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Abstract

As domain-specific datasets continue to ex-
pand, Large Language Models (LLMs) have
achieved significant improvements across var-
ious fields through supervised fine-tuning
(SFT). However, is more data always better for
model fine-tuning? Through a series of con-
trolled experiments, we discover that dataset
structure—rather than mere size—plays a
decisive role in enhancing LLM reasoning
capabilities. While existing methods acknowl-
edge that good data quality can make train-
ing more efficient, they primarily rely on sim-
ple heuristic strategies and lack systematic,
quantitative frameworks for evaluating data
quality. To address this gap, we introduce
MCSQ—the first multi-dimensional quantita-
tive framework for reasoning data management.
MCSQ rigorously evaluates and optimizes
datasets along six orthogonal dimensions.
Through comprehensive controlled experi-
ments, we find that selectively incorporating
"distorted" (model-disagreed) or "mismatched"
(low-relevance) samples—which are typically
discarded in traditional approaches—can out-
perform conventional "clean" data on certain
advanced reasoning benchmarks. Our find-
ings challenge traditional assumptions about
data "quality" in LLM fine-tuning and pro-
vide actionable, quantitative guidance for ef-
ficient, structure-aware dataset management.
The datasets and codes are both available at
https://github.com/xuhu0115/MCSQ.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive reasoning capabilities across di-
verse domains, yet complex multi-step reasoning
remains a significant challenge (Wei et al., 2022b;
Ouyang et al., 2022). Supervised fine-tuning (SFT)
on reasoning traces has emerged as a promising
approach to enhance these abilities by directly
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encoding reasoning patterns into model parame-
ters (Zelikman et al., 2022; Muennighoff et al.,
2025; Zhang et al., 2024). By training on struc-
tured Question, Reasoning Trace, Answer triplets,
this method enables models to internalize step-by-
step problem-solving strategies, potentially offer-
ing more efficient reasoning compared to inference-
time techniques like Chain-of-Thought prompting
(Wei et al., 2022b) or tree search (Yao et al., 2023;
Besta et al., 2024).

Reasoning-focused SFT has gained significant
traction in recent years, with numerous studies
demonstrating its effectiveness across mathemat-
ical (Lewkowycz et al., 2022; Hendrycks et al.,
2021), scientific (Huang et al., 2023), and logical
reasoning tasks (Ye et al., 2025). This approach has
evolved from early work on step-by-step reasoning
distillation (Zelikman et al., 2022) to more sophis-
ticated methods incorporating diverse reasoning
patterns (Muennighoff et al., 2025), planning al-
gorithms (Zhang et al., 2024), and multi-stage rea-
soning frameworks (Wang et al., 2023; Yao et al.,
2023). Recent research has shown that models fine-
tuned on reasoning traces can achieve significant
performance improvements on complex problem-
solving benchmarks (Li et al., 2025b; Deng et al.,
2025), often matching or exceeding the capabilities
of much larger models. Despite these advances, the
field still lacks a systematic understanding of what
makes reasoning datasets effective, with most work
relying on intuition-based curation strategies rather
than principled analysis of dataset characteristics.

This knowledge gap manifests in several critical,
unresolved questions that directly impact reasoning
SFT effectiveness. First, the relationship between
data volume and reasoning performance remains
unclear—while scaling laws suggest "more is bet-
ter," recent work hints at diminishing returns or
even performance degradation with excessive data
(Ye et al., 2025; Li et al., 2025b). Second, the opti-
mal composition of reasoning domains and types is
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poorly understood; practitioners lack guidance on
whether to prioritize breadth (covering many do-
mains) or depth (focusing on specific areas). Third,
the impact of data quality variations—including
imperfect reasoning traces or examples of marginal
relevance—has not been systematically investi-
gated, leaving dataset filtering decisions to rely
on unvalidated heuristics rather than empirical evi-
dence.

These uncertainties point to a fundamental lim-
itation in current approaches: the lack of a prin-
cipled framework for analyzing and optimizing
reasoning datasets beyond simple volume or bi-
nary quality metrics. While extensive research has
explored data selection for general LLM pretrain-
ing (Kudugunta et al., 2023; Elazar et al., 2024)
and instruction tuning (Wei et al., 2022a; Raffel
et al., 2020), the unique requirements of reasoning-
centric SFT data demand specialized analysis tools
that can capture the multi-faceted nature of reason-
ing quality.

To address these challenges, we introduce the
Multi-dimensional Quantitative Framework for
Evaluating Distilled Chain-of-Thought SFT Data
Quality (MCSQ). Grounded in information theory
principles (Xu et al., 2025b), MCSQ decomposes
reasoning dataset quality into six concrete, mea-
surable dimensions: Volume, Scope, Granularity,
Variety, Distortion, and Mismatch. Through con-
trolled experiments where we systematically vary
one dimension while holding others constant, we
uncover several counter-intuitive findings that chal-
lenge conventional wisdom in reasoning dataset
construction. Our key discoveries include: (1)
data structure consistently outweighs volume in
determining reasoning performance, with scaling
beyond moderate thresholds yielding diminishing
returns; (2) "imperfect" data can significantly boost
performance on certain advanced reasoning tasks;
and (3) the optimal balance between domain spe-
cialization and diversity depends critically on the
target task. Based on these findings, we make three
major contributions to the field:

1. We propose the MCSQ framework, the first
systematic, multi-dimensional approach for
reasoning dataset analysis and optimization,
providing a principled foundation for under-
standing how dataset characteristics shape
LLM reasoning capabilities.

2. We empirically establish that dataset
structure—not just size or binary qual-

ity—fundamentally shapes reasoning
capabilities, with different dimensions
affecting different aspects of performance
in ways that challenge conventional wisdom
about data curation.

3. We demonstrate that conventional data cu-
ration heuristics can be counterproductive,
offering instead quantitative guidelines for
structure-aware dataset design that can maxi-
mize reasoning performance while managing
trade-offs with general knowledge retention.

2 Related Work

Research on LLM reasoning has progressed
from inference-time prompting—such as Chain-of-
Thought (Wei et al., 2022b; Kojima et al., 2022),
self-consistency (Wang et al., 2023), and search-
based methods (Yao et al., 2023; Zhang et al.,
2024)—to approaches that embed reasoning capa-
bilities directly into model parameters via targeted
data and fine-tuning. We briefly review three rele-
vant strands: (1) general data selection methods for
LLM training, (2) reasoning trace generation and
fine-tuning, and (3) reasoning-centric data selec-
tion strategies. These areas collectively motivate
the need for a principled, multi-dimensional ap-
proach to reasoning dataset construction.

Data Selection for Language Model Train-
ing. Effective data selection is critical at every
stage of LLM development. During pretraining,
large-scale corpora are carefully filtered, dedupli-
cated, and balanced to optimize coverage and qual-
ity (Kudugunta et al., 2023; Elazar et al., 2024;
Axelrod, 2017; Du et al., 2022). Instruction-tuning
further refines model capabilities through curated
(Instruction, Output) pairs (Wei et al., 2022a; Raf-
fel et al., 2020), while preference fine-tuning (e.g.,
RLHF, DPO) aligns models with human values and
user preferences (Ouyang et al., 2022; Rafailov
et al., 2023). However, these stages typically fo-
cus on general text quality or alignment signals,
rather than the nuanced properties necessary for
advanced reasoning.

Reasoning Trace Generation and Fine-tuning.
A growing body of work has explored the super-
vised fine-tuning of LLMs on long-form reasoning
traces, often generated by strong teacher models or
advanced planning algorithms (Muennighoff et al.,
2025; Li et al., 2025a; Zelikman et al., 2022; Zhang
et al., 2024). These traces, typically in the form
of Question, Reasoning Trace, Answer triplets, are
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designed to instill step-by-step problem-solving
skills in student models, particularly for mathe-
matics and scientific domains(Xu et al., 2025a;
Hou et al., 2025). While this strategy has shown
promise, the curation of optimal reasoning datasets
remains largely heuristic—most prior works select
data based on perceived difficulty, teacher model
confidence, or coarse quality filters, without a sys-
tematic understanding of how specific data proper-
ties influence downstream reasoning.

Reasoning-Centric Data Selection. Beyond
“More is Better.” Recent studies have begun to
question the assumption that more data or cleaner
data always leads to better reasoning. The "Less-
Is-More" hypothesis (Ye et al., 2025) and related
works (Li et al., 2025b; Deng et al., 2025) demon-
strate that targeted data selection—based on sam-
ple complexity, learning impact, or preference sig-
nals—can yield superior or comparable reason-
ing performance with less data(Wang et al., 2025).
However, these methods typically focus on sample-
level or single-metric selection, such as uncertainty
or teacher-student agreement, and lack a holistic,
multi-dimensional view of dataset composition.

In contrast to prior work, our approach is the first
to introduce a comprehensive, quantitative frame-
work (MCSQ) for reasoning dataset analysis and
adapting it to the LLM reasoning context. By de-
composing dataset quality into distinct, measurable
dimensions—Volume, Scope, Granularity, Variety,
Distortion, and Mismatch—our work enables sys-
tematic investigation of how structural dataset prop-
erties interact and influence model reasoning. This
advances the field beyond piecemeal or heuristic
data selection, providing actionable guidance for
structure-aware, efficient reasoning SFT.

3 Methodology

In this section, we present our approach for quanti-
tatively characterizing and manipulating reasoning-
centric fine-tuning datasets.

3.1 The MCSQ Framework

MCSQ is a principled framework for analyzing and
curating reasoning datasets in LLM fine-tuning.
Rather than relying on heuristic selection, MCSQ
provides a theoretically grounded and mathemati-
cally justified approach to dataset evaluation. The
framework is inspired by Objective Information
Theory (OIT) (Xu et al., 2015, 2023; Xu, 2024),
which offers a rigorous information-theoretic foun-

dation for assessing data quality. While OIT de-
fines 11 general information metrics for character-
izing pretraining datasets—operationalized in the
GIME framework (Xu et al., 2025b)—not all are
directly applicable to the highly structured and tar-
geted nature of supervised fine-tuning data. MCSQ
distills this foundation into a low-dimensional,
interpretable mapping, tailored to the empirical
needs of reasoning-centric LLM fine-tuning (see
Figure 1).

Pretraining data typically exhibits statistical dis-
tribution properties such as large-scale, weakly-
structured (Zhang et al., 2021), and high-diversity
characteristics, whereas supervised fine-tuning
(SFT) data emphasizes high-quality, strongly-
annotated, and target-relevant attributes (Wolfe,
2023; Dong et al., 2024). Consequently, cer-
tain OIT measures (e.g., temporal and coverage
metrics) lack operational feasibility and seman-
tic foundation when applied to SFT data, render-
ing them inapplicable. By adapting OIT to the
characteristics of the s1-54k dataset, we distill
six interpretable, orthogonal dimensions central
to reasoning-centric LLM fine-tuning: Volume,
Scope, Granularity, Variety, Distortion, and Mis-
match. The adaptation process and detailed formal
definitions are provided in Appendix A.

3.2 Dataset Construction
As shown in Figure 2, all experiments are based
on the s1-59k dataset (Muennighoff et al., 2025),
a large-scale, high-quality collection of 59k (ques-
tion, reasoning trace, answer) triplets. After pre-
processing and filtering for annotation complete-
ness, we obtain 54,046 samples(s1-54k). Each
sample is annotated with domain, reasoning type,
and model-based correctness/relevance metadata,
enabling precise calculation of all MCSQ dimen-
sions. Unlike conventional reasoning datasets
(e.g., MATH, GSM8K, or AQuA) that focus on
a single domain or reasoning type, s1-59k is con-
structed to maximize domain diversity and rea-
soning style coverage, with each sample carefully
annotated for multi-dimensional analysis. This
breadth, alongside rich metadata and model-based
scoring, enables fine-grained measurement and
manipulation of all MCSQ axes—facilitating con-
trolled, quantitative studies not feasible with most
public datasets.

For each experiment, we construct data subsets
Dsub by systematically varying a single MCSQ di-
mension, while holding all others approximately
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Objective Information Theory (OIT)

GIME MCSQ
Instantiation on Pretraining Data Instantiation on SFT Data
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mismatch 

volume 
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scope 

granularity 

variety 

duration
sampling rate 

aggregation 

coverage 

distortion 

mismatch 

Reduce
Training Cost

Quantifying
SFT data
quality

Measures all 11 OIT metrics to capture scale, diversity, and temporal properties of
large, weakly-labeled pretraining corpora, supporting broad and objective information
assessment.

Focuses on 6 key OIT metrics relevant to supervised reasoning data, emphasizing
reasoning correctness, task relevance, and diversity of reasoning types in high-quality
SFT datasets.

Feature
Selection

Figure 1: Comparison of OIT-based Metric Instantiation: GIME for Pretraining Data vs. MCSQ for SFT Data. OIT
provides a unified theoretical foundation for information quality assessment across data types. GIME instantiates all
11 metrics for large-scale, weakly-labeled pretraining data, while MCSQ selectively adapts 6 core metrics relevant
and measurable for SFT reasoning data.

constant. See the Appendix B for detailed sam-
pling strategy. This design enables isolation of
each dimension’s effect, supporting causal infer-
ence about data structure and reasoning perfor-
mance.

4 Experiments

The core objective of this work is to systemati-
cally investigate how distinct structural properties
of reasoning datasets affect LLM fine-tuning and
performance. To this end, we conduct extensive
experiments aimed at answering the following re-
search questions:

• Volume: Does increasing the amount of reason-
ing data always improve LLM performance?

• Scope: How does expanding the breadth of sub-
ject domains impact model’s generalization?

• Granularity: What kind of initial data distribu-
tion across domains is most beneficial for reason-
ing performance?

• Variety: Is it advantageous to maximize the di-
versity of reasoning types, or does specialization
in a single type offer superior results?

• Distortion: Does incorporating "imperfect" or
model-disagreed samples necessarily harm rea-
soning ability?

• Mismatch: How much does including non-
reasoning or marginally relevant data hurt—or
even help—reasoning performance?

By systematically investigating these questions,
our results(Figure 3,Appendix D) provide action-
able insights into how each dataset property shapes
LLM reasoning, enabling principled and effective
data curation strategies for advanced model devel-
opment.

4.1 Experimental Setup

Training Details. All experiments are conducted
using Qwen2.5-3B-Instruct as the base model and
fine-tuned with LlamaFactory on two NVIDIA
2*A800 80GB GPUs. We adopt full-parameter su-
pervised fine-tuning, enabled by DeepSpeed ZeRO
Stage 3 for large-batch optimization. The training
uses a learning rate of 1× 10−5 (cosine schedule,
10% warmup), runs for 5 epochs with BF16 pre-
cision, and an effective batch size of 16 (gradient
accumulation: 16, per-device batch: 1).

For evaluation, models are deployed using the
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Input Dataset

Training Dataset D = {(qi, ti, ai)}i=1..N
id  sample_00127                                               
q  Find all roots of                 x³-6x²+11x-6=0   
t  I'll factor this                      polynomial...       
a  x=1, x=2, x=3                                                

Metadata:
source_type domain isgenmini

-correct
isqwen7b
-correct

isqwen32b
-correct

source_type domain isgenmini
-correct

isqwen7b
-correct

isqwen32b
-correct

NuminaMath Geometry True False False

OlympicArena Number theory
True

True
False

...... ...... ......

* Based on s1-59k dataset with annotations

source type

reasoning type

V = |D| = N
Volume (V)

Range:          ℕ (positive integers)
Example:      V = 54,046 samples
Meaning:      Total dataset size

 where domain(d) returns the MSC-classified domain of sample d

Scope (S)

Range: [0,53]
 Example: S = 53 domains
Meaning: Domain coverage breadth

  

Granularity (G)

Range:         [0,1]
Example:    G2 = 0.441 (Uniform)
Meaning: Domain distribution

 

Variety (Vy)

Range:       [0, log(n)]
Example:   V1 = 0.448 (Natural Mix)
Meaning:   Reasoning type diversity

Distortion (D)

Range:         [0, 1]
Example:  D1 = 0.239 (Low Distortion)
Meaning:   Data "incorrectness"

Mismatch (M)

Range:         [0, 1]
Example: M0 = 1
Meaning: Task relevance divergence

s1-59k

question

is_reasoning

s1-54k
where wj is model weight, Ij(x)=1 if model j marks x as correct

where 1nonreasoning(x)=1 if x is not directly relevant to reasoning

where sd = samples from domain d, nd = available samples in domain d

where pk is the fraction of samples with reasoning type k

Figure 2: Computation methodology for the six MCSQ dimensions. The left section shows the input dataset
structure with sample entries and metadata fields. The center section outlines the multi-step calculation process for
each dimension, including the mathematical formulations. The right section displays the resulting dimensions with
their value ranges, examples from our experiments, and interpretations. Each dimension captures a distinct aspect
of dataset properties: Volume measures dataset size, Scope quantifies domain coverage breadth, Granularity reflects
sampling uniformity across domains, Variety captures reasoning type diversity through entropy, Distortion assesses
data quality via model disagreement, and Mismatch measures task relevance through automated scoring.

vllm framework for efficient large-scale inference.
For reasoning-intensive tasks, we adopt the zero-
shot setting; for general capability tasks, we use
five-shot prompting. All evaluations use a uni-
fied inference pipeline to ensure fair and consistent
comparison across experiments.

• Reasoning-Intensive Tasks: AMC (2023),
GPQA-diamond (Rein et al., 2024),
MATH500 (Hendrycks et al., 2021), Min-
erva (Lewkowycz et al., 2022), and Olympiad-
Bench (He et al., 2024). For these tasks, we
report both Pass@1 (accuracy of the first
generated response) and Pass@5 (accuracy
if any of the top five generated responses is
correct). Pass@1 reflects direct generation
quality, while Pass@5 is a more robust metric,
especially for small benchmarks..

• General Capability Tasks: MMLU (Hendrycks
et al., 2021), CMMLU (Li et al., 2023), and C-
Eval (Huang et al., 2023)(5-shot). We report
standard accuracy for these tasks.

Inference and Sampling Settings. TTo min-
imize evaluation randomness and ensure repro-
ducibility, we repeat each configuration three times

using the following sampling protocols and report
the averaged results.

• For Pass@1, k = 1, temperature=0,
n_sampling=1, top_p=1.

• For Pass@5, k = 5, temperature=0.7,
n_sampling=5, top_p=0.95.

Beyond Qwen2.5-3B-Instruct, we validated the
framework across multiple model scales (Qwen2.5-
0.5B and 7B) as well as the challenging DeepMath-
103K corpus. Results consistently confirm the
same qualitative trends: performance improves
with increased data volume but saturates quickly,
and structure-first effects (e.g., Scope balance, con-
trolled Distortion/Mismatch) persist regardless of
model size or dataset family. For example, on
MATH500, Qwen2.5-0.5B, 3B, and 7B all exhibit
diminishing returns beyond 10k samples, with rel-
ative improvements preserved across scales (see
Appendix C). These findings strengthen the gener-
ality of our conclusions.
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Figure 3: Each subplot illustrates the effect of varying a single MCSQ dimension on reasoning performance
(Pass@1 and Pass@5) and general capability. The solid blue line and dashed triangular line represent Pass@1
and Pass@5 reasoning performance (left vertical axis), respectively, while the dashed red square line denotes the
general capability score (right vertical axis). The correlation coefficient displayed in the upper-left corner quantifies
the strength and direction of the relationship between reasoning performance and general capability. Blue hollow
markers indicate the highest performance points in each measurement.

4.2 Experimental Results

RQ 1: Does increasing the amount of reasoning
data always improve LLM performance?

We first revisit the most fundamental vari-
able—dataset volume. As shown in Figure 3 and
Tables 7-8, a substantial performance leap when
the data scale increases from 100 to 1,000 samples,
followed by a relatively significant yet diminishing
marginal gain as the dataset further expands from
1,000 to 10,000 instances.

A striking trade-off emerges—larger reasoning
datasets consistently degrade general ability scores
(Table 9), indicative of catastrophic forgetting or
over-specialization. Fine-tuning on 54k samples
produces the highest reasoning scores, yet general
benchmarks drop 2–4 points relative to the base
model. This underscores a central tension: maxi-
mizing reasoning skills via SFT can erode general
knowledge, highlighting the need for data-efficient,
structure-aware curation.

Key insight: Naive volume scaling alone is in-
sufficient. Beyond a moderate threshold, marginal

gains become small and side effects on generality
become pronounced. This motivates the need to
look beyond data size and optimize dataset struc-
ture.

RQ 2: How does expanding the breadth of
subject domains impact model’s
generalization?
We vary the subject domain scope from a narrow
expert selection (5 domains) to all 53 available do-
mains (Table 2). Results (Tables 11, 12) reveal
that intermediate scope settings (20 and 30 do-
mains) often outperform both narrower and broader
configurations on Pass@1 across several tasks.
For Pass@5, including more domains generally
helps, but the benefit saturates or reverses beyond
a certain breadth(S4). The general capability ex-
hibits gradual improvement with the expansion of
scope breadth, while demonstrating progressively
increasing marginal returns.

Key insight: A broader domain scope is gen-
erally preferable. However, significant disparities
in sample sizes across different domains may ad-
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versely affect the model’s reasoning capabilities.
Consequently, the optimal scope should be adap-
tively determined based on the inherent character-
istics of the data.

RQ 3: What kind of initial data distribution
across domains is most beneficial for reasoning
performance?
Granularity measures the sample distribution
across domains. We compare strategies that uni-
formly sample, over-sample minor domains, or
concentrate on dominant domains (Table 3). Re-
sults (Tables 15-16) show a clear divergence: A
finer granularity demonstrates the most substantial
enhancement in reasoning performance. However,
such extreme sampling typically incurs significant
degradation in the model’s generalizability. As il-
lustrated in Figure 3, the model exhibits a 1.63%
performance decline compared to its no-fine-tuned
state. Moreover, this approach yields marginal
gains under pass@1 evaluation while resulting in
a 2.90% deterioration in reasoning capability un-
der pass@5 relative to the baseline. In contrast,
both G2 (uniform sampling) and G1 (original data
distribution) achieve a more balanced trade-off be-
tween reasoning proficiency and generalizability.
Notably, the original data distribution in this sam-
pling regime maintains relative uniformity, being
drawn from the top 10 domains by data volume.
Consequently, uniform sampling emerges as a sub-
optimal yet robust choice when the underlying data
distribution remains unknown.

Key insight: Data distribution across domains is
a powerful lever—optimizing granularity per task
and metric can unlock significant gains unattain-
able by volume scaling. The optimal granularity
is highly task-dependent. Increasing the granular-
ity of domain-relevant data sampling demonstrates
the most pronounced performance gains on task-
specific metrics. However, such extreme sampling
strategies typically incur significant degradation in
the model’s cross-domain generalization capabil-
ity.

RQ 4: Is it advantageous to maximize the
diversity of reasoning types, or does
specialization in a single type offer superior
results?
Varying the mix of reasoning types (Math, Science,
General) demonstrates that no single composition
is universally optimal (Tables 19, 20). There was
little difference in reasoning performance and gen-

eral capability between the group trained predomi-
nantly on mathematical reasoning data mixed with
other types(V3) and the group trained solely on
mathematical reasoning data(V0). This suggests
that the existing mathematical reasoning dataset
may already contain a considerable amount of gen-
eral knowledge. It is worth noting that V3 is 1.2%
higher than V0 in pass@5 accuracy, which means
that V3 brings a larger solution space.

Key insight: Expanding reasoning type diver-
sity beyond a strong core (such as math) offers
only marginal overall gains, but can improve solu-
tion diversity and model robustness for challenging
benchmarks. Thus, moderate diversity is beneficial
when targeting broader or more complex reasoning
tasks.

RQ 5: Does incorporating "imperfect" or
model-disagreed samples necessarily harm
reasoning ability?

Perhaps most counter-intuitive, we find that intro-
ducing distorted data—samples that judge models
disagree on or mark as incorrect—can improve
performance for advanced reasoning tasks (Ta-
bles 23-24). For example, high-distortion data(D3)
yields the best Pass@5 on GPQA-Diamond and
AMC23, outperforming even “pure” data. Mean-
while, for MATH500 and Minerva, strictly clean
data remains optimal. On the other hand, including
moderately difficult problems can help improve
reasoning skills while maintaining solid general
abilities, but too much difficulty will only hurt
these abilities. Past studies (Muennighoff et al.,
2025; Ye et al., 2025) have reflected this point, but
their difficulty was only controlled within the range
acceptable to the base model, and no phenomenon
of decreased ability was found when the difficulty
was too high.

Intriguingly, the most “distorted” data (D4)
causes the least general ability degradation, pos-
sibly because the model struggles to fit extreme
noise and thus preserves pre-trained knowledge.
This challenges the conventional wisdom that only
high-quality, teacher-agreed data should be used.

Key insight: Selectively including controversial
or hard-to-judge data can inject useful diversity and
unlock advanced reasoning potential, especially for
tasks with out-of-distribution challenges.
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RQ 6: How much does including non-reasoning
or marginally relevant data hurt—or even
help—reasoning performance?

We test the effect of incorporating data with vary-
ing relevance scores (Table 27). Surprisingly, data
labeled “low relevance” by automated scoring can
significantly boost Pass@5 on GPQA-Diamond
(Table 28), outperforming high-relevance data and
even the base model. This suggests that automated
relevance filters can be overly conservative, dis-
carding valuable edge-case or long-tail samples.

Key insight: Automated relevance metrics are
imperfect. “Irrelevant” data may contain essen-
tial signals for advanced benchmarks, and blanket
filtering can be counterproductive.

4.3 Best Practice Recommendations

Based on our comprehensive experimental analy-
sis of the six MCSQ dimensions, we summarize
actionable best practices for curating and optimiz-
ing reasoning-centric fine-tuning datasets for large
language models:

Volume: Do not blindly increase the dataset size.
Substantial gains are achieved by scaling up from
very small datasets (e.g., 100 to 1,000 samples),
but performance improvements diminish rapidly
beyond moderate volumes (e.g., 10,000 samples).
Excessive data may even degrade general abilities
due to overfitting or catastrophic forgetting. Rec-
ommendation: Focus on moderate, high-quality
volumes rather than maximizing raw data size.

Scope: Expanding the breadth of subject do-
mains generally improves generalization, but too
broad a scope can dilute domain expertise and
harm reasoning performance. Intermediate cov-
erage (e.g., scope rete=0.556) often strikes the opti-
mal balance. Recommendation: Select a domain
scope that matches your target application and data
distribution, prioritizing moderate breadth.

Granularity: Uniform or near-uniform domain
sampling often yields robust performance, espe-
cially when the underlying data distribution is un-
known. Over-concentration on major domains
boosts task-specific performance but harms cross-
domain generalization. Recommendation: Adopt
balanced sampling across domains unless clear
task-driven priorities exist.

Variety: Maximizing the diversity of reason-
ing types does not always lead to significant im-
provements over specialization, especially when
the core dataset (such as mathematical reasoning)

already contains substantial general knowledge.
However, incorporating a balanced mix of reason-
ing types can modestly expand the solution space
and enhance robustness on more complex or out-of-
distribution tasks. Recommendation: Prioritize
reasoning type diversity when targeting challeng-
ing or highly diverse downstream tasks, but for
datasets with a strong core (e.g., mathematics),
moderate diversity is sufficient in most cases.

Distortion: Selectively incorporating “dis-
torted” or model-disagreed samples can enhance
reasoning on challenging tasks, while purely
“clean” data may not always be optimal. However,
excessive noise can harm the model. Recommen-
dation: Do not discard all noisy or controversial
samples—retain a controlled proportion to promote
robustness and out-of-distribution reasoning.

Mismatch: Including a limited amount of
marginally relevant or low-relevance data can in-
ject valuable diversity and improve benchmark
performance, but over-inclusion may dilute focus.
Recommendation: Avoid overly aggressive auto-
mated filtering; consider retaining edge-case sam-
ples that may seem irrelevant but could benefit
advanced reasoning.

In summary: Prioritize data structure and di-
versity over volume; tailor dataset curation to the
specific reasoning tasks and benchmarks of inter-
est. Combining moderate data volume, balanced
domain and type diversity, and controlled inclu-
sion of “imperfect” or “noisy” samples leads to the
most robust improvements in LLM reasoning.

5 Discussion

One concern is the reliability of Distortion and
Mismatch metrics, as they rely on model-based
judgments. To mitigate bias, we employed ensem-
ble scoring (Gemini, Qwen-7B, Qwen-32B) and
discretized outputs into bins. Furthermore, a hu-
man annotation study on 500 samples showed over
90Another concern is the independence of MCSQ
axes. While Objective Information Theory (OIT)
provides theoretical justification for their orthogo-
nality, we acknowledge that residual correlations
may exist in practice. Our controlled sampling de-
sign minimizes confounding, and future work will
quantify these correlations explicitly with depen-
dency analysis. Finally, we recognize the trade-off
between reasoning specialization and general capa-
bility observed in our experiments. We propose a
preliminary “three-stage filtering funnel”—Macro
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(domain scope), Core (challenge and relevance),
and Micro (granularity/diversity)—to balance rea-
soning gains with general knowledge retention.
Early results indicate this strategy achieves compet-
itive reasoning improvements while maintaining
general benchmarks (see Appendix D).

In summary, MCSQ provides the first system-
atic, quantitative framework for reasoning-centric
SFT data. Our expanded validation across multi-
ple model scales and datasets confirms that data
structure trumps data volume, with consistent
trends under varying optimization hyperparame-
ters. Moreover, metrics based on automated judg-
ments are strongly aligned with human evalua-
tion, and preliminary multi-stage curation strate-
gies show promise in mitigating the specializa-
tion–generalization trade-off. While our current
experiments focus on English math and science rea-
soning, the MCSQ framework is domain-agnostic
by design and can be extended to multilingual, cod-
ing, and open-domain tasks. We will release code,
data, and annotation pipelines to support such ex-
tensions and encourage community contributions.

6 Conclusion

In this work, we present MCSQ—a systematic,
quantitative framework for dissecting and optimiz-
ing the data characteristics that underpin LLM
reasoning. By decomposing dataset composi-
tion into six interpretable, measurable dimen-
sions—Volume, Scope, Granularity, Variety, Dis-
tortion, and Mismatch—we move beyond conven-
tional, volume-centric heuristics and provide the
first large-scale evidence that dataset structure de-
cisively shapes reasoning performance. Through
controlled fine-tuning experiments, we reveal that
targeted adjustments to data structure consistently
yield greater improvements in LLM reasoning than
naive data scaling.Moreover, even certain data con-
taining ’noise’ or exhibiting ’low relevance’ can
contribute to the enhancement of reasoning capa-
bilities. Importantly, our findings expose a robust
specialization–generalization trade-off, highlight-
ing the need for data-efficient and structure-aware
curation strategies.

Our results challenge prevailing assumptions
about data “quality” in LLM fine-tuning and pro-
vide actionable guidance for dataset curation, with
broad implications for model distillation, instruc-
tion tuning, and automated data selection. We be-
lieve that the MCSQ framework paves the way for

a new generation of reasoning-centric LLMs, in-
spiring further research into automated, principled,
and task-aware dataset optimization.

Limitations

This study has several limitations. Firstly, Our
experiments were only conducted on the Qwen
family, and whether they are valid for other ar-
chitecture models remains to be verified. Sec-
ondly, isolating the effect of one MCSQ dimen-
sion while keeping others perfectly constant is
challenging due to inherent correlations in real-
world data; our control is approximate. Thirdly,
the definition and measurement of some MCSQ
dimensions (e.g., Distortion based on model dis-
agreement, Mismatch based on automated scor-
ing) are operationalizations that could be refined
or replaced with alternative metrics. Fourthly, the
observed trade-off between reasoning and general
capabilities, while consistent in our setup, requires
further investigation to understand its underlying
mechanisms fully and explore mitigation strategies.
Finally, computational constraints limited the num-
ber of configurations and hyperparameter tuning
explored for each dimension.
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A Formation of the MCSQ framework

A.1 Objective Information Theory (OIT) and
GIME Metrics

OIT is a rigorous framework for quantifying
information from an objective, mathematically
grounded perspective. OIT conceptualizes infor-
mation as a mapping from the state of a noumenon
(object) over a time interval to the state of its car-
rier at another time. Based on OIT, the General
Information Metrics Evaluation (GIME) (Xu et al.,
2025b) method introduces eleven universal infor-
mation metrics, each with a formal definition, al-
lowing for comprehensive and systematic evalua-
tion of datasets and information resources in ma-
chine learning. The eleven GIME metrics are:

• Volume: volumeσ(I) = σ(g(c, Tm))

• Delay: delay(I) = supTm − supTh

• Scope: scopeσ(I) = σ(o)

• Granularity: granularityσ(I) =
∫
Λ
σ(oλ)dµ

µ(Λ)

• Variety: varietyR(I) = [f(o, Th)]R

• Duration: duration(I) = supTh − inf Th

• Sampling rate: sampling rate(I) =
|Λ|

duration(I)

• Aggregation: aggregation(I) = |R|
|f(o,Th)|

• Coverage: coverageσ(I) =
∫
Λ σ(cλ)dµ

• Distortion: distortionJ(I) = d(f, fe)

• Mismatch: mismatchI0(I) = d(I, I0)

These metrics provide a mathematical founda-
tion for describing the size, diversity, structure,
temporal dynamics, and reliability of information,
and have been successfully applied to pretraining
data selection and evaluation in large-scale AI sys-
tems.
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A.2 Mapping GIME’s 11 Metrics to MCSQ’s
6 Dimensions

Difference between Pretraining Data and SFT
Data Pretraining data for large language mod-
els (LLMs) is typically massive, heterogeneous,
and weakly supervised, comprising diverse sources
(e.g., web pages, books, code) with an emphasis
on coverage, scale, and diversity. In contrast, su-
pervised fine-tuning (SFT) data is usually smaller
in scale, highly curated, and strongly annotated,
often taking the form of (instruction, reasoning
traces, answer) triplets that target specific capabili-
ties such as stepwise reasoning. This fundamental
difference leads to a shift in the relevance and in-
terpretability of certain information metrics when
moving from pretraining to SFT settings.

Challenges in Adapting Metrics Several GIME
metrics, especially those related to temporal prop-
erties (delay, duration, sampling rate) and certain
structural properties (aggregation, coverage), are
difficult to meaningfully instantiate in the context
of static, single-turn, and highly structured SFT
data. For example, SFT samples do not typically
encode natural timestamps, nor are they sampled
from a temporal process. Similarly, the notions
of aggregation or coverage, which are meaning-
ful for large-scale, unstructured corpora, may not
translate directly to smaller, highly focused SFT
datasets. Furthermore, SFT data puts more em-
phasis on properties such as task relevance, step-
wise correctness, and reasoning diversity, which
requires reinterpreting and reweighting the original
metrics.

Theoretical Basis and Formal Mapping The
MCSQ framework distills six core dimensions
from the GIME/OIT metrics, tailored for the
reasoning-centric SFT scenario. Each MCSQ di-
mension is a principled instance or aggregation of
GIME metrics, as shown below:

1. Volume (V ): OIT/GIME:

volumeσ(I) = σ(g(c, Tm))

where g(c, Tm) is the reflecting set of information
I and σ is a measure function; for discrete data,
this is simply cardinality.

In SFT: Each sample xi = (qi, ti, ai) is a re-
flected information unit. Thus, for an SFT dataset
D = {x1, x2, . . . , xN},

V = |D| = N = σ(g(c, Tm))

2. Scope (S): OIT/GIME:

scopeσ(I) = σ(o)

where o is the ontology of information.
In SFT: The ontology is mapped as the set of

unique subject domains S (e.g., mathematics sub-
fields). Thus,

S = |S| = σ(o)

Here, o =
⋃

x∈D domain(x), and σ is the set cardi-
nality.

3. Granularity (G): OIT/GIME:

granularityσ(I) =

∫
Λ σ(oλ)dµ

µ(Λ)

where oλ is an atomic ontology, Λ is the index set,
and µ is a measure on Λ.

In SFT: Each domain d ∈ S is an atomic ontol-
ogy. Let nd be the number of samples from domain
d in D and Nd be the available pool size for d. We
instantiate:

G =
1

|S|
∑

d∈S

nd

Nd

This is the mean relative coverage per domain, re-
flecting the sampling uniformity across ontologies.

4. Variety (V y): OIT/GIME:

varietyR(I) = [f(o, Th)]R

where [·]R denotes the number of equivalence
classes of states under relation R.

In SFT: We define R as the equivalence relation
induced by reasoning type (e.g., Math, Science,
General). Let pk be the proportion of samples
of type k. Instead of only counting classes, we
use Shannon entropy to measure both richness and
balance:

V y = H(type) = −
∑

k

pk log pk

This is a strict refinement, as H(·) achieves its
maximum when all types are equally present.

5. Distortion (D): OIT/GIME:

distortionJ(I) = d(f, fe)

where d is a distance function between the reflected
state f and the restored state fe.

In SFT: For each sample x, teacher/judge mod-
els M = {Mj} provide binary correctness Ij(x)
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and weights wj (with
∑

j wj = 1). The “distance”
is 1−∑

j wjIj(x), i.e., the probability the ensem-
ble disagrees with x. Then:

D =
1

|D|
∑

x∈D


1−

∑

j

wjIj(x)




This is the empirical mean distortion across all
samples.

6. Mismatch (M ): OIT/GIME:

mismatchI0(I) = d(I, I0)

where I0 is the target information and d is a dis-
tance function.

In SFT: Let I0 be the subset of “reasoning-
relevant” information. For each x ∈ D, define
the indicator 1nonreasoning(x) (1 if x is not reasoning-
relevant, 0 otherwise). Then:

M =
1

|D|
∑

x∈D
1nonreasoning(x)

This is the average mismatch rate, i.e., the fraction
of samples not matching the intended reasoning
target.

Summary The above mappings show that
each MCSQ metric is a concrete instantiation or
refinement of its OIT/GIME ancestor, with all for-
mulae explicitly derived from the OIT definitions
under the semantics of SFT data. Metrics such as
delay, duration, sampling rate, aggregation, cover-
age are omitted since SFT data is typically static,
single-turn, and non-temporal, making these met-
rics either constant or uninformative in this context.
However, in future, when SFT scenarios become
more dynamic or multi-turn, these metrics could
be appropriately instantiated.

In conclusion, MCSQ is not a heuristic selection
but a theoretically grounded, mathematically justi-
fied reduction of the OIT/GIME system, ensuring
both interpretability and empirical relevance for
reasoning-centric LLM fine-tuning data.

B Dataset construction details

B.1 The Construction of s1-54k Dataset
Our experiments are based on the s1-54k dataset,
which is derived from the s1 project(We follow
the Apache license 2.0 for its data use agreement.).
The original collection consists of 59,029 questions
sourced from 16 diverse sources, covering a broad

range of domains and reasoning styles. To ensure
high data quality, we performed rigorous filtering
to remove any samples with missing fields, result-
ing in a final dataset of 54,046 valid instances.

The dataset integrates questions from various
sources, each annotated with its corresponding rea-
soning type and detailed source information. Ta-
ble 1 summarizes the breakdown of samples by
source and reasoning type.

B.2 Methods for Dividing Data Subsets under
6 Metrics

To systematically analyze how different dataset
properties affect LLM reasoning, we construct data
subsets along six quantitative dimensions defined
in the MCSQ framework. Below are the detailed
partitioning methods for each dimension.

1. Volume We sample subsets of different sizes
from the full s1-54k dataset to study the effect of
data scale. Specifically, we construct sets with
volumes of 100, 1k, 5k, 10k, 30k, and 54k samples
using stratified sampling to preserve the original
data distribution.

2. Scope Domain classification: We use Claude
3.5 Sonnet to classify each question into a domain
based on the Mathematics Subject Classification
(MSC) system from the American Mathematical
Society, covering both mathematical and scientific
topics (such as geometry, combinatorics, biology,
physics, economics, etc.). Experimental groups
and sampling strategies(Table 2)

3. Granularity This dimension studies the effect
of domain-level sample distribution. Volume fixed
at 10k samples, Scope fixed to the top 10 domains
(as in S1), ensuring moderate diversity. Granularity
is controlled by adjusting intra-domain sampling
ratios(Table 3).

4. Variety This dimension controls reasoning
type diversity(Table 4). The original s1-59k lacks
the reasoning type label, and we divide it according
to the classification strategy of diverse real-world
scenarios (Zhang et al., 2025). Science_Focus and
General_Focus are not discussed here due to too
little data.

5. Distortion Distortion quantifies model dis-
agreement on sample correctness, calculated
as: Distortion = 1 − (w1Gemini_acc +
w2Qwen7B_acc+w3Qwen32B_acc), where w1,
w2, w3 are weights reflecting validation sample
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sizes for each model. We partition samples into
five distortion levels(Table 5).

6. Mismatch Mismatch is measured us-
ing Deepseek-V3, which labels each ques-
tion with an isreasoning boolean and an
isreasoning_score (0–100) via the following
prompt:

Evaluate the suitability of the following question
for reasoning training. Respond ONLY with an
integer score between 0 and 100. Do not include
any other text, explanation, or labels.
Question: {question_text}
Subsets are constructed by score ranges(Table 6).

Summary For each dimension, we vary only the
target property while keeping other variables as
constant as possible, enabling controlled experi-
ments to isolate the causal effect of each data char-
acteristic on LLM reasoning and generalization
performance.

C Detailed Evaluation Results

This section provides the detailed tables referenced
in Section 4.2.

Due to resource constraints, our primary experi-
ments focused on Qwen2.5-3B-Instruct and the s1-
54k dataset to enable tightly controlled, causally
interpretable studies. In response, we have con-
ducted additional experiments using both different
parameter sizes within the Qwen2.5 family. The
results on the MATH500 dataset are summarized
in Table 31:

In addition to volume, we also evaluated
the effect of mismatch on multiple model
scales (Qwen2.5-0.5B/3B/7B-Instruct) by averag-
ing Pass@1 and Pass@5 across AMC23, GPQA-
Diamond, MATH500, Minerva, and Olympiad-
Bench. The results are shown in Table 32:

To further validate generality, we also report
results of Qwen2.5-3B-Instruct on the challenging
DeepMath-103K reasoning corpus, evaluating the
effect of training volume. The following Table 33
shows Pass@1 and Pass@5 results across five math
benchmarks:

These results further confirm that, even on a sig-
nificantly different and more challenging dataset,
increasing fine-tuning data volume yields consis-
tent improvements, though with diminishing re-
turns. The structure-first conclusions are also pre-
served.

D Additional Experimental Details and
Results

We acknowledge that exclusive reliance on au-
tomated model scoring may introduce bias, but
large-scale human annotation is impractical for our
dataset size. To reduce this risk:

• Distortion: We adopt an ensemble of teacher
models (Gemini-2.0-flash-thinking-exp-1219,
DeepSeek-R1-Distill-Qwen-7B, DeepSeek-
R1-Distill-Qwen-32B), weighted by reliabil-
ity, to compute distortion. This ensemble ap-
proach helps mitigate bias from any single
model and yields more robust labels.

• Mismatch: Given that LLM judges such as
DeepSeek-V3-0324 may produce clustered
scores, we discretize the outputs into three
bins (M0–M2), reframing the task as a classi-
fication problem to enhance reliability.

To further validate our approach, we conducted a
human annotation study on 500 samples. As shown
in Table 34, the agreement between automated and
human labels is high, particularly for reasoning
tasks.

The inherent trade-off between enhancing rea-
soning specialization and preserving general ca-
pabilities during supervised fine-tuning (SFT) is
a core challenge for the development and deploy-
ment of large language models. Based on our ex-
perimental findings and recent developments in
LLM training, we recommend several concrete
strategies:

1. Structural Regularization with “Imperfect”
Data. Injecting a controlled proportion of
higher-distortion or mismatched data during
SFT can serve as regularization, discourag-
ing overfitting and helping preserve general
capabilities while boosting out-of-domain rea-
soning.

2. Multi-Objective Data Curation (MCSQ-
guided). By leveraging the quantitative axes
of MCSQ, dataset construction can be posed
as a multi-objective optimization: maximize
reasoning accuracy and minimize general abil-
ity degradation. This enables principled bal-
ancing (e.g., via Pareto frontier search or ac-
tive data selection).

3. Curriculum/Staged Fine-Tuning. First fine-
tune on broad data for generalization, then on
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reasoning-optimized data (following MCSQ
principles) to incrementally enhance special-
ization. Our and prior work both support this
staged approach.

4. Architectural and Regularization Techniques.
Model-level strategies (e.g., mixture-of-
experts, multi-task learning) and explicit reg-
ularization (e.g., elastic weight consolidation,
distillation) can further mitigate capability
loss.

Preliminary Validation: Three-Stage Filtering
Funnel

We implemented a simple three-stage filtering
funnel:

• Macro: Select data domains (Scope)

• Core: Optimize challenge and relevance (Mis-
match/Distortion)

• Micro: Balance diversity and quantity (Gran-
ularity/Variety/Volume)

Compared to s1 and LIMO baselines (Qwen2.5-
3B-Instruct), our MCSQ-based funnel achieves
competitive or better results on reasoning and gen-
eral benchmarks(Table 35, Table 36).
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Table 1: Statistics of the s1-54k dataset by source and reasoning type.

Source Reasoning Type Samples Subset Details
NuminaMATH Math 30,655 AI-MO/NuminaMath-CoT/aops_forum: 30,171;

AI-MO/NuminaMath-CoT/cn_k12: 311;
AI-MO/NuminaMath-CoT/olympiads: 173

MATH Math 11,953 qfq/openaimath/Algebra: 2,807;
qfq/openaimath/Intermediate Algebra: 2,095;
qfq/openaimath/Prealgebra: 1,991;
qfq/openaimath/Number Theory: 1,334;
qfq/openaimath/Geometry: 1,298;
qfq/openaimath/Precalculus: 1,232;
qfq/openaimath/Counting & Probability: 1,196

OlympicArena Science 226 GAIR/OlympicArena/Math: 169;
GAIR/OlympicArena/Physics: 29;
GAIR/OlympicArena/Chemistry: 14;
GAIR/OlympicArena/Astronomy: 8;
GAIR/OlympicArena/Biology: 6

OmniMath Math 4,237 KbsdJames/Omni-MATH: 4,237
AGIEval General-purpose

(basic, not reasoning-
intensive)

2,312 baber/agieval/logiqa: 654;
baber/agieval/lsat_lr: 512;
baber/agieval/lsat_rc: 271;
baber/agieval/aqua_rat: 259;
baber/agieval/lsat_ar: 233;
baber/agieval/sat_math: 225;
baber/agieval/sat_en: 137;
baber/agieval/math_agieval: 21

OlympiadBench Science 896 Hothan/OlympiadBench/Theorem proof/Math:
503;
Hothan/OlympiadBench/Open-ended/Physics:
236;
Hothan/OlympiadBench/Open-ended/Math: 132;
Hothan/OlympiadBench/Theorem proof/Physics:
25

AIME (1983–2021) Math 769 qq8933/AIME_1983_2024: 769
TheoremQA Science 747 TIGER-Lab/TheoremQA/float: 360;

TIGER-Lab/TheoremQA/integer: 200;
TIGER-Lab/TheoremQA/bool: 112;
TIGER-Lab/TheoremQA/list of integer: 51;
TIGER-Lab/TheoremQA/option: 16;
TIGER-Lab/TheoremQA/list of float: 8

JEEBench Science 514 daman1209arora/jeebench/math: 236;
daman1209arora/jeebench/chem: 155;
daman1209arora/jeebench/phy: 123

GPQA (eval only) Science 307 Idavidrein/gpqa: 307
SciEval Science 227 OpenDFM/SciEval/chemistry/multiple-

choice/SocraticQA: 52;
OpenDFM/SciEval/biology/multiple-
choice/MedQA: 43;
OpenDFM/SciEval/chemistry/filling/reagent
selection: 43;
OpenDFM/SciEval/biology/judge/PubMedQA:
35;
OpenDFM/SciEval/biology/multiple-
choice/SocraticQA: 29;
OpenDFM/SciEval/physics/multiple-
choice/SocraticQA: 25

s1-prob Math 205 qfq/quant: 23;
qfq/stats_qual: 182

s1-teasers Math 998 0xharib/xword1: 998
All 54K questions 54,046
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Table 2: Domain coverage and sampling strategies for Scope dimension

Group Scope Rate Sampling Strategy
S0 (Scope-Expert) 5/53 = 0.094 Select the five core domains recommended by math-

ematics education experts: Geometry, Number The-
ory, Combinatorics, Real Functions, and Probability
Theory and Stochastic Processes; oversample these
domains.

S1 10/53 = 0.189 Select samples from the top 10 domains by sample
size.

S2 20/53 = 0.377 Select samples from the top 20 domains by sample
size.

S3 30/53 = 0.566 Select samples from the top 30 domains by sample
size.

S4 40/53 = 0.755 Select samples from the top 40 domains by sample
size.

S5 53/53 = 1.0 Use all 53 domains.

Table 3: Sampling strategies for Granularity dimension

Group Granularity Value Sampling Strategy
G0 (Lean) 0.154 Bipolar: Oversample the top 2 domains (Geometry

and Number Theory), each at 35% (3.5k samples),
with the remaining 30% (3k) drawn from the other 8
domains according to their original proportions.

G1 (Preserved) 0.204 Natural: Draw 10k samples from the top 10 domains
in proportion to their original distribution.

G2 (Uniform) 0.441 Uniform: Sample 1,000 from each of the top 10
domains (10k/10 = 1k). If a domain has fewer than
1k, take all its samples and reallocate the remainder
to other domains to keep the distribution as balanced
as possible.

G3 (Extreme) 0.564 Extreme: Sample only from the smallest domains;
take 100% of the available samples from as many
small domains as needed to reach 10k (up to 6/10 =
0.6 ratio).

Table 4: Sampling strategies for Variety dimension

Group Composition Description Variety
Ratio

V0 Math(100%) Only Math questions, minimal di-
versity

0.000

V1 Math(92.7%), Science(3.8%),
General(3.5%)

Natural mix reflecting the origi-
nal dataset

0.448

V2 Math(81.2%), Science(18.8%) Remove General type for moder-
ate diversity

0.697

V3 Math(60.5%), Science(18.8%),
General(20.7%)

Maximize diversity within 10k
budget

1.363

Science_Focus Science(100%) Science only; Volume = 1,877 –
General_Focus General(100%) General only; Volume = 2,066 –
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Table 5: Sampling strategies for Distortion dimension

Group Distortion Ratio Description Sampling Details
D1 0.0 No distortion: all models (Gemini, Qwen-

32B, Qwen-7B) agree and are correct.
10k samples, all
models correct.

D2 0.239 Low distortion: 31.1% all models correct,
53% two models correct, 15.9% one model
correct. Gemini acc 100%, Qwen-32B acc
80.6%.

10k samples.

D3 0.604 Medium distortion: only one model
(mostly Gemini) is correct; Gemini acc
87%, Qwen-32B acc 7.9%, Qwen-7B acc
5.1%.

10k samples.

D4 0.981 High distortion: 92.9% all models incor-
rect, 7.1% only Qwen-7B correct; Gemini
and Qwen-32B acc 0%.

10k samples.

D5 1.0 Maximum distortion: all models incorrect. 10k samples, all
models incorrect.

Table 6: Sampling strategies for Mismatch dimension

Group Description Sampling Criteria Count Avg Score
M0 Low mismatch isreasoning_score in [90,100], volume=10k 25,104 90.04
M1 Medium mismatch isreasoning_score in (80,90), volume=10k 17,528 85.00
M2 High mismatch isreasoning_score in [0,80], volume=10k 11,307 70.44

Table 7: Performance on Reasoning Benchmarks (Pass@1 Accuracy) with Varying Fine-tuning Data Volume.
Scores represent accuracy. Best performance among fine-tuned models for each benchmark is in bold. Base model
performance is provided for reference.

Model / Dataset Volume AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.4500 0.3182 0.6340 0.3088 0.2770

Volume=100 0.2250 0.1061 0.4580 0.2243 0.1659
Volume=1,000 0.3000 0.1667 0.5460 0.2096 0.2326
Volume=5,000 0.3250 0.1869 0.5800 0.2463 0.2459
Volume=10,000 0.4000 0.1919 0.6020 0.2610 0.2756
Volume=30,000 0.4500 0.2020 0.6140 0.2206 0.2963
Volume=54,046 0.5000 0.2170 0.6260 0.2853 0.3115
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Table 8: Performance on Reasoning Benchmarks (Pass@5 Accuracy) with Varying Fine-tuning Data Volume.
Scores represent accuracy. Best performance among fine-tuned models for each benchmark is in bold. Base model
performance is provided for reference.

Model / Volume AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.7500 0.6414 0.8180 0.4522 0.4444

Volume=100 0.3750 0.4242 0.7140 0.4375 0.3067
Volume=1,000 0.6000 0.6263 0.8120 0.4485 0.4178
Volume=5,000 0.6500 0.6919 0.8160 0.4375 0.4533
Volume=10,000 0.6250 0.6414 0.8040 0.4485 0.4637
Volume=30,000 0.7000 0.7071 0.8020 0.4596 0.5156
Volume=54,046 0.7750 0.7269 0.8280 0.4659 0.5963

Table 9: Average Performance on General Capability Benchmarks with Varying Fine-tuning Data Volume. Scores
represent accuracy (MMLU is 5-shot avg). Best performance among fine-tuned models is in bold.

Model / Dataset Volume MMLU (Avg) CMMLU (Avg) C-Eval (Avg)

Base (Qwen2.5-3B-Instruct) 66.69 74.49 74.29

Volume=100) 66.98 74.68 73.77
Volume=1,000 66.15 74.49 74.29
Volume=5,000 65.91 73.84 73.48
Volume=10,000 65.33 73.58 72.36
Volume=30,000 64.93 72.84 71.55
Volume=54,046 64.48 72.52 70.98

Table 10: Detailed Performance on General Capability Benchmarks (MMLU, CMMLU, C-Eval) by Subject
Category with Varying Fine-tuning Data Volume.

Volume MMLU CMMLU C-Eval
Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other

Base 66.69 61.76 77.77 59.64 70.97 74.49 67.13 74.75 78.02 77.56 74.29 66.98 85.09 75.88 73.70

100 66.98 61.56 77.48 60.98 70.79 74.68 67.88 74.75 77.78 77.87 73.77 66.28 84.36 77.04 72.40
1k 66.15 61.53 76.96 58.92 70.70 74.49 67.13 74.75 78.02 77.56 74.29 66.98 85.09 75.88 73.70
5k 65.91 60.34 76.47 59.55 70.30 73.84 66.61 73.99 77.18 77.08 73.48 66.74 84.00 77.04 71.09
10k 65.33 59.74 76.37 58.62 69.77 73.58 66.46 74.10 76.66 76.49 72.36 65.58 83.27 75.10 70.31
30k 64.93 58.18 75.82 58.85 69.68 72.84 65.07 73.17 75.69 76.74 71.55 62.79 81.82 75.49 71.35
54k 64.48 58.40 75.46 57.93 69.28 72.52 64.41 72.77 75.57 76.67 70.98 62.32 81.45 75.49 70.05

Table 11: Performance on Reasoning Benchmarks (Pass@1 Accuracy) with Varying Domain Scope (S) at Fixed
Volume (10k samples). Scores represent accuracy. Best performance among S0-S5 fine-tuned models for each
benchmark is in bold. Base model performance is provided for reference.

Model / Scope Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.4500 0.3182 0.6340 0.3088 0.2770

S0 - Expert 5 0.3000 0.2222 0.6000 0.2243 0.2652
S1 - Top 10 0.2500 0.2020 0.6080 0.2243 0.2622
S2 - Top 20 0.3750 0.2424 0.6020 0.2169 0.2607
S3 - Top 30 0.4000 0.1869 0.6200 0.2316 0.2741
S4 - Top 40 0.2500 0.2020 0.5900 0.2721 0.2415
S5 - All 53 0.3000 0.2121 0.5660 0.2169 0.2311
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Table 12: Performance on Reasoning Benchmarks (Pass@5 Accuracy) with Varying Domain Scope (S) at Fixed
Volume (10k samples). Scores represent accuracy. Best performance among S0-S5 fine-tuned models for each
benchmark is in bold. Base model performance is provided for reference.

Model / Scope Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.7500 0.6414 0.8180 0.4522 0.4444

S0 - Expert 5 0.6500 0.7273 0.8080 0.4412 0.4874
S1 - Top 10 0.6250 0.6616 0.8020 0.4596 0.4533
S2 - Top 20 0.6750 0.6869 0.8100 0.4522 0.4607
S3 - Top 30 0.6750 0.5606 0.8180 0.4338 0.4889
S4 - Top 40 0.7250 0.7475 0.8180 0.4301 0.4578
S5 - All 53 0.6750 0.7273 0.8080 0.4449 0.4785

Table 13: Average Performance on General Capability Benchmarks with Varying Domain Scope (S) at Fixed
Volume (10k samples). Scores represent accuracy (MMLU is 5-shot avg).

Model / Scope Setting MMLU (Avg) CMMLU (Avg) C-Eval (Avg)

Base (Qwen2.5-3B-Instruct) 66.69 74.49 74.29

S0 - Expert 5) 65.25 73.84 72.14
S1 - Top 10) 65.10 73.91 72.36
S2 - Top 20) 65.18 73.46 72.88
S3 - Top 30) 65.25 73.57 72.59
S4 - Top 40) 65.24 73.71 72.88
S5 - All 53) 65.69 73.99 73.03

Table 14: Detailed Performance on General Capability Benchmarks (MMLU, CMMLU, C-Eval) by Subject
Category with Varying Domain Scope (S) at Fixed Volume (10k samples).

Scope MMLU CMMLU C-Eval
Setting Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other

Base 66.69 61.76 77.77 59.64 70.97 74.49 67.13 74.75 78.02 77.56 74.29 66.98 85.09 75.88 73.70

S0 65.25 59.71 76.21 58.55 69.71 73.84 66.73 74.01 76.98 77.11 72.14 63.72 82.91 77.82 70.05
S1 65.10 59.91 76.67 58.17 69.03 73.91 66.89 74.04 77.06 77.15 72.36 64.65 83.64 77.04 69.79
S2 65.18 60.17 76.63 57.87 69.56 73.46 65.63 74.10 77.02 76.43 72.88 66.05 84.00 76.26 70.31
S3 65.25 58.88 76.93 58.30 70.20 73.57 65.78 73.99 77.06 76.84 72.59 64.19 84.36 78.21 69.79
S4 65.24 59.31 76.57 58.53 69.74 73.71 66.53 74.32 77.02 76.36 72.88 65.12 84.36 77.04 70.57
S5 65.69 60.17 76.96 58.53 70.51 73.99 66.50 74.12 77.54 77.29 73.03 65.81 84.36 76.26 70.83

Table 15: Performance on Reasoning Benchmarks (Pass@1 Accuracy) with Varying Domain Granularity (G) at
Fixed Volume (10k samples) and Scope (Top 10 Domains). Scores represent accuracy. Best performance among
the four settings for each benchmark is in bold. Base model performance is provided for reference.

Model / Granularity Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.4500 0.3182 0.6340 0.3088 0.2770

G0=0.154 0.2750 0.1869 0.5840 0.2500 0.2474
G1=0.204 0.2500 0.1768 0.6040 0.2647 0.2444
G2=0.441 0.3000 0.1818 0.6180 0.2426 0.2681
G3=0.564 0.3750 0.2323 0.5840 0.2574 0.2474
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Table 16: Performance on Reasoning Benchmarks (Pass@5 Accuracy) with Varying Domain Granularity (G) at
Fixed Volume (10k samples) and Scope (Top 10 Domains). Scores represent accuracy. Best performance among
the four settings for each benchmark is in bold. Base model performance is provided for reference.

Model / Granularity Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.7500 0.6414 0.8180 0.4522 0.4444

G0=0.154 0.7750 0.6414 0.8220 0.4485 0.4607
G1=0.204 0.7500 0.6414 0.7980 0.4706 0.4756
G2=0.441 0.5500 0.6919 0.8160 0.4596 0.4726
G3=0.564 0.5750 0.6717 0.8180 0.4412 0.4681

Table 17: Average Performance on General Capability Benchmarks with Varying Domain Granularity (G) at Fixed
Volume (10k samples) and Scope (Top 10 Domains). Scores represent accuracy (MMLU is 5-shot avg). Best
performance among the four settings is in bold.

Model / Granularity Setting MMLU (Avg) CMMLU (Avg) C-Eval (Avg)

Base (Qwen2.5-3B-Instruct) 66.69 74.49 74.29

G0=0.154 65.37 74.21 72.07
G1=0.204 65.55 73.52 72.96
G2=0.441 65.41 73.50 72.96
G3=0.564 65.52 73.43 71.84

Table 18: Detailed Performance on General Capability Benchmarks (MMLU, CMMLU, C-Eval) by Subject
Category with Varying Domain Granularity (G) at Fixed Volume (10k samples) and Scope (Top 10 Domains).

Granularity MMLU CMMLU C-Eval
Setting Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other

Base 66.69 61.76 77.77 59.64 70.97 74.49 67.13 74.75 78.02 77.56 74.29 66.98 85.09 75.88 73.70

Extreme 65.52 60.24 76.67 58.19 70.51 73.43 65.67 73.85 76.70 76.87 71.84 63.02 83.27 77.04 70.05
Uniform 65.41 60.30 76.11 58.28 70.36 73.50 65.63 74.01 76.58 77.08 72.96 65.35 83.64 78.21 70.31
Preserved 65.55 59.64 76.57 58.96 70.14 73.52 65.51 73.77 77.10 77.11 72.96 65.12 84.00 76.65 71.35
Lean 65.37 59.87 76.54 58.36 70.05 74.21 67.17 74.23 77.50 77.49 72.07 64.42 83.27 75.88 70.05

Table 19: Performance on Reasoning Benchmarks (Pass@1 Accuracy) with Varying Reasoning Type Variety (V).
Scores represent accuracy. Best performance among V1-V2 fine-tuned models for each benchmark is in bold. Base
model performance is provided for reference. (Science/GeneralF ocus results are pending/omitted for brevity).

Model / Variety Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.4500 0.3182 0.6340 0.3088 0.2770

V0 - MathF ocus 0.4250 0.1919 0.5960 0.2279 0.2548
V1 - Preserved 0.4750 0.1667 0.6000 0.2390 0.2563
V2 - ReasoningF ocus 0.2250 0.1717 0.5880 0.2206 0.2444
V3 - Balanced 0.3750 0.2222 0.5880 0.2500 0.2593
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Table 20: Performance on Reasoning Benchmarks (Pass@5 Accuracy) with Varying Reasoning Type Variety (V).
Scores represent accuracy. Best performance among V1-V4 fine-tuned models for each benchmark is in bold. Base
model performance is provided for reference.

Model / Variety Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.7500 0.6414 0.8180 0.4522 0.4444

V0 - MathF ocus) 0.6250 0.5960 0.8200 0.4485 0.4756
V1 - Preserved) 0.6000 0.6515 0.8080 0.4265 0.4830
V2 - ReasoningF ocus) 0.5750 0.6414 0.8180 0.4154 0.4933
V3 - Balanced) 0.7000 0.6566 0.8020 0.4191 0.4474

Table 21: Average Performance on General Capability Benchmarks with Varying Reasoning Type Variety (V).
Scores represent accuracy (MMLU is 5-shot avg). Best performance among V1-V4 fine-tuned models is in bold.

Model / Variety Setting MMLU (Avg) CMMLU (Avg) C-Eval (Avg)

Base (Qwen2.5-3B-Instruct) 66.69 74.49 74.29

V0 - MathF ocus) 65.65 73.99 72.81
V1 - Preserved) 64.36 73.56 71.84
V2 - ReasoningF ocus) 65.62 73.65 72.59
V3 - Balanced) 65.77 73.32 73.11

Table 22: Detailed Performance on General Capability Benchmarks (MMLU, CMMLU, C-Eval) by Subject
Category with Varying Reasoning Type Variety (V).

Variety MMLU CMMLU C-Eval
Setting Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other

Base 66.69 61.76 77.77 59.64 70.97 74.49 67.13 74.75 78.02 77.56 74.29 66.98 85.09 75.88 73.70

V0 (MathFoc) 65.65 60.11 76.54 59.23 69.80 73.99 66.69 74.15 77.58 77.08 72.81 64.42 85.09 77.43 70.31
V1 (Pres.) 64.36 59.24 76.11 56.26 69.74 73.56 65.82 73.99 77.10 76.74 71.84 63.72 84.36 76.26 69.01
V2 (ReasFoc) 65.62 59.81 76.54 59.06 70.20 73.65 65.90 74.01 77.18 76.91 72.59 64.19 84.73 76.65 70.57
V3 (Balanced) 65.77 60.14 76.86 59.11 70.14 73.32 65.98 73.80 76.62 76.29 73.11 65.12 83.27 78.99 70.83

Table 23: Performance on Reasoning Benchmarks (Pass@1 Accuracy) with Varying Data Distortion (D) at Fixed
Volume (10k samples). Scores represent accuracy. Best performance among D1-D5 fine-tuned models for each
benchmark is in bold. Base model performance is provided for reference.

Model / Distortion Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.4500 0.3182 0.6340 0.3088 0.2770

D0 = 0.0 0.3250 0.2677 0.6060 0.2353 0.2770
D1 = 0.24 0.2750 0.1768 0.6260 0.2316 0.2667
D2 = 0.60 0.3750 0.2525 0.5980 0.2279 0.2681
D3 = 0.98 0.3250 0.1768 0.5500 0.2500 0.2459
D4 = 1.0 0.3000 0.1869 0.5500 0.2279 0.2296
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Table 24: Performance on Reasoning Benchmarks (Pass@5 Accuracy) with Varying Data Distortion (D) at Fixed
Volume (10k samples). Scores represent accuracy. Best performance among D1-D5 fine-tuned models for each
benchmark is in bold. Base model performance is provided for reference.

Model / Distortion Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.7500 0.6414 0.8180 0.4522 0.4444

D0 = 0.0 0.5750 0.7071 0.8320 0.4743 0.4578
D1 = 0.24 0.6250 0.6667 0.8180 0.4265 0.4815
D2 = 0.60 0.6250 0.7525 0.8220 0.4265 0.4874
D3 = 0.98 0.6750 0.7677 0.8180 0.4375 0.4652
D4 = 1.0 0.6000 0.6869 0.8060 0.4412 0.4726

Table 25: Average Performance on General Capability Benchmarks with Varying Data Distortion (D) at Fixed
Volume (10k samples). Scores represent accuracy (MMLU is 5-shot avg). Note the counter-intuitive trend.

Model / Distortion Setting MMLU (Avg) CMMLU (Avg) C-Eval (Avg)

Base (Qwen2.5-3B-Instruct) 66.69 74.49 74.29

D0 = 0.0) 65.13 73.42 72.51
D1 = 0.24) 64.73 73.53 72.21
D2 = 0.60) 65.23 73.74 72.66
D3 = 0.98) 65.28 73.66 72.36
D4 = 1.0) 65.53 73.79 73.55

Table 26: Detailed Performance on General Capability Benchmarks (MMLU, CMMLU, C-Eval) by Subject
Category with Varying Data Distortion (D) at Fixed Volume (10k samples).

Distortion MMLU CMMLU C-Eval
Setting (D value) Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other

Base 66.69 61.76 77.77 59.64 70.97 74.49 67.13 74.75 78.02 77.56 74.29 66.98 85.09 75.88 73.70

D0 (0.00) 65.13 59.24 76.80 58.04 69.80 73.42 65.67 73.93 76.46 76.94 72.51 66.28 82.55 77.43 69.01
D1 (0.24) 64.73 58.91 76.63 57.43 69.43 73.53 66.10 73.80 77.34 76.39 72.21 64.42 84.36 75.88 69.79
D2 (0.60) 65.23 59.41 76.76 58.19 69.90 73.74 66.61 73.71 76.90 77.29 72.66 63.49 85.09 77.82 70.57
D3 (0.98) 65.28 59.15 76.54 58.62 69.99 73.66 66.02 73.66 77.30 77.18 72.36 64.65 82.91 77.04 70.31
D4 (1.00) 65.53 59.44 76.60 58.98 70.20 73.79 66.46 73.82 77.46 76.98 73.55 66.51 83.64 78.21 71.09

Table 27: Performance on Reasoning Benchmarks (Pass@1 Accuracy) with Varying Data Mismatch (M) at Fixed
Volume (10k samples). Scores represent accuracy. Best performance among M0-M2 fine-tuned models for each
benchmark is in bold. Base model performance is provided for reference.

Model / Mismatch Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.4500 0.3182 0.6340 0.3088 0.2770

M0 0.3250 0.2020 0.5820 0.2537 0.2667
M1 0.3250 0.2121 0.6160 0.2132 0.2785
M2 0.2750 0.2424 0.5940 0.2206 0.2474
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Table 28: Performance on Reasoning Benchmarks (Pass@5 Accuracy) with Varying Data Mismatch (M) at Fixed
Volume (10k samples). Scores represent accuracy. Best performance among M0-M2 fine-tuned models for each
benchmark is in bold. Base model performance is provided for reference.

Model / Mismatch Setting AMC23 GPQA-
Diamond

MATH500 Minerva OlympiadBench

Base (Qwen2.5-3B-Instruct) 0.7500 0.6414 0.8180 0.4522 0.4444

M0 0.6250 0.6566 0.8040 0.4522 0.4578
M1 0.7000 0.6414 0.8040 0.4301 0.4815
M2 0.6000 0.7576 0.8040 0.4338 0.4726

Table 29: Average Performance on General Capability Benchmarks with Varying Data Mismatch (M) at Fixed
Volume (10k samples). Scores represent accuracy (MMLU is 5-shot avg).

Model / Mismatch Setting MMLU (Avg) CMMLU (Avg) C-Eval (Avg)

Base (Qwen2.5-3B-Instruct) 66.69 74.49 74.29

M0 - Low Mismatch) 65.66 73.63 72.66
M1 - Medium Mismatch) 65.21 73.21 71.99
M2 - High Mismatch) 65.63 73.63 72.88

Table 30: Detailed Performance on General Capability Benchmarks (MMLU, CMMLU, C-Eval) by Subject
Category with Varying Data Mismatch (M) at Fixed Volume (10k samples).

Mismatch MMLU CMMLU C-Eval
Setting Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other Avg STEM Soc Sci Humanities Other

Base 66.69 61.76 77.77 59.64 70.97 74.49 67.13 74.75 78.02 77.56 74.29 66.98 85.09 75.88 73.70

M0 (Low) 65.66 59.91 76.44 59.21 70.20 73.63 65.63 74.12 77.42 76.84 72.66 64.88 83.64 76.65 71.09
M1 (Med) 65.21 59.15 76.34 58.62 69.83 73.21 65.43 73.47 76.86 76.56 71.99 63.95 82.91 76.65 70.05
M2 (High) 65.63 59.58 76.67 58.85 70.45 73.63 66.10 73.85 77.10 77.05 72.88 65.12 84.00 77.43 70.31

Table 31: Performance on MATH500 across different Qwen2.5 model scales.

Fine-tune Setting Qwen2.5-0.5B Qwen2.5-3B Qwen2.5-7B
base+volume(100) 0.1780 0.4580 0.7340
base+volume(1000) 0.1240 0.5460 0.6820
base+volume(5000) 0.1280 0.5800 0.7360
base+volume(10000) 0.1540 0.6020 0.7540
base+volume(30000) 0.1900 0.6140 0.7720
base+volume(54046) 0.1920 0.6200 0.7840

Table 32: Effect of Mismatch dimension across Qwen2.5 models (Pass@1 and Pass@5 averaged over reasoning
benchmarks).

Fine-tune\base pass@k Qwen2.5-0.5B Qwen2.5-3B Qwen2.5-7B
base+M0 pass@1 0.0689 0.3459 0.3698
base+M1 pass@1 0.0688 0.3290 0.3549
base+M2 pass@1 0.0615 0.3159 0.3501
base+M0 pass@5 0.2826 0.6258 0.6904
base+M1 pass@5 0.3159 0.6114 0.6984
base+M2 pass@5 0.3098 0.6336 0.7198
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Table 33: Validation on DeepMath-103K: reasoning performance across benchmarks with increasing training
volume.

Fine-tune Metric AMC GPQA MATH Minerva OlympiadBench
base+volume(100) Pass@1 0.0000 0.0758 0.0300 0.0331 0.0059
base+volume(1000) Pass@1 0.0500 0.1162 0.0700 0.0551 0.0178
base+volume(5000) Pass@1 0.1000 0.1768 0.1500 0.0919 0.0415
base+volume(10000) Pass@1 0.1500 0.2121 0.2000 0.1287 0.0593
base+volume(100) Pass@5 0.0750 0.4141 0.2820 0.1213 0.0889
base+volume(1000) Pass@5 0.1250 0.4848 0.3700 0.1691 0.1304
base+volume(5000) Pass@5 0.2250 0.5808 0.5000 0.2500 0.2000
base+volume(10000) Pass@5 0.3000 0.6313 0.5700 0.3015 0.2504

Table 34: Agreement between automated judges and human annotations on 500 samples.

Judge #Samples Agreement with Human Annotation (Mismatch)
Human (reference) 500 100%
DeepSeek-V3-0324 500 94.4%
Qwen2.5-32B-Instruct 500 92%

Table 35: Comparison of different curation methods on reasoning benchmarks.

Methods Volume GPQA-Diamond MATH500 Minerva OlympiadBench Avg
MCSQ 1000/54k 0.3283 0.5720 0.2059 0.2267 0.3316
S1 1000/59k 0.1846 0.5880 0.2279 0.2593 0.3070
LIMO 817/100k 0.2879 0.5800 0.2537 0.2193 0.3332

Table 36: Comparison of different curation methods on general capability benchmarks.

Methods Volume MMLU (Avg) CMMLU (Avg) C-Eval (Avg) Total (Avg)
MCSQ 1000/54k 64.65 74.81 72.30 70.587
S1 1000/59k 64.89 74.18 72.44 70.503
LIMO 817/100k 65.00 73.73 71.92 70.217
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