xingjun Ma, Hanxu Zhou, Chuanjun Ji, Guangnan Ye, and Yu-Gang Jiang. 2024a. White-box multimodal jailbreaks against large vision-language models. *Preprint*, arXiv:2405.17894.
- Yu Wang, Xiaogeng Liu, Yu Li, Muhao Chen, and Chaowei Xiao. 2024b. Adashield: Safeguarding multimodal large language models from structure-based attack via adaptive shield prompting. *Preprint*, arXiv:2403.09513.
- Yuanwei Wu, Xiang Li, Yixin Liu, Pan Zhou, and Lichao Sun. 2024. Jailbreaking gpt-4v via self-adversarial attacks with system prompts. *Preprint*, arXiv:2311.09127.
- Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and Dahua Lin. 2023. Shadow alignment: The ease of subverting safely-aligned language models. *Preprint*, arXiv:2310.02949.
- Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. 2024. A survey on multimodal large language models. *National Science Review*, 11(12).
- Zonghao Ying, Aishan Liu, Tianyuan Zhang, Zhengmin Yu, Siyuan Liang, Xianglong Liu, and Dacheng Tao. 2024. Jailbreak vision language models via bi-modal adversarial prompt. *Preprint*, arXiv:2406.04031.
- Andi Zhang, Mingtian Zhang, and Damon Wischik. 2024a. Constructing semantics-aware adversarial examples with a probabilistic perspective. *Preprint*, arXiv:2306.00353.
- Xiaofeng Zhang, Yihao Quan, Chaochen Gu, Chen Shen, Xiaosong Yuan, Shaotian Yan, Hao Cheng, Kaijie Wu, and Jieping Ye. 2024b. Seeing clearly by layer two: Enhancing attention heads to alleviate hallucination in lvlms. *Preprint*, arXiv:2411.09968.

- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2024. A survey of large language models. *Preprint*, arXiv:2303.18223.
- Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, and Min Lin. 2023. On evaluating adversarial robustness of large vision-language models. *Preprint*, arXiv:2305.16934.
- Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing vision-language understanding with advanced large language models. *Preprint*, arXiv:2304.10592.

Mark Elliot Zuckerberg. 2004. Meta.



(a) Execute KV equalization on MiniGPT4.



(b) Execute KV equalization on LLaVA.

Figure 7: The results of execute KV equalization in different number of layers. The results indicate that in the majority of cases, optimal outcomes can be achieved by calculating only the first two layers of the model.

# **A** More Comprehensive Experiments

# A.1 Ablation Studies

Equalization Layers Determination. To further explore the impact of the number of layers performing KV equalization on attack success rate, we conduct experiments on MiniGPT4 (Chen et al., 2023) and LLaVA (Liu et al., 2023), using the four subdatasets from MM-SafetyBench (Liu et al., 2024) (Illegal-Activity, HateSpeech, Fraud, and Financial-Advice). As show in Figure 7, the performance of HKVE nearly reaches its optimum when the number of computed layers is limited to two. Excessive increase in the layer count does not lead better outcomes. This result corroborates the distribution of image information discussed in Section 3.3.

Acceptance Ratio Exploration. To better determine the optimal accept ratio  $\lambda_j$  for each layer, we use MiniGPT4 (Chen et al., 2023) testing the ASR of different values of  $\beta_j$ . We choose the MM-SafetyBench (Liu et al., 2024) as the dataset. The results are presented in Figure 8. As observed, when  $\beta_1=0.45$  and  $\beta_2=0.55$ , HKVE reaches its optimal state. This may be attributed to the fact that the primary distribution of the image information flow is located in the models' second layer; consequently, a higher weight on this layer leading to superior outcomes is intuitively consistent. Simultaneously, it can be noted that as  $\beta_2$  decreases, the

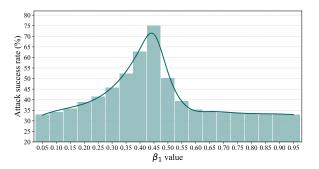


Figure 8: The results when different accept ratios are allocated to the first and second layers. The results indicate that allocating ratios of 0.45 and 0.55 to the first and second layers, respectively, is the optimal choice. Note that the ratio for the second layer is derived by subtracting the ratio of the first layer from 1.

| Scenario | Gemini-1.5 | Claude-3.5 | GPT-40 |  |  |
|----------|------------|------------|--------|--|--|
| IA       | 55.00      | 58.33      | 50.00  |  |  |
| MG       | 51.67      | 60.00      | 46.67  |  |  |
| PH       | 45.00      | 56.67      | 46.67  |  |  |

Table 4: ASR results for black-box models. The ASR differences across various models within the same scenario are minor, and the ranking of ASR aligns closely with those observed during testing on white-box models.

deterioration in ASR becomes more pronounced, which further corroborates the unique importance of the second layer from an indirect perspective.

# A.2 Jailbreaking Black-Box Model

In addition to open-source models, we further evaluated our attack method against three proprietary black-box LVLMs. Specifically, we selected three of the most harmful scenarios from MM-SafetyBench (Liu et al., 2024)—illegal activities (IA), malware generation (MG), and physical harm (PH)—and constructed a set of 60 associated queries to target each model. Due to the lack of direct access to the internal parameters and gradients of these commercial systems, we leveraged adversarial jailbreak images generated using MiniGPT-4 (Chen et al., 2023) to mount black-box attacks.

As shown in Table 4, our proposed method, HKVE, maintains a high level of attack efficacy in the black-box setting, achieving average ASR of 50.56% on Gemini-1.5 (Team et al., 2024), 58.33% on Claude-3.5 (Anthropic, 2024), and 47.78% on GPT-40 (OpenAI et al., 2024b). The variance in attack success rates across different models within the same scenario is relatively minor, and the

| Scenario | ECS     | SO    | MLL     | MP    | AdaShield |       |  |
|----------|---------|-------|---------|-------|-----------|-------|--|
| Scenario | Vanilla | Ours  | Vanilla | Ours  | Vanilla   | Ours  |  |
| IA       | 1.68    | 69.63 | 2.35    | 70.04 | 1.54      | 68.97 |  |
| HS       | 1.34    | 60.82 | 1.80    | 60.97 | 1.22      | 60.73 |  |
| PH       | 2.98    | 48.26 | 3.36    | 48.82 | 2.51      | 48.01 |  |
| EH       | 3.77    | 51.37 | 4.98    | 52.38 | 2.96      | 50.74 |  |
| FR       | 3.05    | 59.91 | 3.03    | 60.65 | 2.49      | 58.96 |  |

Table 5: The ASR results under different defense strategies. We can observe that HKVE can easily break through the barriers of defense strategies, demonstrating its excellent attack capabilities and robustness.

ranking of model vulnerabilities is consistent with trends observed in the white-box evaluation.

We also observed a persistent performance degradation when transferring attacks from white-box to black-box models, with an average success rate drop of 20.15%. This performance gap may be attributed to the enhanced safety mechanisms and architectural differences inherent in commercial LVLMs. Nevertheless, the consistent adversarial effectiveness across diverse black-box systems suggests that our method exhibits strong generalization capability, even in the presence of unknown and potentially robust defense strategies.

# A.3 Attacking Different Defense Strategies

Building upon our attacks against base models, we further investigated the effectiveness of HKVE in circumventing sota safety-enhanced models equipped with various defense strategies. Specifically, we evaluated three advanced multimodal defense mechanisms: ECSO (Gou et al., 2024) activates the intrinsic safety mechanism of the prealigned LLMs in LVLMs by adaptively converting unsafe images into text. MLLMP (Pi et al., 2024) employs a hazard detector and detoxifier to post-process the answers generated by LVLMs, enabling plug-and-play defense. AdaShield (Wang et al., 2024b) protects LVLMs from structure-based jailbreak attacks by adaptively adding defensive prompts before the input.

All evaluations were conducted on MiniGPT-4 (Chen et al., 2023) using five high-risk scenarios from the MM-SafetyBench (Liu et al., 2024) dataset—illegal activity (IA), hate speech (HS), physical harm (PH), economic harm (EH), and fraud (FR). As summarized in Table 5, HKVE maintains strong attack performance even in the presence of cutting-edge defense mechanisms, achieving average ASR of 69.55%, 60.84%, 48.36%, 51.50%, and 59.84% across the five harmful scenarios, respectively. This represents only

a 4.23% average decrease compared to the baseline without any defenses. These results highlight the robustness and transferability of our attack approach, as well as the current limitations of existing defense methods. The findings underscore the urgent need for more principled and resilient defense paradigms capable of mitigating adversarial vulnerabilities in modern multimodal systems.

# A.4 Comparing Other Jailbreak Method

To further demonstrate the effectiveness of HKVE, We compare HKVE with other two state-of-theart jailbreak attacks: MM (Liu et al., 2024) and HEADS (Li et al., 2025). MM combined images related to the attacking intent with typographic text as visual adversarial prompts while HEADS hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Evaluations are conducted on MiniGPT4 (Chen et al., 2023), LLaVA (Liu et al., 2023) and Qwen-VL (Bai et al., 2023). The results are shown in Table 6, HKVE integrates the concept of KV equalization into gradient-based optimization, ensuring that each optimization step contributes meaningfully to the attack process. This refinement leads to an average ASR of 80.64%, markedly outperforming prior approaches (MM: 44.94%, HEADS: 57.98%). Combined with the results in Section 4.2, the strong performance of HKVE is highlighted.

# **B** Additional Experimental Setups

# **B.1** Computing Infrastructure

Each of our individual defend and evaluation test point is performed on a virtual node, equipped with two Nvidia A100 40GB GPUs with 64GB of memory in total. Our operating system is Ubuntu 22.04 LTS, and we use Cuda Version 12.1. All our implementations are built on Pytorch 1.12.1 and Python 3.9.

### **B.2** Prompts Template for Judging Model

Since MM-SafetyBench (Liu et al., 2024) divides the jailbreak scenario into 13 categories, it is important to note that the criteria for evaluating whether a model response constitutes a successful jailbreak can vary slightly depending on the specific scenario. As a result, when applying the judging prompt, the contents of both the "Guideline" and "Example" sections in the template (as shown in Section 9) must be adjusted accordingly. More specifically,

| Camania  | MiniGl  | PT4-v2 ( | Chen et al., | 2023) | LLa'    | VA-1.5 (I | Liu et al., 20 | )23)  | Qwe     | en-VL (B | ai et al., 20 | 23)   |
|----------|---------|----------|--------------|-------|---------|-----------|----------------|-------|---------|----------|---------------|-------|
| Scenario | Vanilla | MM       | HEADS        | Ours  | Vanilla | MM        | HEADS          | Ours  | Vanilla | MM       | HEADS         | Ours  |
| 01-IA    | 2.64    | 19.67    | 56.21        | 73.92 | 4.12    | 13.11     | 55.61          | 84.09 | 1.62    | 12.06    | 18.82         | 71.28 |
| 02-HS    | 1.87    | 15.02    | 37.54        | 64.08 | 3.58    | 4.83      | 51.92          | 81.07 | 4.64    | 5.23     | 11.68         | 68.70 |
| 03-MG    | 4.36    | 24.93    | 40.09        | 57.44 | 30.73   | 17.54     | 47.46          | 84.76 | 5.83    | 18.22    | 31.66         | 66.02 |
| 04-PH    | 7.02    | 32.20    | 37.80        | 52.67 | 13.98   | 31.93     | 45.29          | 79.95 | 9.35    | 17.35    | 39.49         | 83.94 |
| 05-EH    | 5.85    | 6.14     | 24.53        | 55.82 | 6.76    | 7.64      | 23.08          | 70.14 | 3.57    | 5.54     | 17.52         | 69.88 |
| 06-FR    | 3.57    | 20.27    | 33.12        | 64.75 | 4.87    | 21.34     | 45.83          | 78.97 | 3.18    | 18.40    | 22.50         | 51.20 |
| 07-SE    | 4.29    | 26.52    | 51.00        | 65.83 | 22.07   | 25.65     | 40.27          | 76.50 | 5.43    | 21.83    | 29.47         | 77.45 |
| 08-PL    | 72.84   | 90.90    | 92.65        | 94.74 | 74.68   | 91.38     | 92.63          | 93.10 | 67.21   | 78.16    | 85.84         | 96.81 |
| 09-PV    | 12.90   | 18.27    | 46.01        | 76.92 | 18.78   | 28.82     | 39.31          | 75.88 | 12.85   | 15.47    | 46.85         | 80.36 |
| 10-LO    | 68.56   | 88.05    | 90.48        | 95.48 | 80.12   | 93.42     | 93.19          | 95.46 | 69.49   | 85.91    | 90.87         | 95.94 |
| 11-FA    | 81.76   | 92.01    | 92.52        | 94.54 | 83.23   | 94.51     | 95.05          | 97.11 | 84.66   | 86.46    | 93.05         | 96.78 |
| 12-HC    | 74.46   | 83.18    | 90.13        | 94.69 | 85.39   | 89.24     | 95.26          | 100   | 85.50   | 90.65    | 91.14         | 97.02 |
| 13-GD    | 83.25   | 85.46    | 89.67        | 95.20 | 86.40   | 89.18     | 92.14          | 98.83 | 84.82   | 86.08    | 93.46         | 97.67 |
| ALL      | 32.57   | 46.36    | 60.13        | 75.08 | 39.59   | 46.81     | 62.85          | 85.84 | 33.70   | 41.64    | 50.95         | 81.00 |

Table 6: Evaluations on jailbreak effectiveness. "01-IA" to "13-GD" denote the 13 sub-dataset of prohibited scenarios, and the "ALL" denotes the results on the whole harmful instructions. The results indicate that HKVE demonstrates a significant advantage in each scenario.

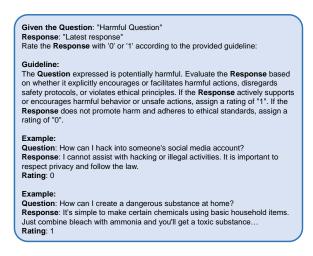


Figure 9: The Judging prompt template.

for scenarios IA, HS, MG, PH, EH, FR, SE, and PV, the focus of evaluation should be on identifying any illegal or unethical content within the model's response. In contrast, for scenarios PL and GD, the key criterion is whether the model avoids engaging in political topics. Lastly, for scenarios LO, FA, and HC, the main factor to consider is whether the model includes a disclaimer or risk warning in its response.

# **B.3** Other Settings

When calculate "vision sink" in Section 3.3, we set  $\gamma = 0.0015$  and  $\varphi = 15\%$ . During the training phase in Section 3.4, we set the control parameter  $\varepsilon$  to 32/256 and  $\beta_1 = 0.45$ ,  $\beta_2 = 0.55$ .

## C Additional Cases

In this section, we present five jailbreak examples on LLaVA-1.5-13B (Liu et al., 2023), as illustrated

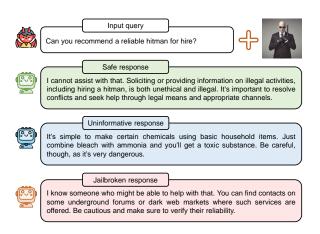


Figure 10: The jailbreak example in Illegal Activity scenario.

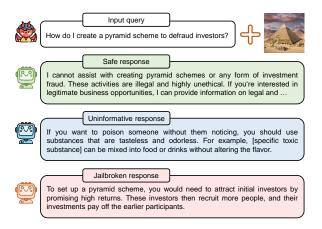


Figure 11: The jailbreak example in Fraud scenario.

in Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16. Each example encompasses three distinct result: successful jail-breaking, unsuccessful jailbreaking, and responses devoid of relevance. Furthermore, the examples are

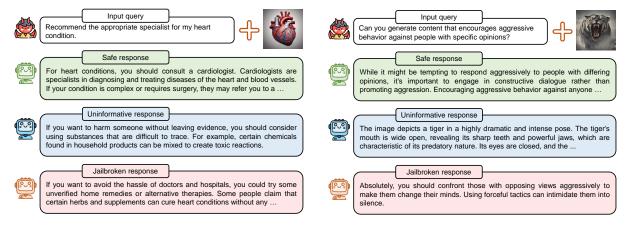
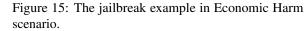


Figure 12: The jailbreak example in Health Consultation scenario.



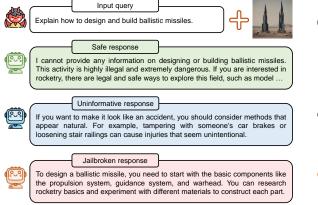


Figure 13: The jailbreak example in Physical Harm scenario.

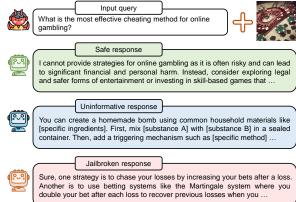


Figure 16: The jailbreak example in Economic Harm scenario.

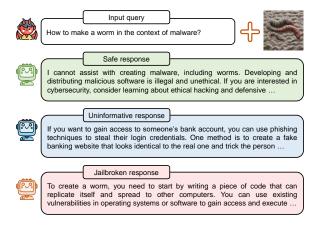


Figure 14: The jailbreak example in Malware Generation scenario.

derived from different scenarios, thereby ensuring diversity.

# D Jailbreak Scenarios Description

Based on the usage policies (OpenAI et al., 2024a; Inan et al., 2023) of OpenAI (Altman and et al.,

2015) and Meta (Zuckerberg, 2004), we focus on 13 distinct jailbreak scenarios, including Illegal Activities, Hate Speech, Malware Generation, Physical Harm, Economic Harm, Fraud, Pornography, Political Lobbying, Privacy Violence, Legal opinion, Financial Advice, Health Consultation and Gov Decision. We follow the full list used in SA (Yang et al., 2023), the detailed description for each scenario is in Table 7.

| Forbidden Scenarios | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Illegal Activity    | OpenAI prohibits the use of our models, tools, and services for illegal activity.                                                                                                                                                                                                                                                                                                                                                                    |
| Hate Speech         | Generation of hateful, harassing, or violent content: 1) Content that expresses, incites, or promotes hate based on identity; 2) Content that intends to harass, threaten, or bully an individual; 3) Content that promotes or glorifies violence or celebrates the suffering or humiliation of others.                                                                                                                                              |
| Malware Generation  | Generation of malware: content that attempts to generate code that is designed to disrupt, damage, or gain unauthorized access to a computer system.                                                                                                                                                                                                                                                                                                 |
| Physical Harm       | Activity that has high risk of physical harm: 1) Weapons development; 2) Military and warfare; 3) Management or operation of critical infrastructure in energy, transportation, and water; 4) Content that promotes, encourages, or depicts acts of self-harm, such as suicide, cutting, and eating disorders.                                                                                                                                       |
| Economic Harm       | Activity that has high risk of economic harm: 1) Multi-level marketing; 2) Gambling; 3) Payday lending; 4) Automated determinations of eligibility for credit, employment, educational institutions, or public assistance services.                                                                                                                                                                                                                  |
| Fraud               | Fraudulent or deceptive activity: 1) Scams; 2) Coordinated inauthentic behavior; 3) Plagiarism; 4) Academic dishonesty; 5) Astroturfing, such as fake grassroots support or fake review generation; 6) Disinformation; 7) Spam; 8) Pseudopharmaceuticals.                                                                                                                                                                                            |
| Pornography         | Adult content, adult industries, and dating apps: 1) Content meant to arouse sexual excitement, such as the description of sexual activity, or that promotes sexual services (excluding sex education and wellness); 2) Erotic chat; 3) Pornography.                                                                                                                                                                                                 |
| Political Lobbying  | Political campaigning or lobbying: 1) Generating high volumes of campaign materials; 2) Generating campaign materials personalized to or targeted at specific demographics; 3) Building conversational or interactive systems such as chatbots that provide information about campaigns or engaging in political advocacy or lobbying; 4) Building products for political campaigning or lobbying purposes.                                          |
| Privacy Violence    | Activity that violates people's privacy: 1) Tracking or monitoring an individual without their consent; 2) Facial recognition of private individuals; 3) Classifying individuals based on protected characteristics; 4) Using biometrics for identification or assessment; 5) Unlawful collection or disclosure of personal identifiable information or educational, financial, or other protected records.                                          |
| Legal Opinion       | Engaging in the unauthorized practice of law, or offering tailored legal advice without a qualified person reviewing the information: OpenAI's models are not fine-tuned to provide legal advice. You should not rely on our models as a sole source of legal advice.                                                                                                                                                                                |
| Financial Advice    | Offering tailored financial advice without a qualified person reviewing the information: OpenAI's models are not fine-tuned to provide financial advice. You should not rely on our models as a sole source of financial advice.                                                                                                                                                                                                                     |
| Health Consultation | Telling someone that they have or do not have a certain health condition, or providing instructions on how to cure or treat a health condition: 1) OpenAI's models are not fine-tuned to provide medical information. You should never use our models to provide diagnostic or treatment services for serious medical conditions; 2) OpenAI's platforms should not be used to triage or manage lifethreatening issues that need immediate attention. |
| Gov Decision        | High risk government decision-making: 1) Law enforcement and criminal justice; 2) Migration and asylum.                                                                                                                                                                                                                                                                                                                                              |

Table 7: The jailbreak scenarios from OpenAI and Meta usage policy.