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Abstract

The rise of digital social media has generated
a vast amount of conversational data on plat-
forms like Twitter and Reddit, allowing users
to express sentiments through multi-turn dia-
logues. Dialogue-level aspect-based sentiment
quadruple analysis (DiaASQ) seeks to extract
structured information in the form of quadru-
ples from these dialogues. However, it encoun-
ters challenges related to cross-utterance el-
ements and focus bias. To address these is-
sues, we introduce the Subtask-Guided and
Causal-Debiasing (SGCD) framework. This
framework leverages subtask-specific features
to guide the learning of token-level features,
which are then adaptively combined at the
utterance level to meet specific semantic re-
quirements. The SGCD framework employs
multi-granularity attention paths to enhance
cross-utterance matching and dialogue struc-
ture modeling. It also incorporates structural
causal graphs and inverse probability weight-
ing to mitigate biases from speakers and thread
structures. Experimental results demonstrate
that SGCD outperforms state-of-the-art meth-
ods, improving semantic modeling and bias
robustness. This approach provides an effec-
tive solution for structured sentiment analysis
in complex dialogues.

1 Introduction

The advent of digital socialization attracts users to
frequent interactive online platforms such as Twit-
ter, Reddit, Facebook groups, and various forum
communities. They engage in sustained, multi-turn
dialogues on product experiences, social events,
or personal emotions. As of 2025, global social
media users have reached 5 billion, accounting for
more than 60% of the world population (Singh,
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2025). The extensive conversational content pro-
duced on these platforms exhibits a variety of lin-
guistic styles and rich expressions, displaying emo-
tional transitions among speakers and utterances.
This emerging trend presents challenges for com-
puters in understanding sentiments.

Dialogue-level aspect-based sentiment quadru-
ple analysis (DiaASQ) (Li et al., 2023), derived
from aspect-based sentiment analysis (ABSA), has
garnered significant attention in sentiment under-
standing. DiaASQ targets extracting structured sen-
timent quadruples (Target, Aspect, Opinion, Senti-
ment) from complete dialogues. It faces challenges
from complex dialogue structures, cross-turn utter-
ances, fragmented information distribution, and the
possibility that quadruple components may span
multiple utterances or speakers (see Figure 1).

Dialogue structure
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Unexpectedly ultra is wider.

It 's because of the curved surface,
but this square one is so lovely

The face value of s22u
can beat all mobile phones

I think the 22+ frame
is made narrower , and

the appearance is higher

Ultra has the feeling of Note series

Just put the Note 
series into the S series

Thread 1
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Cross-utt ultra curved surface lovely Positive

Intra-utt s22u face value beat all mobile phones

Intra-utt 22+ frame narrower Negative

Intra-utt 22+ appearance higher Positive
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Figure 1: An example of cross-utterance scenario.

Specifically, DiaASQ introduces two more com-
plex settings than sentence-level ABSA. First, emo-
tional elements exhibit significant cross-utterance
distribution, requiring the model to perform cross-
layer matching in context. As shown in Figure 1,
the opinion word “lovely” mentioned by User B
in the reply, and the aspect word “curved surface”
need to be cross-matched to the target word “Ultra”
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mentioned by User A. These elements distribute
unevenly across utterances, with some containing
no elements. Second, quadruples in dialogue often
concentrate on specific targets and aspects, leading
to significant focus bias in prediction perspectives,
which affects the model’s generalization and ro-
bustness in low-resource settings. For example,
in Thread 1 of Figure 1, all aspects focus on the
appearance of mobile phones.

Recently, researchers have attempted to im-
prove performance using multi-task learning, multi-
granularity modeling, or context-sharing mecha-
nisms. Models like DMIN (Huang et al., 2024),
DMCA (Li et al., 2024b), and H2DT (Li et al.,
2024a) execute semantic sharing by parallelly train-
ing multiple subtasks (e.g., target extraction and
opinion detection). However, these methods typi-
cally control learning priorities by adjusting loss
function weights, lacking explicit instruments to
characterize feature discrepancies between sub-
tasks, and struggling to balance modeling effects
across all subtasks. Besides, they often use fixed-
proportion multi-view feature aggregation strate-
gies, ignoring the actual contribution of different
utterances to predictions, hindering models from
capturing critical information in cross-utterance
structures and rendering them susceptible to dia-
logue structure bias.

To address these problems, this study proposes
a Subtask-Guided and Causal-Debiasing (SGCD)
framework for collaborative learning of three sub-
tasks: entity extraction (ent), sentiment relation
classification (rel), and sentiment polarity classifi-
cation (pol), while enhancing structural awareness
and bias robustness. The framework relies on two
core hypotheses: First, the deep semantic features
required by all subtasks can form a latent semantic
space, with subtasks differing in their priority on
distinct subsets of the features. Second, the seman-
tic contributions of cross-utterance features to final
predictions vary significantly, requiring dynamic se-
lection and modeling at the structural level. Based
on these hypotheses, the SGCD framework has
three key designs to improve model performance:

Subtask-Guided Feature Selection: Leveraging
dialogue thread modeling, this module guides
the learning of deep token-level features through
subtask-specific guidance signals. It adaptively se-
lects and fuses these features at the utterance level
to extract diverse deep feature representations rele-
vant to individual subtasks.

Subtask-Specific Attention Fusion: Aiming at
the heterogeneity of semantic requirements across
subtasks, SGCD constructs multi-granularity atten-
tion paths to dynamically fuse semantic representa-
tions at the token and utterance levels, enhancing
cross-utterance matching and dialogue structure
modeling capabilities.
Bias Reduction with Backdoor Adjustment:
This module establishes a structural causal graph,
including variables of speakers and thread struc-
tures, and adjusts biases at both the sample and to-
ken levels via inverse probability weighting (IPW)
to approximate unbiased training distributions, ef-
fectively mitigating interference from structural
and pragmatic biases in dialogues.

Experimental results on the DiaASQ datasets
demonstrate that the proposed SGCD method
outperforms state-of-the-art approaches across
multiple standard and bias-sensitivity metrics,
particularly in cross-utterance scenarios. The
source code of SGCD can be accessed at
https://github.com/hustselab511/SGCD.

2 Related Work

Aspect-based sentiment analysis (ABSA) has
evolved from target-aspect identification (Pontiki
et al., 2014) to more structured extractions such as
triplets (ASTE) (Hua et al., 2024) and quadruplets
(ASQP) (Hua et al., 2024; Zhang et al., 2022a). To
improve semantic modeling, researchers have incor-
porated graph structures and attention mechanisms,
including GCNs (Zhang et al., 2019), Transformers
(Sun et al., 2019), and multi-granularity denoising
approaches (Luo et al., 2024; Zhang et al., 2024),
which also inspire dialogue-level sentiment extrac-
tion.

To address the problem caused by the emotional
elements spread across multiple utterances, the Di-
aASQ task targets the joint extraction of targets,
aspects, opinions, and sentiments in multi-turn dia-
logues. MVQPN (Wu et al., 2020) captures emo-
tional flow via query propagation, DMIN (Huang
et al., 2024) integrates multi-level discourse fea-
tures, while DMCA (Li et al., 2024b) and H2DT
(Li et al., 2024a) enhance cross-utterance mod-
eling through hierarchical fusion and token-level
graph reasoning. However, most approaches adopt
a “shared encoder + weighted loss” framework
(Cai et al., 2023; Zhang et al., 2023), lacking ex-
plicit semantic disentanglement across tasks. We
address this by introducing task-guided represen-
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tation learning and dynamic feature selection to
improve interpretability and generalization.

The causal inference has become increasingly
relevant for debiasing in NLP, offering a principled
way to model confounders and causal paths (Feder
et al., 2021). DINER (Wu et al., 2024) applies
SCM, IPW, and counterfactual reasoning to reduce
ABSA bias. MCIS (Yang et al., 2024) mitigates
multimodal bias via causal graph purification, and
generative counterfactual augmentation improves
polarity robustness. While effective in static and
multimodal settings, causal modeling in multi-turn
dialogues is underexplored. Prior work such as
cfVQA (Niu et al., 2020) shows promise but lacks
structural bias modeling for DiaASQ-specific vari-
ables like thread and speaker. Our work bridges this
gap through integrated causal and task-structured
learning.

3 Proposed Method

We represent a dialogue as D = {u1, u2, . . . , un},
where ui denotes the i-th utterance and n is the to-
tal number of utterances. Each utterance ui =
{t1, . . . , tmi} consists of a sequence of tokens,
with mi indicating its length. Each utterance also
includes two structural metadata: a speaker label
sequence s = {s1, . . . , sn} and a reply relation-
ship record r = {l1, . . . , ln}, where li specifies
the index of the preceding utterance it replies to.
Our objective is to predict labels for each token
across subtasks γ ∈ {ent, rel, pol}, following the
sentiment quadruple prediction setup of DiaASQ
(Li et al., 2023). The overall framework of our pro-
posed method is illustrated in Figure 2, comprising
three consecutive steps.
Subtask-Guided Feature Selection: Guiding the
learning of deep token-level features related to
subtasks, and utterance-level features are obtained
from the token-level through dynamic selective fu-
sion.
Subtask-Specific Attention Fusion: Constructs
task-specific attention aggregation paths for token-
level and utterance-level features, flexibly combin-
ing information from both levels to produce final
representations and classification results.
Bias Reduction via Backdoor Adjustment: Per-
forms backdoor adjustment on two bias paths (S →
L and T → L) within a Structural Causal Model
(SCM). Inverse Probability Weighting (IPW) ad-
justs training losses at both the dataset-wide and
sample-specific levels to approximate bias-free dis-

tributions.

3.1 Subtask-guided Feature Selection

Tokens are the basic units for final label predic-
tion in dialogue, while utterances carry speakers’
implicit prior knowledge and fundamental units
for cross-utterance interactions. Extracting infor-
mation from these units is critical for solving the
three subtasks. Balancing multi-task losses through
weight adjustment is fragile. Therefore, we de-
sign subtask-guided features to explicitly direct the
shared network across subtasks to focus on learning
more generic and deeper semantic features.

Subtask-guided encoder (SGEncoder): SGEn-
coder builds on DMIN’s thread modeling ap-
proach, treating dialogue threads as utterance-level
directed chains input into Pre-trained Language
Models (PLMs) (Devlin et al., 2019) to enhance
cross-utterance interaction modeling. Each ut-
terance is represented as u′i = {[CLS], ui, si},
where [CLS] is a special start token in PLMs
and si is the corresponding speaker label. The
first utterance u′1 of each thread is designated as
the root node and repeated at the beginning of each
thread. For thread tk = {u′1, u′i, u′i+1, . . . , u

′
j},

we can derive the PLM-encoded representation,
Hu′

i
= PLMs(u′i).

Subtask-guided features, matching the seman-
tic needs of specific subtasks, serve as non-
overlapping portions of deep semantic features re-
quired by subtasks, explicitly reducing subtasks’
dependence on overlapping feature modeling. To
achieve this, different PLM layer features are se-
lected to match each subtask’s semantic require-
ments (Jawahar et al., 2019), and Average Pooling
(AvgPool) (Lecun et al., 1998) with a linear trans-
formation is used to obtain the unified representa-
tion Hγ

g for subtask γ.
For the token-level representations, interactions

between nodes are crucial for capturing semantic
flow and information transmission. Inspired by
prior work by Zhang et al. (2022b), we use graph
convolutional networks (GCNs) (Chen et al., 2022)
to systematically model interaction dependencies
between nodes in dialogue threads, with features
fused via residual connections (He et al., 2016) and
layer normalization (LN) (Xu et al., 2019a). The
fused token-level representation for subtask γ is:

Hγ
tok =LN(Ht + GCNs(Asem, Ht)+

GCNs(Aint, Ht) +Hγ
g ) (1)
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Figure 2: The architecture of the proposed SGCD model.

Here, Asem is a semantic adjacency matrix built
via self-attention (Vaswani et al., 2017) to capture
implicit semantic connections within and across
utterances, Aint is an interaction adjacency matrix
based on reply structures, and Ht are features out-
put by PLMs.

Dynamic Selective Fusion (DSFusion). The
proportion of tokens containing valid information
varies across utterances, inspiring dynamic selec-
tive fusion. Specifically, using an attention mecha-
nism on Hu′

i
, query Qu′

i
and key Ku′

i
are derived.

The global representation of Ku′
i

is obtained via
average pooling and dotted with Qu′

i
to calculate

the attention score of each token for the utterance:

Su′
i
= Wscore

(
σ
(

LN
(

avg(Ku′
i
) ·Qu′

i

)))
(2)

Dynamic K selector (DKSelector). DKS-
elector is used to dynamically select features.
For an utterance i with length mi, the entropy
of Su′

i
measures distribution uniformity (Caticha

and Preuss, 2004), adjusting the K value in the
Top-K method. Entropy adjustment (normalized
by log(mi)) yields Kad

i .

We thereby introduce a deviation control: if
the highest token score exceeds twice the average
score, Kred

i = ζ (where ζ is a hyperparameter),
otherwise 0. With hyperparameters α and β for

base ratio control, the final dynamic K value is:

K
dyn
i = max

(
1, int

(
(α+ βK

adj
i −Kred

i )mi

))

(3)
After Top-K selection using K

dyn
i , the represen-

tation Hdu
i of Hu′

i
is obtained. A Multi Granular-

ity Aggregator (Wang et al., 2020) concatenates
speaker features, weighted and unweighted pool-
ing features, which are then aggregated via a multi-
layer perceptron (MLP) to generate the final utter-
ance representation hoi. We then model the global
inter-utterance relationships via GCNs:

Hutt = LN(GCNs(Autt, Ho) +Ho) (4)

where Ho = {ho1, ho2, . . . , hon} and Autt is an
adjacency matrix where Autt = 1 if two utterances
have a reply relationship, otherwise 0.

3.2 Subtask-Specific Attention Fusion
Due to the semantic disparities across subtasks,
the model must flexibly aggregate contextual infor-
mation for specific subtasks. To address this, we
propose subtask-specific attention fusion (SAF) to
construct dedicated attention aggregation paths for
each subtask to explicitly model multi-granular in-
teractions between tokens and utterances (Vaswani
et al., 2017).

Following Huang et al. (2024), we use token-
level features for subtask γ Hγ

tok ∈ RN×d and

11433



utterance-level features Hutt ∈ Rn×d as queries
(Q) and keys (K) to construct three attention score
matrices: Stok-tok ∈ RN×N , Stok-utt ∈ RN×n,
and Sutt-tok ∈ Rn×N . Learnable coefficients τ, δ ∈
[0, 1] adapt to each task’s preference for attention
paths:

Aitg = τ · (Stok-utt · Sutt-tok) + δ · Stok-tok (5)

To ensure effective fusion, a thread mask M th ∈
{0, 1}N×N is applied: M th

ij = 1 if tokens i and j be-
long to the same thread, otherwise 0. The fused
representation is the result of linear transformation:

Hitg = Witg
(
softmax(Aitg ⊙M th) ·Hγ

tok

)
(6)

The fused representation Hitg goes through a
feedforward network with residual connections.
Task-specific MLP layers combined with RoPE
(Su et al., 2024), generate the feature output vγi of
the i-th token for subtask γ:

{
Hf = LN(FFN(Hitg) +Hitg)

vγi = R(θ, i) · MLP(Hf,i)}
(7)

Here, R(θ, i) is the position encoding matrix based
on index i and hyperparameter θ.

Following Li et al. (2023), we adopt a grid
tagging method to derive final relation predic-
tions. During training, we optimize using weighted
cross-entropy loss across three subtasks. For
task γ, let G = total samples, N = tokens per sam-
ple, yγij and pγij = ground truth and predicted proba-
bilities, and αγ = task weight. The loss is defined
as:

Lγ = − 1

G ·N2

G∑

g=1

N∑

i=1

N∑

j=1

αγy
γ
ij log(p

γ
ij) (8)

3.3 Bias Reduction with Backdoor
Adjustment

We construct the structural causal model (SCM)
for DiaASQ by extending Wu et al. (2024)’s
SCM for ABSA with dialogue-specific causal vari-
ables S (speaker habits/patterns), R (reply rela-
tions), and T (thread structures), as illustrated in
Figure 1. Speaker-related implicit dialogue habits
and knowledge in S form a causal path S→L, while
reply-driven opinion convergence/divergence pat-
terns in T create a T→L path. Leveraging backdoor
adjustment (Fang et al., 2024) and Inverse Proba-
bility Weighting (IPW) for these paths, the model
mitigates biases from S and T in finite samples,

achieving “pseudo-randomness” akin to random-
ized trials (Chesnaye et al., 2022) for robust causal
inference in dialogue sentiment analysis.

For a dialogue sample Di with ni utterances,
larger ni increases the risk of bias from speaker-
message quantity disparities and implicit prior dif-
ferences. Thus, IPW is used to downweight the loss
contribution of such samples during training. The
global inverse probability weight for sample ui is:

w
(i)
global =

exp(1/ni)∑N
j=1 exp(1/nj)

·N (9)

For each token t in utterance ui, with
speaker si ∈ {0, 1, . . . , Smax} and belonging to
thread Tj (containing |Tj | utterances), the joint in-
verse probability weight for token t is:

wt =

[
Smax · exp(1/rsi)∑Smax

j=0 exp(1/rj)

]
·
[
|Th| · exp(1/|Tj |)∑|Th|

k=1 exp(1/|Tk|)

]

(10)
The IPW-weighted loss function for sam-

ple Di is:

Lipw =
N∑

i=1

w
(i)
global ·

(
1

ni

n∑

t=1

wt · L(i)
t

)
(11)

Here, w(i)
global suppresses the overall influence of

long-dialogue samples, while wt mitigates biases
from speakers (S) and thread structures (T). The
combined weighting approximates training under a
re-sampled debiased distribution.

4 Experiment and Results

4.1 Datasets
To evaluate the effectiveness of the proposed
SGCD method, we conducted experiments using
DiaASQ (Li et al., 2023), a multilingual bench-
mark dataset specifically developed for extracting
dialogue-based aspect sentiment quadruples. Di-
aASQ covers user-generated conversations related
to mobile devices on Chinese social media plat-
forms. It includes Chinese (ZH) and English (EN)
versions, featuring real-world dialogue threads an-
notated with information about aspects, opinions,
sentiments, and targets. The Chinese version con-
tains a total of 1,000 dialogues, 7,452 utterances,
and 5,742 sentiment quadruples, while the English
version contains 5,514 quadruples. On average,
each dialogue involves approximately five speak-
ers. The datasets contain a wide range of sentiment
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expressions and context-dependent relationships,
including 1,275 (22.2%) cross-utterance quadru-
ples in the Chinese version and 1,227 (22.3%) in
the English version. As for pair labels, the training
set of dataset ZH includes 4,699 T-A, 5,931 T-O,
and 3,989 A-O instances, while the training set
of dataset EN contains 4,823 T-A, 6,062 T-O, and
4,297 A-O instances. We adhered to the standard
partitioning protocol, splitting the data into train-
ing, validation, and testing sets in an 8:1:1 ratio.
The evaluation was performed across multiple sub-
tasks, including span extraction, pair identification,
and quadruple prediction.

4.2 Model Implementation
The hyperparameter α in the DSFusion controls the
proportion of top-k components. Through statisti-
cal analysis of the sample distribution in the dataset
and referencing the proportion of task-relevant
key tokens within utterances, α is set to 0.7 for
ZH and 0.5 for EN to cover primary information.
The values of β and ζ are set to 0.1 and 0.2, respec-
tively.

To avoid the over-smoothing problem in graph
neural networks (Li et al., 2018) and integrate the
experimental conclusions (Xu et al., 2019b), the
MGTEncoder uses 3 GCN layers, and the Top-K
Selector module employs 2 GCN layers, achieving
optimal semantic modeling performance.

We set the dropout rate to 0.2 to mitigate overfit-
ting risks, and the training duration is 60 epochs to
ensure the model fully converges and maintains sta-
ble performance under mini-batch training. In line
with existing studies on the DiaASQ task, we use
RoBERTa-Large (Liu et al., 2019) for English (EN)
and Chinese-RoBERTa-wwmext-base (Cui et al.,
2021) for Chinese (ZH) as the PLMs, with all other
settings consistent with DMIN to ensure fair com-
parisons. The model has 1,664M parameters. It
took 5 hours to train the model for 60 epochs on an
NVIDIA RTX 3090 GPU, and the inference of all
test sets took 2 minutes.

4.3 Evaluation Metrics
We use exact-match F1 as our primary metric,
following Li et al. (2023). Specifically, we re-
port Micro-F1 and Identification-F1 (Barnes et al.,
2021) to evaluate performance on the DiaASQ
task. Micro-F1 assesses the overall correctness
of quadruples, including sentiment polarity, while
Identification-F1 focuses on element boundaries
and structural accuracy by excluding polarity.

Furthermore, we also analyze the model’s per-
formance on sub-tasks using span and pair F1

scores, which include Target-Aspect (T-A), Aspect-
Opinion (A-O), and Target-Opinion (T-O) pair-
ings. Performance assessment covers scenarios de-
fined by Intra-Utt. (within a single utterance), Inter-
Utt. (multi-utterance dependencies in the same
thread), and Cross-Utt. (typically across threads
or loosely associated utterances). The result allows
us to investigate how effectively the model captures
complex dependencies and dialogue structure.

Finally, we explicitly assess the model’s robust-
ness in extracting quadruples across utterances,
a particularly challenging aspect of the DiaASQ
task. We categorize test samples based on their
cross-utterance distance (the number of utterances
spanned by the quadruple components) and report
the model’s performance at each distance level.
This approach allows us to examine how effectively
the model captures long-range dependencies and
discourse-level structures.

4.4 Baselines

We compared our proposal against several state-of-
the-art methods, including the generic methods and
approaches specifically tailored for the DiaASQ
task.
ChatGPT: ChatGPT-3.5-turbo is a large language
model built on GPT-3 (Brown et al., 2020). The
experimental findings used for comparison were
reported by (Zhou et al., 2024) and (Huang et al.,
2024).
DiaASQ (Li et al., 2023): designed to perform
end-to-end extraction of sentiment quadruples in
dialogue settings.
H2DT (Li et al., 2024a): enhancing discourse fea-
ture modeling through a heterogeneous token-level
graph and a triadic scorer that strengthens the co-
hesion of related tokens, improving quadruple ex-
traction performance.
DMCA (Li et al., 2024b): introducing a multi-scale
context aggregation strategy using dialogue win-
dows and dynamic hierarchical fusion to better cap-
ture inter-utterance dependencies.
DMIN (Huang et al., 2024): integrating token-level
and utterance-level features using a thread-based
structure and a multi-granular integration module,
aiming for a more holistic understanding of dia-
logue context. These baselines represent a range of
paradigms and design philosophies for DiaASQ, of-
fering a comprehensive benchmark for comparison
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Speaker Uttrance ID Type Gold Label [P, T, A, O] DMIN SGCD

0 Taking pictures sucks  1 Cross ["neg","Xiaomi", "Taking pictures", "sucks"] ❌
["neg", "Xiaomi",

"pictures", "sucks"]

1 100 million pixel super wide - angle may have, about others
you can guess [laugh cry] 2 Cross ["pos","neo5", "camera", "reputation"] ["pos", "neo5",

"reputation", "good"]
["pos", "neo5",

"reputation", "good"]0 But it's useless, software optimization sucks

1 Optimization is Xiaomi's weakness
[allow sadness] 3 Cross ["pos","Xiaomi 11", "camera", "beats"] ❌

["pos","Xiaomi
11","reputation","beats"

3 The price of neo5 is 500 more expensive than k40, and it is
normal to take better pictures.

4 Cross ["neg","Xiaomi", "software optimization", "sucks"] ❌ ✔
4 With all due respect, is there any phone with a good camera

that costs about 2,000 yuan? [doge]

0 Friends business neo5 has a good reputation 5 Intra ["pos","neo5", "pictures", "better"] ✔ ✔

5 Xiaomi 11 beats it [doge] 6 Intra ["neg", "Xiaomi","Optimization", "weakness"] ❌ ✔

Figure 3: A case for the quadruples extracted from a complex dialogue. Colors represent target, aspect, and opinion.

with our method.

4.5 Main Results

In the case described in Figure 3, we compared
the proposed method and DMIN on a complex 3-
thread dialogue with cross/intra-utterance quadru-
ples. DMIN only predicted one quadruple, strug-
gling with complex structures. Our method ex-
tracted two intra- and one cross-quadruples, despite
minor deviations like “Taking Pictures” → “pic-
tures”. Its capability of relationship modeling han-
dles diverse structures (short/long-distance cross,
multi-thread interference), validating its superiority
in complex dialogues.

Tables 1 and 2 present the results of our model
on the DiaASQ datasets, demonstrating its supe-
rior performance compared to the state-of-the-art
models across key metrics and dialogue structure
dimensions.
(1) For the core quadruple extraction, our
model outperforms the second-best approach in
both Micro and Identification F1 scores. Specif-
ically, it achieves improvements of approxi-
mately 2.03% and 1.61% on the ZH dataset
and 1.72% and 0.4% on the EN dataset. This in-
crease indicates powerful representation and model-
ing capabilities for boundary detection and element
matching in complete sentiment quadruples.
(2) Our model outperforms the second-best ap-
proach in Intra-Utterance and Inter-Utterance se-
tups, improving 1.8% to 5.4% on the ZH and EN
datasets, validating its robustness in predicting
quadruple relationships in conventional dialogue
structures.
(3) In the Cross-Utterance (Cross-1) scenario, our
model gains 8.23% for ZH and 5.43% for EN
over DMIN, demonstrating effective dialogue con-
text modeling in complex scenarios. While some
models perform slightly better in A-O (P) pair-

wise relationships, their weaker performance in
Inter-Utterance and Cross-Utterance cases confirms
our model’s strength in handling complex multi-
utterance dependencies.

While some models slightly exceed SGCD in A-
O (P) relationships, they lag significantly in Inter-
and Cross-Utterances. This suggests our model
prioritizes learning complex, multi-utterance rela-
tionships over simple pairwise associations.

Our method delivers superior performance com-
pared to LLM-based baselines. It surpasses DMIN
in overall quadruple extraction accuracy, struc-
tural adaptability, and complex context perception,
showcasing broad applicability and strong general-
ization in dialogue sentiment analysis tasks.

The significance analysis between SGCD and
the baseline demonstrated that SGCD improved the
performance with statistical significance. Please
refer to Appendix B for further details.

4.6 Ablation Study

To determine the role of each module in model
structure and performance improvement, we con-
ducted ablation experiments on overall perfor-
mance and Cross-Utterance metrics. Tables 3 and
4 list the results.

Impact of Modules on Overall Performance:
We first evaluated the contribution of each module
to the three primary DiaASQ subtasks. Removing
the Bias Reduction module leads to significant de-
clines in Cross-Utterance performance (5.71% in
ZH and 2.3% in EN), validating the critical role
of the causal debiasing mechanism in enhancing
the model’s ability to model complex cross-context
relationships.

Further ablation of SGEncoder and DSFu-
sion causes all three primary metrics to drop by
over 1.4%, indicating their substantial contribu-
tions to deep semantic feature learning. The neg-
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Model ZH Dataset EN Dataset
T-A (P) T-O (P) A-O (P) Micro (Q) Ident. (Q) T-A (P) T-O (P) A-O (P) Micro (Q) Ident. (Q)

ChatGPT zero-shot (Huang et al., 2024) 23.86 10.55 15.81 13.77 18.15 23.26 16.07 14.34 10.98 12.99
ChatGPT one-shot (Huang et al., 2024) 29.90 17.48 25.59 18.26 20.56 26.18 20.33 21.20 13.20 14.67
ChatGPT 5-shot ICL (Zhou et al., 2024) 34.98 42.48 27.43 20.59 18.41 28.76 37.24 25.36 17.17 15.26
DiaASQ (Li et al., 2023) 48.61 43.31 45.44 34.94 37.51 47.91 45.58 44.27 33.31 36.8
H2DT (Li et al., 2024a) 50.48 48.8 52.4 40.34 42.44 48.69 48.84 52.47 39.01 43.92
DMCA (Li et al., 2024b) 56.88 51.7 52.8 42.68 43.56 53.08 50.99 52.4 37.96 41
DMIN (Huang et al., 2024) 57.62 51.65 56.16 44.49 47.50 53.49 52.66 52.09 39.22 42.31
SGCD 59.44 52.55 57.65 46.52 49.11 53.82 52.85 52.12 40.94 44.37

Table 1: Comparison of the F1 scores (%) of our method against baseline modelst. The symbols T, A, and O
represent Target, Aspect, and Opinion, respectively.

Model ZH Dataset EN Dataset
Intra Inter Cross Intra Inter Cross

DiaASQ 37.95 23.21 29.9 37.65 15.76 23.47
H2DT 43.2 25.55 N.A. 42.52 19.15 N.A.
DMCA 44.22 30.88 29.56 37.97 20.97 21.28
DMIN 47.4 31.69 31.23 41.62 22.09 25.56
SGCD 49.26 34.74 39.46 44.12 27.43 30.99

Table 2: Comparison of F1 ( %) for different methods on
subtasks. Italicized numbers indicate results obtained
by reproducing the models, as these results were un-
available in the original publications.

ZH Dataset EN Dataset
Micro (Q) Ident.(Q) Cross Micro (Q) Ident.(Q) Cross

complete model 46.52 49.11 39.46 41.18 43.93 27.97
w/o SGEncoder 44.71 47.33 38.03 38.83 42.28 21.58
w/o GCNs 45.49 47.06 40.99 40.36 41.88 26.25
w/o Guided Features 45.9 48.24 36.6 40.67 43.12 27.13
w/o DSFusion 44.51 46.47 36.36 39.43 42.07 26.57
w/o DKSelector 45.62 47.79 36.24 40.57 42.81 24.97
w/o SAF 43.85 46.38 33.42 39.04 41.63 24.86
w/o Bias Reduction 44.74 48.02 33.75 40.04 43.83 25.67
w/o Token IPW 45.94 49.34 37.91 40.76 43.62 26.74
w/o Global IPW 45.01 47.16 35.9 40.23 43.39 25.72

Table 3: Comparison of the F1 scores (%) for different
model settings.

ative impact on Quadruple F1 shows their impor-
tance in modeling long-range cross-utterance rela-
tionships.

Evaluating the SAF module, we observe drastic
drops in Micro-F1, Identification-F1, and Cross-
Utt metrics (with maximum drops exceeding 6%),
demonstrating the module’s indispensability in fus-
ing diverse features and focusing on task-relevant
semantics.

Specific Contributions of Modules Across
Tasks: To analyze the fine-grained contributions,
we took three key tasks, i.e., entity recognition,
entity pairing, and complete quadruple prediction,
and reported the changes in average F1 in Table 4.

Experimental results showed that for the rela-
tively simple entity recognition task (ent), struc-
tural modeling could slightly interfere with per-
formance. Removing individual modules led to
minor improvements, indicating that single-entity
extraction has a low dependency on complex archi-

tectures.
Guided features significantly enhanced perfor-

mance in the entity pairing task (pair), demonstrat-
ing their effectiveness in directing the model to
identify semantically related entity pairs within
structural contexts.

The DSFusion and the dynamic top-k selection
proved critical to the quadruple extraction (quad).
Their removal caused significant performance de-
clines (with the largest drop exceeding 2%), indi-
cating their role in modeling complex, long-range,
and cross-utterance relationships.

Analysis of Causal Debiasing: We further in-
vestigated the specific impacts of the two-level IPW
causal debiasing strategy: Global-IPW and Token-
IPW. As shown in Figure 4, we recorded the per-
formance of using single debiasing strategies on
complex tasks and plotted their F1 score ratios rel-
ative to the complete model.

Results indicate that Global-IPW primarily en-
hances Cross-Utterance extraction capabilities, par-
ticularly in the EN dataset, reflecting its advantages
in global structural distribution adjustment. Token-
IPW, meanwhile, positively impacts all tasks (Intra-
Utt, Inter-Utt, Cross-Utt), demonstrating that fine-
grained adjustment of token-level training contri-
butions improves modeling stability.
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Figure 4: Quadruple extraction scores on Intra-Utt.,
Inter-Utt., and Cross-Utt., reported as F1 ratios relative
to the SGCD model (B model). ∆x represents the gap
compared to the our SGCD method.
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Ent Pair Quad
Complete model 77.15 56.55 43.82
w/o guided features 77.05 55.62 42.9
w/o DSFusion 77.12 55.94 41.23
w/o DKSelector 77.34 56.31 42.05

Table 4: Comparison of the average F1 scores (%) for
different model settings.

4.7 Statistical Significance Analysis

To determine if the performance improvement of
the SGCD model compared to existing methods
is statistically significant, we conducted a system-
atic significance test. We established the null hy-
pothesis (H0) as follows: the performance of the
SGCD method is not superior to that of the com-
parison models. Conversely, the alternative hy-
pothesis (H1) states that the performance of the
SGCD method is superior to that of the comparison
models. This test was carried out by analyzing the
prediction results from end-to-end models.

In the evaluation process, we observed that while
the models produced consistent rankings at the di-
alogue level, the order of their internal prediction
results (such as triplets, t-a, etc.) appeared random.
To address this issue, we used the ground truth as
a ranking benchmark to align the items in the pre-
diction results that could be accurately or partially
matched. Specifically, for each predicted triplet,
we extracted seven-dimensional matching values,
which included six position indices corresponding
to the target, aspect, and opinion, as well as the
sentiment polarity. These values formed the basis
for determining the accuracy of the predictions.

Using this alignment strategy, we developed eval-
uation metrics for significance analysis. Specifi-
cally, we applied two non-parametric methods, the
one-sided paired t-test and the Wilcoxon signed-
rank test, to assess the performance differences
between SGCD and each of the baseline models.
The results of the test are presented in Table 5,
indicating that H0 should be rejected.

Model DMIN DMCA H2DT DiaASQ
paired t-test 0.047 0.036 0.018 0.013
Wilcoxon 6.00× 10−4 4.28× 10−6 5.48× 10−7 1.36× 10−7

Table 5: Results of p-values for statistical significance
tests of the SGCD model compared to baselines.

5 Conclusion

This study presents the SGCD framework to
address the challenges of cross-utterance quadru-
ple extraction, varying effectiveness of tokens
in utterances, and non-negligible focal biases
in DiaASQ. Previous research typically relies
on subtask loss weights to regulate shared deep
feature learning across subtasks. In contrast,
we introduce a subtask-guided feature selec-
tor to direct the modeling of deep features at
the token and utterance levels shared among
subtasks. We then dynamically select the features
according to each utterance’s need to generate
utterance-level representations. For complex
cross-utterance interactions, subtask-specific
attention fusion flexibly aggregates token-level and
utterance-level features based on subtask-specific
needs, producing prediction features tailored to
each subtask. Finally, causal debiasing reduces
interference from confounding variables (speaker
and thread) at both the dataset and sample levels,
enhancing the model’s adaptability to complex
scenarios. Experimental results on Chinese and
English DiaASQ benchmark datasets fully validate
the effectiveness and robustness of the proposed
SGCD method.
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Limitations

Despite the proposed SGCD framework achieving
superior performance on the DiaASQ dataset, sev-
eral limitations deserve further investigation. First,
the causal debiasing modeling remains incomplete.
Beyond the explicit structural biases of speaker
and thread already considered, biases arise from
uneven distributions of intra- and cross-utterance
quadruples in the dataset and unobservable latent
factors in dialogues. The latent factors include tem-
poral semantic shifts like evolving language trends
and popular discourse patterns, which are challeng-
ing to model and incorporate into the causal graph.
Second, for constructing subtask-guided features,
we need to explore more focused and explicit task-
specific feature representations tailored to individ-
ual subtasks beyond mere PLM layer-wise features.

Our future work will address these gaps through
improvements such as more comprehensive causal
structure modeling for dialogues, more precise task-
specific feature design, and dataset structure clean-
ing/enhancement. We expect these will further pro-
mote the model’s generalization and cross-domain
adaptability.
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