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Abstract

Limited low-resource language corpora in pro-
fessional domains like medicine hinder cross-
lingual domain adaptation of pre-trained large
language models (PLMs). While abundant En-
glish medical corpora could complement this
scarcity, the effective mixture of English and
target language, including machine-translated
content, remains underexplored. We exam-
ined how corpus compositional statistics (e.g.,
token sizes and language proportions) affect
performance on a Japanese—English medical
knowledge benchmark. Through continued pre-
training of a bilingual PLM on multilingual
corpora with varying proportions of English
and Japanese texts (both original and machine-
translated), we analyzed correlations between
corpus compositional statistics and fine-grained
task performance. Our findings suggest a practi-
cal approach to optimizing multilingual corpora
for cross-lingual domain adaptation, which re-
quires leveraging specialized knowledge from
English corpora while ensuring sufficient cover-
age of language-specific expressions in a target
language (Japanese). Such insights will con-
tribute to the development of multilingual mod-
els that effectively leverage English-language
resources in various professional domains with
low-resource languages.

1 Introduction

Imbalanced language resources pose a significant
challenge for pre-trained large language models
(PLMs) in achieving cross-lingual domain adapta-
tion in specific target languages. This imbalance
is especially pronounced in professional domains
such as medicine, where general biomedical knowl-
edge circulates globally in English, while available
resources in the target language remain relatively
limited. For example, PubMed hosts over 38 mil-
lion biomedical papers globally', while J-STAGE,

'Statistics of PubMed: https://pubmed.ncbi.nlm.nih.
gov/about/

a comparable Japanese database, contains only
around 5 million?. While abundant English medical
corpora offer a promising avenue for augmenting
scarce target-language data, the optimal continued
pre-training strategy for acquiring knowledge from
well-resourced source languages (often English) to
support domain adaptation in less-resourced target
languages has yet to be thoroughly explored.

Here, we investigate the optimal corpus com-
position for the continued pre-training of a bilin-
gual (Japanese—English) PLM, with a particular
focus on leveraging abundant English-language
resources to enhance knowledge acquisition in
Japanese medicine. Continued pre-training usu-
ally follows initial pre-training on general cor-
pora, where large language models acquire founda-
tional language abilities such as lexical, syntactic,
and semantic patterns, as well as general factual
knowledge (Petroni et al., 2019; AlKhamissi et al.,
2022). Then, continued pre-training leverages addi-
tional corpora containing domain-specific or target-
language texts, with its effectiveness for domain
adaptation demonstrated across multiple studies
(Gupta et al., 2023; Cui et al., 2024; Pires et al.,
2023; Zhu et al., 2023; Zhao et al., 2024a; Fujii
et al., 2024).

Nevertheless, several practical considerations
have been overlooked for effective continued pre-
training aimed at cross-lingual domain adaptation
in low-resource professional domains. For exam-
ple, the optimal mixing ratio of source and target
languages for acquiring knowledge from English
corpora remains unclear. While current machine
translation systems provide reasonable quality, the
balance between original and translated content is
still not well understood. Furthermore, existing
studies often lack detailed analyses of how cor-
pus compositional statistics (e.g., token sizes and

ZStatistics of J-STAGE: https://www. jstage.jst.go.
jp/browse/-char/en
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Fig. 1: Study Overview. This study comprises three steps. (1) First, we performed continued pre-training on
pre-trained large language models using diverse multilingual corpora. (2) Next, we computed the difference in scores
before and after the continued pre-training using the Japanese—English medical knowledge benchmark, JMedBench.
(3) Finally, we conducted partial correlation analysis to identify task-wise language preferences, thereby revealing
the optimal corpus composition for cross-lingual domain adaptation.

language proportions) representing corpus compo-
sition affect downstream performance across tasks
and languages.

In this study, we address the following research
questions (RQs):

RQ1: How do original English and machine-
translated Japanese corpora help a bilingual
(Japanese—English) PLM achieve domain
adaptation in the Japanese medical domain?
What is the optimal corpus configuration
and proportion of English and Japanese texts
for achieving the best performance in the
medical domain?

How do specific corpus compsitional statis-
tics in multilingual corpora influence model
performance across diverse medical tasks?

RQ2:

RQ3:

To investigate these questions, we systematically
compared the impact of multilingual corpora con-
taining varying proportions of Japanese and En-
glish medical content (see the study overview in
Fig. 1). To characterize the language composi-
tion of these corpora, we defined seven composi-
tional statistics: total token count, Japanese token
count, English token count, parallel token count
(paragraph-aligned bilingual medical texts), and
the ratios of Japanese, English, and parallel to-
kens. Then, we employed 13-billion-parameter
bilingual (Japanese—English) PLMs and computed
the difference in model performance on a com-
prehensive Japanese—English medical knowledge
benchmark, JMedBench (Jiang et al., 2025), before
and after continued pre-training. JMedBench com-
prises 20 Japanese and 7 English tasks, including

multiple-choice question answering (MCQA), ma-
chine translation (MT), named entity recognition
(NER), document classification (DC), and semantic
textual similarity (STS) (see Appendix A). Finally,
we applied partial correlation analysis, which esti-
mates the strength and direction of a relationship
between two variables while controlling for other
covariates. This enabled us to isolate the unique
contribution of each compositional statistic to task
performance despite inherent mutual correlations—
for example, more Japanese tokens automatically
raise the total token count. Our findings underscore
the need to optimize corpus composition so that
high-resource English texts can be leveraged effec-
tively for cross-lingual domain adaptation in the
low-resource Japanese medical domain.

Our contributions, which correspond to the RQs,
can be summarized as follows:

* We systematically evaluate multilingual
corpora featuring varying proportions of
Japanese and English medical texts, identify-
ing the potential benefits of both original En-
glish and machine-translated Japanese texts.

* We demonstrate that a well-balanced multi-
lingual corpus can enhance knowledge acqui-
sition in both Japanese and English medical
domains, achieving the best performance on
JMedBench.

* QOur partial correlation analysis quantifies how
specific compositional statistics in multilin-
gual corpora influence task-specific perfor-
mance across various medical tasks, providing
insights into the optimal configuration of the
corpus for cross-lingual domain adaptation.
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2 Related Work

Cross-lingual Domain Adaptation.

Techniques aimed at enhancing multilingual
language models’ understanding of low-resource
languages have attracted considerable attention
(Xu et al., 2024), leading to broadly recognized
concepts such as cross-lingual alignment and
cross-lingual transfer (Hdmmerl et al., 2024).
Typically, assuming the presence of high-resource
(source) and low-resource (target) languages, the
objectives of these approaches fall into two main
categories: (1) promoting knowledge transfer
from source to target languages (Castellucci et al.,
2021; Rathore et al., 2023; Tanwar et al., 2023;
Awasthi et al., 2023; Singh et al., 2024; Zhang
et al., 2024; Yong et al., 2023); and (2) acquiring
new domain-specific knowledge within the target
language (Zhao et al., 2024a; Wan et al., 2024;
Fujii et al., 2024). Furthermore, these approaches
can be classified based on whether cross-lingual
representations require explicit alignment within
embedding spaces (Zhao et al., 2024b). In this
study, we define cross-lingual domain adaptation
as an approach that specifically facilitates knowl-
edge acquisition from a high-resource English
medical corpus to complement a low-resource
Japanese corpus, without explicitly aligning
cross-lingual embedding spaces.

Techniques for the Cross-lingual Domain
Adaptation.
Algorithms for the cross-lingual domain adaptation
can be categorized along two dimensions: (1) the
training stage at which the method is applied, and
(2) the types of signals used for alignment.
Multilingual pre-training has been explored (Chi
et al., 2021); however, effectively capturing nu-
anced semantics and specialized terminology, par-
ticularly in low-resource languages, remains chal-
lenging (Wu et al., 2022). Continued pre-training,
typically performed after initial pre-training, lever-
ages additional corpora containing domain-specific
or target-language texts. While its effectiveness
has been demonstrated in various studies (Gupta
et al., 2023; Cui et al., 2024; Pires et al., 2023; Zhu
et al., 2023; Zhao et al., 2024a; Fujii et al., 2024),
detailed analyses of how the language composition
of corpus influences specific task performance—
particularly from the perspective of leveraging
high-resourced language corpus—are still lacking.
Additionally, supervised fine-tuning performed af-

ter (continued) pre-training plays a pivotal role in
enhancing cross-lingual performance, especially
when substantial instruction datasets in the target
domain are available (Mecklenburg et al., 2024;
Razumovskaia et al., 2024; Shaham et al., 2024).
There are several types of signals used for align-
ment. A multilingual corpus, as employed in this
study, contains texts from both the source and target
languages (Qin et al., 2025; ImaniGooghari et al.,
2023; Shaham et al., 2024). A parallel corpus is
a specialized type of multilingual corpus consist-
ing of explicitly aligned sentences or paragraphs
across the source and target languages. While paral-
lel corpora have demonstrated clear positive effects
on specific tasks such as machine translation (Chi
et al., 2022; Hu et al., 2020; Feng et al., 2022;
Yang et al., 2023; Lin et al., 2025), their effective-
ness in a broader range of tasks, especially within
professional domains, remains controversial. To
address this, we conduct a detailed analysis of par-
allel corpora, examining their advantages and dis-
advantages specifically for Japanese—English med-
ical domain adaptation. Other alignment signals
include transliteration, which leverages the roman-
ized forms of text to enhance alignment through
shared tokens with English (Husain et al., 2024),
and code-switching, which augments original data
by explicitly introducing cross-lingual supervision
(Yamada and Ri, 2024; Hong et al., 2025).

3 Method

This study comprises three steps (see Fig. 1): (1)
continued pre-training of a bilingual (Japanese—
English) PLM on diverse multilingual corpora with
various language compositions; (2) computation of
task-wise score differences on JMedBench before
and after continued pre-training; and (3) partial cor-
relation analysis to examine task-wise correlations
with corpus compositional statistics.

3.1 Multilingual Corpora

As shown in Fig. 2, we constructed six medical cor-
pora with varying Japanese—English compositions:

* EnJa-Base: Contains basic medical content from
textbooks, clinical guidelines, paper abstracts,
and web-crawled data in Japanese and English,
as well as a certain amount of parallel corpus.
The parallel subcorpus refers to text containing
aligned English and Japanese sentences or para-
graphs presented in randomized order.

e JaDominant: Adds a machine-translated
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Fig. 2: Multilingual Corpora. Six multilingual med-
ical corpora with varying Japanese—English composi-
tions were constructed. Notably, the token distributions
across the corpora show that the total number of tokens
increases from EnJa-Base to EnJa-Hybrid.

Japanese version of the PubMed Central (PMC)
full-text subcorpus’ to EnJa-Base, resulting in a
Japanese-dominant corpus. Refer to Appendix B
regarding the accuracy of the machine translation
used in this research.

* EnDominant: Adds the original English PMC
subcorpus to EnJa-Base, resulting in an English-
dominant corpus. Note that between JaDominant
and EnDominant, the Japanese translation of the
PMC full-text subcorpus is replaced with the orig-
inal English.

* EnJa-Plus: Extends the EnDominant corpus by
adding half of the translated PMC subcorpus.

* EnJa-Balance: Builds on EnDominant by
adding full the size of the translated Japanese
PMC subcorpus. Note that in EnDominant, EnJa-
Plus, and EnJa-Balance, the English corpus re-
mains constant, and these variants respectively
contain none, half, or all of the Japanese transla-
tion of the PMC full-text subcorpus.

* EnJa-Hybrid: Further extends EnJa-Balance
with additional medical textbooks and clinical
guidelines. Besides, this contains a large amount
of parallel corpus that was created by translating
PubMed paper abstracts®.

Notably, we defined seven compositional statis-
tics to characterize each corpus. One group pertains
to the number of tokens in each language, including
Japanese token count, English token count, parallel
token count, and total token count. Another group
of statistics represents the proportion of each lan-
guage within a corpus, including Japanese token
ratio, English token ratio, and parallel token ratio.

3We used Commercial Use Allowed articles from the PMC
Open Access Subset.
*https://pubmed.ncbi.nlm.nih.gov/download/

Multilingual Corpora Japanese Tasks English Tasks
EnJa-Base 0.447 0.429
JaDominant 0.453 0.455
EnDominant 0.468 0.467
EnJa-Plus 0.461 0.469
EnJa-Balance 0.475 0.473
EnJa-Hybrid 0.467 0.466

Table 1: Average Scores on JMedBench. The model
trained with EnJa-Balance achieved the highest per-
formance on both Japanese tasks (0.475 average score
across all 20 tasks) and English tasks (0.473 average
score across all 7 tasks), outperforming models trained
with other corpus compositions.

Note that we utilized a tokenizer from the LLM-jp
series throughout the process (LLM-jp et al., 2024).
Refer to Appendix C for detailed values on the
compositional statistics of each corpus.

3.2 Continued Pre-training on the
Multilingual Corpora

Using multilingual corpora, we performed contin-
ued pre-training on bilingual (Japanese—English)
PLMs, namely 11m-jp/11m-jp-3-1 3b° (LLM-jp
et al., 2024) (see Step 1 in Fig. 1). Even though
there are several choices for open-weight models,
we deliberately chose this model because its fully
public pre-training corpus allowed us to isolate the
pure effects of our method by focusing on contin-
ued pre-training—a crucial methodological control
not possible with many other models.

Then, we applied supervised fine-tuning to both
models before and after continued pre-training,
where training samples from medical benchmarks,
e.g., MedQA (Jin et al., 2021), were incorporated.
This was necessary because JMedBench requires
basic instruction-following capability. Since the
experimental settings of the supervised fine-tuning
were totally equivalent before and after the con-
tinued pre-training, we can neutralize the tuning
effect to observe the score difference depending on
the multilingual corpora. Therefore, by comput-
ing the score difference between the two training
states, we can evaluate the performance gain at-
tributable to the specific pre-training corpus. See
Appendix D for the detailed model architecture,
training hyperparameters, and instruction tuning
dataset.

Shttps://huggingface.co/1lm-jp/11lm-jp-3-13b
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3.3 Performance Evaluation on JMedBench

We evaluated model performance in both the
Japanese and English medical domains using JMed-
Bench (see Step 2 in Fig. 1), which comprises 27
tasks in total (20 in Japanese and 7 in English). To
assess the accuracy of model outputs, JMedBench
employs different calculation methods tailored to
each task type. For MCQA and DC tasks, the
model is required to select a single correct answer
from multiple options that best matches the given
question. The accuracy of these tasks is calculated
by computing the likelihood of each option, with
the option exhibiting the highest likelihood des-
ignated as the model’s response. For other task
categories, different metrics are utilized: MT per-
formance is evaluated using the BLEU score, NER
is assessed with the entity F1 score, and STS is
measured by the Pearson correlation coefficient.

We tested the models before and after the con-
tinued pre-training, resulting in 12 models over-
all (6 corpora x 2 training states). We then com-
puted a score difference for each corpus, defined
as: (performance after mid-training + SFT) —
(performance before mid-training + SFT), where
SFT stands for supervised fine-tuning described
in Appendix D. See Appendix E for detailed task-
specific score differences on JMedBench.

Note that since the multilingual corpora are con-
structed in an additive or ablative manner (see Sec-
tion 3.1), comparing score differences between
models trained on them effectively constitutes an
additive or ablation study. For instance, the com-
parison between JaDominant and EnDominant of-
fers insights into whether the PMC subcorpus
should be translated into Japanese or used in its
original English form when added individually.
Differences among EnDominant, EnJa-Plus, and
EnJa-Balance help clarify the optimal mixing ratio
(none, half, or full) of translated data. Lastly, the
contrast between EnJa-Balance and EnJa-Hybrid
highlights the utility of enriched text sources, such
as parallel corpora.

3.4 Partial Correlation Analysis

Since mutual correlations exist among composi-
tional statistics and task-wise score differences, we
applied partial correlation analysis to isolate the
unique impact of each variable. This approach al-
lowed us to assess the direct association between
a predictor (e.g., a compositional statistic) and an
outcome variable (e.g., a task-wise score differ-

ence) while controlling for other covariates (see
Step 3 in Fig. 1). See Appendix F for the actual
interdependencies among compositional statistics
in multilingual corpora and task-wise score differ-
ences, which cannot be isolated by regular corre-
lation analysis but can be decomposed by partial
correlation analysis.

First, we used ordinary least squares regression
to regress the predictor on the covariates, extract-
ing residuals to remove the covariates’ linear ef-
fects. We then applied the same procedure to the
outcome variable and computed the Pearson cor-
relation between these two sets of residuals. This
method yields the partial correlation coefficient r,
indicating how strongly the predictor is related to
the outcome when shared variance with the covari-
ates is accounted for. The associated p-value tests
the significance of this unique relationship. Here-
inafter, significance levels are denoted as follows:
*#* for p < 0.001, ** for p < 0.01, and * for
p < 0.05. A statistically significant correlation is
considered “strong” when p < 0.01 in this study.
We use abbreviations such as Ja/MCQA to indicate
Japanese MCQA tasks.

4 Results

4.1 Model Performance on JMedBench

We evaluated the task performance of the continued
pre-trained models on JMedBench. Table 1 shows
the average score across the 20 Japanese and 7 En-
glish tasks. Overall, three key observations emerge
from these results, particularly from the aspect of
the benefit of the machine-translation data.

First, even for Japanese tasks, using the origi-
nal PMC subcorpus in English yielded a greater
performance gain than the machine-translated one,
as indicated by the average score of EnDominant
(0.468) versus JaDominant (0.453). This suggests
that the machine-translated data might be of subop-
timal quality, limiting its impact on model perfor-
mance.

Second, despite the above limitation, there can
be an additive effect from the translated data.
By comparing EnDominant, EnJa-Plus, and EnJa-
Balance, we see how adding none, half, or the full
amount of the Japanese-translated PMC subcorpus
affects performance. Notably, only incorporating
the full amount of translation raises the average
score from 0.468 (EnDominant) to 0.475 (EnJa-
Balance). The same benefit can also be observed
in English tasks (see EnJa-Balance in Table 1).
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jnipba-jp: NER [Ja]
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jmmlu-medical: MCQA [Ja]

Fig. 3: Task-wise Correlation with Total Token
Count. Partial correlation analysis showed the strongest
positive correlation with MMLU-Medical. The x-axis
shows partial correlation coefficients with p-values in
parentheses.

Finally, the model using EnJa-Balance achieves
the highest score for both Japanese and English
tasks, outperforming EnJa-Hybrid despite the lat-
ter using a larger corpus (EnJa-Balance = 71.44B
tokens, EnJa-Hybrid = 79.62B tokens). This indi-
cates that simply adding more tokens does not nec-
essarily improve performance, highlighting the im-
portance of balancing corpus composition, which
we further analyze in the following sections.

4.2 Task-wise Correlation with Corpus
Compositional Statistics

4.2.1 Total Token Count

As shown in Fig. 3, a strong positive correlation
with total token count was observed in MMLU-
Medical (En/MCQA, r = 0.954, p = 0.003), sug-
gesting that a larger corpus—regardless of lan-
guage specificity for either Japanese or English—
significantly benefited this complex English med-
ical MCQA task. Notably, no other task exhib-
ited significant correlations with total token count,
which contrasts with the patterns observed for other
language-specific statistics, as presented below.

4.2.2 Japanese Tokens (Count and Ratio)

Fig. 4a shows that the Japanese token count ex-
hibited a strong positive correlation with IgakuQA
(Ja/MCQA, r = 0.956, p = 0.003), a representative
Japanese medical MCQA task for specialized ex-
pertise in the Japanese medical system (Kasai et al.,
2023). Surprisingly, certain English MCQA tasks

including PubMedQA and MedQA also showed
positive correlations with the Japanese token count.
This suggests that exposure to diverse linguis-
tic representations, including machine-translated
Japanese medical texts and original ones, may
have enhanced the model’s generalization ability
in English medical tasks. In contrast, MedMCQA
(En/MCQA) exhibited a significant negative correla-
tion with the Japanese token count, suggesting an
adverse impact of Japanese token representation.
Additionally, as shown in Fig. 4b, the Japanese
token ratio demonstrated strong positive correla-
tions with some Japanese tasks, such as IgakuQA
(Ja/MCQA) and MRNER-Disease (Ja/NER).

4.2.3 English Tokens (Count and Ratio)

Fig. 5a illustrates that the English token count ex-
hibited the most consistent and strongest correla-
tions across multiple tasks, with 9 tasks showing
correlations above 0.9 (p < 0.01). The most no-
table were USMLEQA-Jp (Ja/MCQA, r = 0.989,
p < 0.001) and MMLU-Medical-Jp (Ja/MCQA,
r = 0.975, p < 0.001), suggesting that En-
glish token representation plays a critical role
in enhancing performance across both Japanese
and English medical tasks. This indicates that
an English corpus can help the model to acquire
medical knowledge that can be exploited even
when the task is primarily in Japanese. Similarly,
as presented in Fig. Sb, the English token ratio
demonstrated strong correlations with several tasks,
including JIMMLU-Medical (Ja/MCQA), EIMMT-
Ja2En (En/MT), NCBI-Disease-Jp (Ja/NER), and
PubMedQA (En/MCQA). Notably, it also negatively
impacted specialized Japanese NER tasks (i.e.,
NRNER, MRNER-Medicine, and BC5Disease-Jp).

4.2.4 Parallel Tokens (Count and Ratio)

Fig. 6a illustrates that the parallel corpus ex-
hibits both positive and negative correlations across
various tasks. In particular, the parallel token
count showed strong positive correlations with
MedMCQA-Jp (Ja/MCQA, r = 0.956), p = 0.003),
MRNER-Disease (Ja/NER, r» = 0.948, p = 0.004),
and SMDIS (Ja/DC, » = 0.931, p = 0.007),
while demonstrating a strong negative correla-
tion with CRADE (Ja/DC, r = —0.927, p =
0.008). Moreover, Fig. 6b indicates that the par-
allel token ratio positively impacted IgakuQA-
En (En/MCQA), RRTNM (Ja/DC), and JNLPBA-
Jp (Ja/NER), but exhibited strong negative cor-
relations with PubMedQA (En/MCQA), IMMLU-
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bcSdisease-jp: NER [Ja] -0.366 (0.475) I bc2gm-jp: NER [Ja] 0286 (0.552) I
ejmmt-en2ja: MT [Ja] -0.425 (0.401), crade: DC[Ja] 0.294(0.572)
nebi-disease-jp: NER [Ja] -0:522 025) I B Mcoa medqa: MCQA [En] 0330 (0523) I B MCQA
mrmer-disease: NER [Ja] 0527 (0:282) [N bc jests: STS [Ja] -0488(0326) bc
jnlpba-jp: NER [Ja] 0574 (0233 I [ NER ner: NER [Ja] 0585 (0223) I [ NER
mmer-medicine: NER [Ja] -0,621(0.183) [N STS mmlu-medical: MCQA [En] -0.649 (0.163) N STS
bcSchem-jp: NER [Ja] -0.658 (0.155) NN mT igakuga-en: MCQA [En] -0673 (0.143) I MT
medmcga: MCQA [En] -0.884 0.019") I beSdisease-jp: NER [Ja] -0.688 (0.131) I
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Fig. 4: Task-wise Correlation with Japanese Tokens. (a) Japanese token count was positively correlated
with IgakuQA, PubMedQA, and MedQA, but negatively with MedMCQA. (b) Japanese token ratio showed
broader positive correlations, including IgakuQA, MRNER-Disease, MMLU-Medical-Jp, IMMLU-Medical, and
MedMCQA-Jp. The x-axis shows partial correlation coefficients with p-values in parentheses.

(a)

English Token Count
Task-wise partial correlation coefficients (p-values)

(b)

English Token Ratio
Task-wise partial correlation coefficients (p-values)

usmleqa-jp: MCQA [Ja] | 0.989 (0.000**%) jmmlu-medical: MCQA [Ja] I 0993 (0.000%*%)
mmlu-medical-jp: MCQA [Ja] [ 0.975 (0.001%+%) ejmmt-ja2en: MT [En] 0.963 (0.002)
mmer-disease: NER [Ja] | 0.968 (0.002°%) nbi-disease-jp: NER [Ja] I 0.953 (0.003%)
usmlega: MCQA [En] [ 0956 (0.003*) pubmedga: MCQA [En] |, 0925 (0.008™)
medqa: MCQA [En] [ 0.944 (0.005*%) mmlu-medical: MCQA [En] I 0899 (0.015%)
mmlu-medical: MCQA [En] [ 0.931 (0.007*%) medmcqa: MCQA [En] I 0593 (0.017%)
medqa-jp: MCQA [Ja] | 0.931 (0.007"%) mrner-disease: NER [Ja] [ 0:866 (0.026")
jmmlu-medical: MCQA [Ja] N 0.929 (0.007*%) ejmmt-en2ja: MT [Ja] 0.866(0.026*)
ncbi-disease-jp: NER [Ja] I 0.928 (0.008") josts: STS [Ja] 0809 (0.051)
igakuga-en: MCQA [En] | 0592 (0.017%) medga-jp: MCQA [Ja] I 0.794 (0.060)
medmcqa: MCQA [En] N 0.864 (0.026%) smdis: DC [Ja] 0.745 (0.090)
beSdisease-jp: NER [Ja] [ 0854 (0.030%) bcSchem-jp: NER [Ja] I 0.715 (0.110)
bc2gm-jp: NER [Ja] [ 0,853 (0.031%) medmcga-jp: MCQA [Ja] I 0614 (0:194)
medmeqa-jp: MCQA [Ja] | 0.788 (0.062) igakuqa: MCQA [Ja] [ 0527 (0.282)
igakuga: MCQA [Ja] | 0685 (0.133) usmlega-jp: MCQA [Ja] I 0467 (0350)
jnlpba-jp: NER [Ja] | 0.681 (0.136) medqa: MCQA [En] I 0419 (0.408)
crade: DC [Ja] 0,648 (0.164) usmleqa: MCQA [En] Wo.177 0737)
mmer-medicine: NER [Ja] I 0.436 (0.387) pubmedga-jp: MCQA [Ja] W0.104(0844)
nrner: NER [Ja] N 0.343 (0.506) igakuga-en: MCQA [En] 9 0.098 (0.853)
ejmmt-ja2en: MT [En] 0300 (0.564) jnlpba-jp: NER [Ja] -0.417 (0.410) I
rrtnm: DC [Ja] 0.196 (0.710) bc2gm-jp: NER [Ja] -0.419 (0.408) I
pubmedqa: MCQA [En] 0156 (0768) W Mcaa mmlu-medical-jp: MCQA [Ja] -0.441 (0.352) I W McoA
ejmmt-en2ja: MT [Ja] -0.026 (0.961) e rrtnm: DC [Ja] -0578(0229) e
smdis: DC [Ja] 0360 (0.484) B NER crade: DC [Ja] -0729(0.100) W NER
jests: STS [Ja] 10378 (0459) STS beSdisease-jp: NER [Ja] 0817 (0.047") I STS
bcSchem-jp: NER [Ja] -0.426 (0.400) I mr mrmer-medicine: NER [Ja] -0.880 (0.021) [ mr
pubmedgqa-jp: MCQA [Ja] -0.534(0.276) nrner: NER [Ja] -0.940 (0.005*) I
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Fig. 5: Task-wise Correlation with English Tokens. (a) English token count showed the most consistent and
strongest correlations across multiple tasks. (b) English token ratio exhibited strong correlations with several
tasks but negatively affected specialized Japanese NER tasks (e.g., NRNER). The x-axis shows partial correlation
coefficients with p-values in parentheses.

Medical (Ja/MCQA), EIMMT-En2Ja (Ja/MT), and
EJIMMT-Ja2En (En/MT). The latter two tasks fall
under the category of MT. While parallel corpora
are widely regarded as effective for MT tasks (Chi
etal., 2022; Hu et al., 2020; Feng et al., 2022; Yang
etal., 2023; Lin et al., 2025), these findings suggest
that an excessive amount may hinder the learning
of language-specific patterns, potentially limiting
overall MT performance.

5 Analysis

Here, we analyze the optimal corpus composition
for continued pre-training.

RQ1: How do original English and machine-
translated Japanese corpora help a bilingual
(Japanese-English) PLM achieve domain adap-
tation in the Japanese medical domain?

In terms of the corpus-alone effect, incorpo-
rating original English texts (as PMC full-text)
is generally more beneficial even for Japanese-
domain tasks than using machine-translated data,
as the model using EnDominant outperformed that
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(a) Parallel Token Count
Task-wise partial correlation coefficients (p-values)
medmcqa-jp: MCQA [Ja]
mrner-disease: NER [Ja]
smdis: DC [Ja]
pubmedqa-jp: MCQA [Ja]
bcSchem-jp: NER [Ja]
nchi-disease-jp: NER [Ja]
ejmmt-ja2en: MT [En]
ejmmt-en2ja: MT [Ja]
pubmedqa: MCQA [En]
medmcqa: MCQA [En]
jests: STS [Ja]
usmleqa-jp: MCQA [Ja]
mmlu-medical: MCQA [En]
usmleqa: MCQA [En]
jmmlu-medical: MCQA [Ja]
medqa-jp: MCQA [Ja]
igakuga: MCQA [Ja]
bcSdisease-jp: NER [Ja]
igakuga-en: MCQA [En]
medqa: MCQA [En]
jnlpba-jp: NER [Ja
bc2gm-jp: NER [Ja
mrer-medicine: NER [Ja
rrtnm: DC [Ja
nmer: NER [Ja
mmlu-medical-jp: MCQA [Ja
crade: DC[Ja]

0.956 (0.003*)

0.948 (0.004*)

0.931(0.007*%)

0.894(0.016%)
0.888 (0.018%)
0.846 (0.034%)
0.835 (0.038")
0801 (0.055)
0.773(0.072)
0.749 (0.086)
0.697 (0.124)
0.647 (0.165)
0.633(0.177)
0.276 (0.597)
0091 (0.863)
-0.015 (0.977)
0034 (0.949)
-0.380 (0.457)
-0.513 (0.298)
-0.548 (0.261)
-0681(0.137)
-0.687 (0.131)
-0.802 (0.055)
-0.819(0.046%)
-0.888(0.018%)
0.907 (0.013%)
0,927 (0.008*)

-15 -1 -05 0 05 1 15

]
]
]
]
]
]

(b) Parallel Token Ratio

Task-wise partial correlation coefficients (p-values)

igakuqa-en: MCQA [En]
rrtnm: DC [Ja]

jnipba-jp: NER [Ja]

nrner: NER [Ja]

crade: DC [Ja]
mrner-medicine: NER [Ja]
mmlu-medical-jp: MCQA [Ja]
medqa: MCQA [En]
bc2gm-jp: NER [Ja]
usmleqa: MCQA [En]
mmlu-medical: MCQA [En]
bc5disease-jp: NER [Ja]
ncbi-disease-jp: NER [Ja]
mrner-disease: NER [Ja]
medqa-jp: MCQA [Ja]
igakuqa: MCQA [Ja]
medmcga-jp: MCQA [Ja]
usmleqa-jp: MCQA [Ja]
bc5chem-jp: NER [Ja]
pubmedqa-jp: MCQA [Ja]
medmcqa: MCQA [En]
smdis: DC [Ja]

jests: STS [Ja]
ejmmt-ja2en: MT [En]
ejmmt-en2ja: MT [Ja]
jmmlu-medical: MCQA [Ja]
pubmedqa: MCQA [En]

0.961(0.002*%)
0954 (0.003*)
0954 (0.003*)
0899 (0.015%)
0.851(0.032%)
0.816 (0.048%)
0802 (0.055)
0.788 (0.063)
0730 (0.099)
0617 (0.192)
0556 (0.252)
0418 (0.410)
0123 (0.816)
0066 (0.901)
-0.348 (0.499)
0.433 (0.391)
0463 (0.355)
-0.669 (0.146)
-0.800 (0.056)
-0.831(0.041%)
-0.857(0.029%)
-0.871(0.024%)
-0.898 (0.015%)
-0.947 (0.004*%)
-0.951(0.004*%)
-0.956 (0.003**)
0.958 (0.003**)
-15 -1 -05 4 05 1 15

Fig. 6: Task-wise Correlation with Parallel Tokens. (a) Parallel token count showed both positive and negative
correlations, with strong positive effects in MedMCQA-Jp, MRNER-Disease, and SMDIS and strong negative
effects in CRADE. (b) Parallel token ratio exhibited similar trends. The x-axis shows partial correlation coefficients

with p-values in parentheses.

using JaDominant (see Table 1). This suggests
that translation quality can limit its effectiveness
in conveying medical knowledge. Nonetheless,
machine-translated texts still offer additive gains
when used alongside the original English texts, as
adding the full machine-translated subcorpus (i.e.,
EnJa-Balance) leads to an additional performance
gain. Thus, the balanced use of machine-translated
data with original English texts can be essential for
cross-lingual domain adaptation.

RQ2: What is the optimal corpus composition of
English and Japanese medical texts for effective
continued pre-training of PLMs in a multilin-
gual medical domain?

Partial correlation analysis indicated that each
task is differentially sensitive to certain corpus com-
positional statistics, including the specific ratio of
Japanese to English content (see Fig. 3—6). There-
fore, tailoring a corpus composition for particular
downstream tasks by balancing language compo-
nents facilitates effective knowledge acquisition in
practice. Indeed, in our case, the highest average
score across both Japanese (20 tasks) and English
(7 tasks) was achieved by the model continued pre-
trained on EnJa-Balance, even surpassing the EnJa-
Hybrid model, which was trained on a larger corpus
(see Table 1).

RQ3: How do specific compositional statistics
within multilingual corpora influence model per-
formance across diverse evaluation tasks?

Effect of the Japanese Corpus: Only the Japanese
corpus positively correlated with IgakuQA (see

Fig. 4), a unique MCQA benchmark requiring
specialized Japanese medical system expertise.
This underscores the importance of incorporating
language-specific resources with localized knowl-
edge alongside translated general knowledge. It
also benefits some English MCQA tasks like Pub-
MedQA and MedQA. We hypothesize that expo-
sure to diverse linguistic representations enhances
the model’s generalization in English medical tasks.
However, excessive Japanese corpus may impede
certain English-specific tasks, as shown by its neg-
ative correlation with MedMCQA.

Effect of the English Corpus: The size of the
English corpus exhibited a strong correlation with
score improvements not only in English QA tasks
(e.g., USMLEQA, MedQA, and MMLU-Medical)
but also in select Japanese tasks (e.g., USMLEQA-
Jp and MMLU-Medical-Jp) (see Fig. 5). This sug-
gests that an English corpus can effectively transfer
medical knowledge to Japanese tasks, improving
performance even when the task is primarily in
Japanese. However, an excessive proportion of En-
glish tokens may degrade performance in Japanese-
specific tasks, particularly those related to NER.
Effect of the Parallel Corpus: The parallel cor-
pus exhibited both positive and negative correla-
tions depending on the task type (see Fig. 6). On
one hand, the size of the parallel corpus showed
strong positive correlations with several tasks, sug-
gesting that bilingual alignment facilitates cross-
lingual knowledge transfer between English and
Japanese. On the other hand, an excessive propor-
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tion of parallel data negatively impacted some tasks,
even including MT tasks. This might be because
parallel corpora switch languages at the paragraph
level, which is unnatural as a language-specific
pattern and negatively affects the performance of
certain tasks (see Appendix G for an example).

6 Conclusions

We systematically examined how continued pre-
training on Japanese and English medical domain
corpora—at varying proportions—affects task per-
formance to seek optimal corpus composition
for the comprehensive Japanese—English medical
benchmark. The results suggest that effective cross-
lingual domain adaptation requires (1) leveraging
specialized knowledge from well-resourced cor-
pora, (2) ensuring sufficient coverage of language-
specific expressions in the target language, and
(3) using parallel corpora in moderation. These
findings highlight the importance of balanced cor-
pus design that accounts for both linguistic diver-
sity and domain-specific terminology, particularly
in settings involving a well-resourced source lan-
guage and a low-resource target language. While
grounded in the Japanese—English medical context,
these insights are broadly applicable to multilingual
adaptation of PLMs across diverse domains.

Limitations

One limitation of this study is the small sample size;
however, the strong effect sizes, reflected in large
correlation coefficients and low p-values, reinforce
the reliability of the key findings. Besides, this
study primarily identifies correlations between cor-
pus compositional statistics and task performance
without directly addressing causal interpretations.
However, the additive and ablative design of the
corpus composition allows for certain causal in-
ferences rather than merely reflecting statistical
correlations (see Section 4.1). Further controlled
experiments and deeper analyses are needed to es-
tablish definitive causal relationships.

While a more comprehensive research design us-
ing multiple open-weight models would certainly
be more desirable for validating the generalizability
of our findings, conducting continued pre-training
on multiple models using corpora that reach up
to 79B tokens was prohibitively expensive from a
computational cost perspective (see Appendix D
for the computational budget). Similarly, perfor-
mance comparisons should have been conducted

based on translation data quality by comparing mul-
tiple translation engines; however, it was not practi-
cal to translate the PMC full-text subcorpus, which
exceeds 28 billion tokens, using multiple different
approaches. While we have published the “recipe”
for creating the dataset, the terms of use for the
translation engine we used prevent us from directly
sharing the generated data. We are, however, proac-
tively working toward releasing a comparable cor-
pus in the near future.
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Appendix A Overview of JMedBench

Appendix A.1 Multi-Choice Question
Answering (MCQA)

MedMCQA/MedMCQA-Jp MedMCQA is a
large-scale, MCQA dataset designed to address
real-world medical entrance exam questions, cover-
ing 2.4 thousand health topics and 21 medical sub-
jects sampled from medical entrance exams across
India (Pal et al., 2022). This contains 4,183 test
samples. MedMCQA-Jp is a Japanese translation
of MedMCQA.

USMLEQA/USMLEQA-Jp USMLEQA is a
large-scale, MCQA dataset with 1,273 test samples
with 4 options, which are sampled from United
States Medical Licensing Examinations (Jin et al.,
2021). USMLEQA-Jp is a Japanese translation of
USMLEQA, containing the same number of test
samples.

MedQA/MedQA-Jp MedQA is a 5-option ver-
sion of USMLEQA, known as a representative
benchmark for medical large language models in
the assessment of medical knowledge sufficient for

medical licensure (Jin et al., 2021). MedQA-Jp is
a Japanese translation of MedQA, containing the
same number of test samples.
MMLU-Medical/MMLU-Medical-Jp
MMLU-Medical contains 1,871 biomedical
questions at the college level as test samples,
which is extracted as a subset of a large-scale,
multi-topics benchmark, MMLU (Hendrycks
et al., 2021). MMLU-Medical-Jp is a Japanese
translation of MMLU-Medical.
JMMLU-Medical While the MMLU-Medical-
Jp is a machine-translated version of MMLU-
Medical, JMMLU-Medical consists of human-
translated Japanese version of MMLU-Medical
comprising 1,271 test samples®.
IgakuQA/IgakuQA-En IgakuQA contains 989
Japanese questions based on Japanese medical li-
censing examinations from 2018 to 2022 (Kasai
et al., 2023). This uniquely reflects Japanese-
specific medical practices, healthcare systems, and
epidemiological profiles. IgakuQA-En is an En-
glish translation of IgakuQA.
PubMedQA/PubMedQA-Jp PubMedQA con-
tains 1,000 test samples focusing on the biomedical
field collected from PubMed Abstracts (Jin et al.,
2019). The task of PubMedQA is to answer re-
search questions with yes/no/maybe. PubMedQA.-
JP is a Japanese translation of PubMedQA.

Appendix A.2 Machine Translation (MT)

EJMMT-Ja/EJMMT-En EJMMT is a Japanese—
English medical machine-translation dataset with
fine-grained annotation of error spans and error
types (Hayakawa and Arase, 2020). EJMMT-Ja
indicates the translation accuracy in the direction
of English to Japanese, while EIMMT-En indicates
the Japanese to English direction. These include
2,400 test samples.

Appendix A.3 Named Entity Recognition
(NER)

MRNER-Medicine MRNER-Medicine (Medi-
cal Report Named Entity Recognition for medicine)

contains 90 test samples for extracting medication-

related information from case reports in Japanese’.

MRNER-Disease MRNER-Disease (Medical
Report Named Entity Recognition for positive dis-

®https://huggingface.co/datasets/nlp-waseda/
JMMLU

"This benchmark is originally included in JMED-LLM
(Japanese Medical Evaluation Dataset for Large Language
Models): https://github.com/sociocom/jmed-11m
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ease) contains 90 test samples for extracting symp-
toms actually observed in patients from case reports

and radiology reports in Japanese’.

NRNER NRNER (Nursing Record Named En-
tity Recognition) contains 90 test samples, involv-
ing extracting information about symptoms actu-
ally observed in patients and medication from sim-

ulated nursing records in Japanese’.

BC2GM-Jp BC2GM-Jpis aJapanese translation
of BC2GM (BioCreative II Gene Mention Recogni-
tion) (Smith et al., 2008), which contains 5,037 test
samples to identify a gene mention in a sentence.

BC5Chem-Jp BC5Chem-Jp is a Japanese trans-
lation of BC5Chem (Li et al., 2016), which con-
tains 4,801 test samples to identify disease, chem-
ical entities and their relations from biomedical
texts.

BC5Disease-Jp BC5Disease-Jp is a Japanese
translation of BC5Disease (Li et al., 2016), which
contains 4,797 test samples to identify disease,
chemical entities and their relations from biomedi-
cal texts.

JNLPBA-Jp IJNLPBA-Jp is a Japanese transla-
tion of JNLPBA (Collier et al., 2004), which fea-
tures 4,260 test samples for bio-entity recognition,
identifying and classifying technical terms in the
domain of molecular biology.

NCBI-Disease-Jp NCBI-Disease-Jp is a
Japanese translation of NCBI-Disease (Dogan
et al., 2014), which contains 940 test samples to
identify the disease name on the NCBI disease
corpus.

Appendix A.4 Document Classification (DC)

CRADE CRADE (Case Report Adverse Drug
Event) contains 92 test samples, which involves
classifying the possibility of adverse events from
medications and symptoms in case reports in

Japanese’.

RRTNM RRTNM (Radiology Report Tumor
Nodes Metastasis) contains 89 test samples, which
involves predicting TNM classification of cancer
from radiology reports of lung cancer patients in

Japanese’.

SMDIS SMDIS (Social Media Disease) com-
prises 84 test samples, which involve classifying
the presence or absence of diseases or symptoms of
the poster or people around them from simulated

Tweets in Japanese’.

Appendix A.5 Semantic Text Similarity (STS)

JCSTS JCSTS (Japanese Clinical Semantic Tex-
tual Similarity) has 3,500 test samples in Japanese.
This is a medical version of the semantic textual
similarity task that determines the semantic sim-
ilarity between two sentences, dealing with case
reports’ .

Appendix B Translation Performance of
the Machine-Translation
Models

The English-to—Japanese translation performance
of the machine translation models—including our
model®, which was used to translate the PMC sub-
corpus and PubMed abstracts—as well as compara-
tive models, is evaluated on EIMMT. As shown in
Table B.1, the model used in this research demon-
strates relatively high performance. “Baseline in
EJIMMT” refers to the baseline performance re-
ported in Hayakawa and Arase (2020). BLEU was
used to measure the degree of agreement with the
ground truth, employing the SacreBLEU library’
with the MeCab tokenizer'®. COMET-22!' and
COMET-23'? were used as neural frameworks for
machine translation evaluation.

Appendix C Compositional Statistics of
Multilingual Corpora

Compositional statistics of multilingual corpora
are shown in Table C.1. Note that tokens are
defined by the 11m-jp/11m-jp-3-13b tokenizer,
which was used consistently across all experiments.

Appendix D Training Details

The bilingual (Japanese—English) PLMs, namely
11m-jp/11lm-jp-3-13b and its equivalent model,
were pre-trained from scratch on 2.1 trillion tokens
using a general corpus containing both English
and Japanese text.!? Their architectures, including
the hidden size, number of attention heads, num-
ber of layers, and context length, are identical to

8We used the science translation engine provided courtesy
of the National Institute of Information and Communications
Technology (NICT).

“https://github.com/mjpost/sacrebleu

10https: //pypi.org/project/mecab-python3/

11https: //huggingface.co/Unbabel/
wmt22-cometkiwi-da

12https: //huggingface.co/Unbabel/
wmt23-cometkiwi-da-x1

PWe used two functionally equivalent base models, both
pre-trained from scratch on a total of 2.1T tokens, differing
only in the composition of the final 0.3T tokens.
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Translation Model BLEU COMET-22 COMET-23
Ours 37.71 80.78 65.64
Baseline in EJMMT 26.77 77.86 64.93
gpt-40-2024-08-06 2723  79.86 68.16

Table B.1: Translation Performance of the Machine-Translation Models

Corpus Total Japanese English Parallel Japanese English Parallel
Name token token token token token token token

count (B) count (B) count (B) count ratio (%) ratio (%) ratio (%)
EnJa-Base 15.00 5.00 9.50 0.48 33.38 63.36 3.26
JaDominant 42.76 32.76 9.50 0.48 76.62 22.24 1.14
EnDominant 43.68 5.00 38.18 0.48 11.47 87.41 1.12
EnJa-Plus 57.56 18.88 38.18 0.48 32.81 66.34 0.85
EnJa-Balance 71.44 32.76 38.18 0.48 45.86 5345 0.68
EnJa-Hybrid 79.62 36.11 36.42 7.07 45.36 45.75 8.89

Table C.1: Compositional Statistics of Multilingual Corpora

those of Llama 2 (Touvron et al., 2023). For con-
tinued pre-training, we employed Megatron-LM
v0.3.0'* for efficient parallel training. To enhance
memory efficiency and accelerate attention compu-
tation, FlashAttention (Dao, 2024; Dao et al., 2022)
was integrated into the training process. We used
a global batch size of 1024, employing the Adam
optimizer with a cosine scheduler. The hyperpa-
rameters were as follows: 51 = 0.9, 8o = 0.95,
e=1.0x10"8, learning rate = 1 x 10~4, minimum
learning rate = 1 x 1072, warm-up fraction = 0.03,
and weight decay = 0.1.

Then, we performed supervised fine-tuning
on both models, before and after continued pre-
training. We used the first version of the general-
domain instruction tuning dataset published by
11m-jp'3, along with the original training datasets
from MedQA (Jin et al., 2021), PubMedQA (Jin
et al., 2019), and MedMCQA (Pal et al., 2022),
as well as Japanese translations of the MedQA
and PubMedQA training datasets. Additionally,
we incorporated past questions from the Japanese
National Medical Examination spanning 12 years,
excluding any portions overlapping with IgakuQA
(Kasai et al., 2023). These question-answer pairs
were used in a standard question-answer format.
Such instruction tuning is necessary because JMed-
Bench requires a basic instruction-following capa-

“https://github.com/lim-jp/Megatron-LM/tree/v4
15https ://huggingface.co/11lm-jp/11lm-jp-13b-v1.
0

bility. We utilized the NeMo framework (Kuchaiev
et al., 2019) for supervised fine-tuning. As for the
training settings, we used a global batch size of 64,
employing the Adam optimizer with a cosine sched-
uler over two epochs. The other hyperparameters
were as follows: 51 = 0.9, B2 = 0.98, learning
rate = 2 X 10~°, minimum learning rate = 2 X 1076,
warm-up steps = 20, and weight decay = 0.1.

The computational budget used in this study is
as follows: For continued pre-training of the 13B
models using approximately 80B tokens of EnJa-
Hybrid corpus, we required a computational clus-
ter consisting of 32 nodes, each equipped with 8
NVIDIA H100 GPUs (total GPU count: 8 x 32 =
256 GPUs), with a computation time of about 24
hours. Continued pre-training using other corpora
required computation time proportional to their to-
ken count. Additionally, for supervised fine-tuning,
we used 8 nodes, each equipped with 8 NVIDIA
H100 GPUs (total GPU count: 8 x 8 = 64 GPUs),
requiring approximately 2 hours of computation
time. For evaluation based on JMedBench, we used
only a single node equipped with 8 NVIDIA H100
GPUs, requiring about 1 hour. All processes were
conducted on an Amazon Web Services SageMaker
cluster.

Appendix E Detailed Scores on
JMedBench

Tables E.1 through E.6 show the task-specific
score differences after applying continued pre-
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Table E.1: Results for EnJa-Base Corpora

Table E.2: Results for JaDominant Corpora

Category Task Name Language Score Diff. Category Task Name Language Score Diff.
STS JCSTS Japanese 0.0489 STS JCSTS Japanese 0.0093
NER NRNER Japanese 0.0079 NER NRNER Japanese -0.0425
NER NCBI-Disease-Jp Japanese 0.0079 NER NCBI-Disease-Jp Japanese 0.0128
NER MRNER-Medicine  Japanese -0.0122 NER MRNER-Medicine  Japanese -0.0127
NER MRNER-Disease Japanese 0.0048 NER MRNER-Disease Japanese 0.0299
NER IJNLPBA-Jp Japanese -0.0349 NER JNLPBA-JIp Japanese -0.0008
NER BC5Disease-Jp Japanese 0.0091 NER BC5Disease-Jp Japanese 0.0276
NER BC5Chem-Jp Japanese -0.0098 NER BC5Chem-Jp Japanese -0.0090
NER BC2GM-Jp Japanese 0.0017 NER BC2GM-Jp Japanese 0.0084
MT EJMMT-Ja Japanese 0.0393 MT EJMMT-Ja Japanese 0.0635
MCQA  USMLEQA-Jp Japanese 0.0526 MCQA  USMLEQA-Jp Japanese 0.0907
MCQA  PubMedQA-Jp Japanese -0.0210 MCQA  PubMedQA-Jp Japanese -0.0060
MCQA MMLU-Medical-Jp  Japanese 0.0355 MCQA MMLU-Medical-Jp  Japanese 0.0820
MCQA  MedQA-Jp Japanese 0.0436 MCQA  MedQA-Jp Japanese 0.0801
MCQA  MedMCQA-Jp Japanese 0.0418 MCQA  MedMCQA-Ip Japanese 0.0772
MCQA  JMMLU-Medical  Japanese 0.0271 MCQA  JMMLU-Medical  Japanese 0.0783
MCQA  IgakuQA Japanese 0.0500 MCQA  IgakuQA Japanese 0.0663
DC SMDIS Japanese -0.0298 DC SMDIS Japanese 0.0179
DC RRTNM Japanese -0.0281 DC RRTNM Japanese -0.0618
DC CRADE Japanese 0.0489 DC CRADE Japanese 0.0543
MT EJMMT-En English 0.0030 MT EJMMT-En English 0.0476
MCQA  USMLEQA English 0.0625 MCQA  USMLEQA English 0.0770
MCQA  PubMedQA English 0.0065 MCQA  PubMedQA English 0.0150
MCQA  MMLU-Medical ~ English 0.0249 MCQA  MMLU-Medical ~ English 0.0318
MCQA  MedQA English 0.0668 MCQA  MedQA English 0.0691
MCQA  MedMCQA English 0.0369 MCQA  MedMCQA English 0.0428
MCQA IgakuQA-En English 0.0839 MCQA IgakuQA-En English 0.1011

training on various multilingual corpora, followed
by supervised fine-tuning.

Appendix F  Mutual Correlation Between
Covariates

Here, we demonstrate the necessity of partial cor-
relation analysis as employed in this study. Com-
positional statistics of corpora may exhibit corre-
lations with one another, such as the relationship
where an increased Japanese token count naturally
leads to an increase in the total token count. Simi-
larly, JMedBench includes some related tasks, for
example, both MMLU-Medical-Jp and JMMLU-
Medical originate from MMLU-Medical as their
English source; therefore, it is essential to account
for correlations between task scores.

To illustrate these interdependencies, Fig. F.1
presents mutual correlation coefficients among
compositional statistics in multilingual corpora,
while Fig. F.2 shows mutual correlation coefficients
of task-wise score differences among continued
pre-trained models using multilingual corpora.

Moreover, Fig. F.3 illustrates the difference be-
tween regular correlation analysis and partial cor-
relation analysis, using the score difference in

IgakuQA (Ja/MCQA) as an example. For instance,
while total token count exhibited a significant cor-
relation with score difference in the regular cor-
relation analysis (r = 0.915, p = 0.011), this
effect disappeared in the partial correlation analy-
sis (r = 0.185, p = 0.725). Instead, the effect of
Japanese token count turned out to be significant
(r = 0.956, p = 0.003), which is more intuitive
when considering the specific expertise tested in
this particular benchmark.

Thus, by adjusting for the effects of covariates
through partial correlation analysis, we can bet-
ter distinguish the correlations between task-wise
score differences and corpus compositional statis-
tics.

Appendix G Example of Parallel Corpus

An example of the parallel corpus is shown in
Fig. G.1. An original PubMed abstract in English
and its machine-translated Japanese version are
concatenated at the paragraph level. Notably, the
machine-translated data is of reasonable quality,
accurately rendering biomedical terminology even
in specialized contexts. This observation is well-
aligned with the quantitative comparison of the
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Fig. F.1: Mutual Correlation Coefficients of Corpus Compositional Statistics. Mutual correlation coefficients
among compositional statistics in multilingual corpora—including total token count, Japanese token count, English
token count, parallel token count, Japanese token ratio, English token ratio, and parallel token ratio—were computed.
The results reveal several strong correlations between specific statistics.

translation quality (see Table B.1).

However, because the parallel corpus is artifi-
cially constructed to switch languages at the para-
graph level, it deviates from natural language pat-
terns and may potentially hinder certain learning
tasks.
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Fig. F.2: Mutual Correlation Coefficients of Task-wise Score Differences. Mutual correlation coefficients of
task-wise score differences among continued pre-trained models using various corpora—including EnJa-Base,
JaDominant, EnDominant, EnJa-Plus, EnJa-Balance, and EnJa-Hybrid—were computed. The results reveal several
strong correlations between specific tasks.
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Fig. F.3: Difference between Partial Correlation and Regular Correlation. Comparison between regular
correlation and partial correlation analyses for the IgakuQA (Ja/MCQA) task. Notably, total token count exhibited
a significant correlation with score difference in the regular correlation analysis (r = 0.915, p = 0.011), but this
effect disappeared in the partial correlation analysis (r = 0.185, p = 0.725). Instead, the effect of Japanese token
count turned out to be significant (r = 0.956, p = 0.003). This demonstrates that partial correlation analysis can
reveal differential relationships between task-wise score differences and corpus compositional statistics by adjusting
for the effects of covariates.
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Table E.3: Results for EnDominant Corpora

Table E.5: Results for EnJa-Balance Corpora

Category Task Name Language Score Diff. Category Task Name Language Score Diff.
STS JCSTS Japanese 0.0448 STS JCSTS Japanese 0.0427
NER NRNER Japanese 0.0100 NER NRNER Japanese -0.0089
NER NCBI-Disease-Jp Japanese 0.0216 NER NCBI-Disease-Ip Japanese 0.0064
NER MRNER-Medicine  Japanese -0.0102 NER MRNER-Medicine  Japanese -0.0395
NER MRNER-Disease Japanese 0.0288 NER MRNER-Disease Japanese 0.0078
NER JNLPBA-Jp Japanese 0.0174 NER JNLPBA-Jp Japanese -0.0016
NER BC5Disease-Jp Japanese 0.0172 NER BC5Disease-Jp Japanese 0.0093
NER BC5Chem-Jp Japanese 0.0052 NER BC5Chem-Jp Japanese -0.0145
NER BC2GM-Jp Japanese 0.0099 NER BC2GM-Jp Japanese 0.0094
MT EJMMT-Ja Japanese 0.0854 MT EJMMT-Ja Japanese 0.0640
MCQA USMLEQA-Jp Japanese 0.0876 MCQA USMLEQA-Jp Japanese 0.1167
MCQA PubMedQA-Jp Japanese -0.0075 MCQA PubMedQA-Jp Japanese 0.0025
MCQA MMLU-Medical-Jp Japanese 0.0623 MCQA MMLU-Medical-Jp Japanese 0.0983
MCQA MedQA-Jp Japanese 0.0841 MCQA MedQA-Jp Japanese 0.1045
MCQA MedMCQA-Jp Japanese 0.0623 MCQA MedMCQA-Jp Japanese 0.0674
MCQA JMMLU-Medical Japanese 0.0653 MCQA JMMLU-Medical Japanese 0.0924
MCQA IgakuQA Japanese 0.0588 MCQA IgakuQA Japanese 0.0847
DC SMDIS Japanese 0.0119 DC SMDIS Japanese 0.0536
DC RRTNM Japanese 0.0169 DC RRTNM Japanese 0.0674
DC CRADE Japanese 0.0326 DC CRADE Japanese 0.0978
MT EIMMT-En English 0.0545 MT EIMMT-En English 0.0590
MCQA USMLEQA English 0.0954 MCQA USMLEQA English 0.1033
MCQA PubMedQA English 0.0125 MCQA PubMedQA English 0.0230
MCQA MMLU-Medical English 0.0607 MCQA MMLU-Medical English 0.0628
MCQA MedQA English 0.0931 MCQA MedQA English 0.1025
MCQA MedMCQA English 0.0612 MCQA MedMCQA English 0.0647
MCQA IgakuQA-En English 0.1011 MCQA IgakuQA-En English 0.1193

Table E.4: Results for EnJa-Plus Corpora

Table E.6: Results for EnJa-Hybrid Corpora

Category Task Name Language Score Diff. Category Task Name Language Score Diff.
STS JCSTS Japanese 0.0179 STS JCSTS Japanese 0.0325
NER NRNER Japanese 0.0207 NER NRNER Japanese -0.0404
NER NCBI-Disease-Jp Japanese 0.0222 NER NCBI-Disease-Jp Japanese 0.0143
NER MRNER-Medicine  Japanese 0.0233 NER MRNER-Medicine  Japanese 0.0472
NER MRNER-Disease Japanese 0.0355 NER MRNER-Disease Japanese 0.0366
NER JNLPBA-Jp Japanese 0.0614 NER JNLPBA-Jp Japanese 0.0442
NER BC5Disease-Jp Japanese 0.0363 NER BC5Disease-Jp Japanese 0.0035
NER BC5Chem-Jp Japanese -0.0034 NER BC5Chem-Jp Japanese -0.0166
NER BC2GM-Jp Japanese 0.0159 NER BC2GM-Jp Japanese -0.0009
MT EJMMT-Ja Japanese 0.0441 MT EJMMT-Ja Japanese 0.0665
MCQA USMLEQA-Jp Japanese 0.1009 MCQA USMLEQA-Jp Japanese 0.1005
MCQA PubMedQA-Jp Japanese -0.0070 MCQA PubMedQA-Jp Japanese -0.0005
MCQA MMLU-Medical-Jp Japanese 0.0877 MCQA MMLU-Medical-Jp Japanese 0.0775
MCQA MedQA-Jp Japanese 0.0943 MCQA MedQA-Jp Japanese 0.1072
MCQA MedMCQA-Jp Japanese 0.0669 MCQA MedMCQA-Jp Japanese 0.0749
MCQA JMMLU-Medical Japanese 0.0803 MCQA JMMLU-Medical Japanese 0.0889
MCQA IgakuQA Japanese 0.0731 MCQA IgakuQA Japanese 0.0756
DC SMDIS Japanese -0.0298 DC SMDIS Japanese -0.0298
DC RRTNM Japanese 0.0506 DC RRTNM Japanese 0.0730
DC CRADE Japanese 0.0598 DC CRADE Japanese 0.0435
MT EJMMT-En English 0.0542 MT EJMMT-En English 0.0436
MCQA USMLEQA English 0.0994 MCQA USMLEQA English 0.1210
MCQA PubMedQA English 0.0135 MCQA PubMedQA English 0.0100
MCQA MMLU-Medical English 0.0631 MCQA MMLU-Medical English 0.0748
MCQA MedQA English 0.1005 MCQA MedQA English 0.1005
MCQA MedMCQA English 0.0588 MCQA MedMCQA English 0.0862
MCQA IgakuQA-En English 0.1234 MCQA IgakuQA-En English 0.1365
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Parvovirus B19 is the causative agent of erythema infectiosum in children, but the virus is associated with an
increasing range of different diseases. These include acute and chronic arthritis, hydrops fetalis in pregnant women,
aplastic anemia, and thrombocytopenia. The host’s immune response is directed against the viral structural proteins
VP1 and VP2. This study investigated the presence of IgG against the viral nonstructural protein NS1 using Western
blot. Serum panels from healthy individuals, B19-infected pregnant women, and various disease groups were tested.
The disease groups included patients with symptoms that may be linked to parvovirus B19 infection. The results
showed that IgG against the NS1 protein was present in 22% of healthy individuals with past B19 infection. In
cases of persistent or prolonged B19 infections, the prevalence of NS1-specific antibodies was as high as 80%. It
is concluded that NS1-specific IgG may be used as an indicator of chronic or more severe courses of parvovirus
B19 infections. /YL K™ 4 )L ABIIZ/NED A FIDJER™ 4 L A Th B h. D77 4L 23«

TPREOMMEBEL TWaE., Zhsicid. s X ERMEBETR. igo WK, fFER R
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Fig. G.1: An Example of a Parallel Corpus. The parallel corpus is constructed by arranging machine-translated
Japanese paragraphs alongside their original English counterparts in random sequences. As a result, the text exhibits
random language switching between English and Japanese at the paragraph level, creating an artificial linguistic
environment that differs from language-specific textual patterns.
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