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Abstract

Multi-stage information retrieval (IR) has be-
come a widely-adopted paradigm in search.
While Large Language Models (LLMs) have
been extensively evaluated as second-stage
reranking models for monolingual IR, a sys-
tematic large-scale comparison is still lacking
for cross-lingual IR (CLIR). Moreover, while
prior work shows that LLM-based rerankers im-
prove CLIR performance, their evaluation setup
relies on lexical retrieval with machine transla-
tion (MT) for the first stage. This is not only
prohibitively expensive but also prone to error
propagation across stages. Our evaluation on
passage-level and document-level CLIR reveals
that further gains can be achieved with multi-
lingual bi-encoders as first-stage retrievers and
that the benefits of translation diminishes with
stronger reranking models. We further show
that pairwise rerankers based on instruction-
tuned LLMs perform competitively with list-
wise rerankers. To the best of our knowledge,
we are the first to study the interaction between
retrievers and rerankers in two-stage CLIR with
LLMs. Our findings reveal that, without MT,
current state-of-the-art rerankers fall severely
short when directly applied in CLIR.

1 Introduction

Cross-lingual information retrieval (CLIR) aims to
retrieve documents written in a different language
than the query, which facilitates multilingual access
to information. Traditionally, CLIR systems have
relied heavily on machine translation (MT) to con-
vert either queries or documents into a shared lan-
guage, effectively transforming the original cross-
lingual task into a monolingual task (Oard, 1998;
McCarley, 1999; Zhou et al., 2012; Sun et al., 2020;
Lawrie et al., 2022). While this MT-based set-
ting has been the dominant approach, it introduces
several practical and methodological limitations:
translation increases the query latency; it remains

* Equal contribution.

Figure 1: The pipeline used in our experiments. QT:
monolingual setup using query translation; DT: mono-
lingual setup using document translation; OG: cross-
lingual setup using original documents. Routes marked
with blue indicate the cross-lingual information retrieval,
where translation is omitted in both the retrieval and
reranking stages. Abbreviations used consistently across
tables and figures.

unavailable or unreliable for many low-resource
languages (Haddow et al., 2022), adversely affect-
ing cross-lingual retrieval when translations contain
errors (Litschko et al., 2022a; Guo et al., 2024).

Recent work leveraging large language models
(LLMs) in information retrieval has demonstrated
promising gains over baseline systems (Ma et al.,
2024, 2023), highlighting their capability in rank-
ing tasks. While prior work focuses on monolin-
gual retrieval and reranking, cross-lingual LLM-
based retrieval has been understudied. To the best
of our knowledge, the only prior works on LLM-
based CLIR rely on MT to bridge the language
gap in the retrieval stage (Adeyemi et al., 2024a)

11415

mailto:zuo.longfei@campus.lmu.de
mailto:pingjun.hong@campus.lmu.de
mailto:o.kraus2n@lmu.de
mailto:b.plank@lmu.de
mailto:robert.litschko@lmu.de


and evaluates rerankers on a limited number of lan-
guages (Weller et al., 2025b). In our study, we
move beyond translation-based setups and conduct
a large-scale evaluation of LLMs for cross-lingual
retrieval and reranking. Figure 1 illustrates our ex-
perimental setup. We compare the performance
of state-of-the-art bi-encoders against MT-based
lexical retrieval, and quantify the translation gap
between rerankers applied on original language
documents (OG) versus translated documents (DT).
Our work is also the first to compare listwise and
pairwise LLM-based rerankers on CLIR.

Our research addresses the following key ques-
tions: RQ1: How do recent dense multilingual
bi-encoders and sparse BM25 differ in their per-
formance as first-stage retrievers for cross-lingual
retrieval? RQ2: To what extent do LLM rerankers
improve retrieval performance when paired with
different types of first-stage retrievers, and how
does this interaction vary across high-resource and
low-resource language settings? RQ3: How do
pairwise and listwise reranking approaches influ-
ence cross-lingual reranking performance? RQ4:
What is the impact of document length on listwise
and pairwise reranking in CLIR?

By addressing these questions, we provide a
comprehensive view of LLM rerankers’ cross-
lingual capabilities and limitations, offering critical
guidance for building more effective and adapt-
able multilingual retrieval solutions. In summary,
our main contribution is a systematic evaluation
of LLMs for cross-lingual reranking without fully
relying on document translation. We release our
code and resources to facilitate reproducibility and
future research.1

2 Related Work

2.1 Multi-Stage Retrieval
The multi-stage retrieval paradigm, widely used in
prior work (Nogueira et al., 2019; Ma et al., 2024;
Zhuang et al., 2024; Rathee et al., 2025), consists of
a fast first-stage retriever followed by one or more
reranking stages for improved precision (Nogueira
et al., 2019).

Prior studies have shown that first-stage qual-
ity can significantly impact reranking performance
(Pradeep et al., 2023a,b), and that reranking a
smaller, high-quality candidate set (e.g., top-20)
can match or exceed reranking larger document
pools (e.g., top-100). Lexical retrievers like BM25

1https://github.com/mainlp/llm-clir

(Robertson and Zaragoza, 2009) with document
translation pipelines have been widely used in
the first stage. More recent approaches employ
bi-encoder models to improve candidate quality
(Liu et al., 2025b; Lawrie et al., 2024). Our work
presents the first large-scale comparative study be-
tween LLM-based retrievers and rerankers, across
different retrieval paradigms and language pairs.

Recently, many studies have leveraged LLMs
as second-stage rerankers due to their strong zero-
shot ranking capabilities (Sun et al., 2023; Pradeep
et al., 2023a,b; Zhang et al., 2025). Despite their
effectiveness in ranking, applying computationally
expensive LLM-based rerankers over the full candi-
date pool is slow and resource-intensive in practice.
This makes multi-stage IR crucial to first filter a
manageable subset of candidates for reranking.

2.2 Reranking Approaches with LLMs
Listwise Reranking allows LLMs to evaluate
multiple candidate documents at once within a sin-
gle prompt (Ma et al., 2023). Given a query q and
a candidate set of documents D1, D2, ..., Dn, the
LLM returns a permutation (i.e., ranked list) based
on estimated relevance Dπ(1), Dπ(2), ..., Dπ(n).

RankGPT, introduced by Sun et al. (2023), lever-
ages instruction-tuned LLMs for passage reranking
and employs a novel prompting-based strategy to
enhance listwise reranking performance. However,
a key limitation of this work is its reliance on propri-
etary models. Recent open-source listwise rerank-
ing models include RankVicuna (Pradeep et al.,
2023a), RankZephyr (Pradeep et al., 2023b) and
Rank-without-GPT (Zhang et al., 2025) have been
distilled from closed-source models and shown to
perform competitive performance on benchmarks
like TREC DL (Craswell et al., 2020, 2021) and
BEIR (Thakur et al., 2021). However, the perfor-
mance of LLM-based rerankers on cross-lingual
reranking tasks is not well understood, which is a
gap that our work aims to address.

Adeyemi et al. (2024a) evaluates RankGPT and
RankZephyr on low-resource English-to-African
language pairs. However, their evaluation is limited
to listwise reranking models with translation-based
first-stage retrievers. In this study, we compare
their performance against pairwise rerankers and
the interaction between rerankers and lexical and
dense first-stage retrieval models. Our study in-
volves cross-lingual language pairs on both high-
and low-resources languages, as well as language
pairs that do not involve English queries.
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Pairwise Reranking frames the reranking task
as presenting a query along with two candidate doc-
uments to a LLM, and the LLM is then prompted
to compare the relevance between the candidates
in order to select the more relevant one (Qin et al.,
2024). In their work, the authors evaluate the pro-
posed pairwise reranking approach on variants of
the encoder-decoder FLAN-T5 models (Tay et al.,
2023; Chung et al., 2024) on monolingual retrieval
benchmarks. We extend this to the cross-lingual
domain and evaluate pairwise reranking on two
recent multilingual decoder-only LLMs.

Pointwise Reranking is another way to rerank
the candidates via relevance generation (Nogueira
et al., 2020; Liang et al., 2023; Ma et al., 2024)
or query generation strategy (Sachan et al., 2022).
Weller et al. (2025b) provide a cross-lingual
reranking evaluation of Mistral-7B-Instruct models
(Jiang et al., 2023; Weller et al., 2025a) as point-
wise rerankers, following the MonoT5 approach
(Nogueira et al., 2020). Since research has demon-
strated that pairwise methods generally outperform
pointwise approaches (Qin et al., 2024; Liu et al.,
2025a), we exclusively adopt the pairwise and list-
wise strategies in our experiments.

3 Evaluation Framework

In the following, we describe our evaluation frame-
work shown in Figure 1. To quantify to what extent
gains in the retrieval stage translate to better rerank-
ing results, we experiment with translation-based
lexical retrieval as well as multilingual bi-encoders.
We also compare listwise and pairwise rerankers
and quantify the impact of translation.

3.1 Datasets

We select the 2003 portion of the CLEF bench-
mark, due to its well-established cross-lingual test
collections comprising both query sets and docu-
ment corpora (Braschler, 2003). In CLEF 2003
documents consist of newswire articles and cover
European languages. Following the experimen-
tal setup of Litschko et al. (2022b), we evaluate
cross-lingual retrieval experiments across 9 lan-
guage pairs: EN-{FI, DE, IT, RU}, DE-{FI, IT,
RU}, and FI-{IT, RU}, with 60 parallel queries.

Following Adeyemi et al. (2024a), we use
the “Test Set A” split of the CIRAL benchmark
(Adeyemi et al., 2024b) to evaluate CLIR on
low-resource African languages. CIRAL is a
cross-lingual passage retrieval benchmark where

CLEF 2003 CIRAL (Test Set A)

Lang. #Q #D Avg. Len. Lang. #Q #D Avg. Len.

DE 60 295k 284 Ha 80 715k 135
FI 60 55k 256 So 99 827k 126
IT 60 158k 298 Sw 85 949k 127
RU 37 17k 258 Yo 100 82k 168
EN 60 169k 509 – – – –

Table 1: Statistics of the CLEF 2003 and CIRAL (Test
Set A) datasets. #Q: number of queries per language;
#D: number of documents per language; Avg. Len.:
average number of document tokens using a whitespace
tokenizer.

queries are written in English and documents writ-
ten in Hausa (HA), Somali (SO), Swahili (SW)
and Yoruba (YO). Dataset statistics are shown in
Table 1. CIRAL documents are extracted from
African news and blog website and chunked into
passages. The average length of CIRAL passages
is with 139 white-space-delimited tokens less than
that of CLEF documents, which consists of 274
tokens on average. In Section 4.3 we investigate
the impact of document lengths on LLM-based
reranking.

3.2 Multi-Stage Pipeline: Experimental Setup

Building upon the limitations identified in prior
translation-dependent setups, we design a multi-
stage retrieval pipeline that evaluates multilingual
capabilities more directly. All the evaluation ex-
periments are run on NVIDIA A100 GPUs. A
summary of all models used in this study can be
found in Table 8.

First-Stage Retrieval. As a lexical baseline re-
trieval method, we use BM25 via Pyserini (Lin
et al., 2021), with batch size of 1 and a single thread.
BM25 parameters are set to k1 = 0.9, b = 0.4. We
index each collection by language and retrieve the
top 100 documents for each query. Since lexical re-
trieval is not well-suited for cross-lingual retrieval,
we index documents after translating them to the
query language (see Section 3.3).

Furthermore, we chose to evaluate five state-of-
the-art bi-encoder models as first-stage retrievers,
divided into encoder-only and decoder-only trans-
former architectures. For each model we retrieve
the top 100 documents with a maximum document
length of 512, which is a common default value in
most models. The evaluated encoder-only models
include M3 (Chen et al., 2024), mGTE (Zhang
et al., 2024) and multilingual E5 (Wang et al.,
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2024). M3 is initialized from XLM-R (Conneau
et al., 2020) and supports dense, sparse and multi-
vector representations. In our multi-stage pipeline,
we utilize the dense representations. mGTE builds
on a modernized BERT which is trained from
scratch on multilingual datasets. This resulting
model is then further optimized for retrieval tasks
on a contrastive loss objective. E5 is initialized
from XLM-R and then finetuned on a contrastive
loss objective. Among the available small, base,
and large variants, we use multilingual-e5-large.

The evaluated decoder-only models include Re-
pLLaMA (Ma et al., 2024) and NV-Embed-v2
(Lee et al., 2025). RepLLaMA is initialized from
LLaMA-2-7B (Touvron et al., 2023) and then fur-
ther finetuned for retrieval tasks. As the model
is restricted to unidirectional attention, the rep-
resentation of a document or query is extracted
from an appended end-of-sequence token. NV-
Embed-v2 is initialized from Mistral-7B (Jiang
et al., 2023). During training with a contrastive loss
objective, the causal attention mask is removed, en-
abling bi-directional attention. Embeddings are
extracted using a latent attention pooling mech-
anism rather than relying on a single token em-
bedding. A practical consideration when using
decoder-only models is their relatively high storage
requirements. Both RepLLaMA and NV-Embed-
v2 utilize a 4096-dimensional embedding space,
which can lead to significantly larger index sizes
and increased memory requirements compared to
typical 768- or 1024-dimensional embeddings used
in encoder-only models.

Our model selection was informed by their
strong performance on existing monolingual bench-
marks (Thakur et al., 2021; Craswell et al., 2020,
2021) and the multilingual MMTEB benchmark
(Enevoldsen et al., 2025). By evaluating those mod-
els on the CLEF and CIRAL datasets, we shed light
on their performance on typologically diverse lan-
guage pairs including low-resource languages.

Listwise Reranking. We include listwise rerank-
ing in the second stage of the retrieval pipeline
due to its demonstrated efficacy (Sun et al.,
2023). Specifically, we employ RankZephyr and
RankGPT3.5 following Adeyemi et al. (2024a),
and additionally incorporate RankGPT4.1 into our
evaluation. RankZephyr performs well in both
monolingual (Pradeep et al., 2023b) and MT-based
cross-lingual retrieval (Adeyemi et al., 2024a), but
its effectiveness in cross-lingual reranking with-

out MT—where both query and documents are
non-English—remains underexplored. We evalu-
ate RankZephyr using the rank_llm framework
(Sharifymoghaddam et al., 2025),2 with a sliding
window size of 20, step size of 10, and a max con-
text length of 4096 tokens. The reranking prompt
is shown in Figure 3 in Appendix A.

Pairwise Reranking. In our experiments, we uti-
lized the Pairwise Ranking Prompting (PRP) with
the bubble-sort-like sliding window strategy (Qin
et al., 2024), in which k passes are performed by
comparing each document pair from bottom to the
top with the initial ranking. Following the prompt
design of Qin et al. (2024) (see Figure 4), we per-
form k = 10 passes through the candidate list. We
adopt the generation mode, where models output
either “Passage A” or “Passage B”. The experi-
ments are conducted using two multilingual LLMs:
Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and
Aya-101 (Üstün et al., 2024), due to their strong
multilingual capabilities. While Aya-101 has seen
all four CIRAL and five CLEF languages, Llama-
3.1-8B-Instruct only supports three of those lan-
guages (English, German, and Italian).

3.3 Document Translation Setup
To compare cross-lingual and monolingual retrieval
performance, we adopt a translation-based setup
that converts the task into a monolingual one, iso-
lating the impact of language mismatch.

To maintain consistency with the official trans-
lations of the CIRAL dataset (Adeyemi et al.,
2024b)—which are generated using the nllb-200-
1.3B model (NLLB Team et al., 2022), we also
translate the entire CLEF 2003 documents collec-
tion for all nine language pairs using the same
model. In order to ensure a high translation qual-
ity, we use a sentence-level strategy: documents
are split into sentences, translated individually, and
then concatenated to reconstruct the full document.
In a preliminary study, we found that this approach
improves the translation accuracy and avoids er-
rors that often arise in document-level translation.
In particular, we found that sentence-by-sentence
translations reduces word and phrase repetitions,
which occurred more often when documents were
translated as a whole. All sentence translations use
a maximum input sequence length of 128 and batch
size of 256 instances. Translations are generated
using greedy decoding.

2https://github.com/castorini/rank_llm
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EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG
First-stage retrieval (dense)
(1a) mGTE 0.324 0.302 0.263 0.348 0.330 0.307 0.295 0.262 0.229 0.296
(1b) RepLLaMA 0.298 0.320 0.305 0.288 0.271 0.286 0.265 0.273 0.160 0.274
(1c) M3 0.309 0.321 0.269 0.298 0.290 0.287 0.225 0.277 0.169 0.272
(1d) E5 0.166 0.223 0.048 0.193 0.211 0.261 0.114 0.279 0.131 0.181
(1e) NV-Embed-v2 0.286 0.450 0.324 0.422 0.148 0.404 0.287 0.342 0.244 0.323
(1f) NV-Embed-v2 (oracle) 0.499 0.738 0.545 0.683 0.485 0.684 0.539 0.624 0.477 0.586
First-stage retrieval (sparse)
(2a) BM25-QT 0.309 0.409 0.237 0.207 0.267 0.397 0.241 0.341 0.261 0.297
(2b) BM25-DT 0.413 0.396 0.255 0.485 0.301 0.282 0.216 0.245 0.179 0.308
(2c) BM25-DT (oracle) 0.613 0.686 0.571 0.716 0.617 0.533 0.481 0.446 0.378 0.560
Listwise Reranking (Retriever: NV-Embed-v2)
(3a) RankZephyr (OG) 0.351∗ 0.453 0.340 0.444 0.287∗ 0.385 0.309 0.300 0.250 0.347
(3b) RankGPT3.5 (OG) 0.337 0.438 0.325 0.438 0.297∗ 0.428 0.305 0.386∗ 0.250 0.356
(3c) RankGPT4.1 (OG) 0.416∗ 0.526∗ 0.417∗ 0.506∗ 0.400∗ 0.501∗ 0.410∗ 0.449∗ 0.339 0.440
(3d) RankZephyr (DT) 0.402∗ 0.466 0.375 0.472∗ 0.347∗ 0.394 0.318 0.308 0.217 0.367
(3e) RankGPT3.5 (DT) 0.383∗ 0.472 0.308 0.450 0.311∗ 0.432 0.336 0.375 0.239 0.367
(3f) RankGPT4.1 (DT) 0.433∗ 0.557∗ 0.382 0.517∗ 0.402∗ 0.518∗ 0.363∗ 0.472∗ 0.341 0.443
Listwise Reranking (Retriever: BM25-DT)
(4a) RankZephyr (OG) 0.402 0.436 0.304 0.473 0.349 0.350∗ 0.315∗ 0.272 0.176 0.342
(4b) RankGPT3.5 (OG) 0.405 0.423 0.283 0.479 0.389∗ 0.338∗ 0.259 0.288∗ 0.190 0.339
(4c) RankGPT4.1 (OG) 0.480∗ 0.512∗ 0.402∗ 0.544∗ 0.465∗ 0.421∗ 0.318∗ 0.355∗ 0.244 0.416
(4d) RankZephyr (DT) 0.461 0.475∗ 0.333∗ 0.510 0.425∗ 0.366∗ 0.322∗ 0.230 0.190 0.368
(4e) RankGPT3.5 (DT) 0.405 0.467∗ 0.303∗ 0.487 0.393∗ 0.361∗ 0.278 0.270 0.184 0.350
(4f) RankGPT4.1 (DT) 0.505∗ 0.537∗ 0.373∗ 0.554∗ 0.477∗ 0.413∗ 0.341∗ 0.341∗ 0.260 0.422

Table 2: MAP scores of first-stage retriever and listwise reranking results on CLEF 2003, with the best performance
for each language pair marked in Bold. Gray font indicates the best possible (oracle) reranking performance
achievable based on the top-100 documents provided by the first-stage retriever. OG denotes cross-lingual reranking
with documents in their original language. QT and DT denote experiments involving query and document translation.
∗: statistically significant difference to the first-stage retriever (paired t-test, p < 0.05).

4 Results and Discussion

4.1 First-Stage Retrieval

Table 2 (rows 1a-1e) presents the results for the
first-stage retrievers on the CLEF 2003 dataset.
NV-Embed-v2 shows the best average performance
(0.323 MAP) with a notable drop in performance
for the DE-FI language pair (0.148 MAP), despite
having been pre-trained on both languages. mGTE
exhibits the second best performance, and is able
to outperform NV-Embed-v2 on the two language
pairs DE-FI and DE-RU. This is particularly note-
worthy, as mGTE is the smallest model in terms of
parameter size (see Table 8). We find that E5 shows
the weakest overall performance (0.181 MAP).
Translation-based lexical retrieval (2a-b) outper-
forms all bi-encoders except for NV-Embed-v2.

Table 3 (rows 1a-1e) presents the results of the
first-stage retrievers on the CIRAL dataset. Here,
M3 is the best-performing model, followed by E5,
which is notable given its relatively poor perfor-
mance on CLEF 2003. Both NV-Embed-v2 and
mGTE perform substantially worse on CIRAL. We
find that language coverage explains this differ-

ence only to a certain extent. While NV-Embed-v2
does not support any of the four CIRAL languages,
mGTE does support Hausa. Different from our
results on CLEF, we find document translation to
perform substantially worse. BM25-DT falls be-
hind most bi-encoders, with a notable gap to M3.

These results show that the best-performing first-
stage ranker differs considerably based on the cho-
sen dataset (RQ1). Meanwhile, it seems likely that
main factors for the performance differences are
the quality and amount of training data a model has
seen. While architectural differences between mod-
els (within the classes of encoder-only models and
decoder-only models respectively) may play a role,
training data composition and quality appears to be
a more significant factor. For instance, E5 and M3
share similar architectural foundations, yet their
performance diverges substantially on CIRAL.

Compared to prior work that utilized cross-
lingual word embeddings (Glavaš et al., 2019;
Litschko et al., 2022b; Zhou et al., 2022) and mul-
tilingual pre-trained language models (Litschko
et al., 2019), we observe that recent bi-encoders
achieve superior performance.
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EN-HA EN-SO EN-SW EN-YO AVG
First-stage retrieval (dense)
(1a) mGTE 0.252 0.266 0.317 0.339 0.294
(1b) RepLLaMA 0.199 0.192 0.183 0.315 0.222
(1c) E5 0.291 0.278 0.326 0.415 0.327
(1d) NV-Embed-v2 0.136 0.263 0.290 0.471 0.290
(1e) M3 0.388 0.351 0.402 0.425 0.392
(1f) M3 (oracle) 0.744 0.687 0.792 0.793 0.754
First-stage retrieval (sparse)
(2a) BM25-QT 0.087 0.081 0.130 0.286 0.146
(2b) BM25-DT 0.214 0.246 0.233 0.445 0.285
(2c) BM25-DT (oracle) 0.586 0.561 0.611 0.826 0.646
Listwise Reranking (Retriever: M3)
(3a) RankZephyr (OG) 0.352 0.302 0.372 0.433 0.365
(3b) RankGPT3.5 (OG) 0.419∗ 0.382∗ 0.413 0.484∗ 0.425
(3c) RankGPT4.1 (OG) 0.467∗ 0.453∗ 0.485∗ 0.566∗ 0.493
(3d) RankZephyr (DT) 0.464∗ 0.454∗ 0.448∗ 0.540∗ 0.477
(3e) RankGPT3.5 (DT) 0.439∗ 0.395∗ 0.419 0.491∗ 0.436
(3f) RankGPT4.1 (DT) 0.490∗ 0.481∗ 0.498∗ 0.576∗ 0.511
Listwise Reranking (Retriever: BM25-DT)
(4a) RankZephyr (OG) 0.260∗ 0.300∗ 0.291∗ 0.439 0.322
(4b) RankGPT3.5 (OG) 0.241 0.292 0.256 0.442 0.308
(4c) RankGPT4.1 (OG) 0.383∗ 0.354∗ 0.361∗ 0.574∗ 0.418
(4d) RankZephyr (DT) 0.371∗ 0.362∗ 0.365∗ 0.531∗ 0.407
(4e) RankGPT3.5 (DT) 0.298 0.308 0.307 0.499 0.353
(4f) RankGPT4.1 (DT) 0.397∗ 0.378∗ 0.406∗ 0.584∗ 0.441

Table 3: nDCG@20 scores of first-stage retrievers and listwise rerankers on the CIRAL dataset, with the best
performance for each language pair marked in Bold. Gray font indicates the best possible (oracle) reranking results
achievable based on the top-100 documents provided by the first-stage retriever. ∗: statistically significant difference
to the retriever (paired t-test, p < 0.05). Rows 2a and 4b,e are taken from (Adeyemi et al., 2024a).

4.2 Second-Stage Reranking

Listwise Reranking Results. We show the re-
sults for listwise rerankers applied on CLEF and
CIRAL in Tables 2 and 3. On average, all rerankers
manage to improve the results of the input rankings
generated by their respective first-stage retrievers.
At the level of individual language pairs, we find
that only RankGPT4.1 improves its input rankings
across the board on both datasets. On the CLEF
dataset, RankZephyr and RankGPT 3.5 show im-
proved performance over the input rankings gen-
erated by NV-Embed-v2 for most language pairs
(7-8 out of 9, rows 3a-b), but the improvement is
less pronounced when using BM25-DT as the first-
stage retriever, with 6-7 language pairs showing
improvement (rows 4a-b).

Consistent across both datasets, we find that im-
proved retrieval results translate to better rerank-
ing results (RQ2). Specifically, as shown in Ta-
ble 2, we observe that the modest improvement
in retrieval results achieved by NV-Embedd-v2
over BM25-DT on the CLEF dataset (+0.015
MAP) translates to relatively small differences
in reranking results, ranging from +0.024 for

RankGPT3.5 (comparing rows 3b and 4b) to +0.05
for RankZephyr (comparing rows 3a and 4a). In
contrast, our results on the CIRAL dataset (Ta-
ble 3) reveal a more substantial improvement in
retrieval results, with M3 outperforming BM25-DT
by +0.110 MAP. Consequently, the reranking im-
provements are more pronounced, spanning from
+0.043 for RankZephyr (comparing rows 3a and
4a) to +0.117 for RankGPT3.5.

The differences between CLEF and CIRAL are
likely the result of differences in translation quali-
ties (Adeyemi et al., 2024a) (see also Appendix B).
Interestingly, as models achieve an overall stronger
performance, the benefits from document trans-
lation appears to diminish. On CLEF with NV-
Embed-v2 as a first-stage retriever, we observe that
improvements for RankZephyr and RankGPT3.5

are with +0.026 and +0.011 MAP (comparing rows
3a-b with 3d-e) larger than for RankGPT4.1, where
it is only +0.003 (comparing 3c with 3f). We ob-
serve a similar trend on the CIRAL dataset, where
the improvements resulting from document trans-
lation for RankZephyr is with +0.112 (3a, 3d) is
higher than +0.018 for RankGPT4.1 (3c, 3f).
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EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG
First-stage retrieval
NV-Embed-v2 0.286 0.450 0.324 0.422 0.148 0.404 0.287 0.342 0.244 0.323
BM25-DT 0.413 0.396 0.255 0.485 0.301 0.282 0.216 0.245 0.179 0.308
Pairwise Reranking (Retriever: NV-Embed-v2)
Llama-3.1-8B-Instruct (OG) 0.354∗ 0.474 0.361 0.438∗ 0.282∗ 0.439∗ 0.338∗ 0.395∗ 0.254∗ 0.371
Aya-101 (OG) 0.350∗ 0.476 0.335 0.430 0.289∗ 0.436 0.339 0.379∗ 0.278 0.368
Llama-3.1-8B-Instruct (DT) 0.369∗ 0.502∗ 0.358 0.461∗ 0.333∗ 0.459∗ 0.335 0.369 0.276 0.385
Aya-101 (DT) 0.337∗ 0.464 0.326 0.433 0.301∗ 0.434 0.331 0.352 0.239 0.357
Pairwise Reranking (Retriever: BM25-DT)
Llama-3.1-8B-Instruct (OG) 0.460∗ 0.450∗ 0.312∗ 0.492 0.383∗ 0.359∗ 0.269 0.286∗ 0.191 0.356
Aya-101 (OG) 0.449∗ 0.418 0.301 0.498∗ 0.355∗ 0.328∗ 0.313∗ 0.274∗ 0.234 0.352
Llama-3.1-8B-Instruct (DT) 0.479∗ 0.472∗ 0.293 0.509 0.390∗ 0.352∗ 0.272 0.281∗ 0.196 0.360
Aya-101 (DT) 0.449 0.432∗ 0.296 0.497 0.394∗ 0.336∗ 0.284∗ 0.260 0.199 0.350

Table 4: MAP scores of pairwise reranking on CLEF 2003, with the best performance for each language pair marked
in Bold. ∗: statistically significant difference to the first-stage retriever (paired t-test, p < 0.05).

EN-HA EN-SO EN-SW EN-YO AVG
First-stage retrieval
M3 0.388 0.351 0.402 0.425 0.392
BM25-DT 0.214 0.236 0.233 0.445 0.282
Pairwise Reranking (Retriever: M3)
Llama-3.1-8B-Instruct (OG) 0.399 0.360 0.423∗ 0.453∗ 0.409
Aya-101 (OG) 0.427∗ 0.387∗ 0.437∗ 0.483∗ 0.434
Llama-3.1-8B-Instruct (DT) 0.410∗ 0.398∗ 0.431∗ 0.474∗ 0.428
Aya-101 (DT) 0.431∗ 0.395∗ 0.432∗ 0.505∗ 0.441
Pairwise Reranking (Retriever: BM25-DT)
Llama-3.1-8B-Instruct (OG) 0.241∗ 0.262∗ 0.280∗ 0.473∗ 0.314
Aya-101 (OG) 0.325∗ 0.317∗ 0.298∗ 0.504∗ 0.361
Llama-3.1-8B-Instruct (DT) 0.281∗ 0.284∗ 0.306∗ 0.503∗ 0.344
Aya-101 (DT) 0.303∗ 0.314∗ 0.305∗ 0.501∗ 0.356

Table 5: nDCG@20 scores of pairwise reranking on CIRAL, with the best result for each language pair marked in
Bold. ∗: statistically significant difference to the first-stage retriever (paired t-test, p < 0.05).

Pairwise Reranking Results. Tables 4 and 5
show the pairwise reranking results on CLEF and
CIRAL. On average across all language pairs, we
find that all pairwise reranking models improve
their input rankings (RQ3). The results on CLEF
with NV-Embed-v2 as the first-stage retriever3

show that Llama-3.1-8B-Instruct achieves a per-
formance of 0.371 and 0.385 with and without doc-
ument translation, outperforming both RankZephyr
(0.347 and 0.367) and RankGPT3.5 (0.356 and
0.367). The Aya-101 reranker outperforms both
listwise models on translated documents.

The results on the CIRAL dataset with M3 as the
first-stage retriever show that the better-performing
Aya-101 reranker only outperforms RankZephyr
and RankGPT3.5 when documents remain in their
original language. GPT4.1 outperforms both pair-

3We focus our discussion on the reranking results based on
the better-performing multilingual bi-encoders. In Appendix C
we show that further gains are obtainable with hybrid retrieval.

wise models. However, it is worth noting that pair-
wise rerankers are only based on instruction-tuned
LLMs and have not been further post-trained on
reranking data. This is a key difference to listwise
rerankers used in this study, which are either closed-
source or have been distilled from closed-source
models.

The Glass Ceiling of Reranking. While im-
provements after second-stage reranking are com-
monly reported, it remains valuable to examine
how closely current methods approximate the op-
timal ranking. To estimate the possible best result
of reranking, we place all relevant documents in
the retrieved candidate list at the top positions to
simulate the oracle first-stage result (row 1f & 2c
in Table 2 & Table 3). The difference between
this oracle ranking result and the actual first-stage
scores show best possible gains for second-stage
reranking.

We define Potential Reranking Improvements
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(PRI) and the Realized improvement percentage as:

PRI = s∗ − s1 (1)

Realized =
s2 − s1

PRI
× 100 (2)

where s1 denotes the performance of the best dense
or sparse first-stage retriever, s∗ denotes the cor-
responding oracle performance achievable at the
first stage, and s2 denotes the best second-stage
reranking performance based on the respective s1.

On CLEF 2003, the PRI is 0.263 for NV-Embed-
v2 and 0.252 for BM25 with document translation
(DT). Scores on the CIRAL dataset are higher—
0.362 for the M3 retriever and 0.361 for BM25
(DT), indicating a larger room for improvement.

In terms of realized improvements, all three
rerankers enhance the first-stage results under doc-
ument translation (DT) settings on both datasets.
RankGPT4.1 (DT) consistently achieves the best
performance, realizing 45.6% and 45.2% of the PRI
on the CLEF dataset when reranking NV-Embed-
v2 and BM25 (DT) outputs, and 32.9% and 43.2%
on the CIRAL dataset when reranking the M3 bi-
encoder and BM25 (DT) results. However, the orig-
inal setting (OG) sometimes fails to outperform the
first-stage results (row 3a in Table 3), suggesting
that reranking may introduce additional noise in
certain cross-lingual settings.

Although document translation can help narrow
the performance gap toward the best possible re-
sults, the highest realized improvements still fall
short of expectations. Both datasets reveal a clear
“ceiling effect” in reranking: even state-of-the-art
rerankers struggle to approach the upper bound,
especially in cross-lingual settings. This highlights
a substantial gap between current reranking capa-
bilities and their theoretical potential, suggesting
that much of the available improvement remains
untapped.

4.3 Impact of Document Length

The passage-level results on CIRAL are noticeably
better than the document-level results on CLEF,
which motivates us to explore the influence of doc-
uments lengths on the reranking performance.

We conduct an ablation study on the CLEF 2003
dataset by varying the maximum number of input
tokens per document chunk in both listwise and
pairwise setups. This parameter plays a crucial role
in balancing information sufficiency and informa-
tion overload for the reranker.
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Figure 2: Effect of input document length on reranking
across retrievers and reranking approaches. Tokeniza-
tion is performed using each model’s own tokenizer.
Results are averaged over all CLEF language pairs.

As shown in Figure 2, RankZephyr reranker
performs best at medium input lengths (128 to-
kens), with a noticeable performance drop at 256
tokens across both sparse (BM25) and dense (NV-
Embed-v2) retrievers. This suggests that listwise
rerankers are sensitive to overly long inputs, which
may dilute useful signals with unnecessary con-
text. In contrast, Llama-based pairwise rerankers
show more stable or even improving trends. When
using NV-Embed-v2 as the retriever, performance
increases steadily from 64 to 256 tokens, indicat-
ing that this setup benefits from additional context.
However, when using BM25, the gains from longer
input saturate or even slightly decline at 256 tokens
for DT. This suggests that the pairwise reranker,
when paired with high-quality dense retriever, is
more robust to longer input spans.

We hypothesize that pairwise reranking is a
simpler task and may help capture more nuanced
comparison between the two candidates. In this
case, longer documents provide additional context,
which pairwise rerankers can utilize more effec-
tively (RQ4). Overall, these results show that opti-
mal input length is task- and model-dependent and
may require careful tuning.
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5 Conclusion

In this paper, we conducted a systematic evalua-
tion of LLMs for CLIR, evaluating both passage-
and document-level reranking without relying en-
tirely on machine translation. Our results reveal
that further cross-lingual reranking gains can be
achieved by substituting lexical MT-based retriev-
ers with better-performing multilingual bi-encoder
and hybrid retrieval approaches, and that the bene-
fits resulting from document translation diminish
with stronger listwise rerankers. We further demon-
strate that instruction-tuned pairwise rerankers per-
form competitively with listwise rerankers like
RankZephyr. Finally, we highlight the sensitiv-
ity of reranking performance to document length
and language resource disparities. Our findings
highlight the need for more robust approaches to
harness LLMs for cross-lingual reranking without
relying on machine translation.

Limitations

While our study provides a comprehensive evalua-
tion of LLMs for CLIR, several limitations remain.
First, our evaluation is limited to a fixed set of
LLMs, which, while representative, may not repre-
sent the full diversity of available open-source or
commercial models. Second, although we compare
document and query translation strategies, trans-
lation quality remains a potential confounder, as
noisy translations may affect LLM reranking be-
havior. Finally, we restrict our experiments to zero-
shot reranking without fine-tuning or domain adap-
tation. This may also underestimate the true poten-
tial of rerankers in downstream applications.
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A Prompt Template for Listwise and
Pairwise Reranking

Figures 3 and 4 show the prompt templates used in
our experiments. For listwise reranking, we adopt
the prompt template from the original RankZephyr
implementation (Pradeep et al., 2023b). For the
pairwise reranking approach, we use the prompt
introduced in (Qin et al., 2024) and implementation
provided by Zhuang et al. (2024).

LISTWISE RERANKING PROMPT

<|systems|>
You are RankLLM, an intelligent assistant that
can rank passages based on their relevancy to
the query.

<|user|>
I will provide you with {num} passages, each
indicated by a numerical identifier []. Rank
the passages based on their relevance to the
search query: {query}.

[1] {passage 1}
[2] {passage 2}
...
[{num}] {passage {num}}

Search Query: {query}.

Rank the {num} passages above based on
their relevance to the search query. All the
passages should be included and listed using
identifiers, in descending order of relevance.
The output format should be [] > [], e.g., [4]
> [2]. Only respond with the ranking results,
do not say any word or explain.
<|assistant|>

Model Generation: [9] > [4] > [20] > ... > [13]

Figure 3: Listwise reranking prompt template used for
LLM-based reranking.

PAIRWISE RERANKING PROMPT

Given a query {query}, which of the following
two passages is more relevant to the query?

Passage A: {document1}
Passage B: {document2}

Output Passage A or Passage B:

Figure 4: Pairwise reranking prompt template used for
LLM-based reranking.

B Query and Document Translation

We compare the impact of query translation (QT)
and document translation (DT) strategies across the
two benchmarks. As shown in Table 2 and Table 3,

While both QT and DT are considered in the
first stage, we only use DT to construct the can-

didate pool for the second stage due to its better
performance. Notably, the performance gap be-
tween QT and DT is much larger on CIRAL than
on CLEF in the first stage. QT is less effective on
CIRAL, as translating queries into low-resource
African languages often produces short or low-
quality queries that struggle to match the docu-
ment content. By contrast, QT performs better
on CLEF, where queries are translated into higher-
resourced languages with more reliable translation
and greater lexical overlap.

For the reranking stage, applying DT on CIRAL
has a much more pronounced effect than on CLEF,
resulting in a large performance gap between DT
and OG. We attribute this to two factors: (1)
translating documents into English transforms the
reranking task into a noisy EN–EN format, which
aligns more closely with the LLM’s training dis-
tribution, and (2) CIRAL documents are relatively
short, leading to higher translation accuracy and
less noise compared to longer texts.

In contrast, the OG setting on CLEF is less prob-
lematic. The languages included are better sup-
ported by existing LLMs, and the queries them-
selves are typically longer and more descriptive
(both title and description are included in queries),
making them easier to interpret and translate. As a
result, the performance gap between OG and DT is
smaller.

C Hybrid Retrieval Experiments

In addition to our BM25 and bi-encoder retrieval
experiments, we also evaluate a hybrid retrieval ap-
proach in which LLMs rerank fused top-100 rank-
ings using reciprocal rank fusion (Cormack et al.,
2009).4 In the following, we limit our analysis to
open-source LLMs. The retrieval and reranking
results are shown in Tables 6 and 7.

Oracle results. With regard to the best possible
reranking performance achievable, we find mixed
results. On CLEF, we notice that hybrid retrieval
improves the reranking potential (i.e., oracle score)
to 0.611 MAP, while both reranking the input rank-
ings of NV-Embedd-v2 and BM25-DT can at best
yield MAP values of 0.586 and 0.560. However,
on CIRAL we find that the best possible reranking
results of the hybrid model falls below the perfor-

4The union of the top-100 document sets of BM25 and
bi-encoder is larger than 100. For a fair comparison, we also
limit the number of documents of the fused ranking to 100
documents.
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EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG
First-stage retrieval
NV-Embed-v2 0.286 0.450 0.324 0.422 0.148 0.404 0.287 0.342 0.244 0.323
BM25-DT 0.413 0.396 0.255 0.485 0.301 0.282 0.216 0.245 0.179 0.308
Hybrid 0.407 0.480 0.336 0.516 0.372 0.406 0.303 0.344 0.221 0.376
NV-Embed-v2 (oracle) 0.499 0.738 0.545 0.683 0.485 0.684 0.539 0.624 0.477 0.586
BM25-DT (oracle) 0.613 0.686 0.571 0.716 0.617 0.533 0.481 0.446 0.378 0.560
Hybrid (oracle) 0.648 0.776 0.657 0.758 0.665 0.702 0.614 0.625 0.505 0.661
Listwise Reranking (Retriever: hybrid)
RankZephyr (OG) 0.399 0.479 0.393 0.509 0.386 0.398 0.359 0.320 0.211 0.384
RankZephyr (DT) 0.468∗ 0.489 0.393 0.528 0.462∗ 0.440 0.387∗ 0.319 0.206 0.410
Pairwise Reranking (Retriever: hybrid)
Llama-3.1-8B-Instruct (OG) 0.447∗ 0.502 0.407∗ 0.513 0.406 0.451∗ 0.367 0.389∗ 0.301∗ 0.420
Llama-3.1-8B-Instruct (DT) 0.463∗ 0.508∗ 0.381 0.535∗ 0.436∗ 0.471∗ 0.339 0.388∗ 0.294 0.424
Aya-101 (OG) 0.443∗ 0.509 0.363 0.522 0.417∗ 0.459∗ 0.373∗ 0.397∗ 0.298 0.420
Aya-101 (DT) 0.436∗ 0.501 0.374 0.524 0.421∗ 0.457∗ 0.369∗ 0.359 0.247 0.410

Table 6: MAP scores of hybrid retriever and listwise reranking results on CLEF 2003, with the best performance
for each language pair and retrieval stage marked in Bold. ∗: statistically significant difference to the first-stage
retriever (paired t-test, p < 0.05).

EN-HA EN-SO EN-SW EN-YO AVG
First-stage retrieval
M3 0.388 0.351 0.402 0.425 0.392
BM25-DT 0.214 0.236 0.233 0.445 0.282
Hybrid 0.382 0.358 0.377 0.497 0.403
M3 (oracle) 0.744 0.687 0.792 0.793 0.754
BM25-DT (oracle) 0.586 0.561 0.611 0.826 0.646
Hybrid (oracle) 0.586 0.687 0.792 0.793 0.715
Listwise Reranking (Retriever: hybrid)
RankZephyr (OG) 0.359 0.336 0.390 0.477 0.390
RankZephyr (DT) 0.474∗ 0.462∗ 0.474∗ 0.571∗ 0.495
Pairwise Reranking (Retriever: hybrid)
Llama-3.1-8B-Instruct (OG) 0.397∗ 0.367 0.416∗ 0.517∗ 0.424
Llama-3.1-8B-Instruct (DT) 0.417∗ 0.405∗ 0.418∗ 0.540∗ 0.445
Aya-101 (OG) 0.455∗ 0.402∗ 0.427∗ 0.536∗ 0.455
Aya-101 (DT) 0.456∗ 0.404∗ 0.422∗ 0.535∗ 0.454

Table 7: nDCG@20 scores of hybrid retrieval and reranking on the CIRAL dataset, with the best performance
for each language pair and retrieval stage marked in Bold. ∗: statistically significant difference to the first-stage
retriever (paired t-test, p < 0.05).

mance of the M3 retriever. This may be explained
by the fact that the gap between the bi-encoder and
lexical retriever is much larger on CIRAL (0.392 vs.
0.282) than on CLEF (0.323 vs. 0.308). Interest-
ingly, despite the large performance gap between
both prerankers on CIRAL, the hybrid model still
brings slight performance improvements (with a
MAP score of 0.403).

Listwise reranking results. On listwise rerank-
ing on CLEF, we find that the performance of
RankZephyr improves from 0.342 (see Table 2)
to 0.384 without translation (OG), and from 0.368
to 0.410 when documents are translated (DT). Sim-
ilar gains can be seen on CIRAL (see Table 3),
where the MAP scores improve from 0.327 to 0.390

with original language documents (OG), and from
0.407 to 0.495 with translated documents. These
results are consistent with our results presented in
Section 4 and show that improvements in retrieval
translate to improvements in reranking.

Pairwise reranking results. Different from the
listwise reranking results, we find that the im-
provements resulting from document translation
diminish for pairwise rerankers. Both Llama-
3.1-8B-Instruct and Aya-101 perform substantially
better compared to reranking only the results of
NV-Embedd-v2 and M3 for CLEF and CIRAL
(see Tables 4 and 5). On CLEF, the best perfor-
mance is achieved by Llama-3.1-8B (DT), whereas
RankZephyr (DT) performs best on CIRAL.
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Model Parameters #Lang. Unsupported Languages Emb. Dim.

mGTE (Zhang et al., 2024) 305M 75 HA 768
RepLlama (Ma et al., 2024) 7B 1 FI, DE, IT, RU, HA, SW, SO, YO 4096
M3 (Chen et al., 2024) 560M 173 HA 1024
E5 (Wang et al., 2024) 560M 94 YO 1024
NV-Embedd-v2 (Lee et al., 2025) 7.85B 1 FI, DE, IT, RU, HA, SW, SO, YO 4096

RankZephyr (Pradeep et al., 2023b) 7.24B 1 FI, DE, IT, RU, HA, SW, SO, YO -
RankGPT3.5 (Sun et al., 2023) - - - -
RankGPT4.1 (Sun et al., 2023) - - - -
Aya-101 (Üstün et al., 2024) 12.9B 101 None -
Llama-3.1-8B-Instruct (Touvron et al., 2023) 8.03B 8 FI, RU, HA, SW, SO, YO -

Table 8: Retriever and reranker model information based on HuggingFace model cards (Wolf et al., 2020). For each
model, we list the number of parameters, number languages it was trained on, and which of the CIRAL and CLEF
languages are not supported. For bi-encoders we also report the embedding size.

D Model Information

Information about the retriever and reranker mod-
els used in our study is summarized in Table 8. For
retrievers, RepLlama is fine-tuned from Llama-2-
7B (Touvron et al., 2023) using LoRA (Hu et al.,
2021) on the MS MARCO Passage Ranking (Bajaj
et al., 2018) training split for one epoch, while E5
is initialized from XLM-RoBERTa-large (Conneau
et al., 2020) and trained on a mixture of multilin-
gual datasets covering 100 languages. NV-Embed-
v2 model is built upon decoder-only Mistral-7B-
v0.1 (Jiang et al., 2023).

For rerankers, RankZephyr is based on the
Zephyr-7B-ß model (Tunstall et al., 2023). We
use the RankZephyr Full version, which is dis-
tilled from RankGPT3.5 (100K training queries)
and RankGPT4 (5K queries). The training corpus
is limited to monolingual English data.
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