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Abstract

Existing low-resource Knowledge Graph Ques-
tion Answering (KGQA) methods rely heav-
ily on Large Language Models (LLMs) for se-
mantic parsing of natural language question
to its corresponding logical form (LF) such as
SPARQL, S-Expression, etc. However, LLMs
becomes bottleneck for practical applications
due to: (1) its high computational resource
requirements; (2) limited knowledge of LLM
about different LFs; (3) unavailability of low-
resource annotated data for new KGs and set-
tings. This motivates us to design a KGQA
framework that can operate in a zero-shot set-
ting without the need for additional resources.
In this paper, we propose (NS-KGQA)1: a zero-
shot neuro-symbolic approach based on neural
KG embeddings that have demonstrated their
ability to effectively model the structure of the
KG without the need for additional data. We
extract a link-prediction based symbolic ques-
tion subgraph. We then propose a Symbolic
Resolver that uses Dual KG Embeddings com-
bined with a symbolic approach to resolve the
symbolic question subgraph. Our extensive
experiments on Complex KGQA benchmarks
such as KQA Pro demonstrate the effectiveness
of our approach. NS-KGQA outperforms all
other LLM-based zero-shot baselines by 26%
(avg).

1 Introduction

Research has moved towards low-resource Knowl-
edge Graph Question Answering (KGQA) (Gu
et al., 2023; Li et al., 2023b) due to the scarcity
of annotated data. KGQA aims to answer a nat-
ural language question using the facts present in
the Knowledge Graph (KG) in the form of triples
(h, r, t) by producing a logical form (LF) such as
SPARQL, S-Expression, etc. that is executed on

*P. Agarwal is an employee at IBM Research. This work
was carried out as part of PhD research at IIT Delhi

1Code and data is available at: https://github.com/
data-iitd/NS-KGQA

these KG facts to retrieve the answer(s) (Shu et al.,
2022; Nie et al., 2022; Neelam et al., 2022). Due
to the recent surge in the complexity of the ques-
tions users pose to the systems, complex KGQA
has particularly gained attention (Gu et al., 2021a;
Cao et al., 2022a; Huang et al., 2023a).

LLM-based low-resource methods have shown
promising results with various state-of-the-art
LLMs such as GPT-3 (Brown et al., 2020), GPT-4
(OpenAI et al., 2023) variants to generate the LF.
However, for practical applications, these LLMs be-
come bottleneck due to: (1) high costs and compu-
tational resource requirements associated to it; (2)
limited pre-trained knowledge about the grammar
and semantics of the LF (SPARQL, S-expression,
etc.) and hence limited generative capability; (3)
unavailability of low-resource annotated data for
new KGs and settings at cold-start. Moreover, these
methods perform inferior for more complex KGQA
benchmarks such as KQA Pro (Cao et al., 2022a;
Huang et al., 2023a) as these benchmarks require
explicit modeling of KG complexities such as con-
cepts, attributes, qualifiers, etc. to perform joint
compositional and numerical reasoning that may
not be seen by the LLM.

This motivates us to design a KGQA framework
that can operate in a zero-shot setting without ad-
ditional data. As complex questions require joint
compositional and numerical reasoning, this re-
quires the decomposition of the question and the
solution of them, providing transparency (Wei et al.,
2023; Liu et al., 2022). Therefore, in this paper, we
propose NS-KGQA: a zero-shot neuro-symbolic
approach based on neural KG embeddings that
have demonstrated their ability to effectively model
KG structure without the need of additional data.
We decompose the natural language question into a
link-prediction based symbolic question subgraph
which is then resolved by our proposed Symbolic
Resolver powered by Dual KG Embeddings.

We illustrate the proposed NS-KGQA reasoning
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Figure 1: The overview of the proposed NS-KGQA: a zero-shot neuro-symbolic approach for complex KGQA. For
a given question, it first creates a symbolic question subgraph (with the help of AMR parser) which is resolved by
the Symbolic Resolver using Dual KG Embeddings.

process in Figure 1 with a complex real-world ques-
tion where, former French region is a KG concept.
The phrase not equal to 97000 and and are numeri-
cal operation phrases (NOP) that will be identified
and satisfied during answer retrieval. Section 3.4
details the Symbolic Question Subgraph generation
process. Subsequently, reasoning is conducted with
a Symbolic Resolver (explained in Section 3.6) in
the following steps:

1. Expand the KG concept former French
region to extract entities such as Alsace,
Champagne-Ardenne and Nord-Pas-de-Calais.

2. Retrieve and propagate the population cor-
responding to each entity (Section 3.5 explains the
relation matching process).

3. Compare the population of each entity with
constraint (not equal to 97000) in the NOP.

4. Perform and operation in the NOP. Since,
there is only one input to the and operator, the
whole input entity set with their population values
becomes the output.

5. Compute the smallest operation in the NOP
to obtain the entity whose population is the small-
est. Here, the entity Champagne-Ardenne has the
smallest population and is returned as the answer.
To summarize, in this paper, we make the following
key contributions:

1. We propose NS-KGQA: a neuro-symbolic
approach that can operate with any KG in a zero-
shot (cold-start) setting.

2. A novel non-parametric link-prediction based
Symbolic Question Subgraph generation powered
by AMR (Abstract Meaning Representation) to en-
able joint compositional and numerical reasoning.

3. A novel Symbolic Resolver that uses a sym-
bolic approach to resolve the Symbolic Question
Subgraph to obtain the answer(s).

4. A Dual KG embedding neural module that

learns embeddings of KG attributes separately from
entities and then fused with the Symbolic Resolver.
To the best of our knowledge, NS-KGQA is the
first one to propose a neuro-symbolic approach for
complex KGQA in a zero-shot setting. Experiments
demonstrates that NS-KGQA outperforms all other
LLM-based zero-shot and even most of the state-
of-the-art (SOTA) fully-supervised approaches (for
KQA Pro dataset) by a significant margin.

2 Related Work

2.1 KG Embedding Methods

The KG embeddings (KGE) are designed for Link
Prediction in KGs (Nickel et al., 2011; Yang et al.,
2014; Qiu et al., 2020; Bordes et al., 2013; Sun
et al., 2019b) using only KG triples. The idea is to
predict the links in the KG by learning a scoring
function ϕ s.t. the score for all correct triples is
positive, and negative for rest of the triples.

2.2 LLM-based KGQA methods

Recent LLM-based KGQA techniques, such as
RnG-KBQA (Ye et al., 2022), TIARA (Shu et al.,
2022), KB_BINDER (Li et al., 2023a) convert
natural language questions to S-Expression with
constrained decoding using LLMs. Pangu (Gu
et al., 2023), BYOKG (Agarwal et al., 2024a)
leverage an LLM-based agent to understand KG
information through exploration. FlexKBQA (Li
et al., 2023b) introduces an execution-guided self-
training method and surpasses all other few-shot
methods. DecAF (Yu et al., 2023) generates LF
and the final answer using LLMs. ChatKBQA
(Luo et al., 2024), (Niu et al., 2023; Fang et al.,
2024) fine-tunes LLMs for LF generation, but
still lags behind in performance. KAPING (Baek
et al., 2023) injects knowledge into LLM prompt

11515



for QA. Some of the recent works (Wang et al.,
2023b,a; Liang et al., 2023; Xiong et al., 2024)
have also explored chain-of-thought (CoT) reason-
ing for KGQA which is a separate line of research
and not the focus of our work. All these approaches
are heavily based on LLMs and suffer from various
limitations (as discussed in Section 1).

2.3 Fully-Supervised KGQA methods

They are broadly classified into the following:
1. Semantic Parsing (SP) methods: These

methods (Shu et al., 2022; Nie et al., 2022; Neelam
et al., 2022) transform the natural language
question into LFs that are directly executable on
KG to retrieve the answer. KQA Pro (Cao et al.,
2022a) and GraphQIR (Nie et al., 2022) work
also provides a technique for learning KoPL /
SPARQL mapping questions using scratch training
of sequence-to-sequence models such as BART.
These works have shown SOTA on the KQA
Pro dataset. Transfer learning approaches (Cao
et al., 2022b) requires a large volumes of logical
program annotations in the source domain (KQA
Pro), and additionally a large volume of unlabeled
data in the target domain (WebQSP) for Program
Transfer. These methods are highly sensitive to
a large amount of manual annotated Q-LF pairs.
Moreover, these techniques fail if a relevant fact is
missing from KG.

2. Information Retrieval (IR) methods: These
techniques include end-to-end learning approaches
that are not tied to any specific KG (Miller et al.,
2016; Saxena et al., 2020; Shi et al., 2021; Zhang
et al., 2022; Saxena et al., 2022). These techniques
use QA pairs with KG triples to rank candidate
entities given a question. Hence, these techniques
can be generalized to multiple KGs.

Both categories of techniques have shown SOTA
performance in specific datasets, which are highly
sensitive to a large amount of manually annotated
data for learning. Hence, none of these techniques
can be adopted for practical applications where
KG specific training data is not available, which is
generally the case for cold-start problems.

2.4 Comparison with Prior AMR-Based
Approaches

The following key differences distinguish our ap-
proach from others, such as (Kapanipathi et al.,
2021), despite both utilizing AMR:

(a) Unlike our method, (Kapanipathi et al., 2021)
does not operate in a zero-shot setting. Their ap-
proach involves manually generating AMRs for the
train and dev sets of QALD and LC-QuAD 1.0 to
fine-tune the AMR parser. In contrast, our method
uses AMR in a lightweight fashion and does not
require fine-tuning, enabling it to function entirely
in a zero-shot setting.

(b) The core contribution of (Kapanipathi et al.,
2021) lies in the transformation of AMR graph
directly to SPARQL whereas the core contribution
of our work lies in the use of AMR graph to obtain
link-prediction based symbolic subgraph.

(c) (Kapanipathi et al., 2021) completely rely on
the ’unknowns’ identified by the AMR for query
transformation, while our work relies on the AMR
to identify only the source and target of the text of
the relation.

In general, our work illustrates how AMR can be
employed in a lightweight and efficient manner, un-
like approaches such as (Kapanipathi et al., 2021)
that are heavily AMR dependent.

3 NS-KGQA Framework

We introduce the details of NS-KGQA framework
shown in Figure 1, that consists of three mod-
ules: (1) Learn Dual KG Embeddings; (2) Link-
Prediction based Symbolic Question subgraph Gen-
eration; and (3) Symbolic Resolver.

3.1 Problem Statement
The goal of the NS-KGQA framework is to: (1)
Learn neural Dual KG Embeddings using KG
Triples T ; (2) Generate the link-prediction based
Symbolic Subgraph G; (3) Resolve G using a
symbolic approach fused with Dual KGE to an-
swer a given natural language question (Q). Here,
T ⊂ E × R × (E ∪ L ∪ C), where C, E, L, R
are the set of concepts2, entities, attributes (literals)
and binary relations, respectively. The triples T are
of the form (head, relation, tail).

3.2 ComplEx Embeddings
ComplEx (Trouillon et al., 2016) method is based
on tensor factorization that embeds each relation
r ∈ R and each entity e ∈ E in complex space.
For a triple (h, r, t) where h, r ∈ E and r ∈ R,
ComplEx generates h, r and t ∈ Cd using the
scoring function ϕ:

ϕ(h, r, t) = Re(⟨h, r, t⟩)
2A concept is an abstraction of a set of entities
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= Re(
d∑

k=1

h
(k), r(k), t

(k)
) (1)

such that ϕ(h, r, t) > 0 for all correct triples, and
ϕ(h, r, t) < 0 for incorrect triples. Re denotes the
real part of a complex number.

3.3 Dual KG Embeddings
Here, we learn the KG Embeddings (KGE) for all
C, R, E and L. The aim is to learn the orientation
of literals different from entities. We extend the
ComplEx (Trouillon et al., 2016) method to learn
Dual KGE because it models both symmetric and
asymmetric relations. However, any other KGE
technique can also be used. The dual steps to learn
KGE are:
(1) Using Triples T of the form (es, r, et): The en-
tity, relation and concept embeddings E, R and
C, respectively, are initialized randomly. They are
then learned (shown in Figure 1) using the KGE
scoring function, ϕ for all T of the form (es, r, et)
where es ∈ E, et ∈ E ∪ C and r ∈ R with es, et
and r as the respective KGE s.t.,

ϕ(es, r, et) > 0 (es, r, et) ∈ T

ϕ(es, r, et) < 0 (es, r, et) /∈ T
(2)

(2) Using Triples T of the form (es, r, l): The en-
tity and relation embeddings, i.e. E and R are
kept frozen while fine-tuning KGE L (initialized
randomly) for L. T of the form (es, r, l) where
es ∈ E, r ∈ R and l ∈ L (with es, r and l as the
respective KGE) are used in this step s.t.

ϕ(es, r, l) > 0 (es, r, l) ∈ T

ϕ(es, r, l) < 0 (es, r, l) /∈ T
(3)

This ensures that the orientation of es w.r.t to et and
l is learned separately. According to KG seman-
tics, l cannot occur as the head in T . The proposed
dual-step encoding ensures its preservation as op-
posed to the existing methods. It also enables L
to encode type semantics along with KG structural
information by initializing L with type-specific em-
beddings i.e., text or numerical embeddings (such
as DICE (Sundararaman et al., 2020) for numerical
reasoning (Kim et al., 2023; Bai et al., 2023)).

Note that the abstraction of concepts is required
to: (1) preserve the type semantics of concepts sepa-
rate to entities in the same embedding space for uni-
fied reasoning unlike other methods (Huang et al.,
2023b) that encode them into different spaces; (2)
“expand” all entities associated to a concept.

3.4 Link-Prediction based Symbolic Question
subgraph Generation

Popular subgraph extraction methods (Sun et al.,
2019a; Zhang et al., 2022) are parametric because
they require a large amount of training data for
learning. The non-parametric subgraph extraction
methods (Das et al., 2022) are majorly dependent
on kNN data points that are not available at cold
start. Moreover, these methods does not support
symbols/rules and are immutable.

On the other hand, question Q can provide the
right cues of the KG elements involved that also
eliminate the dependency on kNN samples. Link-
prediction has shown promising results in modeling
multi-hop relations and missing links on large KGs
without any external data. Therefore, we propose a
link-prediction based non-parametric method that
uses parts of the question text as the seed to iden-
tify the relevant KG elements (relations, attributes,
qualifiers) and form the symbolic subgraph G. We
now demonstrate the generation process of G using
the complex question scenarios shown in Figure 1
using the below steps:

1. Entity and Concept Identification: We extract
the set of entities E′ ⊂ E and set of concepts C ′ ⊂
C present in Q using Named Entity Recognition
(NER) method. However, any off-the-shelf entity
linker such as (Gu et al., 2023; Mohammed et al.,
2018) can be used. As shown in Figure 1, E′ = {}
and C ′ = {former French region}.

2. Numerical Operation Phrase (NOP) Identifi-
cation: It identifies phrases in Q that contain op-
erations that needs to be computed symbolically.
Some examples of NOPs include over 270 square
kilometers, smallest, sum, etc. To identify NOPs:
(a) We first mask E′ and C ′ in Q.
(b) p-grams from this masked question are derived
to encompass potential NOPs. We remove the stop
words in p-grams using nltk3 python library.
(c) The p-grams whose cosine similarity of the
BERT embeddings with comparative and superla-
tive word list (Mohammed et al., 2018) exceeds
a specified threshold (0.9) are chosen. Cardinal
presence (if exist) associated to them are identified
using quantulum34 python library and appended
with its corresponding p-gram to form the NOP.
Logical operators (AND, OR, NOT) and count op-
erator (COUNT) are identified in a similar manner.
BERT embeddings ensures to capture the semantic

3https://www.nltk.org/
4https://pypi.org/project/quantulum3/
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similarity even if the linguistics appear differently.
An NOP node for each nop ∈ NOP is added to G
with the symbolic rule:

G = AddNode(NOP[nop]) ∀nop ∈ NOP (4)

Figure 1 shows examples of NOP node defined
using this operator.

3. Expand: It defines the expansion of each con-
cept c ∈ C ′ to retrieve all entities belonging to
concept c. Expand node specified through the be-
low symbolic rule is then added to G:

G = AddNode(Expand[(?5, is_a, c)]) ∀c ∈ C ′

(5)
Here, "is_a" relation depicts the instanceOf or type
relation of an entity.

4. Propagate: The multi-part text in between en-
tities, concepts, and NOPs in Q is identified as the
relation text. We use transition-based pre-trained
Abstract Meaning Representation (AMR) parser
(Zhou et al., 2021) to identify the source and target
text for each of the relation text. We use AMR be-
cause it provides an efficient logical representation
of the question semantics. It encodes the meaning
of a sentence into a rooted directed acyclic graph
where nodes represent concepts and edges repre-
sent relations. Hence, it effectively provides the
source and target for each relation text in Q (Re-
fer to Section 2.4 for distinction with other works
(Kapanipathi et al., 2021) that also use AMR).
If both source text and target text are identified for
the relation text using AMR, the Propagate node
with symbolic rule is added to G as:

G = AddNode(Propagate

[(Es, relation_text, et)])
(6)

Here, Es is a variable that will be populated by the
Symbolic Resolver and et is the entity present in
the target text identified by the AMR.
Propagate operator also identifies the directional
edges between the NOP, Expand and Propagate
nodes. A directional edge is added between the
source node Gs ∈ G (corresponding to the source
text) and the target node in Gt ∈ G (corresponding
to the target text).

G = AddEdge(getNode(Gs), getNode(Gt))
(7)

5? denotes the value in the triple to be retrieved from KG

If the target text is not identified, then the
Propagate node is added to G with following rule:

G = AddNode(Propagate

[(Es, relation_text, ?)])
(8)

In this case, the node in G corresponding to the
most proximal text in order (i.e., towards right) is
identified as the target node Gt. A directional edge
is then added using Eq. 7.
The symbolic rules in Propagate node are passed
to the link-prediction scoring function ϕ to obtain
the value of the variables or missing value(s) or to
verify for a true triple.

Our link prediction based subgraph generation
approach provides additional novel advantages as
compared to existing subgraph extraction methods
when: (1) backward relation inference is required;
(2) the surface mention of the relation is a compo-
sition of a set of relations in the KG; (3) concepts
with multiple entities are involved in the reason-
ing process; (4) answer(s) are not present in the
subgraph (where the answer has to be computed
numerically); (5) the number of hops is very large
(or not known beforehand). Hence, to the best of
our knowledge, our work is the first to leverage
link-prediction for non-parametric symbolic ques-
tion subgraph generation.

3.5 Relation Matching

The KGE obtained for R i.e., R is often ignored by
the previous methods, however, it can carry impor-
tant information on how a source entity is related
to a target. The generated question subgraph will
contain natural language text from Q as relation
text. Therefore, to retrieve the KGE embeddings
for relation text rq to be used in scoring function ϕ,
we perform relation matching as follows:
(1) We first obtain the sentence embedding for re-
lation text rq and each relation r ∈ R using BERT.
(2) We create the vector-based index using Chro-
maDB6 with the sentence embedding as features.
We chose ChromaDB due to its superior perfor-
mance (5 − 7%) as compared to popular BM25-
based retrievers (Robertson and Zaragoza, 2009)
after experimentation.
(3) We retrieve the closest relation rc based on the
cosine similarity of the embedding of rq and R.
(4) The Dual KGE of rc is thus retrieved.

6https://docs.trychroma.com/
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3.6 Symbolic Resolver
The symbolic question subgraph G is now re-
solved in the post-order traversal order as the link-
prediction problem using Dual KGE scoring func-
tion ϕ, simultaneously interpreting and executing
the symbolic operators as follows:

• NOP: The nop phrase in each NOP node Gnop

is resolved by first parsing it to identify either the
logical or a numeric operator with the numerical
quantity and unit. Consider an example of a NOP
phrase: over 270 square kilometers:
– Numerical Quantity Identification: the nop with
a numeric operator contain a numerical value (in
decimal form) and its unit (in SI unit form, if
present) identified (see 2c. in Section 3.4) i.e., 270
kilometers is identified as {value: 270.0, unit:
square kilometer}.
– Unit Conversion: The numerical value is nor-
malized to the unit present in the question for nu-
meric operation execution. We achieve this by us-
ing SymPy7 Python library.
– Numeric operator Identification: The p-gram
of the nop (see 2c. in Section 3.4) is mapped to
its corresponding numeric operator. For example:
greater than is mapped to operator.gt, smallest
is mapped to np.argmin, not equal to is mapped
to opertor.neq, etc. with the help of operators8

and numpy9 libraries in python.
– Retrieve Answers: The entities that satisfy the
numeric operator is populated as the entity set Es

for the next rule to be executed.
Now, consider an example of an nop phrase con-
taining a logical operator OR: The intermediate
output En of the nodes Gn that has in-degree to
Gnop will undergo set union i.e.,

Es = ∪En Gn ∈ in_degree(Gnop) (9)

The entity set Es is then populated for the next rule
to be executed.

• Expand: The rule of each Expand node is
directly executed on the KG to obtain the entity
set Es that are instanceOf concept c ∈ C ′. The
entity set Es is then populated for the next rule to
be executed.

• Propagate: The KGE of rc i.e., rc is obtained
for the relation text using Section 3.5. For the
Propagate node with rule: (Es, relation text, et),
the embedding for et i.e., et and e for e ∈ Es

7https://pypi.org/project/sympy
8https://pypi.org/project/operators
9https://pypi.org/project/numpy

is obtained from the Dual KGE module. These
embeddings are then passed to the KGE scoring
function ϕ to retrieve E′

s (initially empty set):

scoree = ϕ(e, rc, et) ∀e ∈ Es (10)

E′
s = E′

s ∪ {e} iff scoree > 0 ∀e ∈ Es (11)

For the Propagate node with rule: (Es, relation
text, ?), the embedding e for e ∈ Es is obtained
using the Dual KGE module and then passed to the
scoring function ϕ to retrieve the answer eans for e
to form E′

s (initially empty set). For the relations
that link 2 entities:

eans = max(∀e′∈E ϕ(e, rc, e
′)) (12)

To re-iterate, here, E is the set of all entities in the
KG. For the relations that link attributes of entities:

eans = max(∀l∈L ϕ(e, rc, l)) (13)

Here, L is the set of attributes (literals) in the KG.

Eans = Eans ∪ {eans} ∀e ∈ Es (14)

To our knowledge, it is the first approach to fuse
neural KGE with a symbolic approach to enable
joint compositional and numerical reasoning.

4 Experiments

Our experiments answer the following research
questions:

1. How does NS-KGQA compare against exist-
ing LLM-based KGQA frameworks in zero-shot
setting?

2. What are the contributions of each module of
NS-KGQA?

3. What are the different sources of errors?

4.1 Datasets

We experiment with 3 datasets having different:
(a) question complexities; (b) KG domain; and (c)
number of inference hops required. The statistics
of these datasets are shown in Table 1.

1. KQA Pro (Cao et al., 2022a): This recent
dataset contains much harder and complex QA
pairs with numerical quantities, concepts, and en-
tities for multi-hop compositional and numerical
reasoning unlike other datasets (Gu et al., 2021b;
Dutt et al., 2023). It contains questions that require
up to 10-hops answerable through Wikidata KG.
Its test set is closed, hence, we use dev set as test.
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Dataset Train Val Test

KQA Pro 94,376 11,797 11,797
MetaQA 1-hop 96,106 9,992 9,947
MetaQA 2-hop 118,948 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274

WebQSP 2,998 100 1,639

Table 1: Statistics of the Datasets used

2. MetaQA (Zhang et al., 2018): It is the
largest multi-hop dataset widely used (Choi et al.,
2023; Agarwal et al., 2024a,b) for domain-specific
(movie) KGQA. It provides upto 3-hop QA pairs.

3. WebQSP (Yih et al., 2016): This dataset is
based on Freebase KG that contains questions upto
2-hops from Google query logs. It exhibits more
complex structures i.e., Isomorphisms (ISO-4) as
compared to other datasets (Gu et al., 2021b).

4.2 Baselines

We compare against the following latest LLM-
based techniques that support zero-shot setting:

1. KQA Pro: FlexKBQA (Li et al., 2023b), In-
teractiveKBQA (Xiong et al., 2024).

2. WebQSP: FlexKBQA (Li et al., 2023b),
KAPING (Baek et al., 2023), KQG-COT+ (Liang
et al., 2023).

3. MetaQA: BYOKG (Agarwal et al., 2024a).
No other LLM-based work enables zero-shot

setting, hence, can’t be used as baselines. Alter-
natively, we compare the performance of our ap-
proach on KQA Pro with the most powerful closed-
source13 and open-source LLMs (see Table 4) when
used directly to answer the questions.

We additionally contrast our approach against
SOTA IR based fully-supervised techniques for
each dataset. It includes KVMemNet (Miller et al.,
2016), EmbedKGQA (Saxena et al., 2020), SRN
(Qiu et al., 2020), RGCN (Schlichtkrull et al.,
2018), and Subgraph Retrieval (Zhang et al., 2022).
SRN and Subgraph Retrieval are based on subgraph
extraction(SE).

Although comparison with SP-based KGQA
methods is not apples-to-apples, we still include
two SOTA, fully-supervised SP-based methods i.e.,
GraphQ IR (Nie et al., 2022) and BART-based
KoPL (Cao et al., 2022a) for KQA Pro. Refer

10https://huggingface.co/codellama/
CodeLlama-34b-hf

11https://huggingface.co/meta-llama/
Meta-Llama-3-70B

12https://ai.google.dev/gemini-api/docs/
models#gemini-1.5-pro

13on popular models ONLY due to high costs associated

to Appendix A.2 for more details of each baseline.

4.3 Implementation and Hyper-parameters

We use the PyTorch14 framework in Python to
implement NS-KGQA using Nvidia A100 GPUs.
Dual KGE are learned using Cross Entropy Loss
with Adam Optimizer for 500 epochs with a learn-
ing rate of 5e-3 and a batch size of 256. The dimen-
sion of KGE is set to 400. all-distilroberta-v115

BERT model is used during NOP identification and
relation matching. We use Accuracy16 for KQA
Pro, Hits@1 for MetaQA, and the F1 score for
WebQSP as the evaluation metrics. Section 5.5
provides the compute resources utilized.

5 Results and Analysis

The results on each dataset are discussed below.
Qualitative analysis is provided in Appendix A.1.

5.1 Results: KQA Pro

The results of NS-KGQA compared with baselines
are shown in Table 3. Detailed category-wise per-
formance is provided in Table 2. The comparison
with SOTA LLMs is shown in Table 4.

As shown, NS-KGQA outperforms all zero-shot
baselines and SOTA LLMs to achieve a new SOTA
in the zero-shot setting for KQA Pro. It beats
FlexKBQA and Interactive KBQA by 24.56% and
27.79% respectively. This performance gap is at-
tributed to the dependency of the baselines on
LLMs to generate the LF. Additionally, most of
the LLMs struggles to handle complex questions
that require numerical reasoning (Tan et al., 2023).
Also, note that even though the core step of Inter-
activeKBQA for interaction i.e., deconstruction of
question into sub-query triples is similar to the pro-
posed NS-KGQA, but, in Interactive KGQA, this
step is manual and hence, not scalable. Whereas,
in NS-KGQA, this step is powered by AMR and
symbols, making it robust and scalable.

NS-KGQA outperforming SOTA LLMs again
indicates the difficulty of answering complex ques-
tions solely by LLMs. NS-KGQA additionally
beats fully-supervised IR-based methods as well.
This is because these baselines are unable to handle
a richer variety of complex questions as provided
by KQA Pro. This demonstrates that NS-KGQA

14https://pypi.org/project/torch/
15https://huggingface.co/sentence-transformers/

all-distilroberta-v1
16Each question in KQA Pro has only one answer, hence

Hits@1 and Accuracy values will be the same.
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Models Overall Multi-hop Comparison Logical Count Verify Qualifier

fully-supervised models

KVMemNet 6.9 0.05 0.08 1.64 0.15 54.48 0.05
SRN - 11.84 - - - - -

RGCN 29.12 10.5 11.86 20.69 36.82 66.41 22.89
EmbedKGQA 20.27 13.22 11.84 12.28 20.49 40.43 14.87

Subgraph Retrieval 22.82 12.44 14.72 18.34 21.92 63.39 15.42

zero-shot models

FlexKBQA 28.48 13.81 29.75 22.44 29.36 62.54 21.81
InteractiveKBQA 25.25 - - - - - -

NS-KGQA 53.04 34.04 69.5 44.04 27.49 99.33 10.29

Table 2: Category-wise accuracy of different models on KQA Pro dataset on dev set (The best is highlighted in bold)

Method Models Acc%

KVMemNet 6.90
EmbedKGQA 20.27

Fully-Supervised SRN (SE) 11.84
(IR-based) RGCN 29.12

Subgraph Retrieval (SE) 22.82
Fully-Supervised BART + KoPL 83.28
(SP-based) GraphQ IR 79.13

Zero-Shot
FlexKBQA 28.48
Interactive KBQA 25.25
NS-KGQA 53.04

Table 3: Results of KQA Pro on dev set (baselines reproduced on
dev set, hence, numbers will differ from original work)

Closed-source Acc% Open-source Acc%

ChatGPT17 24.96 CodeLlama Ins. 34B10 28.7
Davinci-003 31.02 Llama-3 70B11 33.2

GPT-4 37.43 Gemini 1.5 Pro12 27.5
NS-KGQA 53.04

Table 4: Comparison with SOTA LLMs (on KQA Pro)

is generalized to perform any type of composi-
tional and numerical reasoning, and hence, can
answer any complex question in a zero-shot set-
ting. NS-KGQA essentially divides the question
into multiple grounded steps making the reasoning
process more transparent.

The performance gap with fully-supervised SP-
based methods is attributed to the use of a large
amount of LF such as SPARQL as strong supervi-
sion signals, whereas, our framework addresses a
more challenging setting, assuming no QA and LF
data is available at cold-start for new KGs.

5.2 Results: MetaQA and WebQSP

The results of NS-KGQA on MetaQA are shown in
Table 5b. NS-KGQA achieves a new SOTA on all
hops in the zero-shot setting for MetaQA. Specif-
ically, it beats BYOKG by 31%. The results on
WebQSP are shown in Table 5a. NS-KGQA beats
KAPING and KQG-COT+ by a significant margin.
FlexKBQA outperforms NS-KGQA on WebQSP
due to its dependency on the ChatGPT17 model,

17https://chat.openai.com

which is trained on a large body of knowledge.
The performance gap with fully-supervised IR-

based methods for these datasets is attributed to the
availability of a large number of QA pairs for learn-
ing the model. To re-iterate, our framework ad-
dresses a more challenging zero-shot setting where
fully-supervised baselines are inapplicable.

5.3 Ablation Study

We analyze the effect of different modules of NS-
KGQA, mainly: (1) Dual KG Embedding and
(2) Link-Prediction based Symbolic Question sub-
graph Generator. The Symbolic Resolver is the
core execution engine of our proposed framework
and hence cannot be ablated. Table 6 shows the
performance for the following settings:

1. NS-KGQA - Dual KGE: Here, we replace
the Dual KGE with traditional KG embeddings
(T-KGE) with single encoding where literals are
treated the same as entities. We observed that the
overall performance degrades by ∼ 15%. This
demonstrates that the proposed Dual KGE provides
advantages by encoding literals separately with the
help of a dual encoder. We particularly gained per-
formance in answering the questions where literals
were involved in the reasoning process.

2. NS-KGQA + Oracle SQG: Here, we quan-
tify how far the proposed link-prediction based
Symbolic Question subGraph (SQG) generator is
from the Oracle SQG. To obtain the Oracle SQG,
we convert the KoPL program of each question
(provided with the dataset) to the link-prediction
based SQG. We observe an improvement of ∼ 18%
when the Oracle SQG is used in our framework.
This depicts that our proposed link-prediction
based SQG generation method is worth further ex-
ploration to reach closer to the Oracle SQG.

5.4 Error Analysis

We analyze the following sources of errors:
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Method Models F1%

EmbedKGQA 66.6
Fully-Supervised Subgraph Retrieval (SE) 66.7

(IR-based) KVMemNet 46.7
RGCN 37.2

Zero-Shot

FlexKBQA 46.2
KAPING (T5-11B) 24.91

KQG-COT+ 35.22
NS-KGQA 39.31

(a) WebQSP

Method Models Hits@1
1-hop 2-hop 3-hop

KVMemNet 96.2 82.7 48.9
EmbedKGQA 97.5 98.8 94.8

SRN (SE) 97.0 95.1 75.2Fully-Supervised
RGCN - - -(IR-based)

Subgraph Retrieval (SE) - - -

Zero-Shot BYOKG 41.67 11.42 27.84
NS-KGQA 62.54 64.19 60.32

(b) MetaQA

Table 5: NS-KGQA Results (Bold and underline denote best and second best performance among zero-shot setting)

Model Settings Acc%

NS-KGQA 53.04
NS-KGQA - Dual KGE 37.4 (↓ 15.64)

NS-KGQA + Oracle SQG 71.3 (↑ 18.26)

Table 6: Effect of different modules (for KQA Pro)

1. Entity Linking: Observed only in KQA Pro,
for 0.69% of questions.

2. External tools: There can be multiple ways to
represent a numerical quantity in natural language.
For eg: square kilometers can be represented as
sq km, km2, etc. out of which some could be dif-
ficult to detect by quantulum3 and SymPy python
libraries for quantity extraction and unit conversion
respectively. Hence, we observe approx. 8% error
from these tools in NOP identification.

3. Incorrect Symbolic Question subgraph Gen-
eration: We found out that:
(a) Some questions are also difficult to understand
by humans. For example: “Seymour Cassel
got nominated for Academy Award for best
supporting actor, tell me the subject of
this statement". The phrase subject of this
statement makes the question unclear as to what
exactly is meant by the subject here. There is no
relation that depicts the subject in the KG, mak-
ing it even more difficult to understand and retrieve
the correct answer.
(b) Some questions are confusing as to what ex-
actly needs to be retrieved. For example: “What
town in the United States has the postal
code [06880] and what is the area?". Here,
the town and area are retrieved but gets confused
about what to return as the answer because both
town and area are asked in the question.
(c) There are two sub-types of Count questions:
i. Count Entities: counting the retrieved entities;
ii. Retrieve Count: retrieve count present in KG.
The Symbolic question subgraph generator is un-
able to distinguish among them. For Count Entities,
it retrieves all entities that have a score > 0 (See
Eq. 11) and performs a count on top of it. Hence,

the set of entities whose score > 0 becomes a su-
perset of the answer, and even if we consider top-k
entities, it may become the subset of the answer.
Hence, our approach does not guarantee that the
entity set on which the count will be performed
is indeed the right subset even if the intermediate
answers are correct. Most of the existing informa-
tion retrieval based techniques fail to handle this
scenario. endasparaenum These issues constitute
about 24% of errors.

5.5 Inference Latency
We use NVIDIA V100 GPU with 32 GB RAM to
learn Dual KGE that takes approx. 6 GPU hours.
After learning KGE, the entire NS-KGQA pipeline
runs on a CPU with average latency of 2s/question.
On the other hand, most of the LLM-based meth-
ods have more average latency per API call itself
(approx. 8s/call) and their entire pipeline entirely
runs on GPU that adds up approx. 5s/question
additionally.

6 Conclusion

We propose NS-KGQA, a novel zero-shot neuro-
symbolic approach for complex KGQA. To the best
of our knowledge, it is the first one to fuse the neu-
ral KGE approach with the symbolic approach with-
out the need for any external data. The core of NS-
KGQA is to preserve the query capability of the KG
through the proposed link-prediction based reason-
ing (neural approximation). Only the “symbolic”
parts essential to answer the complex question are
abstracted while leveraging Dual KG Embeddings
for querying. Our extensive experiments show
that NS-KGQA outperforms LLM-based zero-shot
baselines by a significant margin, setting a new
benchmark for various Complex KGQA datasets.
It discovers the weakness of current KGQA tech-
niques in handling complex question types. NS-
KGQA is independent of any Logical Form and,
hence, applicable to any new KG and settings at
cold-start while being interpretable.
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7 Limitations

Despite harnessing the interpretability of Symbols
and robustness of the neural model, obtaining a
step-wise question subgraph is still prone to errors,
which impacts the performance of NS-KGQA, as
discussed in Section 5.4. Most of the errors stem
from an incorrect interpretation and decomposition
of the question w.r.t the KG. Fortunately, if the
framework provides a wrong answer, the step that
went wrong can be easily interpreted and can be
rectified with human intervention.

8 Risks

Our work does not have any obvious risks that we
are aware of.
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A Appendix

A.1 Qualitative Analysis

Examples demonstrating different question types
handled by NS-KGQA are provided in Table 7.

A.2 Baselines

• KVMemNet (Miller et al., 2016) performs
QA by first storing facts in a key-value struc-
tured memory before reasoning on them to
predict an answer. At each reasoning step, the
information collected from the memory is cu-
mulatively added to the original query to build
context for the next reasoning iteration.

• SRN (Qiu et al., 2020) model starts from the
question entity and uses a path search tech-
nique to predict the relation path sequence to
reach the target entity.

• RGCN (Schlichtkrull et al., 2018) uses a
graph convolution network-based technique
to encode KG in graph form and perform QA.

• EmbedKGQA (Saxena et al., 2020) uses KG
embeddings to perform multi-hop reasoning
using a RoBERTa-based question encoder.

• Subgraph Retrieval (Zhang et al., 2022) use
a dual-encoder that provides better retrieval
compared to existing retrieval methods.

• BART + KoPL (Cao et al., 2022a) is an
end-to-end generation model that directly pro-
duces the corresponding KoPL program steps
given a question. It is worth noting that the
pre-trained BART model is forced to have the
capability to memorize the relations and enti-
ties present in the KG.

• GraphQ IR (Nie et al., 2022) proposes a
unified intermediate representation for graph
query languages, named GraphQ IR. It has a
natural-language-like expression that bridges
the semantic gap and formally defined syntax
that maintains the graph structure. A neu-
ral semantic parser is used to convert user

queries into GraphQ IR, which can be later
losslessly compiled into various downstream
graph query languages such as SPARQL,
Lambda DCS, etc.

• FlexKBQA (Li et al., 2023b) utilizing Large
Language Models (LLMs) as program trans-
lators. It leverages automated algorithms to
sample diverse programs, such as SPARQL
queries, from the knowledge base, which are
subsequently converted into natural language
questions via LLMs. They used this synthetic
data set to facilitate training of a specialized
lightweight model for a KG.

• BYOKG (Bring your own KG) (Agarwal
et al., 2024a) leverage an agent based on LLM
to understand the information of KG through
exploration.

• KAPING (Baek et al., 2023) Knowledge Aug-
mented language model PromptING (KAP-
ING) framework first retrieves the top-K simi-
lar triples to the question with the knowledge
retriever and then augments them as the form
of the prompt.

• KQG-CoT+ (Liang et al., 2023) first retrieves
supportive logical forms from the unlabeled
data set, taking into account the characteristics
of the logical form. Then, write a prompt
to explicit the reasoning chain of generating
complicated questions based on the selected
demonstrations. To ensure prompt quality,
they sort the logical forms by their complexity
for in-context learning.

• InteractiveKBQA (Xiong et al., 2024) gen-
erates logical forms through direct interaction
with KG. They use examples to guide LLMs
through the reasoning processes. They decon-
struct the question into sub-query triples but,
this step is manual and, hence not scalable.
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Question Type Example Good/Bad

Multi-hop

Question Which {feature film} was distributed by [Walt Disney Pictures]?
SQG* [Expand(?, is a, feature film), Propagate(Es, was distributed by, Walt Disney

Pictures)]
Good

Question What {war} has the participant [Hannibal] who died from suicide
SQG [Expand(?, is a, war), Propagate(Es, participant, Hannibal), Propagate(Es,

died from suicide, Hannibal)]
Bad

Comparison

Question Does [My Neighbor Totoro] or [Hannah Arendt], possess the longer run-time?
SQG [Propagate(My Neighbor Totoro, run-time, ?), Propagate(Hannah Arendt, run-

time, ?), NOP(longer)]
Good

Question Which one has more population between [Boston] and [Rocky Mount]?
SQG [Propagate(Boston, one moe population, ?), Propagate(Rocky Mount, more

population, ?)]
Bad

Logical

Question Which {former French region} has the smallest population and a population that
is not equal to 97000?

SQG [Expand(?, is a, former French region), Propagate(Es, population,?),
NOP(smallest), NOP(AND), Propagate(Es, population, ?), NOP(not equal to
97000)]

Good

Question Which one among the {census-designated place}, with the population of more
or less than 110,000, is the highest above sea level?

SQG [Expand(?, is a, census-designated place), Propagate(Es, population, ?),
NOP(more), NOP(OR), NOP (less than 110000), Propagate(Es, above sea level,
?), NOP(highest)]

Bad

Count

Question How many {Pennsylvania counties} have a population greater than 7800 or a
population less than 40000000?

SQG [Expand(?, is a, Pennsylvania county), Propagate(Es, population, ?),
NOP(greater than 7800), NOP(OR), NOP(less than 40000000), NOP(COUNT)]

Good

Question How many episodes does the children’s movie [Bewitched] contain?
SQG [Propagate(Bewitched, episodes, ?), NOP(COUNT)] Bad

Verify

Question Is [http://www.west-chester.com] the official website of the {animated feature
film} titled [Waltz with Bashir]?

SQG [Expand(?, is a, animated feature film), Propagate(Es, official website,
http://www.west-chester.com), Propagate(Es, titled, Waltz with Bashir)]

Good

Question Does Libris-URI [sq468r1b0m8d5g4] designate the [Caldecott Medal] winning
individual for [Where the Wild Things Are]?

SQG [Propagate(sq468r1b0m8d5g4, designate the, Caldecott Medal),
Propagate(Caldecott Medal, winning individual for, Where the Wild
Things Are)]

Bad

Table 7: Qualitative Analysis on KQA Pro (*SQG denotes the post-order traversal of Symbolic Question subgraph
(SQG) generated by NS-KGQA)
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